xref: /openbsd-src/sys/dev/pci/drm/drm_prime.c (revision c1a45aed656e7d5627c30c92421893a76f370ccb)
1 /*
2  * Copyright © 2012 Red Hat
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Dave Airlie <airlied@redhat.com>
25  *      Rob Clark <rob.clark@linaro.org>
26  *
27  */
28 
29 #include <linux/export.h>
30 #include <linux/dma-buf.h>
31 #include <linux/rbtree.h>
32 
33 #include <drm/drm.h>
34 #include <drm/drm_drv.h>
35 #include <drm/drm_file.h>
36 #include <drm/drm_framebuffer.h>
37 #include <drm/drm_gem.h>
38 #include <drm/drm_prime.h>
39 
40 #include "drm_internal.h"
41 
42 /**
43  * DOC: overview and lifetime rules
44  *
45  * Similar to GEM global names, PRIME file descriptors are also used to share
46  * buffer objects across processes. They offer additional security: as file
47  * descriptors must be explicitly sent over UNIX domain sockets to be shared
48  * between applications, they can't be guessed like the globally unique GEM
49  * names.
50  *
51  * Drivers that support the PRIME API implement the
52  * &drm_driver.prime_handle_to_fd and &drm_driver.prime_fd_to_handle operations.
53  * GEM based drivers must use drm_gem_prime_handle_to_fd() and
54  * drm_gem_prime_fd_to_handle() to implement these. For GEM based drivers the
55  * actual driver interfaces is provided through the &drm_gem_object_funcs.export
56  * and &drm_driver.gem_prime_import hooks.
57  *
58  * &dma_buf_ops implementations for GEM drivers are all individually exported
59  * for drivers which need to overwrite or reimplement some of them.
60  *
61  * Reference Counting for GEM Drivers
62  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
63  *
64  * On the export the &dma_buf holds a reference to the exported buffer object,
65  * usually a &drm_gem_object. It takes this reference in the PRIME_HANDLE_TO_FD
66  * IOCTL, when it first calls &drm_gem_object_funcs.export
67  * and stores the exporting GEM object in the &dma_buf.priv field. This
68  * reference needs to be released when the final reference to the &dma_buf
69  * itself is dropped and its &dma_buf_ops.release function is called.  For
70  * GEM-based drivers, the &dma_buf should be exported using
71  * drm_gem_dmabuf_export() and then released by drm_gem_dmabuf_release().
72  *
73  * Thus the chain of references always flows in one direction, avoiding loops:
74  * importing GEM object -> dma-buf -> exported GEM bo. A further complication
75  * are the lookup caches for import and export. These are required to guarantee
76  * that any given object will always have only one unique userspace handle. This
77  * is required to allow userspace to detect duplicated imports, since some GEM
78  * drivers do fail command submissions if a given buffer object is listed more
79  * than once. These import and export caches in &drm_prime_file_private only
80  * retain a weak reference, which is cleaned up when the corresponding object is
81  * released.
82  *
83  * Self-importing: If userspace is using PRIME as a replacement for flink then
84  * it will get a fd->handle request for a GEM object that it created.  Drivers
85  * should detect this situation and return back the underlying object from the
86  * dma-buf private. For GEM based drivers this is handled in
87  * drm_gem_prime_import() already.
88  */
89 
90 struct drm_prime_member {
91 	struct dma_buf *dma_buf;
92 	uint32_t handle;
93 
94 	struct rb_node dmabuf_rb;
95 	struct rb_node handle_rb;
96 };
97 
98 static int drm_prime_add_buf_handle(struct drm_prime_file_private *prime_fpriv,
99 				    struct dma_buf *dma_buf, uint32_t handle)
100 {
101 	struct drm_prime_member *member;
102 	struct rb_node **p, *rb;
103 
104 	member = kmalloc(sizeof(*member), GFP_KERNEL);
105 	if (!member)
106 		return -ENOMEM;
107 
108 	get_dma_buf(dma_buf);
109 	member->dma_buf = dma_buf;
110 	member->handle = handle;
111 
112 	rb = NULL;
113 	p = &prime_fpriv->dmabufs.rb_node;
114 	while (*p) {
115 		struct drm_prime_member *pos;
116 
117 		rb = *p;
118 		pos = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
119 		if (dma_buf > pos->dma_buf)
120 			p = &rb->rb_right;
121 		else
122 			p = &rb->rb_left;
123 	}
124 	rb_link_node(&member->dmabuf_rb, rb, p);
125 	rb_insert_color(&member->dmabuf_rb, &prime_fpriv->dmabufs);
126 
127 	rb = NULL;
128 	p = &prime_fpriv->handles.rb_node;
129 	while (*p) {
130 		struct drm_prime_member *pos;
131 
132 		rb = *p;
133 		pos = rb_entry(rb, struct drm_prime_member, handle_rb);
134 		if (handle > pos->handle)
135 			p = &rb->rb_right;
136 		else
137 			p = &rb->rb_left;
138 	}
139 	rb_link_node(&member->handle_rb, rb, p);
140 	rb_insert_color(&member->handle_rb, &prime_fpriv->handles);
141 
142 	return 0;
143 }
144 
145 static struct dma_buf *drm_prime_lookup_buf_by_handle(struct drm_prime_file_private *prime_fpriv,
146 						      uint32_t handle)
147 {
148 	struct rb_node *rb;
149 
150 	rb = prime_fpriv->handles.rb_node;
151 	while (rb) {
152 		struct drm_prime_member *member;
153 
154 		member = rb_entry(rb, struct drm_prime_member, handle_rb);
155 		if (member->handle == handle)
156 			return member->dma_buf;
157 		else if (member->handle < handle)
158 			rb = rb->rb_right;
159 		else
160 			rb = rb->rb_left;
161 	}
162 
163 	return NULL;
164 }
165 
166 static int drm_prime_lookup_buf_handle(struct drm_prime_file_private *prime_fpriv,
167 				       struct dma_buf *dma_buf,
168 				       uint32_t *handle)
169 {
170 	struct rb_node *rb;
171 
172 	rb = prime_fpriv->dmabufs.rb_node;
173 	while (rb) {
174 		struct drm_prime_member *member;
175 
176 		member = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
177 		if (member->dma_buf == dma_buf) {
178 			*handle = member->handle;
179 			return 0;
180 		} else if (member->dma_buf < dma_buf) {
181 			rb = rb->rb_right;
182 		} else {
183 			rb = rb->rb_left;
184 		}
185 	}
186 
187 	return -ENOENT;
188 }
189 
190 void drm_prime_remove_buf_handle_locked(struct drm_prime_file_private *prime_fpriv,
191 					struct dma_buf *dma_buf)
192 {
193 	struct rb_node *rb;
194 
195 	rb = prime_fpriv->dmabufs.rb_node;
196 	while (rb) {
197 		struct drm_prime_member *member;
198 
199 		member = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
200 		if (member->dma_buf == dma_buf) {
201 			rb_erase(&member->handle_rb, &prime_fpriv->handles);
202 			rb_erase(&member->dmabuf_rb, &prime_fpriv->dmabufs);
203 
204 			dma_buf_put(dma_buf);
205 			kfree(member);
206 			return;
207 		} else if (member->dma_buf < dma_buf) {
208 			rb = rb->rb_right;
209 		} else {
210 			rb = rb->rb_left;
211 		}
212 	}
213 }
214 
215 void drm_prime_init_file_private(struct drm_prime_file_private *prime_fpriv)
216 {
217 	rw_init(&prime_fpriv->lock, "primlk");
218 	prime_fpriv->dmabufs = RB_ROOT;
219 	prime_fpriv->handles = RB_ROOT;
220 }
221 
222 void drm_prime_destroy_file_private(struct drm_prime_file_private *prime_fpriv)
223 {
224 	/* by now drm_gem_release should've made sure the list is empty */
225 	WARN_ON(!RB_EMPTY_ROOT(&prime_fpriv->dmabufs));
226 }
227 
228 /**
229  * drm_gem_dmabuf_export - &dma_buf export implementation for GEM
230  * @dev: parent device for the exported dmabuf
231  * @exp_info: the export information used by dma_buf_export()
232  *
233  * This wraps dma_buf_export() for use by generic GEM drivers that are using
234  * drm_gem_dmabuf_release(). In addition to calling dma_buf_export(), we take
235  * a reference to the &drm_device and the exported &drm_gem_object (stored in
236  * &dma_buf_export_info.priv) which is released by drm_gem_dmabuf_release().
237  *
238  * Returns the new dmabuf.
239  */
240 struct dma_buf *drm_gem_dmabuf_export(struct drm_device *dev,
241 				      struct dma_buf_export_info *exp_info)
242 {
243 	struct drm_gem_object *obj = exp_info->priv;
244 	struct dma_buf *dma_buf;
245 
246 	dma_buf = dma_buf_export(exp_info);
247 	if (IS_ERR(dma_buf))
248 		return dma_buf;
249 
250 	drm_dev_get(dev);
251 	drm_gem_object_get(obj);
252 #ifdef __linux__
253 	dma_buf->file->f_mapping = obj->dev->anon_inode->i_mapping;
254 #endif
255 
256 	return dma_buf;
257 }
258 EXPORT_SYMBOL(drm_gem_dmabuf_export);
259 
260 /**
261  * drm_gem_dmabuf_release - &dma_buf release implementation for GEM
262  * @dma_buf: buffer to be released
263  *
264  * Generic release function for dma_bufs exported as PRIME buffers. GEM drivers
265  * must use this in their &dma_buf_ops structure as the release callback.
266  * drm_gem_dmabuf_release() should be used in conjunction with
267  * drm_gem_dmabuf_export().
268  */
269 void drm_gem_dmabuf_release(struct dma_buf *dma_buf)
270 {
271 	struct drm_gem_object *obj = dma_buf->priv;
272 	struct drm_device *dev = obj->dev;
273 
274 	/* drop the reference on the export fd holds */
275 	drm_gem_object_put(obj);
276 
277 	drm_dev_put(dev);
278 }
279 EXPORT_SYMBOL(drm_gem_dmabuf_release);
280 
281 /**
282  * drm_gem_prime_fd_to_handle - PRIME import function for GEM drivers
283  * @dev: dev to export the buffer from
284  * @file_priv: drm file-private structure
285  * @prime_fd: fd id of the dma-buf which should be imported
286  * @handle: pointer to storage for the handle of the imported buffer object
287  *
288  * This is the PRIME import function which must be used mandatorily by GEM
289  * drivers to ensure correct lifetime management of the underlying GEM object.
290  * The actual importing of GEM object from the dma-buf is done through the
291  * &drm_driver.gem_prime_import driver callback.
292  *
293  * Returns 0 on success or a negative error code on failure.
294  */
295 int drm_gem_prime_fd_to_handle(struct drm_device *dev,
296 			       struct drm_file *file_priv, int prime_fd,
297 			       uint32_t *handle)
298 {
299 	struct dma_buf *dma_buf;
300 	struct drm_gem_object *obj;
301 	int ret;
302 
303 	dma_buf = dma_buf_get(prime_fd);
304 	if (IS_ERR(dma_buf))
305 		return PTR_ERR(dma_buf);
306 
307 	mutex_lock(&file_priv->prime.lock);
308 
309 	ret = drm_prime_lookup_buf_handle(&file_priv->prime,
310 			dma_buf, handle);
311 	if (ret == 0)
312 		goto out_put;
313 
314 	/* never seen this one, need to import */
315 	mutex_lock(&dev->object_name_lock);
316 	if (dev->driver->gem_prime_import)
317 		obj = dev->driver->gem_prime_import(dev, dma_buf);
318 	else
319 		obj = drm_gem_prime_import(dev, dma_buf);
320 	if (IS_ERR(obj)) {
321 		ret = PTR_ERR(obj);
322 		goto out_unlock;
323 	}
324 
325 	if (obj->dma_buf) {
326 		WARN_ON(obj->dma_buf != dma_buf);
327 	} else {
328 		obj->dma_buf = dma_buf;
329 		get_dma_buf(dma_buf);
330 	}
331 
332 	/* _handle_create_tail unconditionally unlocks dev->object_name_lock. */
333 	ret = drm_gem_handle_create_tail(file_priv, obj, handle);
334 	drm_gem_object_put(obj);
335 	if (ret)
336 		goto out_put;
337 
338 	ret = drm_prime_add_buf_handle(&file_priv->prime,
339 			dma_buf, *handle);
340 	mutex_unlock(&file_priv->prime.lock);
341 	if (ret)
342 		goto fail;
343 
344 	dma_buf_put(dma_buf);
345 
346 	return 0;
347 
348 fail:
349 	/* hmm, if driver attached, we are relying on the free-object path
350 	 * to detach.. which seems ok..
351 	 */
352 	drm_gem_handle_delete(file_priv, *handle);
353 	dma_buf_put(dma_buf);
354 	return ret;
355 
356 out_unlock:
357 	mutex_unlock(&dev->object_name_lock);
358 out_put:
359 	mutex_unlock(&file_priv->prime.lock);
360 	dma_buf_put(dma_buf);
361 	return ret;
362 }
363 EXPORT_SYMBOL(drm_gem_prime_fd_to_handle);
364 
365 int drm_prime_fd_to_handle_ioctl(struct drm_device *dev, void *data,
366 				 struct drm_file *file_priv)
367 {
368 	struct drm_prime_handle *args = data;
369 
370 	if (!dev->driver->prime_fd_to_handle)
371 		return -ENOSYS;
372 
373 	return dev->driver->prime_fd_to_handle(dev, file_priv,
374 			args->fd, &args->handle);
375 }
376 
377 static struct dma_buf *export_and_register_object(struct drm_device *dev,
378 						  struct drm_gem_object *obj,
379 						  uint32_t flags)
380 {
381 	struct dma_buf *dmabuf;
382 
383 	/* prevent races with concurrent gem_close. */
384 	if (obj->handle_count == 0) {
385 		dmabuf = ERR_PTR(-ENOENT);
386 		return dmabuf;
387 	}
388 
389 	if (obj->funcs && obj->funcs->export)
390 		dmabuf = obj->funcs->export(obj, flags);
391 	else
392 		dmabuf = drm_gem_prime_export(obj, flags);
393 	if (IS_ERR(dmabuf)) {
394 		/* normally the created dma-buf takes ownership of the ref,
395 		 * but if that fails then drop the ref
396 		 */
397 		return dmabuf;
398 	}
399 
400 	/*
401 	 * Note that callers do not need to clean up the export cache
402 	 * since the check for obj->handle_count guarantees that someone
403 	 * will clean it up.
404 	 */
405 	obj->dma_buf = dmabuf;
406 	get_dma_buf(obj->dma_buf);
407 
408 	return dmabuf;
409 }
410 
411 /**
412  * drm_gem_prime_handle_to_fd - PRIME export function for GEM drivers
413  * @dev: dev to export the buffer from
414  * @file_priv: drm file-private structure
415  * @handle: buffer handle to export
416  * @flags: flags like DRM_CLOEXEC
417  * @prime_fd: pointer to storage for the fd id of the create dma-buf
418  *
419  * This is the PRIME export function which must be used mandatorily by GEM
420  * drivers to ensure correct lifetime management of the underlying GEM object.
421  * The actual exporting from GEM object to a dma-buf is done through the
422  * &drm_gem_object_funcs.export callback.
423  */
424 int drm_gem_prime_handle_to_fd(struct drm_device *dev,
425 			       struct drm_file *file_priv, uint32_t handle,
426 			       uint32_t flags,
427 			       int *prime_fd)
428 {
429 	struct drm_gem_object *obj;
430 	int ret = 0;
431 	struct dma_buf *dmabuf;
432 
433 	mutex_lock(&file_priv->prime.lock);
434 	obj = drm_gem_object_lookup(file_priv, handle);
435 	if (!obj)  {
436 		ret = -ENOENT;
437 		goto out_unlock;
438 	}
439 
440 	dmabuf = drm_prime_lookup_buf_by_handle(&file_priv->prime, handle);
441 	if (dmabuf) {
442 		get_dma_buf(dmabuf);
443 		goto out_have_handle;
444 	}
445 
446 	mutex_lock(&dev->object_name_lock);
447 #ifdef notyet
448 	/* re-export the original imported object */
449 	if (obj->import_attach) {
450 		dmabuf = obj->import_attach->dmabuf;
451 		get_dma_buf(dmabuf);
452 		goto out_have_obj;
453 	}
454 #endif
455 
456 	if (obj->dma_buf) {
457 		get_dma_buf(obj->dma_buf);
458 		dmabuf = obj->dma_buf;
459 		goto out_have_obj;
460 	}
461 
462 	dmabuf = export_and_register_object(dev, obj, flags);
463 	if (IS_ERR(dmabuf)) {
464 		/* normally the created dma-buf takes ownership of the ref,
465 		 * but if that fails then drop the ref
466 		 */
467 		ret = PTR_ERR(dmabuf);
468 		mutex_unlock(&dev->object_name_lock);
469 		goto out;
470 	}
471 
472 out_have_obj:
473 	/*
474 	 * If we've exported this buffer then cheat and add it to the import list
475 	 * so we get the correct handle back. We must do this under the
476 	 * protection of dev->object_name_lock to ensure that a racing gem close
477 	 * ioctl doesn't miss to remove this buffer handle from the cache.
478 	 */
479 	ret = drm_prime_add_buf_handle(&file_priv->prime,
480 				       dmabuf, handle);
481 	mutex_unlock(&dev->object_name_lock);
482 	if (ret)
483 		goto fail_put_dmabuf;
484 
485 out_have_handle:
486 	ret = dma_buf_fd(dmabuf, flags);
487 	/*
488 	 * We must _not_ remove the buffer from the handle cache since the newly
489 	 * created dma buf is already linked in the global obj->dma_buf pointer,
490 	 * and that is invariant as long as a userspace gem handle exists.
491 	 * Closing the handle will clean out the cache anyway, so we don't leak.
492 	 */
493 	if (ret < 0) {
494 		goto fail_put_dmabuf;
495 	} else {
496 		*prime_fd = ret;
497 		ret = 0;
498 	}
499 
500 	goto out;
501 
502 fail_put_dmabuf:
503 	dma_buf_put(dmabuf);
504 out:
505 	drm_gem_object_put(obj);
506 out_unlock:
507 	mutex_unlock(&file_priv->prime.lock);
508 
509 	return ret;
510 }
511 EXPORT_SYMBOL(drm_gem_prime_handle_to_fd);
512 
513 int drm_prime_handle_to_fd_ioctl(struct drm_device *dev, void *data,
514 				 struct drm_file *file_priv)
515 {
516 	struct drm_prime_handle *args = data;
517 
518 	if (!dev->driver->prime_handle_to_fd)
519 		return -ENOSYS;
520 
521 	/* check flags are valid */
522 	if (args->flags & ~(DRM_CLOEXEC | DRM_RDWR))
523 		return -EINVAL;
524 
525 	return dev->driver->prime_handle_to_fd(dev, file_priv,
526 			args->handle, args->flags, &args->fd);
527 }
528 
529 /**
530  * DOC: PRIME Helpers
531  *
532  * Drivers can implement &drm_gem_object_funcs.export and
533  * &drm_driver.gem_prime_import in terms of simpler APIs by using the helper
534  * functions drm_gem_prime_export() and drm_gem_prime_import(). These functions
535  * implement dma-buf support in terms of some lower-level helpers, which are
536  * again exported for drivers to use individually:
537  *
538  * Exporting buffers
539  * ~~~~~~~~~~~~~~~~~
540  *
541  * Optional pinning of buffers is handled at dma-buf attach and detach time in
542  * drm_gem_map_attach() and drm_gem_map_detach(). Backing storage itself is
543  * handled by drm_gem_map_dma_buf() and drm_gem_unmap_dma_buf(), which relies on
544  * &drm_gem_object_funcs.get_sg_table.
545  *
546  * For kernel-internal access there's drm_gem_dmabuf_vmap() and
547  * drm_gem_dmabuf_vunmap(). Userspace mmap support is provided by
548  * drm_gem_dmabuf_mmap().
549  *
550  * Note that these export helpers can only be used if the underlying backing
551  * storage is fully coherent and either permanently pinned, or it is safe to pin
552  * it indefinitely.
553  *
554  * FIXME: The underlying helper functions are named rather inconsistently.
555  *
556  * Importing buffers
557  * ~~~~~~~~~~~~~~~~~
558  *
559  * Importing dma-bufs using drm_gem_prime_import() relies on
560  * &drm_driver.gem_prime_import_sg_table.
561  *
562  * Note that similarly to the export helpers this permanently pins the
563  * underlying backing storage. Which is ok for scanout, but is not the best
564  * option for sharing lots of buffers for rendering.
565  */
566 
567 /**
568  * drm_gem_map_attach - dma_buf attach implementation for GEM
569  * @dma_buf: buffer to attach device to
570  * @attach: buffer attachment data
571  *
572  * Calls &drm_gem_object_funcs.pin for device specific handling. This can be
573  * used as the &dma_buf_ops.attach callback. Must be used together with
574  * drm_gem_map_detach().
575  *
576  * Returns 0 on success, negative error code on failure.
577  */
578 int drm_gem_map_attach(struct dma_buf *dma_buf,
579 		       struct dma_buf_attachment *attach)
580 {
581 	struct drm_gem_object *obj = dma_buf->priv;
582 
583 	return drm_gem_pin(obj);
584 }
585 EXPORT_SYMBOL(drm_gem_map_attach);
586 
587 /**
588  * drm_gem_map_detach - dma_buf detach implementation for GEM
589  * @dma_buf: buffer to detach from
590  * @attach: attachment to be detached
591  *
592  * Calls &drm_gem_object_funcs.pin for device specific handling.  Cleans up
593  * &dma_buf_attachment from drm_gem_map_attach(). This can be used as the
594  * &dma_buf_ops.detach callback.
595  */
596 void drm_gem_map_detach(struct dma_buf *dma_buf,
597 			struct dma_buf_attachment *attach)
598 {
599 	struct drm_gem_object *obj = dma_buf->priv;
600 
601 	drm_gem_unpin(obj);
602 }
603 EXPORT_SYMBOL(drm_gem_map_detach);
604 
605 #ifdef notyet
606 
607 /**
608  * drm_gem_map_dma_buf - map_dma_buf implementation for GEM
609  * @attach: attachment whose scatterlist is to be returned
610  * @dir: direction of DMA transfer
611  *
612  * Calls &drm_gem_object_funcs.get_sg_table and then maps the scatterlist. This
613  * can be used as the &dma_buf_ops.map_dma_buf callback. Should be used together
614  * with drm_gem_unmap_dma_buf().
615  *
616  * Returns:sg_table containing the scatterlist to be returned; returns ERR_PTR
617  * on error. May return -EINTR if it is interrupted by a signal.
618  */
619 struct sg_table *drm_gem_map_dma_buf(struct dma_buf_attachment *attach,
620 				     enum dma_data_direction dir)
621 {
622 	struct drm_gem_object *obj = attach->dmabuf->priv;
623 	struct sg_table *sgt;
624 	int ret;
625 
626 	if (WARN_ON(dir == DMA_NONE))
627 		return ERR_PTR(-EINVAL);
628 
629 	if (WARN_ON(!obj->funcs->get_sg_table))
630 		return ERR_PTR(-ENOSYS);
631 
632 	sgt = obj->funcs->get_sg_table(obj);
633 	if (IS_ERR(sgt))
634 		return sgt;
635 
636 	ret = dma_map_sgtable(attach->dev, sgt, dir,
637 			      DMA_ATTR_SKIP_CPU_SYNC);
638 	if (ret) {
639 		sg_free_table(sgt);
640 		kfree(sgt);
641 		sgt = ERR_PTR(ret);
642 	}
643 
644 	return sgt;
645 }
646 EXPORT_SYMBOL(drm_gem_map_dma_buf);
647 
648 /**
649  * drm_gem_unmap_dma_buf - unmap_dma_buf implementation for GEM
650  * @attach: attachment to unmap buffer from
651  * @sgt: scatterlist info of the buffer to unmap
652  * @dir: direction of DMA transfer
653  *
654  * This can be used as the &dma_buf_ops.unmap_dma_buf callback.
655  */
656 void drm_gem_unmap_dma_buf(struct dma_buf_attachment *attach,
657 			   struct sg_table *sgt,
658 			   enum dma_data_direction dir)
659 {
660 	if (!sgt)
661 		return;
662 
663 	dma_unmap_sgtable(attach->dev, sgt, dir, DMA_ATTR_SKIP_CPU_SYNC);
664 	sg_free_table(sgt);
665 	kfree(sgt);
666 }
667 EXPORT_SYMBOL(drm_gem_unmap_dma_buf);
668 
669 #endif /* notyet */
670 
671 /**
672  * drm_gem_dmabuf_vmap - dma_buf vmap implementation for GEM
673  * @dma_buf: buffer to be mapped
674  * @map: the virtual address of the buffer
675  *
676  * Sets up a kernel virtual mapping. This can be used as the &dma_buf_ops.vmap
677  * callback. Calls into &drm_gem_object_funcs.vmap for device specific handling.
678  * The kernel virtual address is returned in map.
679  *
680  * Returns 0 on success or a negative errno code otherwise.
681  */
682 int drm_gem_dmabuf_vmap(struct dma_buf *dma_buf, struct dma_buf_map *map)
683 {
684 	struct drm_gem_object *obj = dma_buf->priv;
685 
686 	return drm_gem_vmap(obj, map);
687 }
688 EXPORT_SYMBOL(drm_gem_dmabuf_vmap);
689 
690 /**
691  * drm_gem_dmabuf_vunmap - dma_buf vunmap implementation for GEM
692  * @dma_buf: buffer to be unmapped
693  * @map: the virtual address of the buffer
694  *
695  * Releases a kernel virtual mapping. This can be used as the
696  * &dma_buf_ops.vunmap callback. Calls into &drm_gem_object_funcs.vunmap for device specific handling.
697  */
698 void drm_gem_dmabuf_vunmap(struct dma_buf *dma_buf, struct dma_buf_map *map)
699 {
700 	struct drm_gem_object *obj = dma_buf->priv;
701 
702 	drm_gem_vunmap(obj, map);
703 }
704 EXPORT_SYMBOL(drm_gem_dmabuf_vunmap);
705 
706 #ifdef __linux__
707 /**
708  * drm_gem_prime_mmap - PRIME mmap function for GEM drivers
709  * @obj: GEM object
710  * @vma: Virtual address range
711  *
712  * This function sets up a userspace mapping for PRIME exported buffers using
713  * the same codepath that is used for regular GEM buffer mapping on the DRM fd.
714  * The fake GEM offset is added to vma->vm_pgoff and &drm_driver->fops->mmap is
715  * called to set up the mapping.
716  *
717  * Drivers can use this as their &drm_driver.gem_prime_mmap callback.
718  */
719 int drm_gem_prime_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
720 {
721 	struct drm_file *priv;
722 	struct file *fil;
723 	int ret;
724 
725 	/* Add the fake offset */
726 	vma->vm_pgoff += drm_vma_node_start(&obj->vma_node);
727 
728 	if (obj->funcs && obj->funcs->mmap) {
729 		vma->vm_ops = obj->funcs->vm_ops;
730 
731 		drm_gem_object_get(obj);
732 		ret = obj->funcs->mmap(obj, vma);
733 		if (ret) {
734 			drm_gem_object_put(obj);
735 			return ret;
736 		}
737 		vma->vm_private_data = obj;
738 		return 0;
739 	}
740 
741 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
742 	fil = kzalloc(sizeof(*fil), GFP_KERNEL);
743 	if (!priv || !fil) {
744 		ret = -ENOMEM;
745 		goto out;
746 	}
747 
748 	/* Used by drm_gem_mmap() to lookup the GEM object */
749 	priv->minor = obj->dev->primary;
750 	fil->private_data = priv;
751 
752 	ret = drm_vma_node_allow(&obj->vma_node, priv);
753 	if (ret)
754 		goto out;
755 
756 	ret = obj->dev->driver->fops->mmap(fil, vma);
757 
758 	drm_vma_node_revoke(&obj->vma_node, priv);
759 out:
760 	kfree(priv);
761 	kfree(fil);
762 
763 	return ret;
764 }
765 EXPORT_SYMBOL(drm_gem_prime_mmap);
766 #else
767 struct uvm_object *
768 drm_gem_prime_mmap(struct file *filp, vm_prot_t accessprot, voff_t off,
769     vsize_t size)
770 {
771 	STUB();
772 	return NULL;
773 }
774 #endif
775 
776 #ifdef notyet
777 
778 /**
779  * drm_gem_dmabuf_mmap - dma_buf mmap implementation for GEM
780  * @dma_buf: buffer to be mapped
781  * @vma: virtual address range
782  *
783  * Provides memory mapping for the buffer. This can be used as the
784  * &dma_buf_ops.mmap callback. It just forwards to &drm_driver.gem_prime_mmap,
785  * which should be set to drm_gem_prime_mmap().
786  *
787  * FIXME: There's really no point to this wrapper, drivers which need anything
788  * else but drm_gem_prime_mmap can roll their own &dma_buf_ops.mmap callback.
789  *
790  * Returns 0 on success or a negative error code on failure.
791  */
792 int drm_gem_dmabuf_mmap(struct dma_buf *dma_buf, struct vm_area_struct *vma)
793 {
794 	struct drm_gem_object *obj = dma_buf->priv;
795 	struct drm_device *dev = obj->dev;
796 
797 	if (!dev->driver->gem_prime_mmap)
798 		return -ENOSYS;
799 
800 	return dev->driver->gem_prime_mmap(obj, vma);
801 }
802 EXPORT_SYMBOL(drm_gem_dmabuf_mmap);
803 
804 #endif /* notyet */
805 
806 static const struct dma_buf_ops drm_gem_prime_dmabuf_ops =  {
807 #ifdef notyet
808 	.cache_sgt_mapping = true,
809 	.attach = drm_gem_map_attach,
810 	.detach = drm_gem_map_detach,
811 	.map_dma_buf = drm_gem_map_dma_buf,
812 	.unmap_dma_buf = drm_gem_unmap_dma_buf,
813 #endif
814 	.release = drm_gem_dmabuf_release,
815 #ifdef notyet
816 	.mmap = drm_gem_dmabuf_mmap,
817 	.vmap = drm_gem_dmabuf_vmap,
818 	.vunmap = drm_gem_dmabuf_vunmap,
819 #endif
820 };
821 
822 /**
823  * drm_prime_pages_to_sg - converts a page array into an sg list
824  * @dev: DRM device
825  * @pages: pointer to the array of page pointers to convert
826  * @nr_pages: length of the page vector
827  *
828  * This helper creates an sg table object from a set of pages
829  * the driver is responsible for mapping the pages into the
830  * importers address space for use with dma_buf itself.
831  *
832  * This is useful for implementing &drm_gem_object_funcs.get_sg_table.
833  */
834 struct sg_table *drm_prime_pages_to_sg(struct drm_device *dev,
835 				       struct vm_page **pages, unsigned int nr_pages)
836 {
837 	STUB();
838 	return NULL;
839 #ifdef notyet
840 	struct sg_table *sg;
841 	size_t max_segment = 0;
842 	int err;
843 
844 	sg = kmalloc(sizeof(struct sg_table), GFP_KERNEL);
845 	if (!sg)
846 		return ERR_PTR(-ENOMEM);
847 
848 	if (dev)
849 		max_segment = dma_max_mapping_size(dev->dev);
850 	if (max_segment == 0)
851 		max_segment = UINT_MAX;
852 	err = sg_alloc_table_from_pages_segment(sg, pages, nr_pages, 0,
853 						nr_pages << PAGE_SHIFT,
854 						max_segment, GFP_KERNEL);
855 	if (err) {
856 		kfree(sg);
857 		sg = ERR_PTR(err);
858 	}
859 	return sg;
860 #endif
861 }
862 EXPORT_SYMBOL(drm_prime_pages_to_sg);
863 
864 /**
865  * drm_prime_get_contiguous_size - returns the contiguous size of the buffer
866  * @sgt: sg_table describing the buffer to check
867  *
868  * This helper calculates the contiguous size in the DMA address space
869  * of the the buffer described by the provided sg_table.
870  *
871  * This is useful for implementing
872  * &drm_gem_object_funcs.gem_prime_import_sg_table.
873  */
874 unsigned long drm_prime_get_contiguous_size(struct sg_table *sgt)
875 {
876 	STUB();
877 	return 0;
878 #ifdef notyet
879 	dma_addr_t expected = sg_dma_address(sgt->sgl);
880 	struct scatterlist *sg;
881 	unsigned long size = 0;
882 	int i;
883 
884 	for_each_sgtable_dma_sg(sgt, sg, i) {
885 		unsigned int len = sg_dma_len(sg);
886 
887 		if (!len)
888 			break;
889 		if (sg_dma_address(sg) != expected)
890 			break;
891 		expected += len;
892 		size += len;
893 	}
894 	return size;
895 #endif
896 }
897 EXPORT_SYMBOL(drm_prime_get_contiguous_size);
898 
899 /**
900  * drm_gem_prime_export - helper library implementation of the export callback
901  * @obj: GEM object to export
902  * @flags: flags like DRM_CLOEXEC and DRM_RDWR
903  *
904  * This is the implementation of the &drm_gem_object_funcs.export functions for GEM drivers
905  * using the PRIME helpers. It is used as the default in
906  * drm_gem_prime_handle_to_fd().
907  */
908 struct dma_buf *drm_gem_prime_export(struct drm_gem_object *obj,
909 				     int flags)
910 {
911 	struct drm_device *dev = obj->dev;
912 	struct dma_buf_export_info exp_info = {
913 #ifdef __linux__
914 		.exp_name = KBUILD_MODNAME, /* white lie for debug */
915 		.owner = dev->driver->fops->owner,
916 #endif
917 		.ops = &drm_gem_prime_dmabuf_ops,
918 		.size = obj->size,
919 		.flags = flags,
920 		.priv = obj,
921 		.resv = obj->resv,
922 	};
923 
924 	return drm_gem_dmabuf_export(dev, &exp_info);
925 }
926 EXPORT_SYMBOL(drm_gem_prime_export);
927 
928 /**
929  * drm_gem_prime_import_dev - core implementation of the import callback
930  * @dev: drm_device to import into
931  * @dma_buf: dma-buf object to import
932  * @attach_dev: struct device to dma_buf attach
933  *
934  * This is the core of drm_gem_prime_import(). It's designed to be called by
935  * drivers who want to use a different device structure than &drm_device.dev for
936  * attaching via dma_buf. This function calls
937  * &drm_driver.gem_prime_import_sg_table internally.
938  *
939  * Drivers must arrange to call drm_prime_gem_destroy() from their
940  * &drm_gem_object_funcs.free hook when using this function.
941  */
942 struct drm_gem_object *drm_gem_prime_import_dev(struct drm_device *dev,
943 					    struct dma_buf *dma_buf,
944 					    struct device *attach_dev)
945 {
946 	struct dma_buf_attachment *attach;
947 #ifdef notyet
948 	struct sg_table *sgt;
949 #endif
950 	struct drm_gem_object *obj;
951 	int ret;
952 
953 	if (dma_buf->ops == &drm_gem_prime_dmabuf_ops) {
954 		obj = dma_buf->priv;
955 		if (obj->dev == dev) {
956 			/*
957 			 * Importing dmabuf exported from out own gem increases
958 			 * refcount on gem itself instead of f_count of dmabuf.
959 			 */
960 			drm_gem_object_get(obj);
961 			return obj;
962 		}
963 	}
964 
965 #ifdef notyet
966 	if (!dev->driver->gem_prime_import_sg_table)
967 		return ERR_PTR(-EINVAL);
968 #endif
969 
970 	attach = dma_buf_attach(dma_buf, attach_dev);
971 	if (IS_ERR(attach))
972 		return ERR_CAST(attach);
973 
974 #ifdef notyet
975 	get_dma_buf(dma_buf);
976 
977 	sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
978 	if (IS_ERR(sgt)) {
979 		ret = PTR_ERR(sgt);
980 		goto fail_detach;
981 	}
982 
983 	obj = dev->driver->gem_prime_import_sg_table(dev, attach, sgt);
984 	if (IS_ERR(obj)) {
985 		ret = PTR_ERR(obj);
986 		goto fail_unmap;
987 	}
988 
989 	obj->import_attach = attach;
990 	obj->resv = dma_buf->resv;
991 
992 	return obj;
993 
994 fail_unmap:
995 	dma_buf_unmap_attachment(attach, sgt, DMA_BIDIRECTIONAL);
996 fail_detach:
997 	dma_buf_detach(dma_buf, attach);
998 	dma_buf_put(dma_buf);
999 
1000 	return ERR_PTR(ret);
1001 #else
1002 	ret = 0;
1003 	panic(__func__);
1004 #endif
1005 }
1006 EXPORT_SYMBOL(drm_gem_prime_import_dev);
1007 
1008 /**
1009  * drm_gem_prime_import - helper library implementation of the import callback
1010  * @dev: drm_device to import into
1011  * @dma_buf: dma-buf object to import
1012  *
1013  * This is the implementation of the gem_prime_import functions for GEM drivers
1014  * using the PRIME helpers. Drivers can use this as their
1015  * &drm_driver.gem_prime_import implementation. It is used as the default
1016  * implementation in drm_gem_prime_fd_to_handle().
1017  *
1018  * Drivers must arrange to call drm_prime_gem_destroy() from their
1019  * &drm_gem_object_funcs.free hook when using this function.
1020  */
1021 struct drm_gem_object *drm_gem_prime_import(struct drm_device *dev,
1022 					    struct dma_buf *dma_buf)
1023 {
1024 	return drm_gem_prime_import_dev(dev, dma_buf, dev->dev);
1025 }
1026 EXPORT_SYMBOL(drm_gem_prime_import);
1027 
1028 /**
1029  * drm_prime_sg_to_page_array - convert an sg table into a page array
1030  * @sgt: scatter-gather table to convert
1031  * @pages: array of page pointers to store the pages in
1032  * @max_entries: size of the passed-in array
1033  *
1034  * Exports an sg table into an array of pages.
1035  *
1036  * This function is deprecated and strongly discouraged to be used.
1037  * The page array is only useful for page faults and those can corrupt fields
1038  * in the struct page if they are not handled by the exporting driver.
1039  */
1040 int __deprecated drm_prime_sg_to_page_array(struct sg_table *sgt,
1041 					    struct vm_page **pages,
1042 					    int max_entries)
1043 {
1044 	STUB();
1045 	return -ENOSYS;
1046 #ifdef notyet
1047 	struct sg_page_iter page_iter;
1048 	struct vm_page **p = pages;
1049 
1050 	for_each_sgtable_page(sgt, &page_iter, 0) {
1051 		if (WARN_ON(p - pages >= max_entries))
1052 			return -1;
1053 		*p++ = sg_page_iter_page(&page_iter);
1054 	}
1055 	return 0;
1056 #endif
1057 }
1058 EXPORT_SYMBOL(drm_prime_sg_to_page_array);
1059 
1060 /**
1061  * drm_prime_sg_to_dma_addr_array - convert an sg table into a dma addr array
1062  * @sgt: scatter-gather table to convert
1063  * @addrs: array to store the dma bus address of each page
1064  * @max_entries: size of both the passed-in arrays
1065  *
1066  * Exports an sg table into an array of addresses.
1067  *
1068  * Drivers should use this in their &drm_driver.gem_prime_import_sg_table
1069  * implementation.
1070  */
1071 int drm_prime_sg_to_dma_addr_array(struct sg_table *sgt, dma_addr_t *addrs,
1072 				   int max_entries)
1073 {
1074 	STUB();
1075 	return -ENOSYS;
1076 #ifdef notyet
1077 	struct sg_dma_page_iter dma_iter;
1078 	dma_addr_t *a = addrs;
1079 
1080 	for_each_sgtable_dma_page(sgt, &dma_iter, 0) {
1081 		if (WARN_ON(a - addrs >= max_entries))
1082 			return -1;
1083 		*a++ = sg_page_iter_dma_address(&dma_iter);
1084 	}
1085 	return 0;
1086 #endif
1087 }
1088 EXPORT_SYMBOL(drm_prime_sg_to_dma_addr_array);
1089 
1090 /**
1091  * drm_prime_gem_destroy - helper to clean up a PRIME-imported GEM object
1092  * @obj: GEM object which was created from a dma-buf
1093  * @sg: the sg-table which was pinned at import time
1094  *
1095  * This is the cleanup functions which GEM drivers need to call when they use
1096  * drm_gem_prime_import() or drm_gem_prime_import_dev() to import dma-bufs.
1097  */
1098 void drm_prime_gem_destroy(struct drm_gem_object *obj, struct sg_table *sg)
1099 {
1100 	STUB();
1101 #ifdef notyet
1102 	struct dma_buf_attachment *attach;
1103 	struct dma_buf *dma_buf;
1104 
1105 	attach = obj->import_attach;
1106 	if (sg)
1107 		dma_buf_unmap_attachment(attach, sg, DMA_BIDIRECTIONAL);
1108 	dma_buf = attach->dmabuf;
1109 	dma_buf_detach(attach->dmabuf, attach);
1110 	/* remove the reference */
1111 	dma_buf_put(dma_buf);
1112 #endif
1113 }
1114 EXPORT_SYMBOL(drm_prime_gem_destroy);
1115