1 /* 2 * Copyright © 2012 Red Hat 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Dave Airlie <airlied@redhat.com> 25 * Rob Clark <rob.clark@linaro.org> 26 * 27 */ 28 29 #include <linux/export.h> 30 #include <linux/dma-buf.h> 31 #include <linux/rbtree.h> 32 33 #include <drm/drm.h> 34 #include <drm/drm_drv.h> 35 #include <drm/drm_file.h> 36 #include <drm/drm_framebuffer.h> 37 #include <drm/drm_gem.h> 38 #include <drm/drm_prime.h> 39 40 #include "drm_internal.h" 41 42 /** 43 * DOC: overview and lifetime rules 44 * 45 * Similar to GEM global names, PRIME file descriptors are also used to share 46 * buffer objects across processes. They offer additional security: as file 47 * descriptors must be explicitly sent over UNIX domain sockets to be shared 48 * between applications, they can't be guessed like the globally unique GEM 49 * names. 50 * 51 * Drivers that support the PRIME API implement the 52 * &drm_driver.prime_handle_to_fd and &drm_driver.prime_fd_to_handle operations. 53 * GEM based drivers must use drm_gem_prime_handle_to_fd() and 54 * drm_gem_prime_fd_to_handle() to implement these. For GEM based drivers the 55 * actual driver interfaces is provided through the &drm_gem_object_funcs.export 56 * and &drm_driver.gem_prime_import hooks. 57 * 58 * &dma_buf_ops implementations for GEM drivers are all individually exported 59 * for drivers which need to overwrite or reimplement some of them. 60 * 61 * Reference Counting for GEM Drivers 62 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 63 * 64 * On the export the &dma_buf holds a reference to the exported buffer object, 65 * usually a &drm_gem_object. It takes this reference in the PRIME_HANDLE_TO_FD 66 * IOCTL, when it first calls &drm_gem_object_funcs.export 67 * and stores the exporting GEM object in the &dma_buf.priv field. This 68 * reference needs to be released when the final reference to the &dma_buf 69 * itself is dropped and its &dma_buf_ops.release function is called. For 70 * GEM-based drivers, the &dma_buf should be exported using 71 * drm_gem_dmabuf_export() and then released by drm_gem_dmabuf_release(). 72 * 73 * Thus the chain of references always flows in one direction, avoiding loops: 74 * importing GEM object -> dma-buf -> exported GEM bo. A further complication 75 * are the lookup caches for import and export. These are required to guarantee 76 * that any given object will always have only one unique userspace handle. This 77 * is required to allow userspace to detect duplicated imports, since some GEM 78 * drivers do fail command submissions if a given buffer object is listed more 79 * than once. These import and export caches in &drm_prime_file_private only 80 * retain a weak reference, which is cleaned up when the corresponding object is 81 * released. 82 * 83 * Self-importing: If userspace is using PRIME as a replacement for flink then 84 * it will get a fd->handle request for a GEM object that it created. Drivers 85 * should detect this situation and return back the underlying object from the 86 * dma-buf private. For GEM based drivers this is handled in 87 * drm_gem_prime_import() already. 88 */ 89 90 struct drm_prime_member { 91 struct dma_buf *dma_buf; 92 uint32_t handle; 93 94 struct rb_node dmabuf_rb; 95 struct rb_node handle_rb; 96 }; 97 98 static int drm_prime_add_buf_handle(struct drm_prime_file_private *prime_fpriv, 99 struct dma_buf *dma_buf, uint32_t handle) 100 { 101 struct drm_prime_member *member; 102 struct rb_node **p, *rb; 103 104 member = kmalloc(sizeof(*member), GFP_KERNEL); 105 if (!member) 106 return -ENOMEM; 107 108 get_dma_buf(dma_buf); 109 member->dma_buf = dma_buf; 110 member->handle = handle; 111 112 rb = NULL; 113 p = &prime_fpriv->dmabufs.rb_node; 114 while (*p) { 115 struct drm_prime_member *pos; 116 117 rb = *p; 118 pos = rb_entry(rb, struct drm_prime_member, dmabuf_rb); 119 if (dma_buf > pos->dma_buf) 120 p = &rb->rb_right; 121 else 122 p = &rb->rb_left; 123 } 124 rb_link_node(&member->dmabuf_rb, rb, p); 125 rb_insert_color(&member->dmabuf_rb, &prime_fpriv->dmabufs); 126 127 rb = NULL; 128 p = &prime_fpriv->handles.rb_node; 129 while (*p) { 130 struct drm_prime_member *pos; 131 132 rb = *p; 133 pos = rb_entry(rb, struct drm_prime_member, handle_rb); 134 if (handle > pos->handle) 135 p = &rb->rb_right; 136 else 137 p = &rb->rb_left; 138 } 139 rb_link_node(&member->handle_rb, rb, p); 140 rb_insert_color(&member->handle_rb, &prime_fpriv->handles); 141 142 return 0; 143 } 144 145 static struct dma_buf *drm_prime_lookup_buf_by_handle(struct drm_prime_file_private *prime_fpriv, 146 uint32_t handle) 147 { 148 struct rb_node *rb; 149 150 rb = prime_fpriv->handles.rb_node; 151 while (rb) { 152 struct drm_prime_member *member; 153 154 member = rb_entry(rb, struct drm_prime_member, handle_rb); 155 if (member->handle == handle) 156 return member->dma_buf; 157 else if (member->handle < handle) 158 rb = rb->rb_right; 159 else 160 rb = rb->rb_left; 161 } 162 163 return NULL; 164 } 165 166 static int drm_prime_lookup_buf_handle(struct drm_prime_file_private *prime_fpriv, 167 struct dma_buf *dma_buf, 168 uint32_t *handle) 169 { 170 struct rb_node *rb; 171 172 rb = prime_fpriv->dmabufs.rb_node; 173 while (rb) { 174 struct drm_prime_member *member; 175 176 member = rb_entry(rb, struct drm_prime_member, dmabuf_rb); 177 if (member->dma_buf == dma_buf) { 178 *handle = member->handle; 179 return 0; 180 } else if (member->dma_buf < dma_buf) { 181 rb = rb->rb_right; 182 } else { 183 rb = rb->rb_left; 184 } 185 } 186 187 return -ENOENT; 188 } 189 190 void drm_prime_remove_buf_handle_locked(struct drm_prime_file_private *prime_fpriv, 191 struct dma_buf *dma_buf) 192 { 193 struct rb_node *rb; 194 195 rb = prime_fpriv->dmabufs.rb_node; 196 while (rb) { 197 struct drm_prime_member *member; 198 199 member = rb_entry(rb, struct drm_prime_member, dmabuf_rb); 200 if (member->dma_buf == dma_buf) { 201 rb_erase(&member->handle_rb, &prime_fpriv->handles); 202 rb_erase(&member->dmabuf_rb, &prime_fpriv->dmabufs); 203 204 dma_buf_put(dma_buf); 205 kfree(member); 206 return; 207 } else if (member->dma_buf < dma_buf) { 208 rb = rb->rb_right; 209 } else { 210 rb = rb->rb_left; 211 } 212 } 213 } 214 215 void drm_prime_init_file_private(struct drm_prime_file_private *prime_fpriv) 216 { 217 rw_init(&prime_fpriv->lock, "primlk"); 218 prime_fpriv->dmabufs = RB_ROOT; 219 prime_fpriv->handles = RB_ROOT; 220 } 221 222 void drm_prime_destroy_file_private(struct drm_prime_file_private *prime_fpriv) 223 { 224 /* by now drm_gem_release should've made sure the list is empty */ 225 WARN_ON(!RB_EMPTY_ROOT(&prime_fpriv->dmabufs)); 226 } 227 228 /** 229 * drm_gem_dmabuf_export - &dma_buf export implementation for GEM 230 * @dev: parent device for the exported dmabuf 231 * @exp_info: the export information used by dma_buf_export() 232 * 233 * This wraps dma_buf_export() for use by generic GEM drivers that are using 234 * drm_gem_dmabuf_release(). In addition to calling dma_buf_export(), we take 235 * a reference to the &drm_device and the exported &drm_gem_object (stored in 236 * &dma_buf_export_info.priv) which is released by drm_gem_dmabuf_release(). 237 * 238 * Returns the new dmabuf. 239 */ 240 struct dma_buf *drm_gem_dmabuf_export(struct drm_device *dev, 241 struct dma_buf_export_info *exp_info) 242 { 243 struct drm_gem_object *obj = exp_info->priv; 244 struct dma_buf *dma_buf; 245 246 dma_buf = dma_buf_export(exp_info); 247 if (IS_ERR(dma_buf)) 248 return dma_buf; 249 250 drm_dev_get(dev); 251 drm_gem_object_get(obj); 252 #ifdef __linux__ 253 dma_buf->file->f_mapping = obj->dev->anon_inode->i_mapping; 254 #endif 255 256 return dma_buf; 257 } 258 EXPORT_SYMBOL(drm_gem_dmabuf_export); 259 260 /** 261 * drm_gem_dmabuf_release - &dma_buf release implementation for GEM 262 * @dma_buf: buffer to be released 263 * 264 * Generic release function for dma_bufs exported as PRIME buffers. GEM drivers 265 * must use this in their &dma_buf_ops structure as the release callback. 266 * drm_gem_dmabuf_release() should be used in conjunction with 267 * drm_gem_dmabuf_export(). 268 */ 269 void drm_gem_dmabuf_release(struct dma_buf *dma_buf) 270 { 271 struct drm_gem_object *obj = dma_buf->priv; 272 struct drm_device *dev = obj->dev; 273 274 /* drop the reference on the export fd holds */ 275 drm_gem_object_put(obj); 276 277 drm_dev_put(dev); 278 } 279 EXPORT_SYMBOL(drm_gem_dmabuf_release); 280 281 /** 282 * drm_gem_prime_fd_to_handle - PRIME import function for GEM drivers 283 * @dev: dev to export the buffer from 284 * @file_priv: drm file-private structure 285 * @prime_fd: fd id of the dma-buf which should be imported 286 * @handle: pointer to storage for the handle of the imported buffer object 287 * 288 * This is the PRIME import function which must be used mandatorily by GEM 289 * drivers to ensure correct lifetime management of the underlying GEM object. 290 * The actual importing of GEM object from the dma-buf is done through the 291 * &drm_driver.gem_prime_import driver callback. 292 * 293 * Returns 0 on success or a negative error code on failure. 294 */ 295 int drm_gem_prime_fd_to_handle(struct drm_device *dev, 296 struct drm_file *file_priv, int prime_fd, 297 uint32_t *handle) 298 { 299 struct dma_buf *dma_buf; 300 struct drm_gem_object *obj; 301 int ret; 302 303 dma_buf = dma_buf_get(prime_fd); 304 if (IS_ERR(dma_buf)) 305 return PTR_ERR(dma_buf); 306 307 mutex_lock(&file_priv->prime.lock); 308 309 ret = drm_prime_lookup_buf_handle(&file_priv->prime, 310 dma_buf, handle); 311 if (ret == 0) 312 goto out_put; 313 314 /* never seen this one, need to import */ 315 mutex_lock(&dev->object_name_lock); 316 if (dev->driver->gem_prime_import) 317 obj = dev->driver->gem_prime_import(dev, dma_buf); 318 else 319 obj = drm_gem_prime_import(dev, dma_buf); 320 if (IS_ERR(obj)) { 321 ret = PTR_ERR(obj); 322 goto out_unlock; 323 } 324 325 if (obj->dma_buf) { 326 WARN_ON(obj->dma_buf != dma_buf); 327 } else { 328 obj->dma_buf = dma_buf; 329 get_dma_buf(dma_buf); 330 } 331 332 /* _handle_create_tail unconditionally unlocks dev->object_name_lock. */ 333 ret = drm_gem_handle_create_tail(file_priv, obj, handle); 334 drm_gem_object_put(obj); 335 if (ret) 336 goto out_put; 337 338 ret = drm_prime_add_buf_handle(&file_priv->prime, 339 dma_buf, *handle); 340 mutex_unlock(&file_priv->prime.lock); 341 if (ret) 342 goto fail; 343 344 dma_buf_put(dma_buf); 345 346 return 0; 347 348 fail: 349 /* hmm, if driver attached, we are relying on the free-object path 350 * to detach.. which seems ok.. 351 */ 352 drm_gem_handle_delete(file_priv, *handle); 353 dma_buf_put(dma_buf); 354 return ret; 355 356 out_unlock: 357 mutex_unlock(&dev->object_name_lock); 358 out_put: 359 mutex_unlock(&file_priv->prime.lock); 360 dma_buf_put(dma_buf); 361 return ret; 362 } 363 EXPORT_SYMBOL(drm_gem_prime_fd_to_handle); 364 365 int drm_prime_fd_to_handle_ioctl(struct drm_device *dev, void *data, 366 struct drm_file *file_priv) 367 { 368 struct drm_prime_handle *args = data; 369 370 if (!dev->driver->prime_fd_to_handle) 371 return -ENOSYS; 372 373 return dev->driver->prime_fd_to_handle(dev, file_priv, 374 args->fd, &args->handle); 375 } 376 377 static struct dma_buf *export_and_register_object(struct drm_device *dev, 378 struct drm_gem_object *obj, 379 uint32_t flags) 380 { 381 struct dma_buf *dmabuf; 382 383 /* prevent races with concurrent gem_close. */ 384 if (obj->handle_count == 0) { 385 dmabuf = ERR_PTR(-ENOENT); 386 return dmabuf; 387 } 388 389 if (obj->funcs && obj->funcs->export) 390 dmabuf = obj->funcs->export(obj, flags); 391 else 392 dmabuf = drm_gem_prime_export(obj, flags); 393 if (IS_ERR(dmabuf)) { 394 /* normally the created dma-buf takes ownership of the ref, 395 * but if that fails then drop the ref 396 */ 397 return dmabuf; 398 } 399 400 /* 401 * Note that callers do not need to clean up the export cache 402 * since the check for obj->handle_count guarantees that someone 403 * will clean it up. 404 */ 405 obj->dma_buf = dmabuf; 406 get_dma_buf(obj->dma_buf); 407 408 return dmabuf; 409 } 410 411 /** 412 * drm_gem_prime_handle_to_fd - PRIME export function for GEM drivers 413 * @dev: dev to export the buffer from 414 * @file_priv: drm file-private structure 415 * @handle: buffer handle to export 416 * @flags: flags like DRM_CLOEXEC 417 * @prime_fd: pointer to storage for the fd id of the create dma-buf 418 * 419 * This is the PRIME export function which must be used mandatorily by GEM 420 * drivers to ensure correct lifetime management of the underlying GEM object. 421 * The actual exporting from GEM object to a dma-buf is done through the 422 * &drm_gem_object_funcs.export callback. 423 */ 424 int drm_gem_prime_handle_to_fd(struct drm_device *dev, 425 struct drm_file *file_priv, uint32_t handle, 426 uint32_t flags, 427 int *prime_fd) 428 { 429 struct drm_gem_object *obj; 430 int ret = 0; 431 struct dma_buf *dmabuf; 432 433 mutex_lock(&file_priv->prime.lock); 434 obj = drm_gem_object_lookup(file_priv, handle); 435 if (!obj) { 436 ret = -ENOENT; 437 goto out_unlock; 438 } 439 440 dmabuf = drm_prime_lookup_buf_by_handle(&file_priv->prime, handle); 441 if (dmabuf) { 442 get_dma_buf(dmabuf); 443 goto out_have_handle; 444 } 445 446 mutex_lock(&dev->object_name_lock); 447 #ifdef notyet 448 /* re-export the original imported object */ 449 if (obj->import_attach) { 450 dmabuf = obj->import_attach->dmabuf; 451 get_dma_buf(dmabuf); 452 goto out_have_obj; 453 } 454 #endif 455 456 if (obj->dma_buf) { 457 get_dma_buf(obj->dma_buf); 458 dmabuf = obj->dma_buf; 459 goto out_have_obj; 460 } 461 462 dmabuf = export_and_register_object(dev, obj, flags); 463 if (IS_ERR(dmabuf)) { 464 /* normally the created dma-buf takes ownership of the ref, 465 * but if that fails then drop the ref 466 */ 467 ret = PTR_ERR(dmabuf); 468 mutex_unlock(&dev->object_name_lock); 469 goto out; 470 } 471 472 out_have_obj: 473 /* 474 * If we've exported this buffer then cheat and add it to the import list 475 * so we get the correct handle back. We must do this under the 476 * protection of dev->object_name_lock to ensure that a racing gem close 477 * ioctl doesn't miss to remove this buffer handle from the cache. 478 */ 479 ret = drm_prime_add_buf_handle(&file_priv->prime, 480 dmabuf, handle); 481 mutex_unlock(&dev->object_name_lock); 482 if (ret) 483 goto fail_put_dmabuf; 484 485 out_have_handle: 486 ret = dma_buf_fd(dmabuf, flags); 487 /* 488 * We must _not_ remove the buffer from the handle cache since the newly 489 * created dma buf is already linked in the global obj->dma_buf pointer, 490 * and that is invariant as long as a userspace gem handle exists. 491 * Closing the handle will clean out the cache anyway, so we don't leak. 492 */ 493 if (ret < 0) { 494 goto fail_put_dmabuf; 495 } else { 496 *prime_fd = ret; 497 ret = 0; 498 } 499 500 goto out; 501 502 fail_put_dmabuf: 503 dma_buf_put(dmabuf); 504 out: 505 drm_gem_object_put(obj); 506 out_unlock: 507 mutex_unlock(&file_priv->prime.lock); 508 509 return ret; 510 } 511 EXPORT_SYMBOL(drm_gem_prime_handle_to_fd); 512 513 int drm_prime_handle_to_fd_ioctl(struct drm_device *dev, void *data, 514 struct drm_file *file_priv) 515 { 516 struct drm_prime_handle *args = data; 517 518 if (!dev->driver->prime_handle_to_fd) 519 return -ENOSYS; 520 521 /* check flags are valid */ 522 if (args->flags & ~(DRM_CLOEXEC | DRM_RDWR)) 523 return -EINVAL; 524 525 return dev->driver->prime_handle_to_fd(dev, file_priv, 526 args->handle, args->flags, &args->fd); 527 } 528 529 /** 530 * DOC: PRIME Helpers 531 * 532 * Drivers can implement &drm_gem_object_funcs.export and 533 * &drm_driver.gem_prime_import in terms of simpler APIs by using the helper 534 * functions drm_gem_prime_export() and drm_gem_prime_import(). These functions 535 * implement dma-buf support in terms of some lower-level helpers, which are 536 * again exported for drivers to use individually: 537 * 538 * Exporting buffers 539 * ~~~~~~~~~~~~~~~~~ 540 * 541 * Optional pinning of buffers is handled at dma-buf attach and detach time in 542 * drm_gem_map_attach() and drm_gem_map_detach(). Backing storage itself is 543 * handled by drm_gem_map_dma_buf() and drm_gem_unmap_dma_buf(), which relies on 544 * &drm_gem_object_funcs.get_sg_table. 545 * 546 * For kernel-internal access there's drm_gem_dmabuf_vmap() and 547 * drm_gem_dmabuf_vunmap(). Userspace mmap support is provided by 548 * drm_gem_dmabuf_mmap(). 549 * 550 * Note that these export helpers can only be used if the underlying backing 551 * storage is fully coherent and either permanently pinned, or it is safe to pin 552 * it indefinitely. 553 * 554 * FIXME: The underlying helper functions are named rather inconsistently. 555 * 556 * Importing buffers 557 * ~~~~~~~~~~~~~~~~~ 558 * 559 * Importing dma-bufs using drm_gem_prime_import() relies on 560 * &drm_driver.gem_prime_import_sg_table. 561 * 562 * Note that similarly to the export helpers this permanently pins the 563 * underlying backing storage. Which is ok for scanout, but is not the best 564 * option for sharing lots of buffers for rendering. 565 */ 566 567 /** 568 * drm_gem_map_attach - dma_buf attach implementation for GEM 569 * @dma_buf: buffer to attach device to 570 * @attach: buffer attachment data 571 * 572 * Calls &drm_gem_object_funcs.pin for device specific handling. This can be 573 * used as the &dma_buf_ops.attach callback. Must be used together with 574 * drm_gem_map_detach(). 575 * 576 * Returns 0 on success, negative error code on failure. 577 */ 578 int drm_gem_map_attach(struct dma_buf *dma_buf, 579 struct dma_buf_attachment *attach) 580 { 581 struct drm_gem_object *obj = dma_buf->priv; 582 583 return drm_gem_pin(obj); 584 } 585 EXPORT_SYMBOL(drm_gem_map_attach); 586 587 /** 588 * drm_gem_map_detach - dma_buf detach implementation for GEM 589 * @dma_buf: buffer to detach from 590 * @attach: attachment to be detached 591 * 592 * Calls &drm_gem_object_funcs.pin for device specific handling. Cleans up 593 * &dma_buf_attachment from drm_gem_map_attach(). This can be used as the 594 * &dma_buf_ops.detach callback. 595 */ 596 void drm_gem_map_detach(struct dma_buf *dma_buf, 597 struct dma_buf_attachment *attach) 598 { 599 struct drm_gem_object *obj = dma_buf->priv; 600 601 drm_gem_unpin(obj); 602 } 603 EXPORT_SYMBOL(drm_gem_map_detach); 604 605 #ifdef notyet 606 607 /** 608 * drm_gem_map_dma_buf - map_dma_buf implementation for GEM 609 * @attach: attachment whose scatterlist is to be returned 610 * @dir: direction of DMA transfer 611 * 612 * Calls &drm_gem_object_funcs.get_sg_table and then maps the scatterlist. This 613 * can be used as the &dma_buf_ops.map_dma_buf callback. Should be used together 614 * with drm_gem_unmap_dma_buf(). 615 * 616 * Returns:sg_table containing the scatterlist to be returned; returns ERR_PTR 617 * on error. May return -EINTR if it is interrupted by a signal. 618 */ 619 struct sg_table *drm_gem_map_dma_buf(struct dma_buf_attachment *attach, 620 enum dma_data_direction dir) 621 { 622 struct drm_gem_object *obj = attach->dmabuf->priv; 623 struct sg_table *sgt; 624 int ret; 625 626 if (WARN_ON(dir == DMA_NONE)) 627 return ERR_PTR(-EINVAL); 628 629 if (WARN_ON(!obj->funcs->get_sg_table)) 630 return ERR_PTR(-ENOSYS); 631 632 sgt = obj->funcs->get_sg_table(obj); 633 if (IS_ERR(sgt)) 634 return sgt; 635 636 ret = dma_map_sgtable(attach->dev, sgt, dir, 637 DMA_ATTR_SKIP_CPU_SYNC); 638 if (ret) { 639 sg_free_table(sgt); 640 kfree(sgt); 641 sgt = ERR_PTR(ret); 642 } 643 644 return sgt; 645 } 646 EXPORT_SYMBOL(drm_gem_map_dma_buf); 647 648 /** 649 * drm_gem_unmap_dma_buf - unmap_dma_buf implementation for GEM 650 * @attach: attachment to unmap buffer from 651 * @sgt: scatterlist info of the buffer to unmap 652 * @dir: direction of DMA transfer 653 * 654 * This can be used as the &dma_buf_ops.unmap_dma_buf callback. 655 */ 656 void drm_gem_unmap_dma_buf(struct dma_buf_attachment *attach, 657 struct sg_table *sgt, 658 enum dma_data_direction dir) 659 { 660 if (!sgt) 661 return; 662 663 dma_unmap_sgtable(attach->dev, sgt, dir, DMA_ATTR_SKIP_CPU_SYNC); 664 sg_free_table(sgt); 665 kfree(sgt); 666 } 667 EXPORT_SYMBOL(drm_gem_unmap_dma_buf); 668 669 #endif /* notyet */ 670 671 /** 672 * drm_gem_dmabuf_vmap - dma_buf vmap implementation for GEM 673 * @dma_buf: buffer to be mapped 674 * @map: the virtual address of the buffer 675 * 676 * Sets up a kernel virtual mapping. This can be used as the &dma_buf_ops.vmap 677 * callback. Calls into &drm_gem_object_funcs.vmap for device specific handling. 678 * The kernel virtual address is returned in map. 679 * 680 * Returns 0 on success or a negative errno code otherwise. 681 */ 682 int drm_gem_dmabuf_vmap(struct dma_buf *dma_buf, struct dma_buf_map *map) 683 { 684 struct drm_gem_object *obj = dma_buf->priv; 685 686 return drm_gem_vmap(obj, map); 687 } 688 EXPORT_SYMBOL(drm_gem_dmabuf_vmap); 689 690 /** 691 * drm_gem_dmabuf_vunmap - dma_buf vunmap implementation for GEM 692 * @dma_buf: buffer to be unmapped 693 * @map: the virtual address of the buffer 694 * 695 * Releases a kernel virtual mapping. This can be used as the 696 * &dma_buf_ops.vunmap callback. Calls into &drm_gem_object_funcs.vunmap for device specific handling. 697 */ 698 void drm_gem_dmabuf_vunmap(struct dma_buf *dma_buf, struct dma_buf_map *map) 699 { 700 struct drm_gem_object *obj = dma_buf->priv; 701 702 drm_gem_vunmap(obj, map); 703 } 704 EXPORT_SYMBOL(drm_gem_dmabuf_vunmap); 705 706 #ifdef __linux__ 707 /** 708 * drm_gem_prime_mmap - PRIME mmap function for GEM drivers 709 * @obj: GEM object 710 * @vma: Virtual address range 711 * 712 * This function sets up a userspace mapping for PRIME exported buffers using 713 * the same codepath that is used for regular GEM buffer mapping on the DRM fd. 714 * The fake GEM offset is added to vma->vm_pgoff and &drm_driver->fops->mmap is 715 * called to set up the mapping. 716 * 717 * Drivers can use this as their &drm_driver.gem_prime_mmap callback. 718 */ 719 int drm_gem_prime_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma) 720 { 721 struct drm_file *priv; 722 struct file *fil; 723 int ret; 724 725 /* Add the fake offset */ 726 vma->vm_pgoff += drm_vma_node_start(&obj->vma_node); 727 728 if (obj->funcs && obj->funcs->mmap) { 729 vma->vm_ops = obj->funcs->vm_ops; 730 731 drm_gem_object_get(obj); 732 ret = obj->funcs->mmap(obj, vma); 733 if (ret) { 734 drm_gem_object_put(obj); 735 return ret; 736 } 737 vma->vm_private_data = obj; 738 return 0; 739 } 740 741 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 742 fil = kzalloc(sizeof(*fil), GFP_KERNEL); 743 if (!priv || !fil) { 744 ret = -ENOMEM; 745 goto out; 746 } 747 748 /* Used by drm_gem_mmap() to lookup the GEM object */ 749 priv->minor = obj->dev->primary; 750 fil->private_data = priv; 751 752 ret = drm_vma_node_allow(&obj->vma_node, priv); 753 if (ret) 754 goto out; 755 756 ret = obj->dev->driver->fops->mmap(fil, vma); 757 758 drm_vma_node_revoke(&obj->vma_node, priv); 759 out: 760 kfree(priv); 761 kfree(fil); 762 763 return ret; 764 } 765 EXPORT_SYMBOL(drm_gem_prime_mmap); 766 #else 767 struct uvm_object * 768 drm_gem_prime_mmap(struct file *filp, vm_prot_t accessprot, voff_t off, 769 vsize_t size) 770 { 771 STUB(); 772 return NULL; 773 } 774 #endif 775 776 #ifdef notyet 777 778 /** 779 * drm_gem_dmabuf_mmap - dma_buf mmap implementation for GEM 780 * @dma_buf: buffer to be mapped 781 * @vma: virtual address range 782 * 783 * Provides memory mapping for the buffer. This can be used as the 784 * &dma_buf_ops.mmap callback. It just forwards to &drm_driver.gem_prime_mmap, 785 * which should be set to drm_gem_prime_mmap(). 786 * 787 * FIXME: There's really no point to this wrapper, drivers which need anything 788 * else but drm_gem_prime_mmap can roll their own &dma_buf_ops.mmap callback. 789 * 790 * Returns 0 on success or a negative error code on failure. 791 */ 792 int drm_gem_dmabuf_mmap(struct dma_buf *dma_buf, struct vm_area_struct *vma) 793 { 794 struct drm_gem_object *obj = dma_buf->priv; 795 struct drm_device *dev = obj->dev; 796 797 if (!dev->driver->gem_prime_mmap) 798 return -ENOSYS; 799 800 return dev->driver->gem_prime_mmap(obj, vma); 801 } 802 EXPORT_SYMBOL(drm_gem_dmabuf_mmap); 803 804 #endif /* notyet */ 805 806 static const struct dma_buf_ops drm_gem_prime_dmabuf_ops = { 807 #ifdef notyet 808 .cache_sgt_mapping = true, 809 .attach = drm_gem_map_attach, 810 .detach = drm_gem_map_detach, 811 .map_dma_buf = drm_gem_map_dma_buf, 812 .unmap_dma_buf = drm_gem_unmap_dma_buf, 813 #endif 814 .release = drm_gem_dmabuf_release, 815 #ifdef notyet 816 .mmap = drm_gem_dmabuf_mmap, 817 .vmap = drm_gem_dmabuf_vmap, 818 .vunmap = drm_gem_dmabuf_vunmap, 819 #endif 820 }; 821 822 /** 823 * drm_prime_pages_to_sg - converts a page array into an sg list 824 * @dev: DRM device 825 * @pages: pointer to the array of page pointers to convert 826 * @nr_pages: length of the page vector 827 * 828 * This helper creates an sg table object from a set of pages 829 * the driver is responsible for mapping the pages into the 830 * importers address space for use with dma_buf itself. 831 * 832 * This is useful for implementing &drm_gem_object_funcs.get_sg_table. 833 */ 834 struct sg_table *drm_prime_pages_to_sg(struct drm_device *dev, 835 struct vm_page **pages, unsigned int nr_pages) 836 { 837 STUB(); 838 return NULL; 839 #ifdef notyet 840 struct sg_table *sg; 841 size_t max_segment = 0; 842 int err; 843 844 sg = kmalloc(sizeof(struct sg_table), GFP_KERNEL); 845 if (!sg) 846 return ERR_PTR(-ENOMEM); 847 848 if (dev) 849 max_segment = dma_max_mapping_size(dev->dev); 850 if (max_segment == 0) 851 max_segment = UINT_MAX; 852 err = sg_alloc_table_from_pages_segment(sg, pages, nr_pages, 0, 853 nr_pages << PAGE_SHIFT, 854 max_segment, GFP_KERNEL); 855 if (err) { 856 kfree(sg); 857 sg = ERR_PTR(err); 858 } 859 return sg; 860 #endif 861 } 862 EXPORT_SYMBOL(drm_prime_pages_to_sg); 863 864 /** 865 * drm_prime_get_contiguous_size - returns the contiguous size of the buffer 866 * @sgt: sg_table describing the buffer to check 867 * 868 * This helper calculates the contiguous size in the DMA address space 869 * of the the buffer described by the provided sg_table. 870 * 871 * This is useful for implementing 872 * &drm_gem_object_funcs.gem_prime_import_sg_table. 873 */ 874 unsigned long drm_prime_get_contiguous_size(struct sg_table *sgt) 875 { 876 STUB(); 877 return 0; 878 #ifdef notyet 879 dma_addr_t expected = sg_dma_address(sgt->sgl); 880 struct scatterlist *sg; 881 unsigned long size = 0; 882 int i; 883 884 for_each_sgtable_dma_sg(sgt, sg, i) { 885 unsigned int len = sg_dma_len(sg); 886 887 if (!len) 888 break; 889 if (sg_dma_address(sg) != expected) 890 break; 891 expected += len; 892 size += len; 893 } 894 return size; 895 #endif 896 } 897 EXPORT_SYMBOL(drm_prime_get_contiguous_size); 898 899 /** 900 * drm_gem_prime_export - helper library implementation of the export callback 901 * @obj: GEM object to export 902 * @flags: flags like DRM_CLOEXEC and DRM_RDWR 903 * 904 * This is the implementation of the &drm_gem_object_funcs.export functions for GEM drivers 905 * using the PRIME helpers. It is used as the default in 906 * drm_gem_prime_handle_to_fd(). 907 */ 908 struct dma_buf *drm_gem_prime_export(struct drm_gem_object *obj, 909 int flags) 910 { 911 struct drm_device *dev = obj->dev; 912 struct dma_buf_export_info exp_info = { 913 #ifdef __linux__ 914 .exp_name = KBUILD_MODNAME, /* white lie for debug */ 915 .owner = dev->driver->fops->owner, 916 #endif 917 .ops = &drm_gem_prime_dmabuf_ops, 918 .size = obj->size, 919 .flags = flags, 920 .priv = obj, 921 .resv = obj->resv, 922 }; 923 924 return drm_gem_dmabuf_export(dev, &exp_info); 925 } 926 EXPORT_SYMBOL(drm_gem_prime_export); 927 928 /** 929 * drm_gem_prime_import_dev - core implementation of the import callback 930 * @dev: drm_device to import into 931 * @dma_buf: dma-buf object to import 932 * @attach_dev: struct device to dma_buf attach 933 * 934 * This is the core of drm_gem_prime_import(). It's designed to be called by 935 * drivers who want to use a different device structure than &drm_device.dev for 936 * attaching via dma_buf. This function calls 937 * &drm_driver.gem_prime_import_sg_table internally. 938 * 939 * Drivers must arrange to call drm_prime_gem_destroy() from their 940 * &drm_gem_object_funcs.free hook when using this function. 941 */ 942 struct drm_gem_object *drm_gem_prime_import_dev(struct drm_device *dev, 943 struct dma_buf *dma_buf, 944 struct device *attach_dev) 945 { 946 struct dma_buf_attachment *attach; 947 #ifdef notyet 948 struct sg_table *sgt; 949 #endif 950 struct drm_gem_object *obj; 951 int ret; 952 953 if (dma_buf->ops == &drm_gem_prime_dmabuf_ops) { 954 obj = dma_buf->priv; 955 if (obj->dev == dev) { 956 /* 957 * Importing dmabuf exported from out own gem increases 958 * refcount on gem itself instead of f_count of dmabuf. 959 */ 960 drm_gem_object_get(obj); 961 return obj; 962 } 963 } 964 965 #ifdef notyet 966 if (!dev->driver->gem_prime_import_sg_table) 967 return ERR_PTR(-EINVAL); 968 #endif 969 970 attach = dma_buf_attach(dma_buf, attach_dev); 971 if (IS_ERR(attach)) 972 return ERR_CAST(attach); 973 974 #ifdef notyet 975 get_dma_buf(dma_buf); 976 977 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 978 if (IS_ERR(sgt)) { 979 ret = PTR_ERR(sgt); 980 goto fail_detach; 981 } 982 983 obj = dev->driver->gem_prime_import_sg_table(dev, attach, sgt); 984 if (IS_ERR(obj)) { 985 ret = PTR_ERR(obj); 986 goto fail_unmap; 987 } 988 989 obj->import_attach = attach; 990 obj->resv = dma_buf->resv; 991 992 return obj; 993 994 fail_unmap: 995 dma_buf_unmap_attachment(attach, sgt, DMA_BIDIRECTIONAL); 996 fail_detach: 997 dma_buf_detach(dma_buf, attach); 998 dma_buf_put(dma_buf); 999 1000 return ERR_PTR(ret); 1001 #else 1002 ret = 0; 1003 panic(__func__); 1004 #endif 1005 } 1006 EXPORT_SYMBOL(drm_gem_prime_import_dev); 1007 1008 /** 1009 * drm_gem_prime_import - helper library implementation of the import callback 1010 * @dev: drm_device to import into 1011 * @dma_buf: dma-buf object to import 1012 * 1013 * This is the implementation of the gem_prime_import functions for GEM drivers 1014 * using the PRIME helpers. Drivers can use this as their 1015 * &drm_driver.gem_prime_import implementation. It is used as the default 1016 * implementation in drm_gem_prime_fd_to_handle(). 1017 * 1018 * Drivers must arrange to call drm_prime_gem_destroy() from their 1019 * &drm_gem_object_funcs.free hook when using this function. 1020 */ 1021 struct drm_gem_object *drm_gem_prime_import(struct drm_device *dev, 1022 struct dma_buf *dma_buf) 1023 { 1024 return drm_gem_prime_import_dev(dev, dma_buf, dev->dev); 1025 } 1026 EXPORT_SYMBOL(drm_gem_prime_import); 1027 1028 /** 1029 * drm_prime_sg_to_page_array - convert an sg table into a page array 1030 * @sgt: scatter-gather table to convert 1031 * @pages: array of page pointers to store the pages in 1032 * @max_entries: size of the passed-in array 1033 * 1034 * Exports an sg table into an array of pages. 1035 * 1036 * This function is deprecated and strongly discouraged to be used. 1037 * The page array is only useful for page faults and those can corrupt fields 1038 * in the struct page if they are not handled by the exporting driver. 1039 */ 1040 int __deprecated drm_prime_sg_to_page_array(struct sg_table *sgt, 1041 struct vm_page **pages, 1042 int max_entries) 1043 { 1044 STUB(); 1045 return -ENOSYS; 1046 #ifdef notyet 1047 struct sg_page_iter page_iter; 1048 struct vm_page **p = pages; 1049 1050 for_each_sgtable_page(sgt, &page_iter, 0) { 1051 if (WARN_ON(p - pages >= max_entries)) 1052 return -1; 1053 *p++ = sg_page_iter_page(&page_iter); 1054 } 1055 return 0; 1056 #endif 1057 } 1058 EXPORT_SYMBOL(drm_prime_sg_to_page_array); 1059 1060 /** 1061 * drm_prime_sg_to_dma_addr_array - convert an sg table into a dma addr array 1062 * @sgt: scatter-gather table to convert 1063 * @addrs: array to store the dma bus address of each page 1064 * @max_entries: size of both the passed-in arrays 1065 * 1066 * Exports an sg table into an array of addresses. 1067 * 1068 * Drivers should use this in their &drm_driver.gem_prime_import_sg_table 1069 * implementation. 1070 */ 1071 int drm_prime_sg_to_dma_addr_array(struct sg_table *sgt, dma_addr_t *addrs, 1072 int max_entries) 1073 { 1074 STUB(); 1075 return -ENOSYS; 1076 #ifdef notyet 1077 struct sg_dma_page_iter dma_iter; 1078 dma_addr_t *a = addrs; 1079 1080 for_each_sgtable_dma_page(sgt, &dma_iter, 0) { 1081 if (WARN_ON(a - addrs >= max_entries)) 1082 return -1; 1083 *a++ = sg_page_iter_dma_address(&dma_iter); 1084 } 1085 return 0; 1086 #endif 1087 } 1088 EXPORT_SYMBOL(drm_prime_sg_to_dma_addr_array); 1089 1090 /** 1091 * drm_prime_gem_destroy - helper to clean up a PRIME-imported GEM object 1092 * @obj: GEM object which was created from a dma-buf 1093 * @sg: the sg-table which was pinned at import time 1094 * 1095 * This is the cleanup functions which GEM drivers need to call when they use 1096 * drm_gem_prime_import() or drm_gem_prime_import_dev() to import dma-bufs. 1097 */ 1098 void drm_prime_gem_destroy(struct drm_gem_object *obj, struct sg_table *sg) 1099 { 1100 STUB(); 1101 #ifdef notyet 1102 struct dma_buf_attachment *attach; 1103 struct dma_buf *dma_buf; 1104 1105 attach = obj->import_attach; 1106 if (sg) 1107 dma_buf_unmap_attachment(attach, sg, DMA_BIDIRECTIONAL); 1108 dma_buf = attach->dmabuf; 1109 dma_buf_detach(attach->dmabuf, attach); 1110 /* remove the reference */ 1111 dma_buf_put(dma_buf); 1112 #endif 1113 } 1114 EXPORT_SYMBOL(drm_prime_gem_destroy); 1115