xref: /openbsd-src/sys/dev/pci/drm/drm_linux.c (revision 8dfe214903ce3625c937d5fad2469e8a0d1d4d71)
1 /*	$OpenBSD: drm_linux.c,v 1.105 2023/12/23 14:18:27 kettenis Exp $	*/
2 /*
3  * Copyright (c) 2013 Jonathan Gray <jsg@openbsd.org>
4  * Copyright (c) 2015, 2016 Mark Kettenis <kettenis@openbsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/types.h>
20 #include <sys/systm.h>
21 #include <sys/param.h>
22 #include <sys/event.h>
23 #include <sys/filedesc.h>
24 #include <sys/kthread.h>
25 #include <sys/stat.h>
26 #include <sys/unistd.h>
27 #include <sys/proc.h>
28 #include <sys/pool.h>
29 #include <sys/fcntl.h>
30 
31 #include <dev/pci/ppbreg.h>
32 
33 #include <linux/dma-buf.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/acpi.h>
36 #include <linux/pagevec.h>
37 #include <linux/dma-fence-array.h>
38 #include <linux/dma-fence-chain.h>
39 #include <linux/interrupt.h>
40 #include <linux/err.h>
41 #include <linux/idr.h>
42 #include <linux/scatterlist.h>
43 #include <linux/i2c.h>
44 #include <linux/pci.h>
45 #include <linux/notifier.h>
46 #include <linux/backlight.h>
47 #include <linux/shrinker.h>
48 #include <linux/fb.h>
49 #include <linux/xarray.h>
50 #include <linux/interval_tree.h>
51 #include <linux/kthread.h>
52 #include <linux/processor.h>
53 #include <linux/sync_file.h>
54 
55 #include <drm/drm_device.h>
56 #include <drm/drm_connector.h>
57 #include <drm/drm_print.h>
58 
59 #if defined(__amd64__) || defined(__i386__)
60 #include "bios.h"
61 #endif
62 
63 /* allowed to sleep */
64 void
65 tasklet_unlock_wait(struct tasklet_struct *ts)
66 {
67 	while (test_bit(TASKLET_STATE_RUN, &ts->state))
68 		cpu_relax();
69 }
70 
71 /* must not sleep */
72 void
73 tasklet_unlock_spin_wait(struct tasklet_struct *ts)
74 {
75 	while (test_bit(TASKLET_STATE_RUN, &ts->state))
76 		cpu_relax();
77 }
78 
79 void
80 tasklet_run(void *arg)
81 {
82 	struct tasklet_struct *ts = arg;
83 
84 	clear_bit(TASKLET_STATE_SCHED, &ts->state);
85 	if (tasklet_trylock(ts)) {
86 		if (!atomic_read(&ts->count)) {
87 			if (ts->use_callback)
88 				ts->callback(ts);
89 			else
90 				ts->func(ts->data);
91 		}
92 		tasklet_unlock(ts);
93 	}
94 }
95 
96 /* 32 bit powerpc lacks 64 bit atomics */
97 #if defined(__powerpc__) && !defined(__powerpc64__)
98 struct mutex atomic64_mtx = MUTEX_INITIALIZER(IPL_HIGH);
99 #endif
100 
101 void
102 set_current_state(int state)
103 {
104 	int prio = state;
105 
106 	KASSERT(state != TASK_RUNNING);
107 	/* check if already on the sleep list */
108 	if (curproc->p_wchan != NULL)
109 		return;
110 	sleep_setup(curproc, prio, "schto");
111 }
112 
113 void
114 __set_current_state(int state)
115 {
116 	struct proc *p = curproc;
117 	int s;
118 
119 	KASSERT(state == TASK_RUNNING);
120 	SCHED_LOCK(s);
121 	unsleep(p);
122 	p->p_stat = SONPROC;
123 	atomic_clearbits_int(&p->p_flag, P_WSLEEP);
124 	SCHED_UNLOCK(s);
125 }
126 
127 void
128 schedule(void)
129 {
130 	schedule_timeout(MAX_SCHEDULE_TIMEOUT);
131 }
132 
133 long
134 schedule_timeout(long timeout)
135 {
136 	unsigned long deadline;
137 	int timo = 0;
138 
139 	KASSERT(!cold);
140 
141 	if (timeout != MAX_SCHEDULE_TIMEOUT)
142 		timo = timeout;
143 	if (timeout != MAX_SCHEDULE_TIMEOUT)
144 		deadline = jiffies + timeout;
145 	sleep_finish(timo, timeout > 0);
146 	if (timeout != MAX_SCHEDULE_TIMEOUT)
147 		timeout = deadline - jiffies;
148 
149 	return timeout > 0 ? timeout : 0;
150 }
151 
152 long
153 schedule_timeout_uninterruptible(long timeout)
154 {
155 	tsleep(curproc, PWAIT, "schtou", timeout);
156 	return 0;
157 }
158 
159 int
160 wake_up_process(struct proc *p)
161 {
162 	int s, rv;
163 
164 	SCHED_LOCK(s);
165 	rv = wakeup_proc(p, NULL, 0);
166 	SCHED_UNLOCK(s);
167 	return rv;
168 }
169 
170 int
171 autoremove_wake_function(struct wait_queue_entry *wqe, unsigned int mode,
172     int sync, void *key)
173 {
174 	if (wqe->private)
175 		wake_up_process(wqe->private);
176 	list_del_init(&wqe->entry);
177 	return 0;
178 }
179 
180 void
181 prepare_to_wait(wait_queue_head_t *wqh, wait_queue_entry_t *wqe, int state)
182 {
183 	mtx_enter(&wqh->lock);
184 	if (list_empty(&wqe->entry))
185 		__add_wait_queue(wqh, wqe);
186 	mtx_leave(&wqh->lock);
187 
188 	set_current_state(state);
189 }
190 
191 void
192 finish_wait(wait_queue_head_t *wqh, wait_queue_entry_t *wqe)
193 {
194 	__set_current_state(TASK_RUNNING);
195 
196 	mtx_enter(&wqh->lock);
197 	if (!list_empty(&wqe->entry))
198 		list_del_init(&wqe->entry);
199 	mtx_leave(&wqh->lock);
200 }
201 
202 void
203 flush_workqueue(struct workqueue_struct *wq)
204 {
205 	if (cold)
206 		return;
207 
208 	if (wq)
209 		taskq_barrier((struct taskq *)wq);
210 }
211 
212 bool
213 flush_work(struct work_struct *work)
214 {
215 	if (cold)
216 		return false;
217 
218 	if (work->tq)
219 		taskq_barrier(work->tq);
220 	return false;
221 }
222 
223 bool
224 flush_delayed_work(struct delayed_work *dwork)
225 {
226 	bool ret = false;
227 
228 	if (cold)
229 		return false;
230 
231 	while (timeout_pending(&dwork->to)) {
232 		tsleep(dwork, PWAIT, "fldwto", 1);
233 		ret = true;
234 	}
235 
236 	if (dwork->tq)
237 		taskq_barrier(dwork->tq);
238 	return ret;
239 }
240 
241 struct kthread {
242 	int (*func)(void *);
243 	void *data;
244 	struct proc *proc;
245 	volatile u_int flags;
246 #define KTHREAD_SHOULDSTOP	0x0000001
247 #define KTHREAD_STOPPED		0x0000002
248 #define KTHREAD_SHOULDPARK	0x0000004
249 #define KTHREAD_PARKED		0x0000008
250 	LIST_ENTRY(kthread) next;
251 };
252 
253 LIST_HEAD(, kthread) kthread_list = LIST_HEAD_INITIALIZER(kthread_list);
254 
255 void
256 kthread_func(void *arg)
257 {
258 	struct kthread *thread = arg;
259 	int ret;
260 
261 	ret = thread->func(thread->data);
262 	thread->flags |= KTHREAD_STOPPED;
263 	wakeup(thread);
264 	kthread_exit(ret);
265 }
266 
267 struct proc *
268 kthread_run(int (*func)(void *), void *data, const char *name)
269 {
270 	struct kthread *thread;
271 
272 	thread = malloc(sizeof(*thread), M_DRM, M_WAITOK);
273 	thread->func = func;
274 	thread->data = data;
275 	thread->flags = 0;
276 
277 	if (kthread_create(kthread_func, thread, &thread->proc, name)) {
278 		free(thread, M_DRM, sizeof(*thread));
279 		return ERR_PTR(-ENOMEM);
280 	}
281 
282 	LIST_INSERT_HEAD(&kthread_list, thread, next);
283 	return thread->proc;
284 }
285 
286 struct kthread_worker *
287 kthread_create_worker(unsigned int flags, const char *fmt, ...)
288 {
289 	char name[MAXCOMLEN+1];
290 	va_list ap;
291 
292 	struct kthread_worker *w = malloc(sizeof(*w), M_DRM, M_WAITOK);
293 	va_start(ap, fmt);
294 	vsnprintf(name, sizeof(name), fmt, ap);
295 	va_end(ap);
296 	w->tq = taskq_create(name, 1, IPL_HIGH, 0);
297 
298 	return w;
299 }
300 
301 void
302 kthread_destroy_worker(struct kthread_worker *worker)
303 {
304 	taskq_destroy(worker->tq);
305 	free(worker, M_DRM, sizeof(*worker));
306 
307 }
308 
309 void
310 kthread_init_work(struct kthread_work *work, void (*func)(struct kthread_work *))
311 {
312 	work->tq = NULL;
313 	task_set(&work->task, (void (*)(void *))func, work);
314 }
315 
316 bool
317 kthread_queue_work(struct kthread_worker *worker, struct kthread_work *work)
318 {
319 	work->tq = worker->tq;
320 	return task_add(work->tq, &work->task);
321 }
322 
323 bool
324 kthread_cancel_work_sync(struct kthread_work *work)
325 {
326 	return task_del(work->tq, &work->task);
327 }
328 
329 void
330 kthread_flush_work(struct kthread_work *work)
331 {
332 	if (cold)
333 		return;
334 
335 	if (work->tq)
336 		taskq_barrier(work->tq);
337 }
338 
339 void
340 kthread_flush_worker(struct kthread_worker *worker)
341 {
342 	if (cold)
343 		return;
344 
345 	if (worker->tq)
346 		taskq_barrier(worker->tq);
347 }
348 
349 struct kthread *
350 kthread_lookup(struct proc *p)
351 {
352 	struct kthread *thread;
353 
354 	LIST_FOREACH(thread, &kthread_list, next) {
355 		if (thread->proc == p)
356 			break;
357 	}
358 	KASSERT(thread);
359 
360 	return thread;
361 }
362 
363 int
364 kthread_should_park(void)
365 {
366 	struct kthread *thread = kthread_lookup(curproc);
367 	return (thread->flags & KTHREAD_SHOULDPARK);
368 }
369 
370 void
371 kthread_parkme(void)
372 {
373 	struct kthread *thread = kthread_lookup(curproc);
374 
375 	while (thread->flags & KTHREAD_SHOULDPARK) {
376 		thread->flags |= KTHREAD_PARKED;
377 		wakeup(thread);
378 		tsleep_nsec(thread, PPAUSE, "parkme", INFSLP);
379 		thread->flags &= ~KTHREAD_PARKED;
380 	}
381 }
382 
383 void
384 kthread_park(struct proc *p)
385 {
386 	struct kthread *thread = kthread_lookup(p);
387 
388 	while ((thread->flags & KTHREAD_PARKED) == 0) {
389 		thread->flags |= KTHREAD_SHOULDPARK;
390 		wake_up_process(thread->proc);
391 		tsleep_nsec(thread, PPAUSE, "park", INFSLP);
392 	}
393 }
394 
395 void
396 kthread_unpark(struct proc *p)
397 {
398 	struct kthread *thread = kthread_lookup(p);
399 
400 	thread->flags &= ~KTHREAD_SHOULDPARK;
401 	wakeup(thread);
402 }
403 
404 int
405 kthread_should_stop(void)
406 {
407 	struct kthread *thread = kthread_lookup(curproc);
408 	return (thread->flags & KTHREAD_SHOULDSTOP);
409 }
410 
411 void
412 kthread_stop(struct proc *p)
413 {
414 	struct kthread *thread = kthread_lookup(p);
415 
416 	while ((thread->flags & KTHREAD_STOPPED) == 0) {
417 		thread->flags |= KTHREAD_SHOULDSTOP;
418 		kthread_unpark(p);
419 		wake_up_process(thread->proc);
420 		tsleep_nsec(thread, PPAUSE, "stop", INFSLP);
421 	}
422 	LIST_REMOVE(thread, next);
423 	free(thread, M_DRM, sizeof(*thread));
424 }
425 
426 #if NBIOS > 0
427 extern char smbios_board_vendor[];
428 extern char smbios_board_prod[];
429 extern char smbios_board_serial[];
430 #endif
431 
432 bool
433 dmi_match(int slot, const char *str)
434 {
435 	switch (slot) {
436 	case DMI_SYS_VENDOR:
437 		if (hw_vendor != NULL &&
438 		    !strcmp(hw_vendor, str))
439 			return true;
440 		break;
441 	case DMI_PRODUCT_NAME:
442 		if (hw_prod != NULL &&
443 		    !strcmp(hw_prod, str))
444 			return true;
445 		break;
446 	case DMI_PRODUCT_VERSION:
447 		if (hw_ver != NULL &&
448 		    !strcmp(hw_ver, str))
449 			return true;
450 		break;
451 #if NBIOS > 0
452 	case DMI_BOARD_VENDOR:
453 		if (strcmp(smbios_board_vendor, str) == 0)
454 			return true;
455 		break;
456 	case DMI_BOARD_NAME:
457 		if (strcmp(smbios_board_prod, str) == 0)
458 			return true;
459 		break;
460 	case DMI_BOARD_SERIAL:
461 		if (strcmp(smbios_board_serial, str) == 0)
462 			return true;
463 		break;
464 #else
465 	case DMI_BOARD_VENDOR:
466 		if (hw_vendor != NULL &&
467 		    !strcmp(hw_vendor, str))
468 			return true;
469 		break;
470 	case DMI_BOARD_NAME:
471 		if (hw_prod != NULL &&
472 		    !strcmp(hw_prod, str))
473 			return true;
474 		break;
475 #endif
476 	case DMI_NONE:
477 	default:
478 		return false;
479 	}
480 
481 	return false;
482 }
483 
484 static bool
485 dmi_found(const struct dmi_system_id *dsi)
486 {
487 	int i, slot;
488 
489 	for (i = 0; i < nitems(dsi->matches); i++) {
490 		slot = dsi->matches[i].slot;
491 		if (slot == DMI_NONE)
492 			break;
493 		if (!dmi_match(slot, dsi->matches[i].substr))
494 			return false;
495 	}
496 
497 	return true;
498 }
499 
500 const struct dmi_system_id *
501 dmi_first_match(const struct dmi_system_id *sysid)
502 {
503 	const struct dmi_system_id *dsi;
504 
505 	for (dsi = sysid; dsi->matches[0].slot != 0 ; dsi++) {
506 		if (dmi_found(dsi))
507 			return dsi;
508 	}
509 
510 	return NULL;
511 }
512 
513 #if NBIOS > 0
514 extern char smbios_bios_date[];
515 extern char smbios_bios_version[];
516 #endif
517 
518 const char *
519 dmi_get_system_info(int slot)
520 {
521 #if NBIOS > 0
522 	switch (slot) {
523 	case DMI_BIOS_DATE:
524 		return smbios_bios_date;
525 	case DMI_BIOS_VERSION:
526 		return smbios_bios_version;
527 	default:
528 		printf("%s slot %d not handled\n", __func__, slot);
529 	}
530 #endif
531 	return NULL;
532 }
533 
534 int
535 dmi_check_system(const struct dmi_system_id *sysid)
536 {
537 	const struct dmi_system_id *dsi;
538 	int num = 0;
539 
540 	for (dsi = sysid; dsi->matches[0].slot != 0 ; dsi++) {
541 		if (dmi_found(dsi)) {
542 			num++;
543 			if (dsi->callback && dsi->callback(dsi))
544 				break;
545 		}
546 	}
547 	return (num);
548 }
549 
550 struct vm_page *
551 alloc_pages(unsigned int gfp_mask, unsigned int order)
552 {
553 	int flags = (gfp_mask & M_NOWAIT) ? UVM_PLA_NOWAIT : UVM_PLA_WAITOK;
554 	struct uvm_constraint_range *constraint = &no_constraint;
555 	struct pglist mlist;
556 
557 	if (gfp_mask & M_CANFAIL)
558 		flags |= UVM_PLA_FAILOK;
559 	if (gfp_mask & M_ZERO)
560 		flags |= UVM_PLA_ZERO;
561 	if (gfp_mask & __GFP_DMA32)
562 		constraint = &dma_constraint;
563 
564 	TAILQ_INIT(&mlist);
565 	if (uvm_pglistalloc(PAGE_SIZE << order, constraint->ucr_low,
566 	    constraint->ucr_high, PAGE_SIZE, 0, &mlist, 1, flags))
567 		return NULL;
568 	return TAILQ_FIRST(&mlist);
569 }
570 
571 void
572 __free_pages(struct vm_page *page, unsigned int order)
573 {
574 	struct pglist mlist;
575 	int i;
576 
577 	TAILQ_INIT(&mlist);
578 	for (i = 0; i < (1 << order); i++)
579 		TAILQ_INSERT_TAIL(&mlist, &page[i], pageq);
580 	uvm_pglistfree(&mlist);
581 }
582 
583 void
584 __pagevec_release(struct pagevec *pvec)
585 {
586 	struct pglist mlist;
587 	int i;
588 
589 	TAILQ_INIT(&mlist);
590 	for (i = 0; i < pvec->nr; i++)
591 		TAILQ_INSERT_TAIL(&mlist, pvec->pages[i], pageq);
592 	uvm_pglistfree(&mlist);
593 	pagevec_reinit(pvec);
594 }
595 
596 static struct kmem_va_mode kv_physwait = {
597 	.kv_map = &phys_map,
598 	.kv_wait = 1,
599 };
600 
601 void *
602 kmap(struct vm_page *pg)
603 {
604 	vaddr_t va;
605 
606 #if defined (__HAVE_PMAP_DIRECT)
607 	va = pmap_map_direct(pg);
608 #else
609 	va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_physwait, &kp_none, &kd_waitok);
610 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), PROT_READ | PROT_WRITE);
611 	pmap_update(pmap_kernel());
612 #endif
613 	return (void *)va;
614 }
615 
616 void
617 kunmap_va(void *addr)
618 {
619 	vaddr_t va = (vaddr_t)addr;
620 
621 #if defined (__HAVE_PMAP_DIRECT)
622 	pmap_unmap_direct(va);
623 #else
624 	pmap_kremove(va, PAGE_SIZE);
625 	pmap_update(pmap_kernel());
626 	km_free((void *)va, PAGE_SIZE, &kv_physwait, &kp_none);
627 #endif
628 }
629 
630 vaddr_t kmap_atomic_va;
631 int kmap_atomic_inuse;
632 
633 void *
634 kmap_atomic_prot(struct vm_page *pg, pgprot_t prot)
635 {
636 	KASSERT(!kmap_atomic_inuse);
637 
638 	kmap_atomic_inuse = 1;
639 	pmap_kenter_pa(kmap_atomic_va, VM_PAGE_TO_PHYS(pg) | prot,
640 	    PROT_READ | PROT_WRITE);
641 	return (void *)kmap_atomic_va;
642 }
643 
644 void
645 kunmap_atomic(void *addr)
646 {
647 	KASSERT(kmap_atomic_inuse);
648 
649 	pmap_kremove(kmap_atomic_va, PAGE_SIZE);
650 	kmap_atomic_inuse = 0;
651 }
652 
653 void *
654 vmap(struct vm_page **pages, unsigned int npages, unsigned long flags,
655      pgprot_t prot)
656 {
657 	vaddr_t va;
658 	paddr_t pa;
659 	int i;
660 
661 	va = (vaddr_t)km_alloc(PAGE_SIZE * npages, &kv_any, &kp_none,
662 	    &kd_nowait);
663 	if (va == 0)
664 		return NULL;
665 	for (i = 0; i < npages; i++) {
666 		pa = VM_PAGE_TO_PHYS(pages[i]) | prot;
667 		pmap_enter(pmap_kernel(), va + (i * PAGE_SIZE), pa,
668 		    PROT_READ | PROT_WRITE,
669 		    PROT_READ | PROT_WRITE | PMAP_WIRED);
670 		pmap_update(pmap_kernel());
671 	}
672 
673 	return (void *)va;
674 }
675 
676 void
677 vunmap(void *addr, size_t size)
678 {
679 	vaddr_t va = (vaddr_t)addr;
680 
681 	pmap_remove(pmap_kernel(), va, va + size);
682 	pmap_update(pmap_kernel());
683 	km_free((void *)va, size, &kv_any, &kp_none);
684 }
685 
686 bool
687 is_vmalloc_addr(const void *p)
688 {
689 	vaddr_t min, max, addr;
690 
691 	min = vm_map_min(kernel_map);
692 	max = vm_map_max(kernel_map);
693 	addr = (vaddr_t)p;
694 
695 	if (addr >= min && addr <= max)
696 		return true;
697 	else
698 		return false;
699 }
700 
701 void
702 print_hex_dump(const char *level, const char *prefix_str, int prefix_type,
703     int rowsize, int groupsize, const void *buf, size_t len, bool ascii)
704 {
705 	const uint8_t *cbuf = buf;
706 	int i;
707 
708 	for (i = 0; i < len; i++) {
709 		if ((i % rowsize) == 0)
710 			printf("%s", prefix_str);
711 		printf("%02x", cbuf[i]);
712 		if ((i % rowsize) == (rowsize - 1))
713 			printf("\n");
714 		else
715 			printf(" ");
716 	}
717 }
718 
719 void *
720 memchr_inv(const void *s, int c, size_t n)
721 {
722 	if (n != 0) {
723 		const unsigned char *p = s;
724 
725 		do {
726 			if (*p++ != (unsigned char)c)
727 				return ((void *)(p - 1));
728 		} while (--n != 0);
729 	}
730 	return (NULL);
731 }
732 
733 int
734 panic_cmp(struct rb_node *a, struct rb_node *b)
735 {
736 	panic(__func__);
737 }
738 
739 #undef RB_ROOT
740 #define RB_ROOT(head)	(head)->rbh_root
741 
742 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
743 
744 /*
745  * This is a fairly minimal implementation of the Linux "idr" API.  It
746  * probably isn't very efficient, and definitely isn't RCU safe.  The
747  * pre-load buffer is global instead of per-cpu; we rely on the kernel
748  * lock to make this work.  We do randomize our IDs in order to make
749  * them harder to guess.
750  */
751 
752 int idr_cmp(struct idr_entry *, struct idr_entry *);
753 SPLAY_PROTOTYPE(idr_tree, idr_entry, entry, idr_cmp);
754 
755 struct pool idr_pool;
756 struct idr_entry *idr_entry_cache;
757 
758 void
759 idr_init(struct idr *idr)
760 {
761 	SPLAY_INIT(&idr->tree);
762 }
763 
764 void
765 idr_destroy(struct idr *idr)
766 {
767 	struct idr_entry *id;
768 
769 	while ((id = SPLAY_MIN(idr_tree, &idr->tree))) {
770 		SPLAY_REMOVE(idr_tree, &idr->tree, id);
771 		pool_put(&idr_pool, id);
772 	}
773 }
774 
775 void
776 idr_preload(unsigned int gfp_mask)
777 {
778 	int flags = (gfp_mask & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
779 
780 	KERNEL_ASSERT_LOCKED();
781 
782 	if (idr_entry_cache == NULL)
783 		idr_entry_cache = pool_get(&idr_pool, flags);
784 }
785 
786 int
787 idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
788 {
789 	int flags = (gfp_mask & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
790 	struct idr_entry *id;
791 	int begin;
792 
793 	KERNEL_ASSERT_LOCKED();
794 
795 	if (idr_entry_cache) {
796 		id = idr_entry_cache;
797 		idr_entry_cache = NULL;
798 	} else {
799 		id = pool_get(&idr_pool, flags);
800 		if (id == NULL)
801 			return -ENOMEM;
802 	}
803 
804 	if (end <= 0)
805 		end = INT_MAX;
806 
807 #ifdef notyet
808 	id->id = begin = start + arc4random_uniform(end - start);
809 #else
810 	id->id = begin = start;
811 #endif
812 	while (SPLAY_INSERT(idr_tree, &idr->tree, id)) {
813 		if (id->id == end)
814 			id->id = start;
815 		else
816 			id->id++;
817 		if (id->id == begin) {
818 			pool_put(&idr_pool, id);
819 			return -ENOSPC;
820 		}
821 	}
822 	id->ptr = ptr;
823 	return id->id;
824 }
825 
826 void *
827 idr_replace(struct idr *idr, void *ptr, unsigned long id)
828 {
829 	struct idr_entry find, *res;
830 	void *old;
831 
832 	find.id = id;
833 	res = SPLAY_FIND(idr_tree, &idr->tree, &find);
834 	if (res == NULL)
835 		return ERR_PTR(-ENOENT);
836 	old = res->ptr;
837 	res->ptr = ptr;
838 	return old;
839 }
840 
841 void *
842 idr_remove(struct idr *idr, unsigned long id)
843 {
844 	struct idr_entry find, *res;
845 	void *ptr = NULL;
846 
847 	find.id = id;
848 	res = SPLAY_FIND(idr_tree, &idr->tree, &find);
849 	if (res) {
850 		SPLAY_REMOVE(idr_tree, &idr->tree, res);
851 		ptr = res->ptr;
852 		pool_put(&idr_pool, res);
853 	}
854 	return ptr;
855 }
856 
857 void *
858 idr_find(struct idr *idr, unsigned long id)
859 {
860 	struct idr_entry find, *res;
861 
862 	find.id = id;
863 	res = SPLAY_FIND(idr_tree, &idr->tree, &find);
864 	if (res == NULL)
865 		return NULL;
866 	return res->ptr;
867 }
868 
869 void *
870 idr_get_next(struct idr *idr, int *id)
871 {
872 	struct idr_entry *res;
873 
874 	SPLAY_FOREACH(res, idr_tree, &idr->tree) {
875 		if (res->id >= *id) {
876 			*id = res->id;
877 			return res->ptr;
878 		}
879 	}
880 
881 	return NULL;
882 }
883 
884 int
885 idr_for_each(struct idr *idr, int (*func)(int, void *, void *), void *data)
886 {
887 	struct idr_entry *id;
888 	int ret;
889 
890 	SPLAY_FOREACH(id, idr_tree, &idr->tree) {
891 		ret = func(id->id, id->ptr, data);
892 		if (ret)
893 			return ret;
894 	}
895 
896 	return 0;
897 }
898 
899 int
900 idr_cmp(struct idr_entry *a, struct idr_entry *b)
901 {
902 	return (a->id < b->id ? -1 : a->id > b->id);
903 }
904 
905 SPLAY_GENERATE(idr_tree, idr_entry, entry, idr_cmp);
906 
907 void
908 ida_init(struct ida *ida)
909 {
910 	idr_init(&ida->idr);
911 }
912 
913 void
914 ida_destroy(struct ida *ida)
915 {
916 	idr_destroy(&ida->idr);
917 }
918 
919 int
920 ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
921     gfp_t gfp_mask)
922 {
923 	return idr_alloc(&ida->idr, NULL, start, end, gfp_mask);
924 }
925 
926 void
927 ida_simple_remove(struct ida *ida, unsigned int id)
928 {
929 	idr_remove(&ida->idr, id);
930 }
931 
932 int
933 ida_alloc_min(struct ida *ida, unsigned int min, gfp_t gfp)
934 {
935 	return idr_alloc(&ida->idr, NULL, min, INT_MAX, gfp);
936 }
937 
938 int
939 ida_alloc_max(struct ida *ida, unsigned int max, gfp_t gfp)
940 {
941 	return idr_alloc(&ida->idr, NULL, 0, max - 1, gfp);
942 }
943 
944 void
945 ida_free(struct ida *ida, unsigned int id)
946 {
947 	idr_remove(&ida->idr, id);
948 }
949 
950 int
951 xarray_cmp(struct xarray_entry *a, struct xarray_entry *b)
952 {
953 	return (a->id < b->id ? -1 : a->id > b->id);
954 }
955 
956 SPLAY_PROTOTYPE(xarray_tree, xarray_entry, entry, xarray_cmp);
957 struct pool xa_pool;
958 SPLAY_GENERATE(xarray_tree, xarray_entry, entry, xarray_cmp);
959 
960 void
961 xa_init_flags(struct xarray *xa, gfp_t flags)
962 {
963 	static int initialized;
964 
965 	if (!initialized) {
966 		pool_init(&xa_pool, sizeof(struct xarray_entry), 0, IPL_NONE, 0,
967 		    "xapl", NULL);
968 		initialized = 1;
969 	}
970 	SPLAY_INIT(&xa->xa_tree);
971 	if (flags & XA_FLAGS_LOCK_IRQ)
972 		mtx_init(&xa->xa_lock, IPL_TTY);
973 	else
974 		mtx_init(&xa->xa_lock, IPL_NONE);
975 }
976 
977 void
978 xa_destroy(struct xarray *xa)
979 {
980 	struct xarray_entry *id;
981 
982 	while ((id = SPLAY_MIN(xarray_tree, &xa->xa_tree))) {
983 		SPLAY_REMOVE(xarray_tree, &xa->xa_tree, id);
984 		pool_put(&xa_pool, id);
985 	}
986 }
987 
988 /* Don't wrap ids. */
989 int
990 __xa_alloc(struct xarray *xa, u32 *id, void *entry, int limit, gfp_t gfp)
991 {
992 	struct xarray_entry *xid;
993 	int start = (xa->xa_flags & XA_FLAGS_ALLOC1) ? 1 : 0;
994 	int begin;
995 
996 	if (gfp & GFP_NOWAIT) {
997 		xid = pool_get(&xa_pool, PR_NOWAIT);
998 	} else {
999 		mtx_leave(&xa->xa_lock);
1000 		xid = pool_get(&xa_pool, PR_WAITOK);
1001 		mtx_enter(&xa->xa_lock);
1002 	}
1003 
1004 	if (xid == NULL)
1005 		return -ENOMEM;
1006 
1007 	if (limit <= 0)
1008 		limit = INT_MAX;
1009 
1010 	xid->id = begin = start;
1011 
1012 	while (SPLAY_INSERT(xarray_tree, &xa->xa_tree, xid)) {
1013 		if (xid->id == limit)
1014 			xid->id = start;
1015 		else
1016 			xid->id++;
1017 		if (xid->id == begin) {
1018 			pool_put(&xa_pool, xid);
1019 			return -EBUSY;
1020 		}
1021 	}
1022 	xid->ptr = entry;
1023 	*id = xid->id;
1024 	return 0;
1025 }
1026 
1027 /*
1028  * Wrap ids and store next id.
1029  * We walk the entire tree so don't special case wrapping.
1030  * The only caller of this (i915_drm_client.c) doesn't use next id.
1031  */
1032 int
1033 __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, int limit, u32 *next,
1034     gfp_t gfp)
1035 {
1036 	int r = __xa_alloc(xa, id, entry, limit, gfp);
1037 	*next = *id + 1;
1038 	return r;
1039 }
1040 
1041 void *
1042 __xa_erase(struct xarray *xa, unsigned long index)
1043 {
1044 	struct xarray_entry find, *res;
1045 	void *ptr = NULL;
1046 
1047 	find.id = index;
1048 	res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find);
1049 	if (res) {
1050 		SPLAY_REMOVE(xarray_tree, &xa->xa_tree, res);
1051 		ptr = res->ptr;
1052 		pool_put(&xa_pool, res);
1053 	}
1054 	return ptr;
1055 }
1056 
1057 void *
1058 __xa_load(struct xarray *xa, unsigned long index)
1059 {
1060 	struct xarray_entry find, *res;
1061 
1062 	find.id = index;
1063 	res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find);
1064 	if (res == NULL)
1065 		return NULL;
1066 	return res->ptr;
1067 }
1068 
1069 void *
1070 __xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1071 {
1072 	struct xarray_entry find, *res;
1073 	void *prev;
1074 
1075 	if (entry == NULL)
1076 		return __xa_erase(xa, index);
1077 
1078 	find.id = index;
1079 	res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find);
1080 	if (res != NULL) {
1081 		/* index exists */
1082 		/* XXX Multislot entries updates not implemented yet */
1083 		prev = res->ptr;
1084 		res->ptr = entry;
1085 		return prev;
1086 	}
1087 
1088 	/* index not found, add new */
1089 	if (gfp & GFP_NOWAIT) {
1090 		res = pool_get(&xa_pool, PR_NOWAIT);
1091 	} else {
1092 		mtx_leave(&xa->xa_lock);
1093 		res = pool_get(&xa_pool, PR_WAITOK);
1094 		mtx_enter(&xa->xa_lock);
1095 	}
1096 	if (res == NULL)
1097 		return XA_ERROR(-ENOMEM);
1098 	res->id = index;
1099 	res->ptr = entry;
1100 	if (SPLAY_INSERT(xarray_tree, &xa->xa_tree, res) != NULL)
1101 		return XA_ERROR(-EINVAL);
1102 	return NULL; /* no prev entry at index */
1103 }
1104 
1105 void *
1106 xa_get_next(struct xarray *xa, unsigned long *index)
1107 {
1108 	struct xarray_entry *res;
1109 
1110 	SPLAY_FOREACH(res, xarray_tree, &xa->xa_tree) {
1111 		if (res->id >= *index) {
1112 			*index = res->id;
1113 			return res->ptr;
1114 		}
1115 	}
1116 
1117 	return NULL;
1118 }
1119 
1120 int
1121 sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
1122 {
1123 	table->sgl = mallocarray(nents, sizeof(struct scatterlist),
1124 	    M_DRM, gfp_mask | M_ZERO);
1125 	if (table->sgl == NULL)
1126 		return -ENOMEM;
1127 	table->nents = table->orig_nents = nents;
1128 	sg_mark_end(&table->sgl[nents - 1]);
1129 	return 0;
1130 }
1131 
1132 void
1133 sg_free_table(struct sg_table *table)
1134 {
1135 	free(table->sgl, M_DRM,
1136 	    table->orig_nents * sizeof(struct scatterlist));
1137 	table->orig_nents = 0;
1138 	table->sgl = NULL;
1139 }
1140 
1141 size_t
1142 sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1143     const void *buf, size_t buflen)
1144 {
1145 	panic("%s", __func__);
1146 }
1147 
1148 int
1149 i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1150 {
1151 	void *cmd = NULL;
1152 	int cmdlen = 0;
1153 	int err, ret = 0;
1154 	int op;
1155 
1156 	iic_acquire_bus(&adap->ic, 0);
1157 
1158 	while (num > 2) {
1159 		op = (msgs->flags & I2C_M_RD) ? I2C_OP_READ : I2C_OP_WRITE;
1160 		err = iic_exec(&adap->ic, op, msgs->addr, NULL, 0,
1161 		    msgs->buf, msgs->len, 0);
1162 		if (err) {
1163 			ret = -err;
1164 			goto fail;
1165 		}
1166 		msgs++;
1167 		num--;
1168 		ret++;
1169 	}
1170 
1171 	if (num > 1) {
1172 		cmd = msgs->buf;
1173 		cmdlen = msgs->len;
1174 		msgs++;
1175 		num--;
1176 		ret++;
1177 	}
1178 
1179 	op = (msgs->flags & I2C_M_RD) ?
1180 	    I2C_OP_READ_WITH_STOP : I2C_OP_WRITE_WITH_STOP;
1181 	err = iic_exec(&adap->ic, op, msgs->addr, cmd, cmdlen,
1182 	    msgs->buf, msgs->len, 0);
1183 	if (err) {
1184 		ret = -err;
1185 		goto fail;
1186 	}
1187 	msgs++;
1188 	ret++;
1189 
1190 fail:
1191 	iic_release_bus(&adap->ic, 0);
1192 
1193 	return ret;
1194 }
1195 
1196 int
1197 __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1198 {
1199 	int ret, retries;
1200 
1201 	retries = adap->retries;
1202 retry:
1203 	if (adap->algo)
1204 		ret = adap->algo->master_xfer(adap, msgs, num);
1205 	else
1206 		ret = i2c_master_xfer(adap, msgs, num);
1207 	if (ret == -EAGAIN && retries > 0) {
1208 		retries--;
1209 		goto retry;
1210 	}
1211 
1212 	return ret;
1213 }
1214 
1215 int
1216 i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1217 {
1218 	int ret;
1219 
1220 	if (adap->lock_ops)
1221 		adap->lock_ops->lock_bus(adap, 0);
1222 
1223 	ret = __i2c_transfer(adap, msgs, num);
1224 
1225 	if (adap->lock_ops)
1226 		adap->lock_ops->unlock_bus(adap, 0);
1227 
1228 	return ret;
1229 }
1230 
1231 int
1232 i2c_bb_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1233 {
1234 	struct i2c_algo_bit_data *algo = adap->algo_data;
1235 	struct i2c_adapter bb;
1236 
1237 	memset(&bb, 0, sizeof(bb));
1238 	bb.ic = algo->ic;
1239 	bb.retries = adap->retries;
1240 	return i2c_master_xfer(&bb, msgs, num);
1241 }
1242 
1243 uint32_t
1244 i2c_bb_functionality(struct i2c_adapter *adap)
1245 {
1246 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1247 }
1248 
1249 struct i2c_algorithm i2c_bit_algo = {
1250 	.master_xfer = i2c_bb_master_xfer,
1251 	.functionality = i2c_bb_functionality
1252 };
1253 
1254 int
1255 i2c_bit_add_bus(struct i2c_adapter *adap)
1256 {
1257 	adap->algo = &i2c_bit_algo;
1258 	adap->retries = 3;
1259 
1260 	return 0;
1261 }
1262 
1263 #if defined(__amd64__) || defined(__i386__)
1264 
1265 /*
1266  * This is a minimal implementation of the Linux vga_get/vga_put
1267  * interface.  In all likelihood, it will only work for inteldrm(4) as
1268  * it assumes that if there is another active VGA device in the
1269  * system, it is sitting behind a PCI bridge.
1270  */
1271 
1272 extern int pci_enumerate_bus(struct pci_softc *,
1273     int (*)(struct pci_attach_args *), struct pci_attach_args *);
1274 
1275 pcitag_t vga_bridge_tag;
1276 int vga_bridge_disabled;
1277 
1278 int
1279 vga_disable_bridge(struct pci_attach_args *pa)
1280 {
1281 	pcireg_t bhlc, bc;
1282 
1283 	if (pa->pa_domain != 0)
1284 		return 0;
1285 
1286 	bhlc = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG);
1287 	if (PCI_HDRTYPE_TYPE(bhlc) != 1)
1288 		return 0;
1289 
1290 	bc = pci_conf_read(pa->pa_pc, pa->pa_tag, PPB_REG_BRIDGECONTROL);
1291 	if ((bc & PPB_BC_VGA_ENABLE) == 0)
1292 		return 0;
1293 	bc &= ~PPB_BC_VGA_ENABLE;
1294 	pci_conf_write(pa->pa_pc, pa->pa_tag, PPB_REG_BRIDGECONTROL, bc);
1295 
1296 	vga_bridge_tag = pa->pa_tag;
1297 	vga_bridge_disabled = 1;
1298 
1299 	return 1;
1300 }
1301 
1302 void
1303 vga_get_uninterruptible(struct pci_dev *pdev, int rsrc)
1304 {
1305 	KASSERT(pdev->pci->sc_bridgetag == NULL);
1306 	pci_enumerate_bus(pdev->pci, vga_disable_bridge, NULL);
1307 }
1308 
1309 void
1310 vga_put(struct pci_dev *pdev, int rsrc)
1311 {
1312 	pcireg_t bc;
1313 
1314 	if (!vga_bridge_disabled)
1315 		return;
1316 
1317 	bc = pci_conf_read(pdev->pc, vga_bridge_tag, PPB_REG_BRIDGECONTROL);
1318 	bc |= PPB_BC_VGA_ENABLE;
1319 	pci_conf_write(pdev->pc, vga_bridge_tag, PPB_REG_BRIDGECONTROL, bc);
1320 
1321 	vga_bridge_disabled = 0;
1322 }
1323 
1324 #endif
1325 
1326 /*
1327  * ACPI types and interfaces.
1328  */
1329 
1330 #ifdef __HAVE_ACPI
1331 #include "acpi.h"
1332 #endif
1333 
1334 #if NACPI > 0
1335 
1336 #include <dev/acpi/acpireg.h>
1337 #include <dev/acpi/acpivar.h>
1338 #include <dev/acpi/amltypes.h>
1339 #include <dev/acpi/dsdt.h>
1340 
1341 acpi_status
1342 acpi_get_table(const char *sig, int instance,
1343     struct acpi_table_header **hdr)
1344 {
1345 	struct acpi_softc *sc = acpi_softc;
1346 	struct acpi_q *entry;
1347 
1348 	KASSERT(instance == 1);
1349 
1350 	if (sc == NULL)
1351 		return AE_NOT_FOUND;
1352 
1353 	SIMPLEQ_FOREACH(entry, &sc->sc_tables, q_next) {
1354 		if (memcmp(entry->q_table, sig, strlen(sig)) == 0) {
1355 			*hdr = entry->q_table;
1356 			return 0;
1357 		}
1358 	}
1359 
1360 	return AE_NOT_FOUND;
1361 }
1362 
1363 void
1364 acpi_put_table(struct acpi_table_header *hdr)
1365 {
1366 }
1367 
1368 acpi_status
1369 acpi_get_handle(acpi_handle node, const char *name, acpi_handle *rnode)
1370 {
1371 	node = aml_searchname(node, name);
1372 	if (node == NULL)
1373 		return AE_NOT_FOUND;
1374 
1375 	*rnode = node;
1376 	return 0;
1377 }
1378 
1379 acpi_status
1380 acpi_get_name(acpi_handle node, int type,  struct acpi_buffer *buffer)
1381 {
1382 	KASSERT(buffer->length != ACPI_ALLOCATE_BUFFER);
1383 	KASSERT(type == ACPI_FULL_PATHNAME);
1384 	strlcpy(buffer->pointer, aml_nodename(node), buffer->length);
1385 	return 0;
1386 }
1387 
1388 acpi_status
1389 acpi_evaluate_object(acpi_handle node, const char *name,
1390     struct acpi_object_list *params, struct acpi_buffer *result)
1391 {
1392 	struct aml_value args[4], res;
1393 	union acpi_object *obj;
1394 	uint8_t *data;
1395 	int i;
1396 
1397 	KASSERT(params->count <= nitems(args));
1398 
1399 	for (i = 0; i < params->count; i++) {
1400 		args[i].type = params->pointer[i].type;
1401 		switch (args[i].type) {
1402 		case AML_OBJTYPE_INTEGER:
1403 			args[i].v_integer = params->pointer[i].integer.value;
1404 			break;
1405 		case AML_OBJTYPE_BUFFER:
1406 			args[i].length = params->pointer[i].buffer.length;
1407 			args[i].v_buffer = params->pointer[i].buffer.pointer;
1408 			break;
1409 		default:
1410 			printf("%s: arg type 0x%02x", __func__, args[i].type);
1411 			return AE_BAD_PARAMETER;
1412 		}
1413 	}
1414 
1415 	if (name) {
1416 		node = aml_searchname(node, name);
1417 		if (node == NULL)
1418 			return AE_NOT_FOUND;
1419 	}
1420 	if (aml_evalnode(acpi_softc, node, params->count, args, &res)) {
1421 		aml_freevalue(&res);
1422 		return AE_ERROR;
1423 	}
1424 
1425 	KASSERT(result->length == ACPI_ALLOCATE_BUFFER);
1426 
1427 	result->length = sizeof(union acpi_object);
1428 	switch (res.type) {
1429 	case AML_OBJTYPE_BUFFER:
1430 		result->length += res.length;
1431 		result->pointer = malloc(result->length, M_DRM, M_WAITOK);
1432 		obj = (union acpi_object *)result->pointer;
1433 		data = (uint8_t *)(obj + 1);
1434 		obj->type = res.type;
1435 		obj->buffer.length = res.length;
1436 		obj->buffer.pointer = data;
1437 		memcpy(data, res.v_buffer, res.length);
1438 		break;
1439 	default:
1440 		printf("%s: return type 0x%02x", __func__, res.type);
1441 		aml_freevalue(&res);
1442 		return AE_ERROR;
1443 	}
1444 
1445 	aml_freevalue(&res);
1446 	return 0;
1447 }
1448 
1449 SLIST_HEAD(, notifier_block) drm_linux_acpi_notify_list =
1450 	SLIST_HEAD_INITIALIZER(drm_linux_acpi_notify_list);
1451 
1452 int
1453 drm_linux_acpi_notify(struct aml_node *node, int notify, void *arg)
1454 {
1455 	struct acpi_bus_event event;
1456 	struct notifier_block *nb;
1457 
1458 	event.device_class = ACPI_VIDEO_CLASS;
1459 	event.type = notify;
1460 
1461 	SLIST_FOREACH(nb, &drm_linux_acpi_notify_list, link)
1462 		nb->notifier_call(nb, 0, &event);
1463 	return 0;
1464 }
1465 
1466 int
1467 register_acpi_notifier(struct notifier_block *nb)
1468 {
1469 	SLIST_INSERT_HEAD(&drm_linux_acpi_notify_list, nb, link);
1470 	return 0;
1471 }
1472 
1473 int
1474 unregister_acpi_notifier(struct notifier_block *nb)
1475 {
1476 	struct notifier_block *tmp;
1477 
1478 	SLIST_FOREACH(tmp, &drm_linux_acpi_notify_list, link) {
1479 		if (tmp == nb) {
1480 			SLIST_REMOVE(&drm_linux_acpi_notify_list, nb,
1481 			    notifier_block, link);
1482 			return 0;
1483 		}
1484 	}
1485 
1486 	return -ENOENT;
1487 }
1488 
1489 const char *
1490 acpi_format_exception(acpi_status status)
1491 {
1492 	switch (status) {
1493 	case AE_NOT_FOUND:
1494 		return "not found";
1495 	case AE_BAD_PARAMETER:
1496 		return "bad parameter";
1497 	default:
1498 		return "unknown";
1499 	}
1500 }
1501 
1502 #endif
1503 
1504 SLIST_HEAD(,backlight_device) backlight_device_list =
1505     SLIST_HEAD_INITIALIZER(backlight_device_list);
1506 
1507 void
1508 backlight_do_update_status(void *arg)
1509 {
1510 	backlight_update_status(arg);
1511 }
1512 
1513 struct backlight_device *
1514 backlight_device_register(const char *name, void *kdev, void *data,
1515     const struct backlight_ops *ops, const struct backlight_properties *props)
1516 {
1517 	struct backlight_device *bd;
1518 
1519 	bd = malloc(sizeof(*bd), M_DRM, M_WAITOK);
1520 	bd->ops = ops;
1521 	bd->props = *props;
1522 	bd->data = data;
1523 
1524 	task_set(&bd->task, backlight_do_update_status, bd);
1525 
1526 	SLIST_INSERT_HEAD(&backlight_device_list, bd, next);
1527 	bd->name = name;
1528 
1529 	return bd;
1530 }
1531 
1532 void
1533 backlight_device_unregister(struct backlight_device *bd)
1534 {
1535 	SLIST_REMOVE(&backlight_device_list, bd, backlight_device, next);
1536 	free(bd, M_DRM, sizeof(*bd));
1537 }
1538 
1539 void
1540 backlight_schedule_update_status(struct backlight_device *bd)
1541 {
1542 	task_add(systq, &bd->task);
1543 }
1544 
1545 int
1546 backlight_enable(struct backlight_device *bd)
1547 {
1548 	if (bd == NULL)
1549 		return 0;
1550 
1551 	bd->props.power = FB_BLANK_UNBLANK;
1552 
1553 	return bd->ops->update_status(bd);
1554 }
1555 
1556 int
1557 backlight_disable(struct backlight_device *bd)
1558 {
1559 	if (bd == NULL)
1560 		return 0;
1561 
1562 	bd->props.power = FB_BLANK_POWERDOWN;
1563 
1564 	return bd->ops->update_status(bd);
1565 }
1566 
1567 struct backlight_device *
1568 backlight_device_get_by_name(const char *name)
1569 {
1570 	struct backlight_device *bd;
1571 
1572 	SLIST_FOREACH(bd, &backlight_device_list, next) {
1573 		if (strcmp(name, bd->name) == 0)
1574 			return bd;
1575 	}
1576 
1577 	return NULL;
1578 }
1579 
1580 struct drvdata {
1581 	struct device *dev;
1582 	void *data;
1583 	SLIST_ENTRY(drvdata) next;
1584 };
1585 
1586 SLIST_HEAD(,drvdata) drvdata_list = SLIST_HEAD_INITIALIZER(drvdata_list);
1587 
1588 void
1589 dev_set_drvdata(struct device *dev, void *data)
1590 {
1591 	struct drvdata *drvdata;
1592 
1593 	SLIST_FOREACH(drvdata, &drvdata_list, next) {
1594 		if (drvdata->dev == dev) {
1595 			drvdata->data = data;
1596 			return;
1597 		}
1598 	}
1599 
1600 	if (data == NULL)
1601 		return;
1602 
1603 	drvdata = malloc(sizeof(*drvdata), M_DRM, M_WAITOK);
1604 	drvdata->dev = dev;
1605 	drvdata->data = data;
1606 
1607 	SLIST_INSERT_HEAD(&drvdata_list, drvdata, next);
1608 }
1609 
1610 void *
1611 dev_get_drvdata(struct device *dev)
1612 {
1613 	struct drvdata *drvdata;
1614 
1615 	SLIST_FOREACH(drvdata, &drvdata_list, next) {
1616 		if (drvdata->dev == dev)
1617 			return drvdata->data;
1618 	}
1619 
1620 	return NULL;
1621 }
1622 
1623 void
1624 drm_sysfs_hotplug_event(struct drm_device *dev)
1625 {
1626 	knote_locked(&dev->note, NOTE_CHANGE);
1627 }
1628 
1629 void
1630 drm_sysfs_connector_hotplug_event(struct drm_connector *connector)
1631 {
1632 	knote_locked(&connector->dev->note, NOTE_CHANGE);
1633 }
1634 
1635 void
1636 drm_sysfs_connector_status_event(struct drm_connector *connector,
1637     struct drm_property *property)
1638 {
1639 	STUB();
1640 }
1641 
1642 struct dma_fence *
1643 dma_fence_get(struct dma_fence *fence)
1644 {
1645 	if (fence)
1646 		kref_get(&fence->refcount);
1647 	return fence;
1648 }
1649 
1650 struct dma_fence *
1651 dma_fence_get_rcu(struct dma_fence *fence)
1652 {
1653 	if (fence)
1654 		kref_get(&fence->refcount);
1655 	return fence;
1656 }
1657 
1658 struct dma_fence *
1659 dma_fence_get_rcu_safe(struct dma_fence **dfp)
1660 {
1661 	struct dma_fence *fence;
1662 	if (dfp == NULL)
1663 		return NULL;
1664 	fence = *dfp;
1665 	if (fence)
1666 		kref_get(&fence->refcount);
1667 	return fence;
1668 }
1669 
1670 void
1671 dma_fence_release(struct kref *ref)
1672 {
1673 	struct dma_fence *fence = container_of(ref, struct dma_fence, refcount);
1674 	if (fence->ops && fence->ops->release)
1675 		fence->ops->release(fence);
1676 	else
1677 		free(fence, M_DRM, 0);
1678 }
1679 
1680 void
1681 dma_fence_put(struct dma_fence *fence)
1682 {
1683 	if (fence)
1684 		kref_put(&fence->refcount, dma_fence_release);
1685 }
1686 
1687 int
1688 dma_fence_signal_timestamp_locked(struct dma_fence *fence, ktime_t timestamp)
1689 {
1690 	struct dma_fence_cb *cur, *tmp;
1691 	struct list_head cb_list;
1692 
1693 	if (fence == NULL)
1694 		return -EINVAL;
1695 
1696 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1697 		return -EINVAL;
1698 
1699 	list_replace(&fence->cb_list, &cb_list);
1700 
1701 	fence->timestamp = timestamp;
1702 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
1703 
1704 	list_for_each_entry_safe(cur, tmp, &cb_list, node) {
1705 		INIT_LIST_HEAD(&cur->node);
1706 		cur->func(fence, cur);
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 int
1713 dma_fence_signal(struct dma_fence *fence)
1714 {
1715 	int r;
1716 
1717 	if (fence == NULL)
1718 		return -EINVAL;
1719 
1720 	mtx_enter(fence->lock);
1721 	r = dma_fence_signal_timestamp_locked(fence, ktime_get());
1722 	mtx_leave(fence->lock);
1723 
1724 	return r;
1725 }
1726 
1727 int
1728 dma_fence_signal_locked(struct dma_fence *fence)
1729 {
1730 	if (fence == NULL)
1731 		return -EINVAL;
1732 
1733 	return dma_fence_signal_timestamp_locked(fence, ktime_get());
1734 }
1735 
1736 int
1737 dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
1738 {
1739 	int r;
1740 
1741 	if (fence == NULL)
1742 		return -EINVAL;
1743 
1744 	mtx_enter(fence->lock);
1745 	r = dma_fence_signal_timestamp_locked(fence, timestamp);
1746 	mtx_leave(fence->lock);
1747 
1748 	return r;
1749 }
1750 
1751 bool
1752 dma_fence_is_signaled(struct dma_fence *fence)
1753 {
1754 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1755 		return true;
1756 
1757 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
1758 		dma_fence_signal(fence);
1759 		return true;
1760 	}
1761 
1762 	return false;
1763 }
1764 
1765 bool
1766 dma_fence_is_signaled_locked(struct dma_fence *fence)
1767 {
1768 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1769 		return true;
1770 
1771 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
1772 		dma_fence_signal_locked(fence);
1773 		return true;
1774 	}
1775 
1776 	return false;
1777 }
1778 
1779 ktime_t
1780 dma_fence_timestamp(struct dma_fence *fence)
1781 {
1782 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1783 		while (!test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags))
1784 			CPU_BUSY_CYCLE();
1785 		return fence->timestamp;
1786 	} else {
1787 		return ktime_get();
1788 	}
1789 }
1790 
1791 long
1792 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
1793 {
1794 	if (timeout < 0)
1795 		return -EINVAL;
1796 
1797 	if (fence->ops->wait)
1798 		return fence->ops->wait(fence, intr, timeout);
1799 	else
1800 		return dma_fence_default_wait(fence, intr, timeout);
1801 }
1802 
1803 long
1804 dma_fence_wait(struct dma_fence *fence, bool intr)
1805 {
1806 	long ret;
1807 
1808 	ret = dma_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
1809 	if (ret < 0)
1810 		return ret;
1811 
1812 	return 0;
1813 }
1814 
1815 void
1816 dma_fence_enable_sw_signaling(struct dma_fence *fence)
1817 {
1818 	if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags) &&
1819 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) &&
1820 	    fence->ops->enable_signaling) {
1821 		mtx_enter(fence->lock);
1822 		if (!fence->ops->enable_signaling(fence))
1823 			dma_fence_signal_locked(fence);
1824 		mtx_leave(fence->lock);
1825 	}
1826 }
1827 
1828 void
1829 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
1830     struct mutex *lock, uint64_t context, uint64_t seqno)
1831 {
1832 	fence->ops = ops;
1833 	fence->lock = lock;
1834 	fence->context = context;
1835 	fence->seqno = seqno;
1836 	fence->flags = 0;
1837 	fence->error = 0;
1838 	kref_init(&fence->refcount);
1839 	INIT_LIST_HEAD(&fence->cb_list);
1840 }
1841 
1842 int
1843 dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
1844     dma_fence_func_t func)
1845 {
1846 	int ret = 0;
1847 	bool was_set;
1848 
1849 	if (WARN_ON(!fence || !func))
1850 		return -EINVAL;
1851 
1852 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1853 		INIT_LIST_HEAD(&cb->node);
1854 		return -ENOENT;
1855 	}
1856 
1857 	mtx_enter(fence->lock);
1858 
1859 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
1860 
1861 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1862 		ret = -ENOENT;
1863 	else if (!was_set && fence->ops->enable_signaling) {
1864 		if (!fence->ops->enable_signaling(fence)) {
1865 			dma_fence_signal_locked(fence);
1866 			ret = -ENOENT;
1867 		}
1868 	}
1869 
1870 	if (!ret) {
1871 		cb->func = func;
1872 		list_add_tail(&cb->node, &fence->cb_list);
1873 	} else
1874 		INIT_LIST_HEAD(&cb->node);
1875 	mtx_leave(fence->lock);
1876 
1877 	return ret;
1878 }
1879 
1880 bool
1881 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
1882 {
1883 	bool ret;
1884 
1885 	mtx_enter(fence->lock);
1886 
1887 	ret = !list_empty(&cb->node);
1888 	if (ret)
1889 		list_del_init(&cb->node);
1890 
1891 	mtx_leave(fence->lock);
1892 
1893 	return ret;
1894 }
1895 
1896 static atomic64_t drm_fence_context_count = ATOMIC64_INIT(1);
1897 
1898 uint64_t
1899 dma_fence_context_alloc(unsigned int num)
1900 {
1901   return atomic64_add_return(num, &drm_fence_context_count) - num;
1902 }
1903 
1904 struct default_wait_cb {
1905 	struct dma_fence_cb base;
1906 	struct proc *proc;
1907 };
1908 
1909 static void
1910 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1911 {
1912 	struct default_wait_cb *wait =
1913 	    container_of(cb, struct default_wait_cb, base);
1914 	wake_up_process(wait->proc);
1915 }
1916 
1917 long
1918 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
1919 {
1920 	long ret = timeout ? timeout : 1;
1921 	unsigned long end;
1922 	int err;
1923 	struct default_wait_cb cb;
1924 	bool was_set;
1925 
1926 	KASSERT(timeout <= INT_MAX);
1927 
1928 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1929 		return ret;
1930 
1931 	mtx_enter(fence->lock);
1932 
1933 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1934 	    &fence->flags);
1935 
1936 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1937 		goto out;
1938 
1939 	if (!was_set && fence->ops->enable_signaling) {
1940 		if (!fence->ops->enable_signaling(fence)) {
1941 			dma_fence_signal_locked(fence);
1942 			goto out;
1943 		}
1944 	}
1945 
1946 	if (timeout == 0) {
1947 		ret = 0;
1948 		goto out;
1949 	}
1950 
1951 	cb.base.func = dma_fence_default_wait_cb;
1952 	cb.proc = curproc;
1953 	list_add(&cb.base.node, &fence->cb_list);
1954 
1955 	end = jiffies + timeout;
1956 	for (ret = timeout; ret > 0; ret = MAX(0, end - jiffies)) {
1957 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1958 			break;
1959 		err = msleep(curproc, fence->lock, intr ? PCATCH : 0,
1960 		    "dmafence", ret);
1961 		if (err == EINTR || err == ERESTART) {
1962 			ret = -ERESTARTSYS;
1963 			break;
1964 		}
1965 	}
1966 
1967 	if (!list_empty(&cb.base.node))
1968 		list_del(&cb.base.node);
1969 out:
1970 	mtx_leave(fence->lock);
1971 
1972 	return ret;
1973 }
1974 
1975 static bool
1976 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
1977     uint32_t *idx)
1978 {
1979 	int i;
1980 
1981 	for (i = 0; i < count; ++i) {
1982 		struct dma_fence *fence = fences[i];
1983 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1984 			if (idx)
1985 				*idx = i;
1986 			return true;
1987 		}
1988 	}
1989 	return false;
1990 }
1991 
1992 long
1993 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
1994     bool intr, long timeout, uint32_t *idx)
1995 {
1996 	struct default_wait_cb *cb;
1997 	long ret = timeout;
1998 	unsigned long end;
1999 	int i, err;
2000 
2001 	KASSERT(timeout <= INT_MAX);
2002 
2003 	if (timeout == 0) {
2004 		for (i = 0; i < count; i++) {
2005 			if (dma_fence_is_signaled(fences[i])) {
2006 				if (idx)
2007 					*idx = i;
2008 				return 1;
2009 			}
2010 		}
2011 		return 0;
2012 	}
2013 
2014 	cb = mallocarray(count, sizeof(*cb), M_DRM, M_WAITOK|M_CANFAIL|M_ZERO);
2015 	if (cb == NULL)
2016 		return -ENOMEM;
2017 
2018 	for (i = 0; i < count; i++) {
2019 		struct dma_fence *fence = fences[i];
2020 		cb[i].proc = curproc;
2021 		if (dma_fence_add_callback(fence, &cb[i].base,
2022 		    dma_fence_default_wait_cb)) {
2023 			if (idx)
2024 				*idx = i;
2025 			goto cb_cleanup;
2026 		}
2027 	}
2028 
2029 	end = jiffies + timeout;
2030 	for (ret = timeout; ret > 0; ret = MAX(0, end - jiffies)) {
2031 		if (dma_fence_test_signaled_any(fences, count, idx))
2032 			break;
2033 		err = tsleep(curproc, intr ? PCATCH : 0, "dfwat", ret);
2034 		if (err == EINTR || err == ERESTART) {
2035 			ret = -ERESTARTSYS;
2036 			break;
2037 		}
2038 	}
2039 
2040 cb_cleanup:
2041 	while (i-- > 0)
2042 		dma_fence_remove_callback(fences[i], &cb[i].base);
2043 	free(cb, M_DRM, count * sizeof(*cb));
2044 	return ret;
2045 }
2046 
2047 static struct dma_fence dma_fence_stub;
2048 static struct mutex dma_fence_stub_mtx = MUTEX_INITIALIZER(IPL_TTY);
2049 
2050 static const char *
2051 dma_fence_stub_get_name(struct dma_fence *fence)
2052 {
2053 	return "stub";
2054 }
2055 
2056 static const struct dma_fence_ops dma_fence_stub_ops = {
2057 	.get_driver_name = dma_fence_stub_get_name,
2058 	.get_timeline_name = dma_fence_stub_get_name,
2059 };
2060 
2061 struct dma_fence *
2062 dma_fence_get_stub(void)
2063 {
2064 	mtx_enter(&dma_fence_stub_mtx);
2065 	if (dma_fence_stub.ops == NULL) {
2066 		dma_fence_init(&dma_fence_stub, &dma_fence_stub_ops,
2067 		    &dma_fence_stub_mtx, 0, 0);
2068 		dma_fence_signal_locked(&dma_fence_stub);
2069 	}
2070 	mtx_leave(&dma_fence_stub_mtx);
2071 
2072 	return dma_fence_get(&dma_fence_stub);
2073 }
2074 
2075 struct dma_fence *
2076 dma_fence_allocate_private_stub(ktime_t ts)
2077 {
2078 	struct dma_fence *f = malloc(sizeof(*f), M_DRM,
2079 	    M_ZERO | M_WAITOK | M_CANFAIL);
2080 	if (f == NULL)
2081 		return NULL;
2082 	dma_fence_init(f, &dma_fence_stub_ops, &dma_fence_stub_mtx, 0, 0);
2083 	dma_fence_signal_timestamp(f, ts);
2084 	return f;
2085 }
2086 
2087 static const char *
2088 dma_fence_array_get_driver_name(struct dma_fence *fence)
2089 {
2090 	return "dma_fence_array";
2091 }
2092 
2093 static const char *
2094 dma_fence_array_get_timeline_name(struct dma_fence *fence)
2095 {
2096 	return "unbound";
2097 }
2098 
2099 static void
2100 irq_dma_fence_array_work(void *arg)
2101 {
2102 	struct dma_fence_array *dfa = (struct dma_fence_array *)arg;
2103 	dma_fence_signal(&dfa->base);
2104 	dma_fence_put(&dfa->base);
2105 }
2106 
2107 static void
2108 dma_fence_array_cb_func(struct dma_fence *f, struct dma_fence_cb *cb)
2109 {
2110 	struct dma_fence_array_cb *array_cb =
2111 	    container_of(cb, struct dma_fence_array_cb, cb);
2112 	struct dma_fence_array *dfa = array_cb->array;
2113 
2114 	if (atomic_dec_and_test(&dfa->num_pending))
2115 		timeout_add(&dfa->to, 1);
2116 	else
2117 		dma_fence_put(&dfa->base);
2118 }
2119 
2120 static bool
2121 dma_fence_array_enable_signaling(struct dma_fence *fence)
2122 {
2123 	struct dma_fence_array *dfa = to_dma_fence_array(fence);
2124 	struct dma_fence_array_cb *cb = (void *)(&dfa[1]);
2125 	int i;
2126 
2127 	for (i = 0; i < dfa->num_fences; ++i) {
2128 		cb[i].array = dfa;
2129 		dma_fence_get(&dfa->base);
2130 		if (dma_fence_add_callback(dfa->fences[i], &cb[i].cb,
2131 		    dma_fence_array_cb_func)) {
2132 			dma_fence_put(&dfa->base);
2133 			if (atomic_dec_and_test(&dfa->num_pending))
2134 				return false;
2135 		}
2136 	}
2137 
2138 	return true;
2139 }
2140 
2141 static bool
2142 dma_fence_array_signaled(struct dma_fence *fence)
2143 {
2144 	struct dma_fence_array *dfa = to_dma_fence_array(fence);
2145 
2146 	return atomic_read(&dfa->num_pending) <= 0;
2147 }
2148 
2149 static void
2150 dma_fence_array_release(struct dma_fence *fence)
2151 {
2152 	struct dma_fence_array *dfa = to_dma_fence_array(fence);
2153 	int i;
2154 
2155 	for (i = 0; i < dfa->num_fences; ++i)
2156 		dma_fence_put(dfa->fences[i]);
2157 
2158 	free(dfa->fences, M_DRM, 0);
2159 	dma_fence_free(fence);
2160 }
2161 
2162 struct dma_fence_array *
2163 dma_fence_array_create(int num_fences, struct dma_fence **fences, u64 context,
2164     unsigned seqno, bool signal_on_any)
2165 {
2166 	struct dma_fence_array *dfa = malloc(sizeof(*dfa) +
2167 	    (num_fences * sizeof(struct dma_fence_array_cb)),
2168 	    M_DRM, M_WAITOK|M_CANFAIL|M_ZERO);
2169 	if (dfa == NULL)
2170 		return NULL;
2171 
2172 	mtx_init(&dfa->lock, IPL_TTY);
2173 	dma_fence_init(&dfa->base, &dma_fence_array_ops, &dfa->lock,
2174 	    context, seqno);
2175 	timeout_set(&dfa->to, irq_dma_fence_array_work, dfa);
2176 
2177 	dfa->num_fences = num_fences;
2178 	atomic_set(&dfa->num_pending, signal_on_any ? 1 : num_fences);
2179 	dfa->fences = fences;
2180 
2181 	return dfa;
2182 }
2183 
2184 struct dma_fence *
2185 dma_fence_array_first(struct dma_fence *f)
2186 {
2187 	struct dma_fence_array *dfa;
2188 
2189 	if (f == NULL)
2190 		return NULL;
2191 
2192 	if ((dfa = to_dma_fence_array(f)) == NULL)
2193 		return f;
2194 
2195 	if (dfa->num_fences > 0)
2196 		return dfa->fences[0];
2197 
2198 	return NULL;
2199 }
2200 
2201 struct dma_fence *
2202 dma_fence_array_next(struct dma_fence *f, unsigned int i)
2203 {
2204 	struct dma_fence_array *dfa;
2205 
2206 	if (f == NULL)
2207 		return NULL;
2208 
2209 	if ((dfa = to_dma_fence_array(f)) == NULL)
2210 		return NULL;
2211 
2212 	if (i < dfa->num_fences)
2213 		return dfa->fences[i];
2214 
2215 	return NULL;
2216 }
2217 
2218 const struct dma_fence_ops dma_fence_array_ops = {
2219 	.get_driver_name = dma_fence_array_get_driver_name,
2220 	.get_timeline_name = dma_fence_array_get_timeline_name,
2221 	.enable_signaling = dma_fence_array_enable_signaling,
2222 	.signaled = dma_fence_array_signaled,
2223 	.release = dma_fence_array_release,
2224 };
2225 
2226 int
2227 dma_fence_chain_find_seqno(struct dma_fence **df, uint64_t seqno)
2228 {
2229 	struct dma_fence_chain *chain;
2230 	struct dma_fence *fence;
2231 
2232 	if (seqno == 0)
2233 		return 0;
2234 
2235 	if ((chain = to_dma_fence_chain(*df)) == NULL)
2236 		return -EINVAL;
2237 
2238 	fence = &chain->base;
2239 	if (fence->seqno < seqno)
2240 		return -EINVAL;
2241 
2242 	dma_fence_chain_for_each(*df, fence) {
2243 		if ((*df)->context != fence->context)
2244 			break;
2245 
2246 		chain = to_dma_fence_chain(*df);
2247 		if (chain->prev_seqno < seqno)
2248 			break;
2249 	}
2250 	dma_fence_put(fence);
2251 
2252 	return 0;
2253 }
2254 
2255 void
2256 dma_fence_chain_init(struct dma_fence_chain *chain, struct dma_fence *prev,
2257     struct dma_fence *fence, uint64_t seqno)
2258 {
2259 	uint64_t context;
2260 
2261 	chain->fence = fence;
2262 	chain->prev = prev;
2263 	mtx_init(&chain->lock, IPL_TTY);
2264 
2265 	/* if prev is a chain */
2266 	if (to_dma_fence_chain(prev) != NULL) {
2267 		if (__dma_fence_is_later(seqno, prev->seqno, prev->ops)) {
2268 			chain->prev_seqno = prev->seqno;
2269 			context = prev->context;
2270 		} else {
2271 			chain->prev_seqno = 0;
2272 			context = dma_fence_context_alloc(1);
2273 			seqno = prev->seqno;
2274 		}
2275 	} else {
2276 		chain->prev_seqno = 0;
2277 		context = dma_fence_context_alloc(1);
2278 	}
2279 
2280 	dma_fence_init(&chain->base, &dma_fence_chain_ops, &chain->lock,
2281 	    context, seqno);
2282 }
2283 
2284 static const char *
2285 dma_fence_chain_get_driver_name(struct dma_fence *fence)
2286 {
2287 	return "dma_fence_chain";
2288 }
2289 
2290 static const char *
2291 dma_fence_chain_get_timeline_name(struct dma_fence *fence)
2292 {
2293 	return "unbound";
2294 }
2295 
2296 static bool dma_fence_chain_enable_signaling(struct dma_fence *);
2297 
2298 static void
2299 dma_fence_chain_timo(void *arg)
2300 {
2301 	struct dma_fence_chain *chain = (struct dma_fence_chain *)arg;
2302 
2303 	if (dma_fence_chain_enable_signaling(&chain->base) == false)
2304 		dma_fence_signal(&chain->base);
2305 	dma_fence_put(&chain->base);
2306 }
2307 
2308 static void
2309 dma_fence_chain_cb(struct dma_fence *f, struct dma_fence_cb *cb)
2310 {
2311 	struct dma_fence_chain *chain =
2312 	    container_of(cb, struct dma_fence_chain, cb);
2313 	timeout_set(&chain->to, dma_fence_chain_timo, chain);
2314 	timeout_add(&chain->to, 1);
2315 	dma_fence_put(f);
2316 }
2317 
2318 static bool
2319 dma_fence_chain_enable_signaling(struct dma_fence *fence)
2320 {
2321 	struct dma_fence_chain *chain, *h;
2322 	struct dma_fence *f;
2323 
2324 	h = to_dma_fence_chain(fence);
2325 	dma_fence_get(&h->base);
2326 	dma_fence_chain_for_each(fence, &h->base) {
2327 		chain = to_dma_fence_chain(fence);
2328 		if (chain == NULL)
2329 			f = fence;
2330 		else
2331 			f = chain->fence;
2332 
2333 		dma_fence_get(f);
2334 		if (!dma_fence_add_callback(f, &h->cb, dma_fence_chain_cb)) {
2335 			dma_fence_put(fence);
2336 			return true;
2337 		}
2338 		dma_fence_put(f);
2339 	}
2340 	dma_fence_put(&h->base);
2341 	return false;
2342 }
2343 
2344 static bool
2345 dma_fence_chain_signaled(struct dma_fence *fence)
2346 {
2347 	struct dma_fence_chain *chain;
2348 	struct dma_fence *f;
2349 
2350 	dma_fence_chain_for_each(fence, fence) {
2351 		chain = to_dma_fence_chain(fence);
2352 		if (chain == NULL)
2353 			f = fence;
2354 		else
2355 			f = chain->fence;
2356 
2357 		if (dma_fence_is_signaled(f) == false) {
2358 			dma_fence_put(fence);
2359 			return false;
2360 		}
2361 	}
2362 	return true;
2363 }
2364 
2365 static void
2366 dma_fence_chain_release(struct dma_fence *fence)
2367 {
2368 	struct dma_fence_chain *chain = to_dma_fence_chain(fence);
2369 	struct dma_fence_chain *prev_chain;
2370 	struct dma_fence *prev;
2371 
2372 	for (prev = chain->prev; prev != NULL; prev = chain->prev) {
2373 		if (kref_read(&prev->refcount) > 1)
2374 			break;
2375 		if ((prev_chain = to_dma_fence_chain(prev)) == NULL)
2376 			break;
2377 		chain->prev = prev_chain->prev;
2378 		prev_chain->prev = NULL;
2379 		dma_fence_put(prev);
2380 	}
2381 	dma_fence_put(prev);
2382 	dma_fence_put(chain->fence);
2383 	dma_fence_free(fence);
2384 }
2385 
2386 struct dma_fence *
2387 dma_fence_chain_walk(struct dma_fence *fence)
2388 {
2389 	struct dma_fence_chain *chain = to_dma_fence_chain(fence), *prev_chain;
2390 	struct dma_fence *prev, *new_prev, *tmp;
2391 
2392 	if (chain == NULL) {
2393 		dma_fence_put(fence);
2394 		return NULL;
2395 	}
2396 
2397 	while ((prev = dma_fence_get(chain->prev)) != NULL) {
2398 		prev_chain = to_dma_fence_chain(prev);
2399 		if (prev_chain != NULL) {
2400 			if (!dma_fence_is_signaled(prev_chain->fence))
2401 				break;
2402 			new_prev = dma_fence_get(prev_chain->prev);
2403 		} else {
2404 			if (!dma_fence_is_signaled(prev))
2405 				break;
2406 			new_prev = NULL;
2407 		}
2408 		tmp = atomic_cas_ptr(&chain->prev, prev, new_prev);
2409 		dma_fence_put(tmp == prev ? prev : new_prev);
2410 		dma_fence_put(prev);
2411 	}
2412 
2413 	dma_fence_put(fence);
2414 	return prev;
2415 }
2416 
2417 const struct dma_fence_ops dma_fence_chain_ops = {
2418 	.get_driver_name = dma_fence_chain_get_driver_name,
2419 	.get_timeline_name = dma_fence_chain_get_timeline_name,
2420 	.enable_signaling = dma_fence_chain_enable_signaling,
2421 	.signaled = dma_fence_chain_signaled,
2422 	.release = dma_fence_chain_release,
2423 	.use_64bit_seqno = true,
2424 };
2425 
2426 bool
2427 dma_fence_is_container(struct dma_fence *fence)
2428 {
2429 	return (fence->ops == &dma_fence_chain_ops) ||
2430 	    (fence->ops == &dma_fence_array_ops);
2431 }
2432 
2433 int
2434 dmabuf_read(struct file *fp, struct uio *uio, int fflags)
2435 {
2436 	return (ENXIO);
2437 }
2438 
2439 int
2440 dmabuf_write(struct file *fp, struct uio *uio, int fflags)
2441 {
2442 	return (ENXIO);
2443 }
2444 
2445 int
2446 dmabuf_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
2447 {
2448 	return (ENOTTY);
2449 }
2450 
2451 int
2452 dmabuf_kqfilter(struct file *fp, struct knote *kn)
2453 {
2454 	return (EINVAL);
2455 }
2456 
2457 int
2458 dmabuf_stat(struct file *fp, struct stat *st, struct proc *p)
2459 {
2460 	struct dma_buf *dmabuf = fp->f_data;
2461 
2462 	memset(st, 0, sizeof(*st));
2463 	st->st_size = dmabuf->size;
2464 	st->st_mode = S_IFIFO;	/* XXX */
2465 	return (0);
2466 }
2467 
2468 int
2469 dmabuf_close(struct file *fp, struct proc *p)
2470 {
2471 	struct dma_buf *dmabuf = fp->f_data;
2472 
2473 	fp->f_data = NULL;
2474 	KERNEL_LOCK();
2475 	dmabuf->ops->release(dmabuf);
2476 	KERNEL_UNLOCK();
2477 	free(dmabuf, M_DRM, sizeof(struct dma_buf));
2478 	return (0);
2479 }
2480 
2481 int
2482 dmabuf_seek(struct file *fp, off_t *offset, int whence, struct proc *p)
2483 {
2484 	struct dma_buf *dmabuf = fp->f_data;
2485 	off_t newoff;
2486 
2487 	if (*offset != 0)
2488 		return (EINVAL);
2489 
2490 	switch (whence) {
2491 	case SEEK_SET:
2492 		newoff = 0;
2493 		break;
2494 	case SEEK_END:
2495 		newoff = dmabuf->size;
2496 		break;
2497 	default:
2498 		return (EINVAL);
2499 	}
2500 	mtx_enter(&fp->f_mtx);
2501 	fp->f_offset = newoff;
2502 	mtx_leave(&fp->f_mtx);
2503 	*offset = newoff;
2504 	return (0);
2505 }
2506 
2507 const struct fileops dmabufops = {
2508 	.fo_read	= dmabuf_read,
2509 	.fo_write	= dmabuf_write,
2510 	.fo_ioctl	= dmabuf_ioctl,
2511 	.fo_kqfilter	= dmabuf_kqfilter,
2512 	.fo_stat	= dmabuf_stat,
2513 	.fo_close	= dmabuf_close,
2514 	.fo_seek	= dmabuf_seek,
2515 };
2516 
2517 struct dma_buf *
2518 dma_buf_export(const struct dma_buf_export_info *info)
2519 {
2520 	struct proc *p = curproc;
2521 	struct dma_buf *dmabuf;
2522 	struct file *fp;
2523 
2524 	fp = fnew(p);
2525 	if (fp == NULL)
2526 		return ERR_PTR(-ENFILE);
2527 	fp->f_type = DTYPE_DMABUF;
2528 	fp->f_ops = &dmabufops;
2529 	dmabuf = malloc(sizeof(struct dma_buf), M_DRM, M_WAITOK | M_ZERO);
2530 	dmabuf->priv = info->priv;
2531 	dmabuf->ops = info->ops;
2532 	dmabuf->size = info->size;
2533 	dmabuf->file = fp;
2534 	fp->f_data = dmabuf;
2535 	INIT_LIST_HEAD(&dmabuf->attachments);
2536 	return dmabuf;
2537 }
2538 
2539 struct dma_buf *
2540 dma_buf_get(int fd)
2541 {
2542 	struct proc *p = curproc;
2543 	struct filedesc *fdp = p->p_fd;
2544 	struct file *fp;
2545 
2546 	if ((fp = fd_getfile(fdp, fd)) == NULL)
2547 		return ERR_PTR(-EBADF);
2548 
2549 	if (fp->f_type != DTYPE_DMABUF) {
2550 		FRELE(fp, p);
2551 		return ERR_PTR(-EINVAL);
2552 	}
2553 
2554 	return fp->f_data;
2555 }
2556 
2557 void
2558 dma_buf_put(struct dma_buf *dmabuf)
2559 {
2560 	KASSERT(dmabuf);
2561 	KASSERT(dmabuf->file);
2562 
2563 	FRELE(dmabuf->file, curproc);
2564 }
2565 
2566 int
2567 dma_buf_fd(struct dma_buf *dmabuf, int flags)
2568 {
2569 	struct proc *p = curproc;
2570 	struct filedesc *fdp = p->p_fd;
2571 	struct file *fp = dmabuf->file;
2572 	int fd, cloexec, error;
2573 
2574 	cloexec = (flags & O_CLOEXEC) ? UF_EXCLOSE : 0;
2575 
2576 	fdplock(fdp);
2577 restart:
2578 	if ((error = fdalloc(p, 0, &fd)) != 0) {
2579 		if (error == ENOSPC) {
2580 			fdexpand(p);
2581 			goto restart;
2582 		}
2583 		fdpunlock(fdp);
2584 		return -error;
2585 	}
2586 
2587 	fdinsert(fdp, fd, cloexec, fp);
2588 	fdpunlock(fdp);
2589 
2590 	return fd;
2591 }
2592 
2593 void
2594 get_dma_buf(struct dma_buf *dmabuf)
2595 {
2596 	FREF(dmabuf->file);
2597 }
2598 
2599 enum pci_bus_speed
2600 pcie_get_speed_cap(struct pci_dev *pdev)
2601 {
2602 	pci_chipset_tag_t	pc;
2603 	pcitag_t		tag;
2604 	int			pos ;
2605 	pcireg_t		xcap, lnkcap = 0, lnkcap2 = 0;
2606 	pcireg_t		id;
2607 	enum pci_bus_speed	cap = PCI_SPEED_UNKNOWN;
2608 	int			bus, device, function;
2609 
2610 	if (pdev == NULL)
2611 		return PCI_SPEED_UNKNOWN;
2612 
2613 	pc = pdev->pc;
2614 	tag = pdev->tag;
2615 
2616 	if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS,
2617 	    &pos, NULL))
2618 		return PCI_SPEED_UNKNOWN;
2619 
2620 	id = pci_conf_read(pc, tag, PCI_ID_REG);
2621 	pci_decompose_tag(pc, tag, &bus, &device, &function);
2622 
2623 	/* we've been informed via and serverworks don't make the cut */
2624 	if (PCI_VENDOR(id) == PCI_VENDOR_VIATECH ||
2625 	    PCI_VENDOR(id) == PCI_VENDOR_RCC)
2626 		return PCI_SPEED_UNKNOWN;
2627 
2628 	lnkcap = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP);
2629 	xcap = pci_conf_read(pc, tag, pos + PCI_PCIE_XCAP);
2630 	if (PCI_PCIE_XCAP_VER(xcap) >= 2)
2631 		lnkcap2 = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP2);
2632 
2633 	lnkcap &= 0x0f;
2634 	lnkcap2 &= 0xfe;
2635 
2636 	if (lnkcap2) { /* PCIE GEN 3.0 */
2637 		if (lnkcap2 & 0x02)
2638 			cap = PCIE_SPEED_2_5GT;
2639 		if (lnkcap2 & 0x04)
2640 			cap = PCIE_SPEED_5_0GT;
2641 		if (lnkcap2 & 0x08)
2642 			cap = PCIE_SPEED_8_0GT;
2643 		if (lnkcap2 & 0x10)
2644 			cap = PCIE_SPEED_16_0GT;
2645 		if (lnkcap2 & 0x20)
2646 			cap = PCIE_SPEED_32_0GT;
2647 		if (lnkcap2 & 0x40)
2648 			cap = PCIE_SPEED_64_0GT;
2649 	} else {
2650 		if (lnkcap & 0x01)
2651 			cap = PCIE_SPEED_2_5GT;
2652 		if (lnkcap & 0x02)
2653 			cap = PCIE_SPEED_5_0GT;
2654 	}
2655 
2656 	DRM_INFO("probing pcie caps for device %d:%d:%d 0x%04x:0x%04x = %x/%x\n",
2657 	    bus, device, function, PCI_VENDOR(id), PCI_PRODUCT(id), lnkcap,
2658 	    lnkcap2);
2659 	return cap;
2660 }
2661 
2662 enum pcie_link_width
2663 pcie_get_width_cap(struct pci_dev *pdev)
2664 {
2665 	pci_chipset_tag_t	pc = pdev->pc;
2666 	pcitag_t		tag = pdev->tag;
2667 	int			pos ;
2668 	pcireg_t		lnkcap = 0;
2669 	pcireg_t		id;
2670 	int			bus, device, function;
2671 
2672 	if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS,
2673 	    &pos, NULL))
2674 		return PCIE_LNK_WIDTH_UNKNOWN;
2675 
2676 	id = pci_conf_read(pc, tag, PCI_ID_REG);
2677 	pci_decompose_tag(pc, tag, &bus, &device, &function);
2678 
2679 	lnkcap = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP);
2680 
2681 	DRM_INFO("probing pcie width for device %d:%d:%d 0x%04x:0x%04x = %x\n",
2682 	    bus, device, function, PCI_VENDOR(id), PCI_PRODUCT(id), lnkcap);
2683 
2684 	if (lnkcap)
2685 		return (lnkcap & 0x3f0) >> 4;
2686 	return PCIE_LNK_WIDTH_UNKNOWN;
2687 }
2688 
2689 bool
2690 pcie_aspm_enabled(struct pci_dev *pdev)
2691 {
2692 	pci_chipset_tag_t	pc = pdev->pc;
2693 	pcitag_t		tag = pdev->tag;
2694 	int			pos ;
2695 	pcireg_t		lcsr;
2696 
2697 	if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS,
2698 	    &pos, NULL))
2699 		return false;
2700 
2701 	lcsr = pci_conf_read(pc, tag, pos + PCI_PCIE_LCSR);
2702 	if ((lcsr & (PCI_PCIE_LCSR_ASPM_L0S | PCI_PCIE_LCSR_ASPM_L1)) != 0)
2703 		return true;
2704 
2705 	return false;
2706 }
2707 
2708 static wait_queue_head_t bit_waitq;
2709 wait_queue_head_t var_waitq;
2710 struct mutex wait_bit_mtx = MUTEX_INITIALIZER(IPL_TTY);
2711 
2712 int
2713 wait_on_bit(unsigned long *word, int bit, unsigned mode)
2714 {
2715 	int err;
2716 
2717 	if (!test_bit(bit, word))
2718 		return 0;
2719 
2720 	mtx_enter(&wait_bit_mtx);
2721 	while (test_bit(bit, word)) {
2722 		err = msleep_nsec(word, &wait_bit_mtx, PWAIT | mode, "wtb",
2723 		    INFSLP);
2724 		if (err) {
2725 			mtx_leave(&wait_bit_mtx);
2726 			return 1;
2727 		}
2728 	}
2729 	mtx_leave(&wait_bit_mtx);
2730 	return 0;
2731 }
2732 
2733 int
2734 wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, int timo)
2735 {
2736 	int err;
2737 
2738 	if (!test_bit(bit, word))
2739 		return 0;
2740 
2741 	mtx_enter(&wait_bit_mtx);
2742 	while (test_bit(bit, word)) {
2743 		err = msleep(word, &wait_bit_mtx, PWAIT | mode, "wtb", timo);
2744 		if (err) {
2745 			mtx_leave(&wait_bit_mtx);
2746 			return 1;
2747 		}
2748 	}
2749 	mtx_leave(&wait_bit_mtx);
2750 	return 0;
2751 }
2752 
2753 void
2754 wake_up_bit(void *word, int bit)
2755 {
2756 	mtx_enter(&wait_bit_mtx);
2757 	wakeup(word);
2758 	mtx_leave(&wait_bit_mtx);
2759 }
2760 
2761 void
2762 clear_and_wake_up_bit(int bit, void *word)
2763 {
2764 	clear_bit(bit, word);
2765 	wake_up_bit(word, bit);
2766 }
2767 
2768 wait_queue_head_t *
2769 bit_waitqueue(void *word, int bit)
2770 {
2771 	/* XXX hash table of wait queues? */
2772 	return &bit_waitq;
2773 }
2774 
2775 wait_queue_head_t *
2776 __var_waitqueue(void *p)
2777 {
2778 	/* XXX hash table of wait queues? */
2779 	return &bit_waitq;
2780 }
2781 
2782 struct workqueue_struct *system_wq;
2783 struct workqueue_struct *system_highpri_wq;
2784 struct workqueue_struct *system_unbound_wq;
2785 struct workqueue_struct *system_long_wq;
2786 struct taskq *taskletq;
2787 
2788 void
2789 drm_linux_init(void)
2790 {
2791 	system_wq = (struct workqueue_struct *)
2792 	    taskq_create("drmwq", 4, IPL_HIGH, 0);
2793 	system_highpri_wq = (struct workqueue_struct *)
2794 	    taskq_create("drmhpwq", 4, IPL_HIGH, 0);
2795 	system_unbound_wq = (struct workqueue_struct *)
2796 	    taskq_create("drmubwq", 4, IPL_HIGH, 0);
2797 	system_long_wq = (struct workqueue_struct *)
2798 	    taskq_create("drmlwq", 4, IPL_HIGH, 0);
2799 
2800 	taskletq = taskq_create("drmtskl", 1, IPL_HIGH, 0);
2801 
2802 	init_waitqueue_head(&bit_waitq);
2803 	init_waitqueue_head(&var_waitq);
2804 
2805 	pool_init(&idr_pool, sizeof(struct idr_entry), 0, IPL_TTY, 0,
2806 	    "idrpl", NULL);
2807 
2808 	kmap_atomic_va =
2809 	    (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_waitok);
2810 }
2811 
2812 void
2813 drm_linux_exit(void)
2814 {
2815 	pool_destroy(&idr_pool);
2816 
2817 	taskq_destroy(taskletq);
2818 
2819 	taskq_destroy((struct taskq *)system_long_wq);
2820 	taskq_destroy((struct taskq *)system_unbound_wq);
2821 	taskq_destroy((struct taskq *)system_highpri_wq);
2822 	taskq_destroy((struct taskq *)system_wq);
2823 }
2824 
2825 #define PCIE_ECAP_RESIZE_BAR	0x15
2826 #define RBCAP0			0x04
2827 #define RBCTRL0			0x08
2828 #define RBCTRL_BARINDEX_MASK	0x07
2829 #define RBCTRL_BARSIZE_MASK	0x1f00
2830 #define RBCTRL_BARSIZE_SHIFT	8
2831 
2832 /* size in MB is 1 << nsize */
2833 int
2834 pci_resize_resource(struct pci_dev *pdev, int bar, int nsize)
2835 {
2836 	pcireg_t	reg;
2837 	uint32_t	offset, capid;
2838 
2839 	KASSERT(bar == 0);
2840 
2841 	offset = PCI_PCIE_ECAP;
2842 
2843 	/* search PCI Express Extended Capabilities */
2844 	do {
2845 		reg = pci_conf_read(pdev->pc, pdev->tag, offset);
2846 		capid = PCI_PCIE_ECAP_ID(reg);
2847 		if (capid == PCIE_ECAP_RESIZE_BAR)
2848 			break;
2849 		offset = PCI_PCIE_ECAP_NEXT(reg);
2850 	} while (capid != 0);
2851 
2852 	if (capid == 0) {
2853 		printf("%s: could not find resize bar cap!\n", __func__);
2854 		return -ENOTSUP;
2855 	}
2856 
2857 	reg = pci_conf_read(pdev->pc, pdev->tag, offset + RBCAP0);
2858 
2859 	if ((reg & (1 << (nsize + 4))) == 0) {
2860 		printf("%s size not supported\n", __func__);
2861 		return -ENOTSUP;
2862 	}
2863 
2864 	reg = pci_conf_read(pdev->pc, pdev->tag, offset + RBCTRL0);
2865 	if ((reg & RBCTRL_BARINDEX_MASK) != 0) {
2866 		printf("%s BAR index not 0\n", __func__);
2867 		return -EINVAL;
2868 	}
2869 
2870 	reg &= ~RBCTRL_BARSIZE_MASK;
2871 	reg |= (nsize << RBCTRL_BARSIZE_SHIFT) & RBCTRL_BARSIZE_MASK;
2872 
2873 	pci_conf_write(pdev->pc, pdev->tag, offset + RBCTRL0, reg);
2874 
2875 	return 0;
2876 }
2877 
2878 TAILQ_HEAD(, shrinker) shrinkers = TAILQ_HEAD_INITIALIZER(shrinkers);
2879 
2880 int
2881 register_shrinker(struct shrinker *shrinker, const char *format, ...)
2882 {
2883 	TAILQ_INSERT_TAIL(&shrinkers, shrinker, next);
2884 	return 0;
2885 }
2886 
2887 void
2888 unregister_shrinker(struct shrinker *shrinker)
2889 {
2890 	TAILQ_REMOVE(&shrinkers, shrinker, next);
2891 }
2892 
2893 void
2894 drmbackoff(long npages)
2895 {
2896 	struct shrink_control sc;
2897 	struct shrinker *shrinker;
2898 	u_long ret;
2899 
2900 	shrinker = TAILQ_FIRST(&shrinkers);
2901 	while (shrinker && npages > 0) {
2902 		sc.nr_to_scan = npages;
2903 		ret = shrinker->scan_objects(shrinker, &sc);
2904 		npages -= ret;
2905 		shrinker = TAILQ_NEXT(shrinker, next);
2906 	}
2907 }
2908 
2909 void *
2910 bitmap_zalloc(u_int n, gfp_t flags)
2911 {
2912 	return kcalloc(BITS_TO_LONGS(n), sizeof(long), flags);
2913 }
2914 
2915 void
2916 bitmap_free(void *p)
2917 {
2918 	kfree(p);
2919 }
2920 
2921 int
2922 atomic_dec_and_mutex_lock(volatile int *v, struct rwlock *lock)
2923 {
2924 	if (atomic_add_unless(v, -1, 1))
2925 		return 0;
2926 
2927 	rw_enter_write(lock);
2928 	if (atomic_dec_return(v) == 0)
2929 		return 1;
2930 	rw_exit_write(lock);
2931 	return 0;
2932 }
2933 
2934 int
2935 printk(const char *fmt, ...)
2936 {
2937 	int ret, level;
2938 	va_list ap;
2939 
2940 	if (fmt != NULL && *fmt == '\001') {
2941 		level = fmt[1];
2942 #ifndef DRMDEBUG
2943 		if (level >= KERN_INFO[1] && level <= '9')
2944 			return 0;
2945 #endif
2946 		fmt += 2;
2947 	}
2948 
2949 	va_start(ap, fmt);
2950 	ret = vprintf(fmt, ap);
2951 	va_end(ap);
2952 
2953 	return ret;
2954 }
2955 
2956 #define START(node) ((node)->start)
2957 #define LAST(node) ((node)->last)
2958 
2959 struct interval_tree_node *
2960 interval_tree_iter_first(struct rb_root_cached *root, unsigned long start,
2961     unsigned long last)
2962 {
2963 	struct interval_tree_node *node;
2964 	struct rb_node *rb;
2965 
2966 	for (rb = rb_first_cached(root); rb; rb = rb_next(rb)) {
2967 		node = rb_entry(rb, typeof(*node), rb);
2968 		if (LAST(node) >= start && START(node) <= last)
2969 			return node;
2970 	}
2971 	return NULL;
2972 }
2973 
2974 void
2975 interval_tree_remove(struct interval_tree_node *node,
2976     struct rb_root_cached *root)
2977 {
2978 	rb_erase_cached(&node->rb, root);
2979 }
2980 
2981 void
2982 interval_tree_insert(struct interval_tree_node *node,
2983     struct rb_root_cached *root)
2984 {
2985 	struct rb_node **iter = &root->rb_root.rb_node;
2986 	struct rb_node *parent = NULL;
2987 	struct interval_tree_node *iter_node;
2988 
2989 	while (*iter) {
2990 		parent = *iter;
2991 		iter_node = rb_entry(*iter, struct interval_tree_node, rb);
2992 
2993 		if (node->start < iter_node->start)
2994 			iter = &(*iter)->rb_left;
2995 		else
2996 			iter = &(*iter)->rb_right;
2997 	}
2998 
2999 	rb_link_node(&node->rb, parent, iter);
3000 	rb_insert_color_cached(&node->rb, root, false);
3001 }
3002 
3003 int
3004 syncfile_read(struct file *fp, struct uio *uio, int fflags)
3005 {
3006 	return ENXIO;
3007 }
3008 
3009 int
3010 syncfile_write(struct file *fp, struct uio *uio, int fflags)
3011 {
3012 	return ENXIO;
3013 }
3014 
3015 int
3016 syncfile_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
3017 {
3018 	return ENOTTY;
3019 }
3020 
3021 int
3022 syncfile_kqfilter(struct file *fp, struct knote *kn)
3023 {
3024 	return EINVAL;
3025 }
3026 
3027 int
3028 syncfile_stat(struct file *fp, struct stat *st, struct proc *p)
3029 {
3030 	memset(st, 0, sizeof(*st));
3031 	st->st_mode = S_IFIFO;	/* XXX */
3032 	return 0;
3033 }
3034 
3035 int
3036 syncfile_close(struct file *fp, struct proc *p)
3037 {
3038 	struct sync_file *sf = fp->f_data;
3039 
3040 	dma_fence_put(sf->fence);
3041 	fp->f_data = NULL;
3042 	free(sf, M_DRM, sizeof(struct sync_file));
3043 	return 0;
3044 }
3045 
3046 int
3047 syncfile_seek(struct file *fp, off_t *offset, int whence, struct proc *p)
3048 {
3049 	off_t newoff;
3050 
3051 	if (*offset != 0)
3052 		return EINVAL;
3053 
3054 	switch (whence) {
3055 	case SEEK_SET:
3056 		newoff = 0;
3057 		break;
3058 	case SEEK_END:
3059 		newoff = 0;
3060 		break;
3061 	default:
3062 		return EINVAL;
3063 	}
3064 	mtx_enter(&fp->f_mtx);
3065 	fp->f_offset = newoff;
3066 	mtx_leave(&fp->f_mtx);
3067 	*offset = newoff;
3068 	return 0;
3069 }
3070 
3071 const struct fileops syncfileops = {
3072 	.fo_read	= syncfile_read,
3073 	.fo_write	= syncfile_write,
3074 	.fo_ioctl	= syncfile_ioctl,
3075 	.fo_kqfilter	= syncfile_kqfilter,
3076 	.fo_stat	= syncfile_stat,
3077 	.fo_close	= syncfile_close,
3078 	.fo_seek	= syncfile_seek,
3079 };
3080 
3081 void
3082 fd_install(int fd, struct file *fp)
3083 {
3084 	struct proc *p = curproc;
3085 	struct filedesc *fdp = p->p_fd;
3086 
3087 	if (fp->f_type != DTYPE_SYNC)
3088 		return;
3089 
3090 	fdplock(fdp);
3091 	/* all callers use get_unused_fd_flags(O_CLOEXEC) */
3092 	fdinsert(fdp, fd, UF_EXCLOSE, fp);
3093 	fdpunlock(fdp);
3094 }
3095 
3096 void
3097 fput(struct file *fp)
3098 {
3099 	if (fp->f_type != DTYPE_SYNC)
3100 		return;
3101 
3102 	FRELE(fp, curproc);
3103 }
3104 
3105 int
3106 get_unused_fd_flags(unsigned int flags)
3107 {
3108 	struct proc *p = curproc;
3109 	struct filedesc *fdp = p->p_fd;
3110 	int error, fd;
3111 
3112 	KASSERT((flags & O_CLOEXEC) != 0);
3113 
3114 	fdplock(fdp);
3115 retryalloc:
3116 	if ((error = fdalloc(p, 0, &fd)) != 0) {
3117 		if (error == ENOSPC) {
3118 			fdexpand(p);
3119 			goto retryalloc;
3120 		}
3121 		fdpunlock(fdp);
3122 		return -1;
3123 	}
3124 	fdpunlock(fdp);
3125 
3126 	return fd;
3127 }
3128 
3129 void
3130 put_unused_fd(int fd)
3131 {
3132 	struct filedesc *fdp = curproc->p_fd;
3133 
3134 	fdplock(fdp);
3135 	fdremove(fdp, fd);
3136 	fdpunlock(fdp);
3137 }
3138 
3139 struct dma_fence *
3140 sync_file_get_fence(int fd)
3141 {
3142 	struct proc *p = curproc;
3143 	struct filedesc *fdp = p->p_fd;
3144 	struct file *fp;
3145 	struct sync_file *sf;
3146 	struct dma_fence *f;
3147 
3148 	if ((fp = fd_getfile(fdp, fd)) == NULL)
3149 		return NULL;
3150 
3151 	if (fp->f_type != DTYPE_SYNC) {
3152 		FRELE(fp, p);
3153 		return NULL;
3154 	}
3155 	sf = fp->f_data;
3156 	f = dma_fence_get(sf->fence);
3157 	FRELE(sf->file, p);
3158 	return f;
3159 }
3160 
3161 struct sync_file *
3162 sync_file_create(struct dma_fence *fence)
3163 {
3164 	struct proc *p = curproc;
3165 	struct sync_file *sf;
3166 	struct file *fp;
3167 
3168 	fp = fnew(p);
3169 	if (fp == NULL)
3170 		return NULL;
3171 	fp->f_type = DTYPE_SYNC;
3172 	fp->f_ops = &syncfileops;
3173 	sf = malloc(sizeof(struct sync_file), M_DRM, M_WAITOK | M_ZERO);
3174 	sf->file = fp;
3175 	sf->fence = dma_fence_get(fence);
3176 	fp->f_data = sf;
3177 	return sf;
3178 }
3179 
3180 bool
3181 drm_firmware_drivers_only(void)
3182 {
3183 	return false;
3184 }
3185