xref: /openbsd-src/sys/dev/pci/drm/drm_linux.c (revision 1ad61ae0a79a724d2d3ec69e69c8e1d1ff6b53a0)
1 /*	$OpenBSD: drm_linux.c,v 1.104 2023/10/20 03:38:58 jsg Exp $	*/
2 /*
3  * Copyright (c) 2013 Jonathan Gray <jsg@openbsd.org>
4  * Copyright (c) 2015, 2016 Mark Kettenis <kettenis@openbsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/types.h>
20 #include <sys/systm.h>
21 #include <sys/param.h>
22 #include <sys/event.h>
23 #include <sys/filedesc.h>
24 #include <sys/kthread.h>
25 #include <sys/stat.h>
26 #include <sys/unistd.h>
27 #include <sys/proc.h>
28 #include <sys/pool.h>
29 #include <sys/fcntl.h>
30 
31 #include <dev/pci/ppbreg.h>
32 
33 #include <linux/dma-buf.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/acpi.h>
36 #include <linux/pagevec.h>
37 #include <linux/dma-fence-array.h>
38 #include <linux/dma-fence-chain.h>
39 #include <linux/interrupt.h>
40 #include <linux/err.h>
41 #include <linux/idr.h>
42 #include <linux/scatterlist.h>
43 #include <linux/i2c.h>
44 #include <linux/pci.h>
45 #include <linux/notifier.h>
46 #include <linux/backlight.h>
47 #include <linux/shrinker.h>
48 #include <linux/fb.h>
49 #include <linux/xarray.h>
50 #include <linux/interval_tree.h>
51 #include <linux/kthread.h>
52 #include <linux/processor.h>
53 #include <linux/sync_file.h>
54 
55 #include <drm/drm_device.h>
56 #include <drm/drm_connector.h>
57 #include <drm/drm_print.h>
58 
59 #if defined(__amd64__) || defined(__i386__)
60 #include "bios.h"
61 #endif
62 
63 /* allowed to sleep */
64 void
65 tasklet_unlock_wait(struct tasklet_struct *ts)
66 {
67 	while (test_bit(TASKLET_STATE_RUN, &ts->state))
68 		cpu_relax();
69 }
70 
71 /* must not sleep */
72 void
73 tasklet_unlock_spin_wait(struct tasklet_struct *ts)
74 {
75 	while (test_bit(TASKLET_STATE_RUN, &ts->state))
76 		cpu_relax();
77 }
78 
79 void
80 tasklet_run(void *arg)
81 {
82 	struct tasklet_struct *ts = arg;
83 
84 	clear_bit(TASKLET_STATE_SCHED, &ts->state);
85 	if (tasklet_trylock(ts)) {
86 		if (!atomic_read(&ts->count)) {
87 			if (ts->use_callback)
88 				ts->callback(ts);
89 			else
90 				ts->func(ts->data);
91 		}
92 		tasklet_unlock(ts);
93 	}
94 }
95 
96 /* 32 bit powerpc lacks 64 bit atomics */
97 #if defined(__powerpc__) && !defined(__powerpc64__)
98 struct mutex atomic64_mtx = MUTEX_INITIALIZER(IPL_HIGH);
99 #endif
100 
101 void
102 set_current_state(int state)
103 {
104 	int prio = state;
105 
106 	KASSERT(state != TASK_RUNNING);
107 	/* check if already on the sleep list */
108 	if (curproc->p_wchan != NULL)
109 		return;
110 	sleep_setup(curproc, prio, "schto");
111 }
112 
113 void
114 __set_current_state(int state)
115 {
116 	struct proc *p = curproc;
117 	int s;
118 
119 	KASSERT(state == TASK_RUNNING);
120 	SCHED_LOCK(s);
121 	unsleep(p);
122 	p->p_stat = SONPROC;
123 	atomic_clearbits_int(&p->p_flag, P_WSLEEP);
124 	SCHED_UNLOCK(s);
125 }
126 
127 void
128 schedule(void)
129 {
130 	schedule_timeout(MAX_SCHEDULE_TIMEOUT);
131 }
132 
133 long
134 schedule_timeout(long timeout)
135 {
136 	unsigned long deadline;
137 	int timo = 0;
138 
139 	KASSERT(!cold);
140 
141 	if (timeout != MAX_SCHEDULE_TIMEOUT)
142 		timo = timeout;
143 	if (timeout != MAX_SCHEDULE_TIMEOUT)
144 		deadline = jiffies + timeout;
145 	sleep_finish(timo, timeout > 0);
146 	if (timeout != MAX_SCHEDULE_TIMEOUT)
147 		timeout = deadline - jiffies;
148 
149 	return timeout > 0 ? timeout : 0;
150 }
151 
152 long
153 schedule_timeout_uninterruptible(long timeout)
154 {
155 	tsleep(curproc, PWAIT, "schtou", timeout);
156 	return 0;
157 }
158 
159 int
160 wake_up_process(struct proc *p)
161 {
162 	int s, rv;
163 
164 	SCHED_LOCK(s);
165 	rv = wakeup_proc(p, NULL, 0);
166 	SCHED_UNLOCK(s);
167 	return rv;
168 }
169 
170 int
171 autoremove_wake_function(struct wait_queue_entry *wqe, unsigned int mode,
172     int sync, void *key)
173 {
174 	if (wqe->private)
175 		wake_up_process(wqe->private);
176 	list_del_init(&wqe->entry);
177 	return 0;
178 }
179 
180 void
181 prepare_to_wait(wait_queue_head_t *wqh, wait_queue_entry_t *wqe, int state)
182 {
183 	mtx_enter(&wqh->lock);
184 	if (list_empty(&wqe->entry))
185 		__add_wait_queue(wqh, wqe);
186 	mtx_leave(&wqh->lock);
187 
188 	set_current_state(state);
189 }
190 
191 void
192 finish_wait(wait_queue_head_t *wqh, wait_queue_entry_t *wqe)
193 {
194 	__set_current_state(TASK_RUNNING);
195 
196 	mtx_enter(&wqh->lock);
197 	if (!list_empty(&wqe->entry))
198 		list_del_init(&wqe->entry);
199 	mtx_leave(&wqh->lock);
200 }
201 
202 void
203 flush_workqueue(struct workqueue_struct *wq)
204 {
205 	if (cold)
206 		return;
207 
208 	if (wq)
209 		taskq_barrier((struct taskq *)wq);
210 }
211 
212 bool
213 flush_work(struct work_struct *work)
214 {
215 	if (cold)
216 		return false;
217 
218 	if (work->tq)
219 		taskq_barrier(work->tq);
220 	return false;
221 }
222 
223 bool
224 flush_delayed_work(struct delayed_work *dwork)
225 {
226 	bool ret = false;
227 
228 	if (cold)
229 		return false;
230 
231 	while (timeout_pending(&dwork->to)) {
232 		tsleep(dwork, PWAIT, "fldwto", 1);
233 		ret = true;
234 	}
235 
236 	if (dwork->tq)
237 		taskq_barrier(dwork->tq);
238 	return ret;
239 }
240 
241 struct kthread {
242 	int (*func)(void *);
243 	void *data;
244 	struct proc *proc;
245 	volatile u_int flags;
246 #define KTHREAD_SHOULDSTOP	0x0000001
247 #define KTHREAD_STOPPED		0x0000002
248 #define KTHREAD_SHOULDPARK	0x0000004
249 #define KTHREAD_PARKED		0x0000008
250 	LIST_ENTRY(kthread) next;
251 };
252 
253 LIST_HEAD(, kthread) kthread_list = LIST_HEAD_INITIALIZER(kthread_list);
254 
255 void
256 kthread_func(void *arg)
257 {
258 	struct kthread *thread = arg;
259 	int ret;
260 
261 	ret = thread->func(thread->data);
262 	thread->flags |= KTHREAD_STOPPED;
263 	wakeup(thread);
264 	kthread_exit(ret);
265 }
266 
267 struct proc *
268 kthread_run(int (*func)(void *), void *data, const char *name)
269 {
270 	struct kthread *thread;
271 
272 	thread = malloc(sizeof(*thread), M_DRM, M_WAITOK);
273 	thread->func = func;
274 	thread->data = data;
275 	thread->flags = 0;
276 
277 	if (kthread_create(kthread_func, thread, &thread->proc, name)) {
278 		free(thread, M_DRM, sizeof(*thread));
279 		return ERR_PTR(-ENOMEM);
280 	}
281 
282 	LIST_INSERT_HEAD(&kthread_list, thread, next);
283 	return thread->proc;
284 }
285 
286 struct kthread_worker *
287 kthread_create_worker(unsigned int flags, const char *fmt, ...)
288 {
289 	char name[MAXCOMLEN+1];
290 	va_list ap;
291 
292 	struct kthread_worker *w = malloc(sizeof(*w), M_DRM, M_WAITOK);
293 	va_start(ap, fmt);
294 	vsnprintf(name, sizeof(name), fmt, ap);
295 	va_end(ap);
296 	w->tq = taskq_create(name, 1, IPL_HIGH, 0);
297 
298 	return w;
299 }
300 
301 void
302 kthread_destroy_worker(struct kthread_worker *worker)
303 {
304 	taskq_destroy(worker->tq);
305 	free(worker, M_DRM, sizeof(*worker));
306 
307 }
308 
309 void
310 kthread_init_work(struct kthread_work *work, void (*func)(struct kthread_work *))
311 {
312 	work->tq = NULL;
313 	task_set(&work->task, (void (*)(void *))func, work);
314 }
315 
316 bool
317 kthread_queue_work(struct kthread_worker *worker, struct kthread_work *work)
318 {
319 	work->tq = worker->tq;
320 	return task_add(work->tq, &work->task);
321 }
322 
323 bool
324 kthread_cancel_work_sync(struct kthread_work *work)
325 {
326 	return task_del(work->tq, &work->task);
327 }
328 
329 void
330 kthread_flush_work(struct kthread_work *work)
331 {
332 	if (cold)
333 		return;
334 
335 	if (work->tq)
336 		taskq_barrier(work->tq);
337 }
338 
339 void
340 kthread_flush_worker(struct kthread_worker *worker)
341 {
342 	if (cold)
343 		return;
344 
345 	if (worker->tq)
346 		taskq_barrier(worker->tq);
347 }
348 
349 struct kthread *
350 kthread_lookup(struct proc *p)
351 {
352 	struct kthread *thread;
353 
354 	LIST_FOREACH(thread, &kthread_list, next) {
355 		if (thread->proc == p)
356 			break;
357 	}
358 	KASSERT(thread);
359 
360 	return thread;
361 }
362 
363 int
364 kthread_should_park(void)
365 {
366 	struct kthread *thread = kthread_lookup(curproc);
367 	return (thread->flags & KTHREAD_SHOULDPARK);
368 }
369 
370 void
371 kthread_parkme(void)
372 {
373 	struct kthread *thread = kthread_lookup(curproc);
374 
375 	while (thread->flags & KTHREAD_SHOULDPARK) {
376 		thread->flags |= KTHREAD_PARKED;
377 		wakeup(thread);
378 		tsleep_nsec(thread, PPAUSE, "parkme", INFSLP);
379 		thread->flags &= ~KTHREAD_PARKED;
380 	}
381 }
382 
383 void
384 kthread_park(struct proc *p)
385 {
386 	struct kthread *thread = kthread_lookup(p);
387 
388 	while ((thread->flags & KTHREAD_PARKED) == 0) {
389 		thread->flags |= KTHREAD_SHOULDPARK;
390 		wake_up_process(thread->proc);
391 		tsleep_nsec(thread, PPAUSE, "park", INFSLP);
392 	}
393 }
394 
395 void
396 kthread_unpark(struct proc *p)
397 {
398 	struct kthread *thread = kthread_lookup(p);
399 
400 	thread->flags &= ~KTHREAD_SHOULDPARK;
401 	wakeup(thread);
402 }
403 
404 int
405 kthread_should_stop(void)
406 {
407 	struct kthread *thread = kthread_lookup(curproc);
408 	return (thread->flags & KTHREAD_SHOULDSTOP);
409 }
410 
411 void
412 kthread_stop(struct proc *p)
413 {
414 	struct kthread *thread = kthread_lookup(p);
415 
416 	while ((thread->flags & KTHREAD_STOPPED) == 0) {
417 		thread->flags |= KTHREAD_SHOULDSTOP;
418 		kthread_unpark(p);
419 		wake_up_process(thread->proc);
420 		tsleep_nsec(thread, PPAUSE, "stop", INFSLP);
421 	}
422 	LIST_REMOVE(thread, next);
423 	free(thread, M_DRM, sizeof(*thread));
424 }
425 
426 #if NBIOS > 0
427 extern char smbios_board_vendor[];
428 extern char smbios_board_prod[];
429 extern char smbios_board_serial[];
430 #endif
431 
432 bool
433 dmi_match(int slot, const char *str)
434 {
435 	switch (slot) {
436 	case DMI_SYS_VENDOR:
437 		if (hw_vendor != NULL &&
438 		    !strcmp(hw_vendor, str))
439 			return true;
440 		break;
441 	case DMI_PRODUCT_NAME:
442 		if (hw_prod != NULL &&
443 		    !strcmp(hw_prod, str))
444 			return true;
445 		break;
446 	case DMI_PRODUCT_VERSION:
447 		if (hw_ver != NULL &&
448 		    !strcmp(hw_ver, str))
449 			return true;
450 		break;
451 #if NBIOS > 0
452 	case DMI_BOARD_VENDOR:
453 		if (strcmp(smbios_board_vendor, str) == 0)
454 			return true;
455 		break;
456 	case DMI_BOARD_NAME:
457 		if (strcmp(smbios_board_prod, str) == 0)
458 			return true;
459 		break;
460 	case DMI_BOARD_SERIAL:
461 		if (strcmp(smbios_board_serial, str) == 0)
462 			return true;
463 		break;
464 #else
465 	case DMI_BOARD_VENDOR:
466 		if (hw_vendor != NULL &&
467 		    !strcmp(hw_vendor, str))
468 			return true;
469 		break;
470 	case DMI_BOARD_NAME:
471 		if (hw_prod != NULL &&
472 		    !strcmp(hw_prod, str))
473 			return true;
474 		break;
475 #endif
476 	case DMI_NONE:
477 	default:
478 		return false;
479 	}
480 
481 	return false;
482 }
483 
484 static bool
485 dmi_found(const struct dmi_system_id *dsi)
486 {
487 	int i, slot;
488 
489 	for (i = 0; i < nitems(dsi->matches); i++) {
490 		slot = dsi->matches[i].slot;
491 		if (slot == DMI_NONE)
492 			break;
493 		if (!dmi_match(slot, dsi->matches[i].substr))
494 			return false;
495 	}
496 
497 	return true;
498 }
499 
500 const struct dmi_system_id *
501 dmi_first_match(const struct dmi_system_id *sysid)
502 {
503 	const struct dmi_system_id *dsi;
504 
505 	for (dsi = sysid; dsi->matches[0].slot != 0 ; dsi++) {
506 		if (dmi_found(dsi))
507 			return dsi;
508 	}
509 
510 	return NULL;
511 }
512 
513 #if NBIOS > 0
514 extern char smbios_bios_date[];
515 extern char smbios_bios_version[];
516 #endif
517 
518 const char *
519 dmi_get_system_info(int slot)
520 {
521 #if NBIOS > 0
522 	switch (slot) {
523 	case DMI_BIOS_DATE:
524 		return smbios_bios_date;
525 	case DMI_BIOS_VERSION:
526 		return smbios_bios_version;
527 	default:
528 		printf("%s slot %d not handled\n", __func__, slot);
529 	}
530 #endif
531 	return NULL;
532 }
533 
534 int
535 dmi_check_system(const struct dmi_system_id *sysid)
536 {
537 	const struct dmi_system_id *dsi;
538 	int num = 0;
539 
540 	for (dsi = sysid; dsi->matches[0].slot != 0 ; dsi++) {
541 		if (dmi_found(dsi)) {
542 			num++;
543 			if (dsi->callback && dsi->callback(dsi))
544 				break;
545 		}
546 	}
547 	return (num);
548 }
549 
550 struct vm_page *
551 alloc_pages(unsigned int gfp_mask, unsigned int order)
552 {
553 	int flags = (gfp_mask & M_NOWAIT) ? UVM_PLA_NOWAIT : UVM_PLA_WAITOK;
554 	struct uvm_constraint_range *constraint = &no_constraint;
555 	struct pglist mlist;
556 
557 	if (gfp_mask & M_CANFAIL)
558 		flags |= UVM_PLA_FAILOK;
559 	if (gfp_mask & M_ZERO)
560 		flags |= UVM_PLA_ZERO;
561 	if (gfp_mask & __GFP_DMA32)
562 		constraint = &dma_constraint;
563 
564 	TAILQ_INIT(&mlist);
565 	if (uvm_pglistalloc(PAGE_SIZE << order, constraint->ucr_low,
566 	    constraint->ucr_high, PAGE_SIZE, 0, &mlist, 1, flags))
567 		return NULL;
568 	return TAILQ_FIRST(&mlist);
569 }
570 
571 void
572 __free_pages(struct vm_page *page, unsigned int order)
573 {
574 	struct pglist mlist;
575 	int i;
576 
577 	TAILQ_INIT(&mlist);
578 	for (i = 0; i < (1 << order); i++)
579 		TAILQ_INSERT_TAIL(&mlist, &page[i], pageq);
580 	uvm_pglistfree(&mlist);
581 }
582 
583 void
584 __pagevec_release(struct pagevec *pvec)
585 {
586 	struct pglist mlist;
587 	int i;
588 
589 	TAILQ_INIT(&mlist);
590 	for (i = 0; i < pvec->nr; i++)
591 		TAILQ_INSERT_TAIL(&mlist, pvec->pages[i], pageq);
592 	uvm_pglistfree(&mlist);
593 	pagevec_reinit(pvec);
594 }
595 
596 static struct kmem_va_mode kv_physwait = {
597 	.kv_map = &phys_map,
598 	.kv_wait = 1,
599 };
600 
601 void *
602 kmap(struct vm_page *pg)
603 {
604 	vaddr_t va;
605 
606 #if defined (__HAVE_PMAP_DIRECT)
607 	va = pmap_map_direct(pg);
608 #else
609 	va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_physwait, &kp_none, &kd_waitok);
610 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), PROT_READ | PROT_WRITE);
611 	pmap_update(pmap_kernel());
612 #endif
613 	return (void *)va;
614 }
615 
616 void
617 kunmap_va(void *addr)
618 {
619 	vaddr_t va = (vaddr_t)addr;
620 
621 #if defined (__HAVE_PMAP_DIRECT)
622 	pmap_unmap_direct(va);
623 #else
624 	pmap_kremove(va, PAGE_SIZE);
625 	pmap_update(pmap_kernel());
626 	km_free((void *)va, PAGE_SIZE, &kv_physwait, &kp_none);
627 #endif
628 }
629 
630 vaddr_t kmap_atomic_va;
631 int kmap_atomic_inuse;
632 
633 void *
634 kmap_atomic_prot(struct vm_page *pg, pgprot_t prot)
635 {
636 	KASSERT(!kmap_atomic_inuse);
637 
638 	kmap_atomic_inuse = 1;
639 	pmap_kenter_pa(kmap_atomic_va, VM_PAGE_TO_PHYS(pg) | prot,
640 	    PROT_READ | PROT_WRITE);
641 	return (void *)kmap_atomic_va;
642 }
643 
644 void
645 kunmap_atomic(void *addr)
646 {
647 	KASSERT(kmap_atomic_inuse);
648 
649 	pmap_kremove(kmap_atomic_va, PAGE_SIZE);
650 	kmap_atomic_inuse = 0;
651 }
652 
653 void *
654 vmap(struct vm_page **pages, unsigned int npages, unsigned long flags,
655      pgprot_t prot)
656 {
657 	vaddr_t va;
658 	paddr_t pa;
659 	int i;
660 
661 	va = (vaddr_t)km_alloc(PAGE_SIZE * npages, &kv_any, &kp_none,
662 	    &kd_nowait);
663 	if (va == 0)
664 		return NULL;
665 	for (i = 0; i < npages; i++) {
666 		pa = VM_PAGE_TO_PHYS(pages[i]) | prot;
667 		pmap_enter(pmap_kernel(), va + (i * PAGE_SIZE), pa,
668 		    PROT_READ | PROT_WRITE,
669 		    PROT_READ | PROT_WRITE | PMAP_WIRED);
670 		pmap_update(pmap_kernel());
671 	}
672 
673 	return (void *)va;
674 }
675 
676 void
677 vunmap(void *addr, size_t size)
678 {
679 	vaddr_t va = (vaddr_t)addr;
680 
681 	pmap_remove(pmap_kernel(), va, va + size);
682 	pmap_update(pmap_kernel());
683 	km_free((void *)va, size, &kv_any, &kp_none);
684 }
685 
686 bool
687 is_vmalloc_addr(const void *p)
688 {
689 	vaddr_t min, max, addr;
690 
691 	min = vm_map_min(kernel_map);
692 	max = vm_map_max(kernel_map);
693 	addr = (vaddr_t)p;
694 
695 	if (addr >= min && addr <= max)
696 		return true;
697 	else
698 		return false;
699 }
700 
701 void
702 print_hex_dump(const char *level, const char *prefix_str, int prefix_type,
703     int rowsize, int groupsize, const void *buf, size_t len, bool ascii)
704 {
705 	const uint8_t *cbuf = buf;
706 	int i;
707 
708 	for (i = 0; i < len; i++) {
709 		if ((i % rowsize) == 0)
710 			printf("%s", prefix_str);
711 		printf("%02x", cbuf[i]);
712 		if ((i % rowsize) == (rowsize - 1))
713 			printf("\n");
714 		else
715 			printf(" ");
716 	}
717 }
718 
719 void *
720 memchr_inv(const void *s, int c, size_t n)
721 {
722 	if (n != 0) {
723 		const unsigned char *p = s;
724 
725 		do {
726 			if (*p++ != (unsigned char)c)
727 				return ((void *)(p - 1));
728 		} while (--n != 0);
729 	}
730 	return (NULL);
731 }
732 
733 int
734 panic_cmp(struct rb_node *a, struct rb_node *b)
735 {
736 	panic(__func__);
737 }
738 
739 #undef RB_ROOT
740 #define RB_ROOT(head)	(head)->rbh_root
741 
742 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
743 
744 /*
745  * This is a fairly minimal implementation of the Linux "idr" API.  It
746  * probably isn't very efficient, and definitely isn't RCU safe.  The
747  * pre-load buffer is global instead of per-cpu; we rely on the kernel
748  * lock to make this work.  We do randomize our IDs in order to make
749  * them harder to guess.
750  */
751 
752 int idr_cmp(struct idr_entry *, struct idr_entry *);
753 SPLAY_PROTOTYPE(idr_tree, idr_entry, entry, idr_cmp);
754 
755 struct pool idr_pool;
756 struct idr_entry *idr_entry_cache;
757 
758 void
759 idr_init(struct idr *idr)
760 {
761 	SPLAY_INIT(&idr->tree);
762 }
763 
764 void
765 idr_destroy(struct idr *idr)
766 {
767 	struct idr_entry *id;
768 
769 	while ((id = SPLAY_MIN(idr_tree, &idr->tree))) {
770 		SPLAY_REMOVE(idr_tree, &idr->tree, id);
771 		pool_put(&idr_pool, id);
772 	}
773 }
774 
775 void
776 idr_preload(unsigned int gfp_mask)
777 {
778 	int flags = (gfp_mask & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
779 
780 	KERNEL_ASSERT_LOCKED();
781 
782 	if (idr_entry_cache == NULL)
783 		idr_entry_cache = pool_get(&idr_pool, flags);
784 }
785 
786 int
787 idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
788 {
789 	int flags = (gfp_mask & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
790 	struct idr_entry *id;
791 	int begin;
792 
793 	KERNEL_ASSERT_LOCKED();
794 
795 	if (idr_entry_cache) {
796 		id = idr_entry_cache;
797 		idr_entry_cache = NULL;
798 	} else {
799 		id = pool_get(&idr_pool, flags);
800 		if (id == NULL)
801 			return -ENOMEM;
802 	}
803 
804 	if (end <= 0)
805 		end = INT_MAX;
806 
807 #ifdef notyet
808 	id->id = begin = start + arc4random_uniform(end - start);
809 #else
810 	id->id = begin = start;
811 #endif
812 	while (SPLAY_INSERT(idr_tree, &idr->tree, id)) {
813 		if (id->id == end)
814 			id->id = start;
815 		else
816 			id->id++;
817 		if (id->id == begin) {
818 			pool_put(&idr_pool, id);
819 			return -ENOSPC;
820 		}
821 	}
822 	id->ptr = ptr;
823 	return id->id;
824 }
825 
826 void *
827 idr_replace(struct idr *idr, void *ptr, unsigned long id)
828 {
829 	struct idr_entry find, *res;
830 	void *old;
831 
832 	find.id = id;
833 	res = SPLAY_FIND(idr_tree, &idr->tree, &find);
834 	if (res == NULL)
835 		return ERR_PTR(-ENOENT);
836 	old = res->ptr;
837 	res->ptr = ptr;
838 	return old;
839 }
840 
841 void *
842 idr_remove(struct idr *idr, unsigned long id)
843 {
844 	struct idr_entry find, *res;
845 	void *ptr = NULL;
846 
847 	find.id = id;
848 	res = SPLAY_FIND(idr_tree, &idr->tree, &find);
849 	if (res) {
850 		SPLAY_REMOVE(idr_tree, &idr->tree, res);
851 		ptr = res->ptr;
852 		pool_put(&idr_pool, res);
853 	}
854 	return ptr;
855 }
856 
857 void *
858 idr_find(struct idr *idr, unsigned long id)
859 {
860 	struct idr_entry find, *res;
861 
862 	find.id = id;
863 	res = SPLAY_FIND(idr_tree, &idr->tree, &find);
864 	if (res == NULL)
865 		return NULL;
866 	return res->ptr;
867 }
868 
869 void *
870 idr_get_next(struct idr *idr, int *id)
871 {
872 	struct idr_entry *res;
873 
874 	SPLAY_FOREACH(res, idr_tree, &idr->tree) {
875 		if (res->id >= *id) {
876 			*id = res->id;
877 			return res->ptr;
878 		}
879 	}
880 
881 	return NULL;
882 }
883 
884 int
885 idr_for_each(struct idr *idr, int (*func)(int, void *, void *), void *data)
886 {
887 	struct idr_entry *id;
888 	int ret;
889 
890 	SPLAY_FOREACH(id, idr_tree, &idr->tree) {
891 		ret = func(id->id, id->ptr, data);
892 		if (ret)
893 			return ret;
894 	}
895 
896 	return 0;
897 }
898 
899 int
900 idr_cmp(struct idr_entry *a, struct idr_entry *b)
901 {
902 	return (a->id < b->id ? -1 : a->id > b->id);
903 }
904 
905 SPLAY_GENERATE(idr_tree, idr_entry, entry, idr_cmp);
906 
907 void
908 ida_init(struct ida *ida)
909 {
910 	idr_init(&ida->idr);
911 }
912 
913 void
914 ida_destroy(struct ida *ida)
915 {
916 	idr_destroy(&ida->idr);
917 }
918 
919 int
920 ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
921     gfp_t gfp_mask)
922 {
923 	return idr_alloc(&ida->idr, NULL, start, end, gfp_mask);
924 }
925 
926 void
927 ida_simple_remove(struct ida *ida, unsigned int id)
928 {
929 	idr_remove(&ida->idr, id);
930 }
931 
932 int
933 ida_alloc_min(struct ida *ida, unsigned int min, gfp_t gfp)
934 {
935 	return idr_alloc(&ida->idr, NULL, min, INT_MAX, gfp);
936 }
937 
938 int
939 ida_alloc_max(struct ida *ida, unsigned int max, gfp_t gfp)
940 {
941 	return idr_alloc(&ida->idr, NULL, 0, max - 1, gfp);
942 }
943 
944 void
945 ida_free(struct ida *ida, unsigned int id)
946 {
947 	idr_remove(&ida->idr, id);
948 }
949 
950 int
951 xarray_cmp(struct xarray_entry *a, struct xarray_entry *b)
952 {
953 	return (a->id < b->id ? -1 : a->id > b->id);
954 }
955 
956 SPLAY_PROTOTYPE(xarray_tree, xarray_entry, entry, xarray_cmp);
957 struct pool xa_pool;
958 SPLAY_GENERATE(xarray_tree, xarray_entry, entry, xarray_cmp);
959 
960 void
961 xa_init_flags(struct xarray *xa, gfp_t flags)
962 {
963 	static int initialized;
964 
965 	if (!initialized) {
966 		pool_init(&xa_pool, sizeof(struct xarray_entry), 0, IPL_NONE, 0,
967 		    "xapl", NULL);
968 		initialized = 1;
969 	}
970 	SPLAY_INIT(&xa->xa_tree);
971 	if (flags & XA_FLAGS_LOCK_IRQ)
972 		mtx_init(&xa->xa_lock, IPL_TTY);
973 	else
974 		mtx_init(&xa->xa_lock, IPL_NONE);
975 }
976 
977 void
978 xa_destroy(struct xarray *xa)
979 {
980 	struct xarray_entry *id;
981 
982 	while ((id = SPLAY_MIN(xarray_tree, &xa->xa_tree))) {
983 		SPLAY_REMOVE(xarray_tree, &xa->xa_tree, id);
984 		pool_put(&xa_pool, id);
985 	}
986 }
987 
988 /* Don't wrap ids. */
989 int
990 __xa_alloc(struct xarray *xa, u32 *id, void *entry, int limit, gfp_t gfp)
991 {
992 	struct xarray_entry *xid;
993 	int start = (xa->xa_flags & XA_FLAGS_ALLOC1) ? 1 : 0;
994 	int begin;
995 
996 	if (gfp & GFP_NOWAIT) {
997 		xid = pool_get(&xa_pool, PR_NOWAIT);
998 	} else {
999 		mtx_leave(&xa->xa_lock);
1000 		xid = pool_get(&xa_pool, PR_WAITOK);
1001 		mtx_enter(&xa->xa_lock);
1002 	}
1003 
1004 	if (xid == NULL)
1005 		return -ENOMEM;
1006 
1007 	if (limit <= 0)
1008 		limit = INT_MAX;
1009 
1010 	xid->id = begin = start;
1011 
1012 	while (SPLAY_INSERT(xarray_tree, &xa->xa_tree, xid)) {
1013 		if (xid->id == limit)
1014 			xid->id = start;
1015 		else
1016 			xid->id++;
1017 		if (xid->id == begin) {
1018 			pool_put(&xa_pool, xid);
1019 			return -EBUSY;
1020 		}
1021 	}
1022 	xid->ptr = entry;
1023 	*id = xid->id;
1024 	return 0;
1025 }
1026 
1027 /*
1028  * Wrap ids and store next id.
1029  * We walk the entire tree so don't special case wrapping.
1030  * The only caller of this (i915_drm_client.c) doesn't use next id.
1031  */
1032 int
1033 __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, int limit, u32 *next,
1034     gfp_t gfp)
1035 {
1036 	int r = __xa_alloc(xa, id, entry, limit, gfp);
1037 	*next = *id + 1;
1038 	return r;
1039 }
1040 
1041 void *
1042 __xa_erase(struct xarray *xa, unsigned long index)
1043 {
1044 	struct xarray_entry find, *res;
1045 	void *ptr = NULL;
1046 
1047 	find.id = index;
1048 	res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find);
1049 	if (res) {
1050 		SPLAY_REMOVE(xarray_tree, &xa->xa_tree, res);
1051 		ptr = res->ptr;
1052 		pool_put(&xa_pool, res);
1053 	}
1054 	return ptr;
1055 }
1056 
1057 void *
1058 __xa_load(struct xarray *xa, unsigned long index)
1059 {
1060 	struct xarray_entry find, *res;
1061 
1062 	find.id = index;
1063 	res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find);
1064 	if (res == NULL)
1065 		return NULL;
1066 	return res->ptr;
1067 }
1068 
1069 void *
1070 __xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1071 {
1072 	struct xarray_entry find, *res;
1073 	void *prev;
1074 
1075 	if (entry == NULL)
1076 		return __xa_erase(xa, index);
1077 
1078 	find.id = index;
1079 	res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find);
1080 	if (res != NULL) {
1081 		/* index exists */
1082 		/* XXX Multislot entries updates not implemented yet */
1083 		prev = res->ptr;
1084 		res->ptr = entry;
1085 		return prev;
1086 	}
1087 
1088 	/* index not found, add new */
1089 	if (gfp & GFP_NOWAIT) {
1090 		res = pool_get(&xa_pool, PR_NOWAIT);
1091 	} else {
1092 		mtx_leave(&xa->xa_lock);
1093 		res = pool_get(&xa_pool, PR_WAITOK);
1094 		mtx_enter(&xa->xa_lock);
1095 	}
1096 	if (res == NULL)
1097 		return XA_ERROR(-ENOMEM);
1098 	res->id = index;
1099 	res->ptr = entry;
1100 	if (SPLAY_INSERT(xarray_tree, &xa->xa_tree, res) != NULL)
1101 		return XA_ERROR(-EINVAL);
1102 	return NULL; /* no prev entry at index */
1103 }
1104 
1105 void *
1106 xa_get_next(struct xarray *xa, unsigned long *index)
1107 {
1108 	struct xarray_entry *res;
1109 
1110 	SPLAY_FOREACH(res, xarray_tree, &xa->xa_tree) {
1111 		if (res->id >= *index) {
1112 			*index = res->id;
1113 			return res->ptr;
1114 		}
1115 	}
1116 
1117 	return NULL;
1118 }
1119 
1120 int
1121 sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
1122 {
1123 	table->sgl = mallocarray(nents, sizeof(struct scatterlist),
1124 	    M_DRM, gfp_mask | M_ZERO);
1125 	if (table->sgl == NULL)
1126 		return -ENOMEM;
1127 	table->nents = table->orig_nents = nents;
1128 	sg_mark_end(&table->sgl[nents - 1]);
1129 	return 0;
1130 }
1131 
1132 void
1133 sg_free_table(struct sg_table *table)
1134 {
1135 	free(table->sgl, M_DRM,
1136 	    table->orig_nents * sizeof(struct scatterlist));
1137 	table->orig_nents = 0;
1138 	table->sgl = NULL;
1139 }
1140 
1141 size_t
1142 sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1143     const void *buf, size_t buflen)
1144 {
1145 	panic("%s", __func__);
1146 }
1147 
1148 int
1149 i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1150 {
1151 	void *cmd = NULL;
1152 	int cmdlen = 0;
1153 	int err, ret = 0;
1154 	int op;
1155 
1156 	iic_acquire_bus(&adap->ic, 0);
1157 
1158 	while (num > 2) {
1159 		op = (msgs->flags & I2C_M_RD) ? I2C_OP_READ : I2C_OP_WRITE;
1160 		err = iic_exec(&adap->ic, op, msgs->addr, NULL, 0,
1161 		    msgs->buf, msgs->len, 0);
1162 		if (err) {
1163 			ret = -err;
1164 			goto fail;
1165 		}
1166 		msgs++;
1167 		num--;
1168 		ret++;
1169 	}
1170 
1171 	if (num > 1) {
1172 		cmd = msgs->buf;
1173 		cmdlen = msgs->len;
1174 		msgs++;
1175 		num--;
1176 		ret++;
1177 	}
1178 
1179 	op = (msgs->flags & I2C_M_RD) ?
1180 	    I2C_OP_READ_WITH_STOP : I2C_OP_WRITE_WITH_STOP;
1181 	err = iic_exec(&adap->ic, op, msgs->addr, cmd, cmdlen,
1182 	    msgs->buf, msgs->len, 0);
1183 	if (err) {
1184 		ret = -err;
1185 		goto fail;
1186 	}
1187 	msgs++;
1188 	ret++;
1189 
1190 fail:
1191 	iic_release_bus(&adap->ic, 0);
1192 
1193 	return ret;
1194 }
1195 
1196 int
1197 __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1198 {
1199 	int ret, retries;
1200 
1201 	retries = adap->retries;
1202 retry:
1203 	if (adap->algo)
1204 		ret = adap->algo->master_xfer(adap, msgs, num);
1205 	else
1206 		ret = i2c_master_xfer(adap, msgs, num);
1207 	if (ret == -EAGAIN && retries > 0) {
1208 		retries--;
1209 		goto retry;
1210 	}
1211 
1212 	return ret;
1213 }
1214 
1215 int
1216 i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1217 {
1218 	int ret;
1219 
1220 	if (adap->lock_ops)
1221 		adap->lock_ops->lock_bus(adap, 0);
1222 
1223 	ret = __i2c_transfer(adap, msgs, num);
1224 
1225 	if (adap->lock_ops)
1226 		adap->lock_ops->unlock_bus(adap, 0);
1227 
1228 	return ret;
1229 }
1230 
1231 int
1232 i2c_bb_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1233 {
1234 	struct i2c_algo_bit_data *algo = adap->algo_data;
1235 	struct i2c_adapter bb;
1236 
1237 	memset(&bb, 0, sizeof(bb));
1238 	bb.ic = algo->ic;
1239 	bb.retries = adap->retries;
1240 	return i2c_master_xfer(&bb, msgs, num);
1241 }
1242 
1243 uint32_t
1244 i2c_bb_functionality(struct i2c_adapter *adap)
1245 {
1246 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1247 }
1248 
1249 struct i2c_algorithm i2c_bit_algo = {
1250 	.master_xfer = i2c_bb_master_xfer,
1251 	.functionality = i2c_bb_functionality
1252 };
1253 
1254 int
1255 i2c_bit_add_bus(struct i2c_adapter *adap)
1256 {
1257 	adap->algo = &i2c_bit_algo;
1258 	adap->retries = 3;
1259 
1260 	return 0;
1261 }
1262 
1263 #if defined(__amd64__) || defined(__i386__)
1264 
1265 /*
1266  * This is a minimal implementation of the Linux vga_get/vga_put
1267  * interface.  In all likelihood, it will only work for inteldrm(4) as
1268  * it assumes that if there is another active VGA device in the
1269  * system, it is sitting behind a PCI bridge.
1270  */
1271 
1272 extern int pci_enumerate_bus(struct pci_softc *,
1273     int (*)(struct pci_attach_args *), struct pci_attach_args *);
1274 
1275 pcitag_t vga_bridge_tag;
1276 int vga_bridge_disabled;
1277 
1278 int
1279 vga_disable_bridge(struct pci_attach_args *pa)
1280 {
1281 	pcireg_t bhlc, bc;
1282 
1283 	if (pa->pa_domain != 0)
1284 		return 0;
1285 
1286 	bhlc = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG);
1287 	if (PCI_HDRTYPE_TYPE(bhlc) != 1)
1288 		return 0;
1289 
1290 	bc = pci_conf_read(pa->pa_pc, pa->pa_tag, PPB_REG_BRIDGECONTROL);
1291 	if ((bc & PPB_BC_VGA_ENABLE) == 0)
1292 		return 0;
1293 	bc &= ~PPB_BC_VGA_ENABLE;
1294 	pci_conf_write(pa->pa_pc, pa->pa_tag, PPB_REG_BRIDGECONTROL, bc);
1295 
1296 	vga_bridge_tag = pa->pa_tag;
1297 	vga_bridge_disabled = 1;
1298 
1299 	return 1;
1300 }
1301 
1302 void
1303 vga_get_uninterruptible(struct pci_dev *pdev, int rsrc)
1304 {
1305 	KASSERT(pdev->pci->sc_bridgetag == NULL);
1306 	pci_enumerate_bus(pdev->pci, vga_disable_bridge, NULL);
1307 }
1308 
1309 void
1310 vga_put(struct pci_dev *pdev, int rsrc)
1311 {
1312 	pcireg_t bc;
1313 
1314 	if (!vga_bridge_disabled)
1315 		return;
1316 
1317 	bc = pci_conf_read(pdev->pc, vga_bridge_tag, PPB_REG_BRIDGECONTROL);
1318 	bc |= PPB_BC_VGA_ENABLE;
1319 	pci_conf_write(pdev->pc, vga_bridge_tag, PPB_REG_BRIDGECONTROL, bc);
1320 
1321 	vga_bridge_disabled = 0;
1322 }
1323 
1324 #endif
1325 
1326 /*
1327  * ACPI types and interfaces.
1328  */
1329 
1330 #ifdef __HAVE_ACPI
1331 #include "acpi.h"
1332 #endif
1333 
1334 #if NACPI > 0
1335 
1336 #include <dev/acpi/acpireg.h>
1337 #include <dev/acpi/acpivar.h>
1338 #include <dev/acpi/amltypes.h>
1339 #include <dev/acpi/dsdt.h>
1340 
1341 acpi_status
1342 acpi_get_table(const char *sig, int instance,
1343     struct acpi_table_header **hdr)
1344 {
1345 	struct acpi_softc *sc = acpi_softc;
1346 	struct acpi_q *entry;
1347 
1348 	KASSERT(instance == 1);
1349 
1350 	if (sc == NULL)
1351 		return AE_NOT_FOUND;
1352 
1353 	SIMPLEQ_FOREACH(entry, &sc->sc_tables, q_next) {
1354 		if (memcmp(entry->q_table, sig, strlen(sig)) == 0) {
1355 			*hdr = entry->q_table;
1356 			return 0;
1357 		}
1358 	}
1359 
1360 	return AE_NOT_FOUND;
1361 }
1362 
1363 void
1364 acpi_put_table(struct acpi_table_header *hdr)
1365 {
1366 }
1367 
1368 acpi_status
1369 acpi_get_handle(acpi_handle node, const char *name, acpi_handle *rnode)
1370 {
1371 	node = aml_searchname(node, name);
1372 	if (node == NULL)
1373 		return AE_NOT_FOUND;
1374 
1375 	*rnode = node;
1376 	return 0;
1377 }
1378 
1379 acpi_status
1380 acpi_get_name(acpi_handle node, int type,  struct acpi_buffer *buffer)
1381 {
1382 	KASSERT(buffer->length != ACPI_ALLOCATE_BUFFER);
1383 	KASSERT(type == ACPI_FULL_PATHNAME);
1384 	strlcpy(buffer->pointer, aml_nodename(node), buffer->length);
1385 	return 0;
1386 }
1387 
1388 acpi_status
1389 acpi_evaluate_object(acpi_handle node, const char *name,
1390     struct acpi_object_list *params, struct acpi_buffer *result)
1391 {
1392 	struct aml_value args[4], res;
1393 	union acpi_object *obj;
1394 	uint8_t *data;
1395 	int i;
1396 
1397 	KASSERT(params->count <= nitems(args));
1398 
1399 	for (i = 0; i < params->count; i++) {
1400 		args[i].type = params->pointer[i].type;
1401 		switch (args[i].type) {
1402 		case AML_OBJTYPE_INTEGER:
1403 			args[i].v_integer = params->pointer[i].integer.value;
1404 			break;
1405 		case AML_OBJTYPE_BUFFER:
1406 			args[i].length = params->pointer[i].buffer.length;
1407 			args[i].v_buffer = params->pointer[i].buffer.pointer;
1408 			break;
1409 		default:
1410 			printf("%s: arg type 0x%02x", __func__, args[i].type);
1411 			return AE_BAD_PARAMETER;
1412 		}
1413 	}
1414 
1415 	if (name) {
1416 		node = aml_searchname(node, name);
1417 		if (node == NULL)
1418 			return AE_NOT_FOUND;
1419 	}
1420 	if (aml_evalnode(acpi_softc, node, params->count, args, &res)) {
1421 		aml_freevalue(&res);
1422 		return AE_ERROR;
1423 	}
1424 
1425 	KASSERT(result->length == ACPI_ALLOCATE_BUFFER);
1426 
1427 	result->length = sizeof(union acpi_object);
1428 	switch (res.type) {
1429 	case AML_OBJTYPE_BUFFER:
1430 		result->length += res.length;
1431 		result->pointer = malloc(result->length, M_DRM, M_WAITOK);
1432 		obj = (union acpi_object *)result->pointer;
1433 		data = (uint8_t *)(obj + 1);
1434 		obj->type = res.type;
1435 		obj->buffer.length = res.length;
1436 		obj->buffer.pointer = data;
1437 		memcpy(data, res.v_buffer, res.length);
1438 		break;
1439 	default:
1440 		printf("%s: return type 0x%02x", __func__, res.type);
1441 		aml_freevalue(&res);
1442 		return AE_ERROR;
1443 	}
1444 
1445 	aml_freevalue(&res);
1446 	return 0;
1447 }
1448 
1449 SLIST_HEAD(, notifier_block) drm_linux_acpi_notify_list =
1450 	SLIST_HEAD_INITIALIZER(drm_linux_acpi_notify_list);
1451 
1452 int
1453 drm_linux_acpi_notify(struct aml_node *node, int notify, void *arg)
1454 {
1455 	struct acpi_bus_event event;
1456 	struct notifier_block *nb;
1457 
1458 	event.device_class = ACPI_VIDEO_CLASS;
1459 	event.type = notify;
1460 
1461 	SLIST_FOREACH(nb, &drm_linux_acpi_notify_list, link)
1462 		nb->notifier_call(nb, 0, &event);
1463 	return 0;
1464 }
1465 
1466 int
1467 register_acpi_notifier(struct notifier_block *nb)
1468 {
1469 	SLIST_INSERT_HEAD(&drm_linux_acpi_notify_list, nb, link);
1470 	return 0;
1471 }
1472 
1473 int
1474 unregister_acpi_notifier(struct notifier_block *nb)
1475 {
1476 	struct notifier_block *tmp;
1477 
1478 	SLIST_FOREACH(tmp, &drm_linux_acpi_notify_list, link) {
1479 		if (tmp == nb) {
1480 			SLIST_REMOVE(&drm_linux_acpi_notify_list, nb,
1481 			    notifier_block, link);
1482 			return 0;
1483 		}
1484 	}
1485 
1486 	return -ENOENT;
1487 }
1488 
1489 const char *
1490 acpi_format_exception(acpi_status status)
1491 {
1492 	switch (status) {
1493 	case AE_NOT_FOUND:
1494 		return "not found";
1495 	case AE_BAD_PARAMETER:
1496 		return "bad parameter";
1497 	default:
1498 		return "unknown";
1499 	}
1500 }
1501 
1502 #endif
1503 
1504 void
1505 backlight_do_update_status(void *arg)
1506 {
1507 	backlight_update_status(arg);
1508 }
1509 
1510 struct backlight_device *
1511 backlight_device_register(const char *name, void *kdev, void *data,
1512     const struct backlight_ops *ops, struct backlight_properties *props)
1513 {
1514 	struct backlight_device *bd;
1515 
1516 	bd = malloc(sizeof(*bd), M_DRM, M_WAITOK);
1517 	bd->ops = ops;
1518 	bd->props = *props;
1519 	bd->data = data;
1520 
1521 	task_set(&bd->task, backlight_do_update_status, bd);
1522 
1523 	return bd;
1524 }
1525 
1526 void
1527 backlight_device_unregister(struct backlight_device *bd)
1528 {
1529 	free(bd, M_DRM, sizeof(*bd));
1530 }
1531 
1532 struct backlight_device *
1533 devm_backlight_device_register(void *dev, const char *name, void *parent,
1534     void *data, const struct backlight_ops *bo,
1535     const struct backlight_properties *bp)
1536 {
1537 	STUB();
1538 	return NULL;
1539 }
1540 
1541 void
1542 backlight_schedule_update_status(struct backlight_device *bd)
1543 {
1544 	task_add(systq, &bd->task);
1545 }
1546 
1547 inline int
1548 backlight_enable(struct backlight_device *bd)
1549 {
1550 	if (bd == NULL)
1551 		return 0;
1552 
1553 	bd->props.power = FB_BLANK_UNBLANK;
1554 
1555 	return bd->ops->update_status(bd);
1556 }
1557 
1558 inline int
1559 backlight_disable(struct backlight_device *bd)
1560 {
1561 	if (bd == NULL)
1562 		return 0;
1563 
1564 	bd->props.power = FB_BLANK_POWERDOWN;
1565 
1566 	return bd->ops->update_status(bd);
1567 }
1568 
1569 void
1570 drm_sysfs_hotplug_event(struct drm_device *dev)
1571 {
1572 	knote_locked(&dev->note, NOTE_CHANGE);
1573 }
1574 
1575 void
1576 drm_sysfs_connector_hotplug_event(struct drm_connector *connector)
1577 {
1578 	knote_locked(&connector->dev->note, NOTE_CHANGE);
1579 }
1580 
1581 void
1582 drm_sysfs_connector_status_event(struct drm_connector *connector,
1583     struct drm_property *property)
1584 {
1585 	STUB();
1586 }
1587 
1588 struct dma_fence *
1589 dma_fence_get(struct dma_fence *fence)
1590 {
1591 	if (fence)
1592 		kref_get(&fence->refcount);
1593 	return fence;
1594 }
1595 
1596 struct dma_fence *
1597 dma_fence_get_rcu(struct dma_fence *fence)
1598 {
1599 	if (fence)
1600 		kref_get(&fence->refcount);
1601 	return fence;
1602 }
1603 
1604 struct dma_fence *
1605 dma_fence_get_rcu_safe(struct dma_fence **dfp)
1606 {
1607 	struct dma_fence *fence;
1608 	if (dfp == NULL)
1609 		return NULL;
1610 	fence = *dfp;
1611 	if (fence)
1612 		kref_get(&fence->refcount);
1613 	return fence;
1614 }
1615 
1616 void
1617 dma_fence_release(struct kref *ref)
1618 {
1619 	struct dma_fence *fence = container_of(ref, struct dma_fence, refcount);
1620 	if (fence->ops && fence->ops->release)
1621 		fence->ops->release(fence);
1622 	else
1623 		free(fence, M_DRM, 0);
1624 }
1625 
1626 void
1627 dma_fence_put(struct dma_fence *fence)
1628 {
1629 	if (fence)
1630 		kref_put(&fence->refcount, dma_fence_release);
1631 }
1632 
1633 int
1634 dma_fence_signal_timestamp_locked(struct dma_fence *fence, ktime_t timestamp)
1635 {
1636 	struct dma_fence_cb *cur, *tmp;
1637 	struct list_head cb_list;
1638 
1639 	if (fence == NULL)
1640 		return -EINVAL;
1641 
1642 	if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1643 		return -EINVAL;
1644 
1645 	list_replace(&fence->cb_list, &cb_list);
1646 
1647 	fence->timestamp = timestamp;
1648 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
1649 
1650 	list_for_each_entry_safe(cur, tmp, &cb_list, node) {
1651 		INIT_LIST_HEAD(&cur->node);
1652 		cur->func(fence, cur);
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 int
1659 dma_fence_signal(struct dma_fence *fence)
1660 {
1661 	int r;
1662 
1663 	if (fence == NULL)
1664 		return -EINVAL;
1665 
1666 	mtx_enter(fence->lock);
1667 	r = dma_fence_signal_timestamp_locked(fence, ktime_get());
1668 	mtx_leave(fence->lock);
1669 
1670 	return r;
1671 }
1672 
1673 int
1674 dma_fence_signal_locked(struct dma_fence *fence)
1675 {
1676 	if (fence == NULL)
1677 		return -EINVAL;
1678 
1679 	return dma_fence_signal_timestamp_locked(fence, ktime_get());
1680 }
1681 
1682 int
1683 dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
1684 {
1685 	int r;
1686 
1687 	if (fence == NULL)
1688 		return -EINVAL;
1689 
1690 	mtx_enter(fence->lock);
1691 	r = dma_fence_signal_timestamp_locked(fence, timestamp);
1692 	mtx_leave(fence->lock);
1693 
1694 	return r;
1695 }
1696 
1697 bool
1698 dma_fence_is_signaled(struct dma_fence *fence)
1699 {
1700 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1701 		return true;
1702 
1703 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
1704 		dma_fence_signal(fence);
1705 		return true;
1706 	}
1707 
1708 	return false;
1709 }
1710 
1711 bool
1712 dma_fence_is_signaled_locked(struct dma_fence *fence)
1713 {
1714 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1715 		return true;
1716 
1717 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
1718 		dma_fence_signal_locked(fence);
1719 		return true;
1720 	}
1721 
1722 	return false;
1723 }
1724 
1725 ktime_t
1726 dma_fence_timestamp(struct dma_fence *fence)
1727 {
1728 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1729 		while (!test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags))
1730 			CPU_BUSY_CYCLE();
1731 		return fence->timestamp;
1732 	} else {
1733 		return ktime_get();
1734 	}
1735 }
1736 
1737 long
1738 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout)
1739 {
1740 	if (timeout < 0)
1741 		return -EINVAL;
1742 
1743 	if (fence->ops->wait)
1744 		return fence->ops->wait(fence, intr, timeout);
1745 	else
1746 		return dma_fence_default_wait(fence, intr, timeout);
1747 }
1748 
1749 long
1750 dma_fence_wait(struct dma_fence *fence, bool intr)
1751 {
1752 	long ret;
1753 
1754 	ret = dma_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
1755 	if (ret < 0)
1756 		return ret;
1757 
1758 	return 0;
1759 }
1760 
1761 void
1762 dma_fence_enable_sw_signaling(struct dma_fence *fence)
1763 {
1764 	if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags) &&
1765 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) &&
1766 	    fence->ops->enable_signaling) {
1767 		mtx_enter(fence->lock);
1768 		if (!fence->ops->enable_signaling(fence))
1769 			dma_fence_signal_locked(fence);
1770 		mtx_leave(fence->lock);
1771 	}
1772 }
1773 
1774 void
1775 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
1776     struct mutex *lock, uint64_t context, uint64_t seqno)
1777 {
1778 	fence->ops = ops;
1779 	fence->lock = lock;
1780 	fence->context = context;
1781 	fence->seqno = seqno;
1782 	fence->flags = 0;
1783 	fence->error = 0;
1784 	kref_init(&fence->refcount);
1785 	INIT_LIST_HEAD(&fence->cb_list);
1786 }
1787 
1788 int
1789 dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
1790     dma_fence_func_t func)
1791 {
1792 	int ret = 0;
1793 	bool was_set;
1794 
1795 	if (WARN_ON(!fence || !func))
1796 		return -EINVAL;
1797 
1798 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1799 		INIT_LIST_HEAD(&cb->node);
1800 		return -ENOENT;
1801 	}
1802 
1803 	mtx_enter(fence->lock);
1804 
1805 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
1806 
1807 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1808 		ret = -ENOENT;
1809 	else if (!was_set && fence->ops->enable_signaling) {
1810 		if (!fence->ops->enable_signaling(fence)) {
1811 			dma_fence_signal_locked(fence);
1812 			ret = -ENOENT;
1813 		}
1814 	}
1815 
1816 	if (!ret) {
1817 		cb->func = func;
1818 		list_add_tail(&cb->node, &fence->cb_list);
1819 	} else
1820 		INIT_LIST_HEAD(&cb->node);
1821 	mtx_leave(fence->lock);
1822 
1823 	return ret;
1824 }
1825 
1826 bool
1827 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
1828 {
1829 	bool ret;
1830 
1831 	mtx_enter(fence->lock);
1832 
1833 	ret = !list_empty(&cb->node);
1834 	if (ret)
1835 		list_del_init(&cb->node);
1836 
1837 	mtx_leave(fence->lock);
1838 
1839 	return ret;
1840 }
1841 
1842 static atomic64_t drm_fence_context_count = ATOMIC64_INIT(1);
1843 
1844 uint64_t
1845 dma_fence_context_alloc(unsigned int num)
1846 {
1847   return atomic64_add_return(num, &drm_fence_context_count) - num;
1848 }
1849 
1850 struct default_wait_cb {
1851 	struct dma_fence_cb base;
1852 	struct proc *proc;
1853 };
1854 
1855 static void
1856 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1857 {
1858 	struct default_wait_cb *wait =
1859 	    container_of(cb, struct default_wait_cb, base);
1860 	wake_up_process(wait->proc);
1861 }
1862 
1863 long
1864 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
1865 {
1866 	long ret = timeout ? timeout : 1;
1867 	unsigned long end;
1868 	int err;
1869 	struct default_wait_cb cb;
1870 	bool was_set;
1871 
1872 	KASSERT(timeout <= INT_MAX);
1873 
1874 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1875 		return ret;
1876 
1877 	mtx_enter(fence->lock);
1878 
1879 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1880 	    &fence->flags);
1881 
1882 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1883 		goto out;
1884 
1885 	if (!was_set && fence->ops->enable_signaling) {
1886 		if (!fence->ops->enable_signaling(fence)) {
1887 			dma_fence_signal_locked(fence);
1888 			goto out;
1889 		}
1890 	}
1891 
1892 	if (timeout == 0) {
1893 		ret = 0;
1894 		goto out;
1895 	}
1896 
1897 	cb.base.func = dma_fence_default_wait_cb;
1898 	cb.proc = curproc;
1899 	list_add(&cb.base.node, &fence->cb_list);
1900 
1901 	end = jiffies + timeout;
1902 	for (ret = timeout; ret > 0; ret = MAX(0, end - jiffies)) {
1903 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1904 			break;
1905 		err = msleep(curproc, fence->lock, intr ? PCATCH : 0,
1906 		    "dmafence", ret);
1907 		if (err == EINTR || err == ERESTART) {
1908 			ret = -ERESTARTSYS;
1909 			break;
1910 		}
1911 	}
1912 
1913 	if (!list_empty(&cb.base.node))
1914 		list_del(&cb.base.node);
1915 out:
1916 	mtx_leave(fence->lock);
1917 
1918 	return ret;
1919 }
1920 
1921 static bool
1922 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
1923     uint32_t *idx)
1924 {
1925 	int i;
1926 
1927 	for (i = 0; i < count; ++i) {
1928 		struct dma_fence *fence = fences[i];
1929 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1930 			if (idx)
1931 				*idx = i;
1932 			return true;
1933 		}
1934 	}
1935 	return false;
1936 }
1937 
1938 long
1939 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
1940     bool intr, long timeout, uint32_t *idx)
1941 {
1942 	struct default_wait_cb *cb;
1943 	long ret = timeout;
1944 	unsigned long end;
1945 	int i, err;
1946 
1947 	KASSERT(timeout <= INT_MAX);
1948 
1949 	if (timeout == 0) {
1950 		for (i = 0; i < count; i++) {
1951 			if (dma_fence_is_signaled(fences[i])) {
1952 				if (idx)
1953 					*idx = i;
1954 				return 1;
1955 			}
1956 		}
1957 		return 0;
1958 	}
1959 
1960 	cb = mallocarray(count, sizeof(*cb), M_DRM, M_WAITOK|M_CANFAIL|M_ZERO);
1961 	if (cb == NULL)
1962 		return -ENOMEM;
1963 
1964 	for (i = 0; i < count; i++) {
1965 		struct dma_fence *fence = fences[i];
1966 		cb[i].proc = curproc;
1967 		if (dma_fence_add_callback(fence, &cb[i].base,
1968 		    dma_fence_default_wait_cb)) {
1969 			if (idx)
1970 				*idx = i;
1971 			goto cb_cleanup;
1972 		}
1973 	}
1974 
1975 	end = jiffies + timeout;
1976 	for (ret = timeout; ret > 0; ret = MAX(0, end - jiffies)) {
1977 		if (dma_fence_test_signaled_any(fences, count, idx))
1978 			break;
1979 		err = tsleep(curproc, intr ? PCATCH : 0, "dfwat", ret);
1980 		if (err == EINTR || err == ERESTART) {
1981 			ret = -ERESTARTSYS;
1982 			break;
1983 		}
1984 	}
1985 
1986 cb_cleanup:
1987 	while (i-- > 0)
1988 		dma_fence_remove_callback(fences[i], &cb[i].base);
1989 	free(cb, M_DRM, count * sizeof(*cb));
1990 	return ret;
1991 }
1992 
1993 static struct dma_fence dma_fence_stub;
1994 static struct mutex dma_fence_stub_mtx = MUTEX_INITIALIZER(IPL_TTY);
1995 
1996 static const char *
1997 dma_fence_stub_get_name(struct dma_fence *fence)
1998 {
1999 	return "stub";
2000 }
2001 
2002 static const struct dma_fence_ops dma_fence_stub_ops = {
2003 	.get_driver_name = dma_fence_stub_get_name,
2004 	.get_timeline_name = dma_fence_stub_get_name,
2005 };
2006 
2007 struct dma_fence *
2008 dma_fence_get_stub(void)
2009 {
2010 	mtx_enter(&dma_fence_stub_mtx);
2011 	if (dma_fence_stub.ops == NULL) {
2012 		dma_fence_init(&dma_fence_stub, &dma_fence_stub_ops,
2013 		    &dma_fence_stub_mtx, 0, 0);
2014 		dma_fence_signal_locked(&dma_fence_stub);
2015 	}
2016 	mtx_leave(&dma_fence_stub_mtx);
2017 
2018 	return dma_fence_get(&dma_fence_stub);
2019 }
2020 
2021 struct dma_fence *
2022 dma_fence_allocate_private_stub(ktime_t ts)
2023 {
2024 	struct dma_fence *f = malloc(sizeof(*f), M_DRM,
2025 	    M_ZERO | M_WAITOK | M_CANFAIL);
2026 	if (f == NULL)
2027 		return NULL;
2028 	dma_fence_init(f, &dma_fence_stub_ops, &dma_fence_stub_mtx, 0, 0);
2029 	dma_fence_signal_timestamp(f, ts);
2030 	return f;
2031 }
2032 
2033 static const char *
2034 dma_fence_array_get_driver_name(struct dma_fence *fence)
2035 {
2036 	return "dma_fence_array";
2037 }
2038 
2039 static const char *
2040 dma_fence_array_get_timeline_name(struct dma_fence *fence)
2041 {
2042 	return "unbound";
2043 }
2044 
2045 static void
2046 irq_dma_fence_array_work(void *arg)
2047 {
2048 	struct dma_fence_array *dfa = (struct dma_fence_array *)arg;
2049 	dma_fence_signal(&dfa->base);
2050 	dma_fence_put(&dfa->base);
2051 }
2052 
2053 static void
2054 dma_fence_array_cb_func(struct dma_fence *f, struct dma_fence_cb *cb)
2055 {
2056 	struct dma_fence_array_cb *array_cb =
2057 	    container_of(cb, struct dma_fence_array_cb, cb);
2058 	struct dma_fence_array *dfa = array_cb->array;
2059 
2060 	if (atomic_dec_and_test(&dfa->num_pending))
2061 		timeout_add(&dfa->to, 1);
2062 	else
2063 		dma_fence_put(&dfa->base);
2064 }
2065 
2066 static bool
2067 dma_fence_array_enable_signaling(struct dma_fence *fence)
2068 {
2069 	struct dma_fence_array *dfa = to_dma_fence_array(fence);
2070 	struct dma_fence_array_cb *cb = (void *)(&dfa[1]);
2071 	int i;
2072 
2073 	for (i = 0; i < dfa->num_fences; ++i) {
2074 		cb[i].array = dfa;
2075 		dma_fence_get(&dfa->base);
2076 		if (dma_fence_add_callback(dfa->fences[i], &cb[i].cb,
2077 		    dma_fence_array_cb_func)) {
2078 			dma_fence_put(&dfa->base);
2079 			if (atomic_dec_and_test(&dfa->num_pending))
2080 				return false;
2081 		}
2082 	}
2083 
2084 	return true;
2085 }
2086 
2087 static bool
2088 dma_fence_array_signaled(struct dma_fence *fence)
2089 {
2090 	struct dma_fence_array *dfa = to_dma_fence_array(fence);
2091 
2092 	return atomic_read(&dfa->num_pending) <= 0;
2093 }
2094 
2095 static void
2096 dma_fence_array_release(struct dma_fence *fence)
2097 {
2098 	struct dma_fence_array *dfa = to_dma_fence_array(fence);
2099 	int i;
2100 
2101 	for (i = 0; i < dfa->num_fences; ++i)
2102 		dma_fence_put(dfa->fences[i]);
2103 
2104 	free(dfa->fences, M_DRM, 0);
2105 	dma_fence_free(fence);
2106 }
2107 
2108 struct dma_fence_array *
2109 dma_fence_array_create(int num_fences, struct dma_fence **fences, u64 context,
2110     unsigned seqno, bool signal_on_any)
2111 {
2112 	struct dma_fence_array *dfa = malloc(sizeof(*dfa) +
2113 	    (num_fences * sizeof(struct dma_fence_array_cb)),
2114 	    M_DRM, M_WAITOK|M_CANFAIL|M_ZERO);
2115 	if (dfa == NULL)
2116 		return NULL;
2117 
2118 	mtx_init(&dfa->lock, IPL_TTY);
2119 	dma_fence_init(&dfa->base, &dma_fence_array_ops, &dfa->lock,
2120 	    context, seqno);
2121 	timeout_set(&dfa->to, irq_dma_fence_array_work, dfa);
2122 
2123 	dfa->num_fences = num_fences;
2124 	atomic_set(&dfa->num_pending, signal_on_any ? 1 : num_fences);
2125 	dfa->fences = fences;
2126 
2127 	return dfa;
2128 }
2129 
2130 struct dma_fence *
2131 dma_fence_array_first(struct dma_fence *f)
2132 {
2133 	struct dma_fence_array *dfa;
2134 
2135 	if (f == NULL)
2136 		return NULL;
2137 
2138 	if ((dfa = to_dma_fence_array(f)) == NULL)
2139 		return f;
2140 
2141 	if (dfa->num_fences > 0)
2142 		return dfa->fences[0];
2143 
2144 	return NULL;
2145 }
2146 
2147 struct dma_fence *
2148 dma_fence_array_next(struct dma_fence *f, unsigned int i)
2149 {
2150 	struct dma_fence_array *dfa;
2151 
2152 	if (f == NULL)
2153 		return NULL;
2154 
2155 	if ((dfa = to_dma_fence_array(f)) == NULL)
2156 		return NULL;
2157 
2158 	if (i < dfa->num_fences)
2159 		return dfa->fences[i];
2160 
2161 	return NULL;
2162 }
2163 
2164 const struct dma_fence_ops dma_fence_array_ops = {
2165 	.get_driver_name = dma_fence_array_get_driver_name,
2166 	.get_timeline_name = dma_fence_array_get_timeline_name,
2167 	.enable_signaling = dma_fence_array_enable_signaling,
2168 	.signaled = dma_fence_array_signaled,
2169 	.release = dma_fence_array_release,
2170 };
2171 
2172 int
2173 dma_fence_chain_find_seqno(struct dma_fence **df, uint64_t seqno)
2174 {
2175 	struct dma_fence_chain *chain;
2176 	struct dma_fence *fence;
2177 
2178 	if (seqno == 0)
2179 		return 0;
2180 
2181 	if ((chain = to_dma_fence_chain(*df)) == NULL)
2182 		return -EINVAL;
2183 
2184 	fence = &chain->base;
2185 	if (fence->seqno < seqno)
2186 		return -EINVAL;
2187 
2188 	dma_fence_chain_for_each(*df, fence) {
2189 		if ((*df)->context != fence->context)
2190 			break;
2191 
2192 		chain = to_dma_fence_chain(*df);
2193 		if (chain->prev_seqno < seqno)
2194 			break;
2195 	}
2196 	dma_fence_put(fence);
2197 
2198 	return 0;
2199 }
2200 
2201 void
2202 dma_fence_chain_init(struct dma_fence_chain *chain, struct dma_fence *prev,
2203     struct dma_fence *fence, uint64_t seqno)
2204 {
2205 	uint64_t context;
2206 
2207 	chain->fence = fence;
2208 	chain->prev = prev;
2209 	mtx_init(&chain->lock, IPL_TTY);
2210 
2211 	/* if prev is a chain */
2212 	if (to_dma_fence_chain(prev) != NULL) {
2213 		if (__dma_fence_is_later(seqno, prev->seqno, prev->ops)) {
2214 			chain->prev_seqno = prev->seqno;
2215 			context = prev->context;
2216 		} else {
2217 			chain->prev_seqno = 0;
2218 			context = dma_fence_context_alloc(1);
2219 			seqno = prev->seqno;
2220 		}
2221 	} else {
2222 		chain->prev_seqno = 0;
2223 		context = dma_fence_context_alloc(1);
2224 	}
2225 
2226 	dma_fence_init(&chain->base, &dma_fence_chain_ops, &chain->lock,
2227 	    context, seqno);
2228 }
2229 
2230 static const char *
2231 dma_fence_chain_get_driver_name(struct dma_fence *fence)
2232 {
2233 	return "dma_fence_chain";
2234 }
2235 
2236 static const char *
2237 dma_fence_chain_get_timeline_name(struct dma_fence *fence)
2238 {
2239 	return "unbound";
2240 }
2241 
2242 static bool dma_fence_chain_enable_signaling(struct dma_fence *);
2243 
2244 static void
2245 dma_fence_chain_timo(void *arg)
2246 {
2247 	struct dma_fence_chain *chain = (struct dma_fence_chain *)arg;
2248 
2249 	if (dma_fence_chain_enable_signaling(&chain->base) == false)
2250 		dma_fence_signal(&chain->base);
2251 	dma_fence_put(&chain->base);
2252 }
2253 
2254 static void
2255 dma_fence_chain_cb(struct dma_fence *f, struct dma_fence_cb *cb)
2256 {
2257 	struct dma_fence_chain *chain =
2258 	    container_of(cb, struct dma_fence_chain, cb);
2259 	timeout_set(&chain->to, dma_fence_chain_timo, chain);
2260 	timeout_add(&chain->to, 1);
2261 	dma_fence_put(f);
2262 }
2263 
2264 static bool
2265 dma_fence_chain_enable_signaling(struct dma_fence *fence)
2266 {
2267 	struct dma_fence_chain *chain, *h;
2268 	struct dma_fence *f;
2269 
2270 	h = to_dma_fence_chain(fence);
2271 	dma_fence_get(&h->base);
2272 	dma_fence_chain_for_each(fence, &h->base) {
2273 		chain = to_dma_fence_chain(fence);
2274 		if (chain == NULL)
2275 			f = fence;
2276 		else
2277 			f = chain->fence;
2278 
2279 		dma_fence_get(f);
2280 		if (!dma_fence_add_callback(f, &h->cb, dma_fence_chain_cb)) {
2281 			dma_fence_put(fence);
2282 			return true;
2283 		}
2284 		dma_fence_put(f);
2285 	}
2286 	dma_fence_put(&h->base);
2287 	return false;
2288 }
2289 
2290 static bool
2291 dma_fence_chain_signaled(struct dma_fence *fence)
2292 {
2293 	struct dma_fence_chain *chain;
2294 	struct dma_fence *f;
2295 
2296 	dma_fence_chain_for_each(fence, fence) {
2297 		chain = to_dma_fence_chain(fence);
2298 		if (chain == NULL)
2299 			f = fence;
2300 		else
2301 			f = chain->fence;
2302 
2303 		if (dma_fence_is_signaled(f) == false) {
2304 			dma_fence_put(fence);
2305 			return false;
2306 		}
2307 	}
2308 	return true;
2309 }
2310 
2311 static void
2312 dma_fence_chain_release(struct dma_fence *fence)
2313 {
2314 	struct dma_fence_chain *chain = to_dma_fence_chain(fence);
2315 	struct dma_fence_chain *prev_chain;
2316 	struct dma_fence *prev;
2317 
2318 	for (prev = chain->prev; prev != NULL; prev = chain->prev) {
2319 		if (kref_read(&prev->refcount) > 1)
2320 			break;
2321 		if ((prev_chain = to_dma_fence_chain(prev)) == NULL)
2322 			break;
2323 		chain->prev = prev_chain->prev;
2324 		prev_chain->prev = NULL;
2325 		dma_fence_put(prev);
2326 	}
2327 	dma_fence_put(prev);
2328 	dma_fence_put(chain->fence);
2329 	dma_fence_free(fence);
2330 }
2331 
2332 struct dma_fence *
2333 dma_fence_chain_walk(struct dma_fence *fence)
2334 {
2335 	struct dma_fence_chain *chain = to_dma_fence_chain(fence), *prev_chain;
2336 	struct dma_fence *prev, *new_prev, *tmp;
2337 
2338 	if (chain == NULL) {
2339 		dma_fence_put(fence);
2340 		return NULL;
2341 	}
2342 
2343 	while ((prev = dma_fence_get(chain->prev)) != NULL) {
2344 		prev_chain = to_dma_fence_chain(prev);
2345 		if (prev_chain != NULL) {
2346 			if (!dma_fence_is_signaled(prev_chain->fence))
2347 				break;
2348 			new_prev = dma_fence_get(prev_chain->prev);
2349 		} else {
2350 			if (!dma_fence_is_signaled(prev))
2351 				break;
2352 			new_prev = NULL;
2353 		}
2354 		tmp = atomic_cas_ptr(&chain->prev, prev, new_prev);
2355 		dma_fence_put(tmp == prev ? prev : new_prev);
2356 		dma_fence_put(prev);
2357 	}
2358 
2359 	dma_fence_put(fence);
2360 	return prev;
2361 }
2362 
2363 const struct dma_fence_ops dma_fence_chain_ops = {
2364 	.get_driver_name = dma_fence_chain_get_driver_name,
2365 	.get_timeline_name = dma_fence_chain_get_timeline_name,
2366 	.enable_signaling = dma_fence_chain_enable_signaling,
2367 	.signaled = dma_fence_chain_signaled,
2368 	.release = dma_fence_chain_release,
2369 	.use_64bit_seqno = true,
2370 };
2371 
2372 bool
2373 dma_fence_is_container(struct dma_fence *fence)
2374 {
2375 	return (fence->ops == &dma_fence_chain_ops) ||
2376 	    (fence->ops == &dma_fence_array_ops);
2377 }
2378 
2379 int
2380 dmabuf_read(struct file *fp, struct uio *uio, int fflags)
2381 {
2382 	return (ENXIO);
2383 }
2384 
2385 int
2386 dmabuf_write(struct file *fp, struct uio *uio, int fflags)
2387 {
2388 	return (ENXIO);
2389 }
2390 
2391 int
2392 dmabuf_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
2393 {
2394 	return (ENOTTY);
2395 }
2396 
2397 int
2398 dmabuf_kqfilter(struct file *fp, struct knote *kn)
2399 {
2400 	return (EINVAL);
2401 }
2402 
2403 int
2404 dmabuf_stat(struct file *fp, struct stat *st, struct proc *p)
2405 {
2406 	struct dma_buf *dmabuf = fp->f_data;
2407 
2408 	memset(st, 0, sizeof(*st));
2409 	st->st_size = dmabuf->size;
2410 	st->st_mode = S_IFIFO;	/* XXX */
2411 	return (0);
2412 }
2413 
2414 int
2415 dmabuf_close(struct file *fp, struct proc *p)
2416 {
2417 	struct dma_buf *dmabuf = fp->f_data;
2418 
2419 	fp->f_data = NULL;
2420 	KERNEL_LOCK();
2421 	dmabuf->ops->release(dmabuf);
2422 	KERNEL_UNLOCK();
2423 	free(dmabuf, M_DRM, sizeof(struct dma_buf));
2424 	return (0);
2425 }
2426 
2427 int
2428 dmabuf_seek(struct file *fp, off_t *offset, int whence, struct proc *p)
2429 {
2430 	struct dma_buf *dmabuf = fp->f_data;
2431 	off_t newoff;
2432 
2433 	if (*offset != 0)
2434 		return (EINVAL);
2435 
2436 	switch (whence) {
2437 	case SEEK_SET:
2438 		newoff = 0;
2439 		break;
2440 	case SEEK_END:
2441 		newoff = dmabuf->size;
2442 		break;
2443 	default:
2444 		return (EINVAL);
2445 	}
2446 	mtx_enter(&fp->f_mtx);
2447 	fp->f_offset = newoff;
2448 	mtx_leave(&fp->f_mtx);
2449 	*offset = newoff;
2450 	return (0);
2451 }
2452 
2453 const struct fileops dmabufops = {
2454 	.fo_read	= dmabuf_read,
2455 	.fo_write	= dmabuf_write,
2456 	.fo_ioctl	= dmabuf_ioctl,
2457 	.fo_kqfilter	= dmabuf_kqfilter,
2458 	.fo_stat	= dmabuf_stat,
2459 	.fo_close	= dmabuf_close,
2460 	.fo_seek	= dmabuf_seek,
2461 };
2462 
2463 struct dma_buf *
2464 dma_buf_export(const struct dma_buf_export_info *info)
2465 {
2466 	struct proc *p = curproc;
2467 	struct dma_buf *dmabuf;
2468 	struct file *fp;
2469 
2470 	fp = fnew(p);
2471 	if (fp == NULL)
2472 		return ERR_PTR(-ENFILE);
2473 	fp->f_type = DTYPE_DMABUF;
2474 	fp->f_ops = &dmabufops;
2475 	dmabuf = malloc(sizeof(struct dma_buf), M_DRM, M_WAITOK | M_ZERO);
2476 	dmabuf->priv = info->priv;
2477 	dmabuf->ops = info->ops;
2478 	dmabuf->size = info->size;
2479 	dmabuf->file = fp;
2480 	fp->f_data = dmabuf;
2481 	INIT_LIST_HEAD(&dmabuf->attachments);
2482 	return dmabuf;
2483 }
2484 
2485 struct dma_buf *
2486 dma_buf_get(int fd)
2487 {
2488 	struct proc *p = curproc;
2489 	struct filedesc *fdp = p->p_fd;
2490 	struct file *fp;
2491 
2492 	if ((fp = fd_getfile(fdp, fd)) == NULL)
2493 		return ERR_PTR(-EBADF);
2494 
2495 	if (fp->f_type != DTYPE_DMABUF) {
2496 		FRELE(fp, p);
2497 		return ERR_PTR(-EINVAL);
2498 	}
2499 
2500 	return fp->f_data;
2501 }
2502 
2503 void
2504 dma_buf_put(struct dma_buf *dmabuf)
2505 {
2506 	KASSERT(dmabuf);
2507 	KASSERT(dmabuf->file);
2508 
2509 	FRELE(dmabuf->file, curproc);
2510 }
2511 
2512 int
2513 dma_buf_fd(struct dma_buf *dmabuf, int flags)
2514 {
2515 	struct proc *p = curproc;
2516 	struct filedesc *fdp = p->p_fd;
2517 	struct file *fp = dmabuf->file;
2518 	int fd, cloexec, error;
2519 
2520 	cloexec = (flags & O_CLOEXEC) ? UF_EXCLOSE : 0;
2521 
2522 	fdplock(fdp);
2523 restart:
2524 	if ((error = fdalloc(p, 0, &fd)) != 0) {
2525 		if (error == ENOSPC) {
2526 			fdexpand(p);
2527 			goto restart;
2528 		}
2529 		fdpunlock(fdp);
2530 		return -error;
2531 	}
2532 
2533 	fdinsert(fdp, fd, cloexec, fp);
2534 	fdpunlock(fdp);
2535 
2536 	return fd;
2537 }
2538 
2539 void
2540 get_dma_buf(struct dma_buf *dmabuf)
2541 {
2542 	FREF(dmabuf->file);
2543 }
2544 
2545 enum pci_bus_speed
2546 pcie_get_speed_cap(struct pci_dev *pdev)
2547 {
2548 	pci_chipset_tag_t	pc;
2549 	pcitag_t		tag;
2550 	int			pos ;
2551 	pcireg_t		xcap, lnkcap = 0, lnkcap2 = 0;
2552 	pcireg_t		id;
2553 	enum pci_bus_speed	cap = PCI_SPEED_UNKNOWN;
2554 	int			bus, device, function;
2555 
2556 	if (pdev == NULL)
2557 		return PCI_SPEED_UNKNOWN;
2558 
2559 	pc = pdev->pc;
2560 	tag = pdev->tag;
2561 
2562 	if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS,
2563 	    &pos, NULL))
2564 		return PCI_SPEED_UNKNOWN;
2565 
2566 	id = pci_conf_read(pc, tag, PCI_ID_REG);
2567 	pci_decompose_tag(pc, tag, &bus, &device, &function);
2568 
2569 	/* we've been informed via and serverworks don't make the cut */
2570 	if (PCI_VENDOR(id) == PCI_VENDOR_VIATECH ||
2571 	    PCI_VENDOR(id) == PCI_VENDOR_RCC)
2572 		return PCI_SPEED_UNKNOWN;
2573 
2574 	lnkcap = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP);
2575 	xcap = pci_conf_read(pc, tag, pos + PCI_PCIE_XCAP);
2576 	if (PCI_PCIE_XCAP_VER(xcap) >= 2)
2577 		lnkcap2 = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP2);
2578 
2579 	lnkcap &= 0x0f;
2580 	lnkcap2 &= 0xfe;
2581 
2582 	if (lnkcap2) { /* PCIE GEN 3.0 */
2583 		if (lnkcap2 & 0x02)
2584 			cap = PCIE_SPEED_2_5GT;
2585 		if (lnkcap2 & 0x04)
2586 			cap = PCIE_SPEED_5_0GT;
2587 		if (lnkcap2 & 0x08)
2588 			cap = PCIE_SPEED_8_0GT;
2589 		if (lnkcap2 & 0x10)
2590 			cap = PCIE_SPEED_16_0GT;
2591 		if (lnkcap2 & 0x20)
2592 			cap = PCIE_SPEED_32_0GT;
2593 		if (lnkcap2 & 0x40)
2594 			cap = PCIE_SPEED_64_0GT;
2595 	} else {
2596 		if (lnkcap & 0x01)
2597 			cap = PCIE_SPEED_2_5GT;
2598 		if (lnkcap & 0x02)
2599 			cap = PCIE_SPEED_5_0GT;
2600 	}
2601 
2602 	DRM_INFO("probing pcie caps for device %d:%d:%d 0x%04x:0x%04x = %x/%x\n",
2603 	    bus, device, function, PCI_VENDOR(id), PCI_PRODUCT(id), lnkcap,
2604 	    lnkcap2);
2605 	return cap;
2606 }
2607 
2608 enum pcie_link_width
2609 pcie_get_width_cap(struct pci_dev *pdev)
2610 {
2611 	pci_chipset_tag_t	pc = pdev->pc;
2612 	pcitag_t		tag = pdev->tag;
2613 	int			pos ;
2614 	pcireg_t		lnkcap = 0;
2615 	pcireg_t		id;
2616 	int			bus, device, function;
2617 
2618 	if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS,
2619 	    &pos, NULL))
2620 		return PCIE_LNK_WIDTH_UNKNOWN;
2621 
2622 	id = pci_conf_read(pc, tag, PCI_ID_REG);
2623 	pci_decompose_tag(pc, tag, &bus, &device, &function);
2624 
2625 	lnkcap = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP);
2626 
2627 	DRM_INFO("probing pcie width for device %d:%d:%d 0x%04x:0x%04x = %x\n",
2628 	    bus, device, function, PCI_VENDOR(id), PCI_PRODUCT(id), lnkcap);
2629 
2630 	if (lnkcap)
2631 		return (lnkcap & 0x3f0) >> 4;
2632 	return PCIE_LNK_WIDTH_UNKNOWN;
2633 }
2634 
2635 bool
2636 pcie_aspm_enabled(struct pci_dev *pdev)
2637 {
2638 	pci_chipset_tag_t	pc = pdev->pc;
2639 	pcitag_t		tag = pdev->tag;
2640 	int			pos ;
2641 	pcireg_t		lcsr;
2642 
2643 	if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS,
2644 	    &pos, NULL))
2645 		return false;
2646 
2647 	lcsr = pci_conf_read(pc, tag, pos + PCI_PCIE_LCSR);
2648 	if ((lcsr & (PCI_PCIE_LCSR_ASPM_L0S | PCI_PCIE_LCSR_ASPM_L1)) != 0)
2649 		return true;
2650 
2651 	return false;
2652 }
2653 
2654 static wait_queue_head_t bit_waitq;
2655 wait_queue_head_t var_waitq;
2656 struct mutex wait_bit_mtx = MUTEX_INITIALIZER(IPL_TTY);
2657 
2658 int
2659 wait_on_bit(unsigned long *word, int bit, unsigned mode)
2660 {
2661 	int err;
2662 
2663 	if (!test_bit(bit, word))
2664 		return 0;
2665 
2666 	mtx_enter(&wait_bit_mtx);
2667 	while (test_bit(bit, word)) {
2668 		err = msleep_nsec(word, &wait_bit_mtx, PWAIT | mode, "wtb",
2669 		    INFSLP);
2670 		if (err) {
2671 			mtx_leave(&wait_bit_mtx);
2672 			return 1;
2673 		}
2674 	}
2675 	mtx_leave(&wait_bit_mtx);
2676 	return 0;
2677 }
2678 
2679 int
2680 wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, int timo)
2681 {
2682 	int err;
2683 
2684 	if (!test_bit(bit, word))
2685 		return 0;
2686 
2687 	mtx_enter(&wait_bit_mtx);
2688 	while (test_bit(bit, word)) {
2689 		err = msleep(word, &wait_bit_mtx, PWAIT | mode, "wtb", timo);
2690 		if (err) {
2691 			mtx_leave(&wait_bit_mtx);
2692 			return 1;
2693 		}
2694 	}
2695 	mtx_leave(&wait_bit_mtx);
2696 	return 0;
2697 }
2698 
2699 void
2700 wake_up_bit(void *word, int bit)
2701 {
2702 	mtx_enter(&wait_bit_mtx);
2703 	wakeup(word);
2704 	mtx_leave(&wait_bit_mtx);
2705 }
2706 
2707 void
2708 clear_and_wake_up_bit(int bit, void *word)
2709 {
2710 	clear_bit(bit, word);
2711 	wake_up_bit(word, bit);
2712 }
2713 
2714 wait_queue_head_t *
2715 bit_waitqueue(void *word, int bit)
2716 {
2717 	/* XXX hash table of wait queues? */
2718 	return &bit_waitq;
2719 }
2720 
2721 wait_queue_head_t *
2722 __var_waitqueue(void *p)
2723 {
2724 	/* XXX hash table of wait queues? */
2725 	return &bit_waitq;
2726 }
2727 
2728 struct workqueue_struct *system_wq;
2729 struct workqueue_struct *system_highpri_wq;
2730 struct workqueue_struct *system_unbound_wq;
2731 struct workqueue_struct *system_long_wq;
2732 struct taskq *taskletq;
2733 
2734 void
2735 drm_linux_init(void)
2736 {
2737 	system_wq = (struct workqueue_struct *)
2738 	    taskq_create("drmwq", 4, IPL_HIGH, 0);
2739 	system_highpri_wq = (struct workqueue_struct *)
2740 	    taskq_create("drmhpwq", 4, IPL_HIGH, 0);
2741 	system_unbound_wq = (struct workqueue_struct *)
2742 	    taskq_create("drmubwq", 4, IPL_HIGH, 0);
2743 	system_long_wq = (struct workqueue_struct *)
2744 	    taskq_create("drmlwq", 4, IPL_HIGH, 0);
2745 
2746 	taskletq = taskq_create("drmtskl", 1, IPL_HIGH, 0);
2747 
2748 	init_waitqueue_head(&bit_waitq);
2749 	init_waitqueue_head(&var_waitq);
2750 
2751 	pool_init(&idr_pool, sizeof(struct idr_entry), 0, IPL_TTY, 0,
2752 	    "idrpl", NULL);
2753 
2754 	kmap_atomic_va =
2755 	    (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_waitok);
2756 }
2757 
2758 void
2759 drm_linux_exit(void)
2760 {
2761 	pool_destroy(&idr_pool);
2762 
2763 	taskq_destroy(taskletq);
2764 
2765 	taskq_destroy((struct taskq *)system_long_wq);
2766 	taskq_destroy((struct taskq *)system_unbound_wq);
2767 	taskq_destroy((struct taskq *)system_highpri_wq);
2768 	taskq_destroy((struct taskq *)system_wq);
2769 }
2770 
2771 #define PCIE_ECAP_RESIZE_BAR	0x15
2772 #define RBCAP0			0x04
2773 #define RBCTRL0			0x08
2774 #define RBCTRL_BARINDEX_MASK	0x07
2775 #define RBCTRL_BARSIZE_MASK	0x1f00
2776 #define RBCTRL_BARSIZE_SHIFT	8
2777 
2778 /* size in MB is 1 << nsize */
2779 int
2780 pci_resize_resource(struct pci_dev *pdev, int bar, int nsize)
2781 {
2782 	pcireg_t	reg;
2783 	uint32_t	offset, capid;
2784 
2785 	KASSERT(bar == 0);
2786 
2787 	offset = PCI_PCIE_ECAP;
2788 
2789 	/* search PCI Express Extended Capabilities */
2790 	do {
2791 		reg = pci_conf_read(pdev->pc, pdev->tag, offset);
2792 		capid = PCI_PCIE_ECAP_ID(reg);
2793 		if (capid == PCIE_ECAP_RESIZE_BAR)
2794 			break;
2795 		offset = PCI_PCIE_ECAP_NEXT(reg);
2796 	} while (capid != 0);
2797 
2798 	if (capid == 0) {
2799 		printf("%s: could not find resize bar cap!\n", __func__);
2800 		return -ENOTSUP;
2801 	}
2802 
2803 	reg = pci_conf_read(pdev->pc, pdev->tag, offset + RBCAP0);
2804 
2805 	if ((reg & (1 << (nsize + 4))) == 0) {
2806 		printf("%s size not supported\n", __func__);
2807 		return -ENOTSUP;
2808 	}
2809 
2810 	reg = pci_conf_read(pdev->pc, pdev->tag, offset + RBCTRL0);
2811 	if ((reg & RBCTRL_BARINDEX_MASK) != 0) {
2812 		printf("%s BAR index not 0\n", __func__);
2813 		return -EINVAL;
2814 	}
2815 
2816 	reg &= ~RBCTRL_BARSIZE_MASK;
2817 	reg |= (nsize << RBCTRL_BARSIZE_SHIFT) & RBCTRL_BARSIZE_MASK;
2818 
2819 	pci_conf_write(pdev->pc, pdev->tag, offset + RBCTRL0, reg);
2820 
2821 	return 0;
2822 }
2823 
2824 TAILQ_HEAD(, shrinker) shrinkers = TAILQ_HEAD_INITIALIZER(shrinkers);
2825 
2826 int
2827 register_shrinker(struct shrinker *shrinker, const char *format, ...)
2828 {
2829 	TAILQ_INSERT_TAIL(&shrinkers, shrinker, next);
2830 	return 0;
2831 }
2832 
2833 void
2834 unregister_shrinker(struct shrinker *shrinker)
2835 {
2836 	TAILQ_REMOVE(&shrinkers, shrinker, next);
2837 }
2838 
2839 void
2840 drmbackoff(long npages)
2841 {
2842 	struct shrink_control sc;
2843 	struct shrinker *shrinker;
2844 	u_long ret;
2845 
2846 	shrinker = TAILQ_FIRST(&shrinkers);
2847 	while (shrinker && npages > 0) {
2848 		sc.nr_to_scan = npages;
2849 		ret = shrinker->scan_objects(shrinker, &sc);
2850 		npages -= ret;
2851 		shrinker = TAILQ_NEXT(shrinker, next);
2852 	}
2853 }
2854 
2855 void *
2856 bitmap_zalloc(u_int n, gfp_t flags)
2857 {
2858 	return kcalloc(BITS_TO_LONGS(n), sizeof(long), flags);
2859 }
2860 
2861 void
2862 bitmap_free(void *p)
2863 {
2864 	kfree(p);
2865 }
2866 
2867 int
2868 atomic_dec_and_mutex_lock(volatile int *v, struct rwlock *lock)
2869 {
2870 	if (atomic_add_unless(v, -1, 1))
2871 		return 0;
2872 
2873 	rw_enter_write(lock);
2874 	if (atomic_dec_return(v) == 0)
2875 		return 1;
2876 	rw_exit_write(lock);
2877 	return 0;
2878 }
2879 
2880 int
2881 printk(const char *fmt, ...)
2882 {
2883 	int ret, level;
2884 	va_list ap;
2885 
2886 	if (fmt != NULL && *fmt == '\001') {
2887 		level = fmt[1];
2888 #ifndef DRMDEBUG
2889 		if (level >= KERN_INFO[1] && level <= '9')
2890 			return 0;
2891 #endif
2892 		fmt += 2;
2893 	}
2894 
2895 	va_start(ap, fmt);
2896 	ret = vprintf(fmt, ap);
2897 	va_end(ap);
2898 
2899 	return ret;
2900 }
2901 
2902 #define START(node) ((node)->start)
2903 #define LAST(node) ((node)->last)
2904 
2905 struct interval_tree_node *
2906 interval_tree_iter_first(struct rb_root_cached *root, unsigned long start,
2907     unsigned long last)
2908 {
2909 	struct interval_tree_node *node;
2910 	struct rb_node *rb;
2911 
2912 	for (rb = rb_first_cached(root); rb; rb = rb_next(rb)) {
2913 		node = rb_entry(rb, typeof(*node), rb);
2914 		if (LAST(node) >= start && START(node) <= last)
2915 			return node;
2916 	}
2917 	return NULL;
2918 }
2919 
2920 void
2921 interval_tree_remove(struct interval_tree_node *node,
2922     struct rb_root_cached *root)
2923 {
2924 	rb_erase_cached(&node->rb, root);
2925 }
2926 
2927 void
2928 interval_tree_insert(struct interval_tree_node *node,
2929     struct rb_root_cached *root)
2930 {
2931 	struct rb_node **iter = &root->rb_root.rb_node;
2932 	struct rb_node *parent = NULL;
2933 	struct interval_tree_node *iter_node;
2934 
2935 	while (*iter) {
2936 		parent = *iter;
2937 		iter_node = rb_entry(*iter, struct interval_tree_node, rb);
2938 
2939 		if (node->start < iter_node->start)
2940 			iter = &(*iter)->rb_left;
2941 		else
2942 			iter = &(*iter)->rb_right;
2943 	}
2944 
2945 	rb_link_node(&node->rb, parent, iter);
2946 	rb_insert_color_cached(&node->rb, root, false);
2947 }
2948 
2949 int
2950 syncfile_read(struct file *fp, struct uio *uio, int fflags)
2951 {
2952 	return ENXIO;
2953 }
2954 
2955 int
2956 syncfile_write(struct file *fp, struct uio *uio, int fflags)
2957 {
2958 	return ENXIO;
2959 }
2960 
2961 int
2962 syncfile_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
2963 {
2964 	return ENOTTY;
2965 }
2966 
2967 int
2968 syncfile_kqfilter(struct file *fp, struct knote *kn)
2969 {
2970 	return EINVAL;
2971 }
2972 
2973 int
2974 syncfile_stat(struct file *fp, struct stat *st, struct proc *p)
2975 {
2976 	memset(st, 0, sizeof(*st));
2977 	st->st_mode = S_IFIFO;	/* XXX */
2978 	return 0;
2979 }
2980 
2981 int
2982 syncfile_close(struct file *fp, struct proc *p)
2983 {
2984 	struct sync_file *sf = fp->f_data;
2985 
2986 	dma_fence_put(sf->fence);
2987 	fp->f_data = NULL;
2988 	free(sf, M_DRM, sizeof(struct sync_file));
2989 	return 0;
2990 }
2991 
2992 int
2993 syncfile_seek(struct file *fp, off_t *offset, int whence, struct proc *p)
2994 {
2995 	off_t newoff;
2996 
2997 	if (*offset != 0)
2998 		return EINVAL;
2999 
3000 	switch (whence) {
3001 	case SEEK_SET:
3002 		newoff = 0;
3003 		break;
3004 	case SEEK_END:
3005 		newoff = 0;
3006 		break;
3007 	default:
3008 		return EINVAL;
3009 	}
3010 	mtx_enter(&fp->f_mtx);
3011 	fp->f_offset = newoff;
3012 	mtx_leave(&fp->f_mtx);
3013 	*offset = newoff;
3014 	return 0;
3015 }
3016 
3017 const struct fileops syncfileops = {
3018 	.fo_read	= syncfile_read,
3019 	.fo_write	= syncfile_write,
3020 	.fo_ioctl	= syncfile_ioctl,
3021 	.fo_kqfilter	= syncfile_kqfilter,
3022 	.fo_stat	= syncfile_stat,
3023 	.fo_close	= syncfile_close,
3024 	.fo_seek	= syncfile_seek,
3025 };
3026 
3027 void
3028 fd_install(int fd, struct file *fp)
3029 {
3030 	struct proc *p = curproc;
3031 	struct filedesc *fdp = p->p_fd;
3032 
3033 	if (fp->f_type != DTYPE_SYNC)
3034 		return;
3035 
3036 	fdplock(fdp);
3037 	/* all callers use get_unused_fd_flags(O_CLOEXEC) */
3038 	fdinsert(fdp, fd, UF_EXCLOSE, fp);
3039 	fdpunlock(fdp);
3040 }
3041 
3042 void
3043 fput(struct file *fp)
3044 {
3045 	if (fp->f_type != DTYPE_SYNC)
3046 		return;
3047 
3048 	FRELE(fp, curproc);
3049 }
3050 
3051 int
3052 get_unused_fd_flags(unsigned int flags)
3053 {
3054 	struct proc *p = curproc;
3055 	struct filedesc *fdp = p->p_fd;
3056 	int error, fd;
3057 
3058 	KASSERT((flags & O_CLOEXEC) != 0);
3059 
3060 	fdplock(fdp);
3061 retryalloc:
3062 	if ((error = fdalloc(p, 0, &fd)) != 0) {
3063 		if (error == ENOSPC) {
3064 			fdexpand(p);
3065 			goto retryalloc;
3066 		}
3067 		fdpunlock(fdp);
3068 		return -1;
3069 	}
3070 	fdpunlock(fdp);
3071 
3072 	return fd;
3073 }
3074 
3075 void
3076 put_unused_fd(int fd)
3077 {
3078 	struct filedesc *fdp = curproc->p_fd;
3079 
3080 	fdplock(fdp);
3081 	fdremove(fdp, fd);
3082 	fdpunlock(fdp);
3083 }
3084 
3085 struct dma_fence *
3086 sync_file_get_fence(int fd)
3087 {
3088 	struct proc *p = curproc;
3089 	struct filedesc *fdp = p->p_fd;
3090 	struct file *fp;
3091 	struct sync_file *sf;
3092 	struct dma_fence *f;
3093 
3094 	if ((fp = fd_getfile(fdp, fd)) == NULL)
3095 		return NULL;
3096 
3097 	if (fp->f_type != DTYPE_SYNC) {
3098 		FRELE(fp, p);
3099 		return NULL;
3100 	}
3101 	sf = fp->f_data;
3102 	f = dma_fence_get(sf->fence);
3103 	FRELE(sf->file, p);
3104 	return f;
3105 }
3106 
3107 struct sync_file *
3108 sync_file_create(struct dma_fence *fence)
3109 {
3110 	struct proc *p = curproc;
3111 	struct sync_file *sf;
3112 	struct file *fp;
3113 
3114 	fp = fnew(p);
3115 	if (fp == NULL)
3116 		return NULL;
3117 	fp->f_type = DTYPE_SYNC;
3118 	fp->f_ops = &syncfileops;
3119 	sf = malloc(sizeof(struct sync_file), M_DRM, M_WAITOK | M_ZERO);
3120 	sf->file = fp;
3121 	sf->fence = dma_fence_get(fence);
3122 	fp->f_data = sf;
3123 	return sf;
3124 }
3125 
3126 bool
3127 drm_firmware_drivers_only(void)
3128 {
3129 	return false;
3130 }
3131