1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/fcntl.h> 31 #include <sys/specdev.h> 32 #include <sys/vnode.h> 33 34 #include <machine/bus.h> 35 36 #ifdef __HAVE_ACPI 37 #include <dev/acpi/acpidev.h> 38 #include <dev/acpi/acpivar.h> 39 #include <dev/acpi/dsdt.h> 40 #endif 41 42 #include <linux/debugfs.h> 43 #include <linux/fs.h> 44 #include <linux/module.h> 45 #include <linux/moduleparam.h> 46 #include <linux/mount.h> 47 #include <linux/pseudo_fs.h> 48 #include <linux/slab.h> 49 #include <linux/srcu.h> 50 51 #include <drm/drm_cache.h> 52 #include <drm/drm_client.h> 53 #include <drm/drm_color_mgmt.h> 54 #include <drm/drm_drv.h> 55 #include <drm/drm_file.h> 56 #include <drm/drm_managed.h> 57 #include <drm/drm_mode_object.h> 58 #include <drm/drm_print.h> 59 #include <drm/drm_privacy_screen_machine.h> 60 61 #include <drm/drm_gem.h> 62 63 #include "drm_crtc_internal.h" 64 #include "drm_internal.h" 65 #include "drm_legacy.h" 66 67 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 68 MODULE_DESCRIPTION("DRM shared core routines"); 69 MODULE_LICENSE("GPL and additional rights"); 70 71 static DEFINE_SPINLOCK(drm_minor_lock); 72 static struct idr drm_minors_idr; 73 74 /* 75 * If the drm core fails to init for whatever reason, 76 * we should prevent any drivers from registering with it. 77 * It's best to check this at drm_dev_init(), as some drivers 78 * prefer to embed struct drm_device into their own device 79 * structure and call drm_dev_init() themselves. 80 */ 81 static bool drm_core_init_complete; 82 83 static struct dentry *drm_debugfs_root; 84 85 #ifdef notyet 86 DEFINE_STATIC_SRCU(drm_unplug_srcu); 87 #endif 88 89 /* 90 * Some functions are only called once on init regardless of how many times 91 * drm attaches. In linux this is handled via module_init()/module_exit() 92 */ 93 int drm_refcnt; 94 95 struct drm_softc { 96 struct device sc_dev; 97 struct drm_device *sc_drm; 98 int sc_allocated; 99 }; 100 101 struct drm_attach_args { 102 struct drm_device *drm; 103 const struct drm_driver *driver; 104 char *busid; 105 bus_dma_tag_t dmat; 106 bus_space_tag_t bst; 107 size_t busid_len; 108 int is_agp; 109 struct pci_attach_args *pa; 110 int primary; 111 }; 112 113 void drm_linux_init(void); 114 void drm_linux_exit(void); 115 int drm_linux_acpi_notify(struct aml_node *, int, void *); 116 117 int drm_dequeue_event(struct drm_device *, struct drm_file *, size_t, 118 struct drm_pending_event **); 119 120 int drmprint(void *, const char *); 121 int drmsubmatch(struct device *, void *, void *); 122 const struct pci_device_id * 123 drm_find_description(int, int, const struct pci_device_id *); 124 125 int drm_file_cmp(struct drm_file *, struct drm_file *); 126 SPLAY_PROTOTYPE(drm_file_tree, drm_file, link, drm_file_cmp); 127 128 #define DRMDEVCF_PRIMARY 0 129 #define drmdevcf_primary cf_loc[DRMDEVCF_PRIMARY] /* spec'd as primary? */ 130 #define DRMDEVCF_PRIMARY_UNK -1 131 132 /* 133 * DRM Minors 134 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 135 * of them is represented by a drm_minor object. Depending on the capabilities 136 * of the device-driver, different interfaces are registered. 137 * 138 * Minors can be accessed via dev->$minor_name. This pointer is either 139 * NULL or a valid drm_minor pointer and stays valid as long as the device is 140 * valid. This means, DRM minors have the same life-time as the underlying 141 * device. However, this doesn't mean that the minor is active. Minors are 142 * registered and unregistered dynamically according to device-state. 143 */ 144 145 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 146 unsigned int type) 147 { 148 switch (type) { 149 case DRM_MINOR_PRIMARY: 150 return &dev->primary; 151 case DRM_MINOR_RENDER: 152 return &dev->render; 153 default: 154 BUG(); 155 } 156 } 157 158 static void drm_minor_alloc_release(struct drm_device *dev, void *data) 159 { 160 struct drm_minor *minor = data; 161 unsigned long flags; 162 163 WARN_ON(dev != minor->dev); 164 165 #ifdef __linux__ 166 put_device(minor->kdev); 167 #endif 168 169 spin_lock_irqsave(&drm_minor_lock, flags); 170 idr_remove(&drm_minors_idr, minor->index); 171 spin_unlock_irqrestore(&drm_minor_lock, flags); 172 } 173 174 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 175 { 176 struct drm_minor *minor; 177 unsigned long flags; 178 int r; 179 180 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); 181 if (!minor) 182 return -ENOMEM; 183 184 minor->type = type; 185 minor->dev = dev; 186 187 idr_preload(GFP_KERNEL); 188 spin_lock_irqsave(&drm_minor_lock, flags); 189 r = idr_alloc(&drm_minors_idr, 190 NULL, 191 64 * type, 192 64 * (type + 1), 193 GFP_NOWAIT); 194 spin_unlock_irqrestore(&drm_minor_lock, flags); 195 idr_preload_end(); 196 197 if (r < 0) 198 return r; 199 200 minor->index = r; 201 202 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); 203 if (r) 204 return r; 205 206 #ifdef __linux__ 207 minor->kdev = drm_sysfs_minor_alloc(minor); 208 if (IS_ERR(minor->kdev)) 209 return PTR_ERR(minor->kdev); 210 #endif 211 212 *drm_minor_get_slot(dev, type) = minor; 213 return 0; 214 } 215 216 static int drm_minor_register(struct drm_device *dev, unsigned int type) 217 { 218 struct drm_minor *minor; 219 unsigned long flags; 220 #ifdef __linux__ 221 int ret; 222 #endif 223 224 DRM_DEBUG("\n"); 225 226 minor = *drm_minor_get_slot(dev, type); 227 if (!minor) 228 return 0; 229 230 #ifdef __linux__ 231 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 232 if (ret) { 233 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 234 goto err_debugfs; 235 } 236 237 ret = device_add(minor->kdev); 238 if (ret) 239 goto err_debugfs; 240 #else 241 drm_debugfs_root = NULL; 242 #endif 243 244 /* replace NULL with @minor so lookups will succeed from now on */ 245 spin_lock_irqsave(&drm_minor_lock, flags); 246 idr_replace(&drm_minors_idr, minor, minor->index); 247 spin_unlock_irqrestore(&drm_minor_lock, flags); 248 249 DRM_DEBUG("new minor registered %d\n", minor->index); 250 return 0; 251 252 #ifdef __linux__ 253 err_debugfs: 254 drm_debugfs_cleanup(minor); 255 return ret; 256 #endif 257 } 258 259 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 260 { 261 struct drm_minor *minor; 262 unsigned long flags; 263 264 minor = *drm_minor_get_slot(dev, type); 265 #ifdef __linux__ 266 if (!minor || !device_is_registered(minor->kdev)) 267 #else 268 if (!minor) 269 #endif 270 return; 271 272 /* replace @minor with NULL so lookups will fail from now on */ 273 spin_lock_irqsave(&drm_minor_lock, flags); 274 idr_replace(&drm_minors_idr, NULL, minor->index); 275 spin_unlock_irqrestore(&drm_minor_lock, flags); 276 277 #ifdef __linux__ 278 device_del(minor->kdev); 279 #endif 280 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 281 drm_debugfs_cleanup(minor); 282 } 283 284 /* 285 * Looks up the given minor-ID and returns the respective DRM-minor object. The 286 * refence-count of the underlying device is increased so you must release this 287 * object with drm_minor_release(). 288 * 289 * As long as you hold this minor, it is guaranteed that the object and the 290 * minor->dev pointer will stay valid! However, the device may get unplugged and 291 * unregistered while you hold the minor. 292 */ 293 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 294 { 295 struct drm_minor *minor; 296 unsigned long flags; 297 298 spin_lock_irqsave(&drm_minor_lock, flags); 299 minor = idr_find(&drm_minors_idr, minor_id); 300 if (minor) 301 drm_dev_get(minor->dev); 302 spin_unlock_irqrestore(&drm_minor_lock, flags); 303 304 if (!minor) { 305 return ERR_PTR(-ENODEV); 306 } else if (drm_dev_is_unplugged(minor->dev)) { 307 drm_dev_put(minor->dev); 308 return ERR_PTR(-ENODEV); 309 } 310 311 return minor; 312 } 313 314 void drm_minor_release(struct drm_minor *minor) 315 { 316 drm_dev_put(minor->dev); 317 } 318 319 /** 320 * DOC: driver instance overview 321 * 322 * A device instance for a drm driver is represented by &struct drm_device. This 323 * is allocated and initialized with devm_drm_dev_alloc(), usually from 324 * bus-specific ->probe() callbacks implemented by the driver. The driver then 325 * needs to initialize all the various subsystems for the drm device like memory 326 * management, vblank handling, modesetting support and initial output 327 * configuration plus obviously initialize all the corresponding hardware bits. 328 * Finally when everything is up and running and ready for userspace the device 329 * instance can be published using drm_dev_register(). 330 * 331 * There is also deprecated support for initializing device instances using 332 * bus-specific helpers and the &drm_driver.load callback. But due to 333 * backwards-compatibility needs the device instance have to be published too 334 * early, which requires unpretty global locking to make safe and is therefore 335 * only support for existing drivers not yet converted to the new scheme. 336 * 337 * When cleaning up a device instance everything needs to be done in reverse: 338 * First unpublish the device instance with drm_dev_unregister(). Then clean up 339 * any other resources allocated at device initialization and drop the driver's 340 * reference to &drm_device using drm_dev_put(). 341 * 342 * Note that any allocation or resource which is visible to userspace must be 343 * released only when the final drm_dev_put() is called, and not when the 344 * driver is unbound from the underlying physical struct &device. Best to use 345 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and 346 * related functions. 347 * 348 * devres managed resources like devm_kmalloc() can only be used for resources 349 * directly related to the underlying hardware device, and only used in code 350 * paths fully protected by drm_dev_enter() and drm_dev_exit(). 351 * 352 * Display driver example 353 * ~~~~~~~~~~~~~~~~~~~~~~ 354 * 355 * The following example shows a typical structure of a DRM display driver. 356 * The example focus on the probe() function and the other functions that is 357 * almost always present and serves as a demonstration of devm_drm_dev_alloc(). 358 * 359 * .. code-block:: c 360 * 361 * struct driver_device { 362 * struct drm_device drm; 363 * void *userspace_facing; 364 * struct clk *pclk; 365 * }; 366 * 367 * static const struct drm_driver driver_drm_driver = { 368 * [...] 369 * }; 370 * 371 * static int driver_probe(struct platform_device *pdev) 372 * { 373 * struct driver_device *priv; 374 * struct drm_device *drm; 375 * int ret; 376 * 377 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver, 378 * struct driver_device, drm); 379 * if (IS_ERR(priv)) 380 * return PTR_ERR(priv); 381 * drm = &priv->drm; 382 * 383 * ret = drmm_mode_config_init(drm); 384 * if (ret) 385 * return ret; 386 * 387 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); 388 * if (!priv->userspace_facing) 389 * return -ENOMEM; 390 * 391 * priv->pclk = devm_clk_get(dev, "PCLK"); 392 * if (IS_ERR(priv->pclk)) 393 * return PTR_ERR(priv->pclk); 394 * 395 * // Further setup, display pipeline etc 396 * 397 * platform_set_drvdata(pdev, drm); 398 * 399 * drm_mode_config_reset(drm); 400 * 401 * ret = drm_dev_register(drm); 402 * if (ret) 403 * return ret; 404 * 405 * drm_fbdev_generic_setup(drm, 32); 406 * 407 * return 0; 408 * } 409 * 410 * // This function is called before the devm_ resources are released 411 * static int driver_remove(struct platform_device *pdev) 412 * { 413 * struct drm_device *drm = platform_get_drvdata(pdev); 414 * 415 * drm_dev_unregister(drm); 416 * drm_atomic_helper_shutdown(drm) 417 * 418 * return 0; 419 * } 420 * 421 * // This function is called on kernel restart and shutdown 422 * static void driver_shutdown(struct platform_device *pdev) 423 * { 424 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 425 * } 426 * 427 * static int __maybe_unused driver_pm_suspend(struct device *dev) 428 * { 429 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 430 * } 431 * 432 * static int __maybe_unused driver_pm_resume(struct device *dev) 433 * { 434 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 435 * 436 * return 0; 437 * } 438 * 439 * static const struct dev_pm_ops driver_pm_ops = { 440 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 441 * }; 442 * 443 * static struct platform_driver driver_driver = { 444 * .driver = { 445 * [...] 446 * .pm = &driver_pm_ops, 447 * }, 448 * .probe = driver_probe, 449 * .remove = driver_remove, 450 * .shutdown = driver_shutdown, 451 * }; 452 * module_platform_driver(driver_driver); 453 * 454 * Drivers that want to support device unplugging (USB, DT overlay unload) should 455 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 456 * regions that is accessing device resources to prevent use after they're 457 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 458 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 459 * drm_atomic_helper_shutdown() is called. This means that if the disable code 460 * paths are protected, they will not run on regular driver module unload, 461 * possibly leaving the hardware enabled. 462 */ 463 464 /** 465 * drm_put_dev - Unregister and release a DRM device 466 * @dev: DRM device 467 * 468 * Called at module unload time or when a PCI device is unplugged. 469 * 470 * Cleans up all DRM device, calling drm_lastclose(). 471 * 472 * Note: Use of this function is deprecated. It will eventually go away 473 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 474 * instead to make sure that the device isn't userspace accessible any more 475 * while teardown is in progress, ensuring that userspace can't access an 476 * inconsistent state. 477 */ 478 void drm_put_dev(struct drm_device *dev) 479 { 480 DRM_DEBUG("\n"); 481 482 if (!dev) { 483 DRM_ERROR("cleanup called no dev\n"); 484 return; 485 } 486 487 drm_dev_unregister(dev); 488 drm_dev_put(dev); 489 } 490 EXPORT_SYMBOL(drm_put_dev); 491 492 /** 493 * drm_dev_enter - Enter device critical section 494 * @dev: DRM device 495 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 496 * 497 * This function marks and protects the beginning of a section that should not 498 * be entered after the device has been unplugged. The section end is marked 499 * with drm_dev_exit(). Calls to this function can be nested. 500 * 501 * Returns: 502 * True if it is OK to enter the section, false otherwise. 503 */ 504 bool drm_dev_enter(struct drm_device *dev, int *idx) 505 { 506 #ifdef notyet 507 *idx = srcu_read_lock(&drm_unplug_srcu); 508 509 if (dev->unplugged) { 510 srcu_read_unlock(&drm_unplug_srcu, *idx); 511 return false; 512 } 513 #endif 514 515 return true; 516 } 517 EXPORT_SYMBOL(drm_dev_enter); 518 519 /** 520 * drm_dev_exit - Exit device critical section 521 * @idx: index returned from drm_dev_enter() 522 * 523 * This function marks the end of a section that should not be entered after 524 * the device has been unplugged. 525 */ 526 void drm_dev_exit(int idx) 527 { 528 #ifdef notyet 529 srcu_read_unlock(&drm_unplug_srcu, idx); 530 #endif 531 } 532 EXPORT_SYMBOL(drm_dev_exit); 533 534 /** 535 * drm_dev_unplug - unplug a DRM device 536 * @dev: DRM device 537 * 538 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 539 * userspace operations. Entry-points can use drm_dev_enter() and 540 * drm_dev_exit() to protect device resources in a race free manner. This 541 * essentially unregisters the device like drm_dev_unregister(), but can be 542 * called while there are still open users of @dev. 543 */ 544 void drm_dev_unplug(struct drm_device *dev) 545 { 546 STUB(); 547 #ifdef notyet 548 /* 549 * After synchronizing any critical read section is guaranteed to see 550 * the new value of ->unplugged, and any critical section which might 551 * still have seen the old value of ->unplugged is guaranteed to have 552 * finished. 553 */ 554 dev->unplugged = true; 555 synchronize_srcu(&drm_unplug_srcu); 556 557 drm_dev_unregister(dev); 558 559 /* Clear all CPU mappings pointing to this device */ 560 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1); 561 #endif 562 } 563 EXPORT_SYMBOL(drm_dev_unplug); 564 565 #ifdef __linux__ 566 /* 567 * DRM internal mount 568 * We want to be able to allocate our own "struct address_space" to control 569 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 570 * stand-alone address_space objects, so we need an underlying inode. As there 571 * is no way to allocate an independent inode easily, we need a fake internal 572 * VFS mount-point. 573 * 574 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 575 * frees it again. You are allowed to use iget() and iput() to get references to 576 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 577 * drm_fs_inode_free() call (which does not have to be the last iput()). 578 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 579 * between multiple inode-users. You could, technically, call 580 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 581 * iput(), but this way you'd end up with a new vfsmount for each inode. 582 */ 583 584 static int drm_fs_cnt; 585 static struct vfsmount *drm_fs_mnt; 586 587 static int drm_fs_init_fs_context(struct fs_context *fc) 588 { 589 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 590 } 591 592 static struct file_system_type drm_fs_type = { 593 .name = "drm", 594 .owner = THIS_MODULE, 595 .init_fs_context = drm_fs_init_fs_context, 596 .kill_sb = kill_anon_super, 597 }; 598 599 static struct inode *drm_fs_inode_new(void) 600 { 601 struct inode *inode; 602 int r; 603 604 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 605 if (r < 0) { 606 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 607 return ERR_PTR(r); 608 } 609 610 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 611 if (IS_ERR(inode)) 612 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 613 614 return inode; 615 } 616 617 static void drm_fs_inode_free(struct inode *inode) 618 { 619 if (inode) { 620 iput(inode); 621 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 622 } 623 } 624 625 #endif /* __linux__ */ 626 627 /** 628 * DOC: component helper usage recommendations 629 * 630 * DRM drivers that drive hardware where a logical device consists of a pile of 631 * independent hardware blocks are recommended to use the :ref:`component helper 632 * library<component>`. For consistency and better options for code reuse the 633 * following guidelines apply: 634 * 635 * - The entire device initialization procedure should be run from the 636 * &component_master_ops.master_bind callback, starting with 637 * devm_drm_dev_alloc(), then binding all components with 638 * component_bind_all() and finishing with drm_dev_register(). 639 * 640 * - The opaque pointer passed to all components through component_bind_all() 641 * should point at &struct drm_device of the device instance, not some driver 642 * specific private structure. 643 * 644 * - The component helper fills the niche where further standardization of 645 * interfaces is not practical. When there already is, or will be, a 646 * standardized interface like &drm_bridge or &drm_panel, providing its own 647 * functions to find such components at driver load time, like 648 * drm_of_find_panel_or_bridge(), then the component helper should not be 649 * used. 650 */ 651 652 static void drm_dev_init_release(struct drm_device *dev, void *res) 653 { 654 drm_legacy_ctxbitmap_cleanup(dev); 655 drm_legacy_remove_map_hash(dev); 656 #ifdef __linux__ 657 drm_fs_inode_free(dev->anon_inode); 658 659 put_device(dev->dev); 660 #endif 661 /* Prevent use-after-free in drm_managed_release when debugging is 662 * enabled. Slightly awkward, but can't really be helped. */ 663 dev->dev = NULL; 664 mutex_destroy(&dev->master_mutex); 665 mutex_destroy(&dev->clientlist_mutex); 666 mutex_destroy(&dev->filelist_mutex); 667 mutex_destroy(&dev->struct_mutex); 668 drm_legacy_destroy_members(dev); 669 } 670 671 #ifdef notyet 672 673 static int drm_dev_init(struct drm_device *dev, 674 const struct drm_driver *driver, 675 struct device *parent) 676 { 677 struct inode *inode; 678 int ret; 679 680 if (!drm_core_init_complete) { 681 DRM_ERROR("DRM core is not initialized\n"); 682 return -ENODEV; 683 } 684 685 if (WARN_ON(!parent)) 686 return -EINVAL; 687 688 kref_init(&dev->ref); 689 dev->dev = get_device(parent); 690 dev->driver = driver; 691 692 INIT_LIST_HEAD(&dev->managed.resources); 693 spin_lock_init(&dev->managed.lock); 694 695 /* no per-device feature limits by default */ 696 dev->driver_features = ~0u; 697 698 drm_legacy_init_members(dev); 699 INIT_LIST_HEAD(&dev->filelist); 700 INIT_LIST_HEAD(&dev->filelist_internal); 701 INIT_LIST_HEAD(&dev->clientlist); 702 INIT_LIST_HEAD(&dev->vblank_event_list); 703 704 spin_lock_init(&dev->event_lock); 705 mutex_init(&dev->struct_mutex); 706 mutex_init(&dev->filelist_mutex); 707 mutex_init(&dev->clientlist_mutex); 708 mutex_init(&dev->master_mutex); 709 710 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL); 711 if (ret) 712 return ret; 713 714 inode = drm_fs_inode_new(); 715 if (IS_ERR(inode)) { 716 ret = PTR_ERR(inode); 717 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 718 goto err; 719 } 720 721 dev->anon_inode = inode; 722 723 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 724 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 725 if (ret) 726 goto err; 727 } 728 729 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 730 if (ret) 731 goto err; 732 733 ret = drm_legacy_create_map_hash(dev); 734 if (ret) 735 goto err; 736 737 drm_legacy_ctxbitmap_init(dev); 738 739 if (drm_core_check_feature(dev, DRIVER_GEM)) { 740 ret = drm_gem_init(dev); 741 if (ret) { 742 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 743 goto err; 744 } 745 } 746 747 ret = drm_dev_set_unique(dev, dev_name(parent)); 748 if (ret) 749 goto err; 750 751 return 0; 752 753 err: 754 drm_managed_release(dev); 755 756 return ret; 757 } 758 759 static void devm_drm_dev_init_release(void *data) 760 { 761 drm_dev_put(data); 762 } 763 764 static int devm_drm_dev_init(struct device *parent, 765 struct drm_device *dev, 766 const struct drm_driver *driver) 767 { 768 int ret; 769 770 ret = drm_dev_init(dev, driver, parent); 771 if (ret) 772 return ret; 773 774 return devm_add_action_or_reset(parent, 775 devm_drm_dev_init_release, dev); 776 } 777 778 void *__devm_drm_dev_alloc(struct device *parent, 779 const struct drm_driver *driver, 780 size_t size, size_t offset) 781 { 782 void *container; 783 struct drm_device *drm; 784 int ret; 785 786 container = kzalloc(size, GFP_KERNEL); 787 if (!container) 788 return ERR_PTR(-ENOMEM); 789 790 drm = container + offset; 791 ret = devm_drm_dev_init(parent, drm, driver); 792 if (ret) { 793 kfree(container); 794 return ERR_PTR(ret); 795 } 796 drmm_add_final_kfree(drm, container); 797 798 return container; 799 } 800 EXPORT_SYMBOL(__devm_drm_dev_alloc); 801 802 /** 803 * drm_dev_alloc - Allocate new DRM device 804 * @driver: DRM driver to allocate device for 805 * @parent: Parent device object 806 * 807 * This is the deprecated version of devm_drm_dev_alloc(), which does not support 808 * subclassing through embedding the struct &drm_device in a driver private 809 * structure, and which does not support automatic cleanup through devres. 810 * 811 * RETURNS: 812 * Pointer to new DRM device, or ERR_PTR on failure. 813 */ 814 struct drm_device *drm_dev_alloc(const struct drm_driver *driver, 815 struct device *parent) 816 { 817 struct drm_device *dev; 818 int ret; 819 820 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 821 if (!dev) 822 return ERR_PTR(-ENOMEM); 823 824 ret = drm_dev_init(dev, driver, parent); 825 if (ret) { 826 kfree(dev); 827 return ERR_PTR(ret); 828 } 829 830 drmm_add_final_kfree(dev, dev); 831 832 return dev; 833 } 834 EXPORT_SYMBOL(drm_dev_alloc); 835 836 #endif 837 838 static void drm_dev_release(struct kref *ref) 839 { 840 struct drm_device *dev = container_of(ref, struct drm_device, ref); 841 842 if (dev->driver->release) 843 dev->driver->release(dev); 844 845 drm_managed_release(dev); 846 847 kfree(dev->managed.final_kfree); 848 } 849 850 /** 851 * drm_dev_get - Take reference of a DRM device 852 * @dev: device to take reference of or NULL 853 * 854 * This increases the ref-count of @dev by one. You *must* already own a 855 * reference when calling this. Use drm_dev_put() to drop this reference 856 * again. 857 * 858 * This function never fails. However, this function does not provide *any* 859 * guarantee whether the device is alive or running. It only provides a 860 * reference to the object and the memory associated with it. 861 */ 862 void drm_dev_get(struct drm_device *dev) 863 { 864 if (dev) 865 kref_get(&dev->ref); 866 } 867 EXPORT_SYMBOL(drm_dev_get); 868 869 /** 870 * drm_dev_put - Drop reference of a DRM device 871 * @dev: device to drop reference of or NULL 872 * 873 * This decreases the ref-count of @dev by one. The device is destroyed if the 874 * ref-count drops to zero. 875 */ 876 void drm_dev_put(struct drm_device *dev) 877 { 878 if (dev) 879 kref_put(&dev->ref, drm_dev_release); 880 } 881 EXPORT_SYMBOL(drm_dev_put); 882 883 static int create_compat_control_link(struct drm_device *dev) 884 { 885 struct drm_minor *minor; 886 char *name; 887 int ret; 888 889 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 890 return 0; 891 892 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 893 if (!minor) 894 return 0; 895 896 /* 897 * Some existing userspace out there uses the existing of the controlD* 898 * sysfs files to figure out whether it's a modeset driver. It only does 899 * readdir, hence a symlink is sufficient (and the least confusing 900 * option). Otherwise controlD* is entirely unused. 901 * 902 * Old controlD chardev have been allocated in the range 903 * 64-127. 904 */ 905 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 906 if (!name) 907 return -ENOMEM; 908 909 ret = sysfs_create_link(minor->kdev->kobj.parent, 910 &minor->kdev->kobj, 911 name); 912 913 kfree(name); 914 915 return ret; 916 } 917 918 static void remove_compat_control_link(struct drm_device *dev) 919 { 920 struct drm_minor *minor; 921 char *name; 922 923 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 924 return; 925 926 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 927 if (!minor) 928 return; 929 930 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 931 if (!name) 932 return; 933 934 sysfs_remove_link(minor->kdev->kobj.parent, name); 935 936 kfree(name); 937 } 938 939 /** 940 * drm_dev_register - Register DRM device 941 * @dev: Device to register 942 * @flags: Flags passed to the driver's .load() function 943 * 944 * Register the DRM device @dev with the system, advertise device to user-space 945 * and start normal device operation. @dev must be initialized via drm_dev_init() 946 * previously. 947 * 948 * Never call this twice on any device! 949 * 950 * NOTE: To ensure backward compatibility with existing drivers method this 951 * function calls the &drm_driver.load method after registering the device 952 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 953 * therefore deprecated, drivers must perform all initialization before calling 954 * drm_dev_register(). 955 * 956 * RETURNS: 957 * 0 on success, negative error code on failure. 958 */ 959 int drm_dev_register(struct drm_device *dev, unsigned long flags) 960 { 961 const struct drm_driver *driver = dev->driver; 962 int ret; 963 964 if (!driver->load) 965 drm_mode_config_validate(dev); 966 967 WARN_ON(!dev->managed.final_kfree); 968 969 if (drm_dev_needs_global_mutex(dev)) 970 mutex_lock(&drm_global_mutex); 971 972 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 973 if (ret) 974 goto err_minors; 975 976 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 977 if (ret) 978 goto err_minors; 979 980 ret = create_compat_control_link(dev); 981 if (ret) 982 goto err_minors; 983 984 dev->registered = true; 985 986 if (dev->driver->load) { 987 ret = dev->driver->load(dev, flags); 988 if (ret) 989 goto err_minors; 990 } 991 992 if (drm_core_check_feature(dev, DRIVER_MODESET)) 993 drm_modeset_register_all(dev); 994 995 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 996 driver->name, driver->major, driver->minor, 997 driver->patchlevel, driver->date, 998 dev->dev ? dev_name(dev->dev) : "virtual device", 999 dev->primary->index); 1000 1001 goto out_unlock; 1002 1003 err_minors: 1004 remove_compat_control_link(dev); 1005 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1006 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1007 out_unlock: 1008 if (drm_dev_needs_global_mutex(dev)) 1009 mutex_unlock(&drm_global_mutex); 1010 return ret; 1011 } 1012 EXPORT_SYMBOL(drm_dev_register); 1013 1014 /** 1015 * drm_dev_unregister - Unregister DRM device 1016 * @dev: Device to unregister 1017 * 1018 * Unregister the DRM device from the system. This does the reverse of 1019 * drm_dev_register() but does not deallocate the device. The caller must call 1020 * drm_dev_put() to drop their final reference. 1021 * 1022 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 1023 * which can be called while there are still open users of @dev. 1024 * 1025 * This should be called first in the device teardown code to make sure 1026 * userspace can't access the device instance any more. 1027 */ 1028 void drm_dev_unregister(struct drm_device *dev) 1029 { 1030 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 1031 drm_lastclose(dev); 1032 1033 dev->registered = false; 1034 1035 drm_client_dev_unregister(dev); 1036 1037 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1038 drm_modeset_unregister_all(dev); 1039 1040 if (dev->driver->unload) 1041 dev->driver->unload(dev); 1042 1043 drm_legacy_pci_agp_destroy(dev); 1044 drm_legacy_rmmaps(dev); 1045 1046 remove_compat_control_link(dev); 1047 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1048 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1049 } 1050 EXPORT_SYMBOL(drm_dev_unregister); 1051 1052 /** 1053 * drm_dev_set_unique - Set the unique name of a DRM device 1054 * @dev: device of which to set the unique name 1055 * @name: unique name 1056 * 1057 * Sets the unique name of a DRM device using the specified string. This is 1058 * already done by drm_dev_init(), drivers should only override the default 1059 * unique name for backwards compatibility reasons. 1060 * 1061 * Return: 0 on success or a negative error code on failure. 1062 */ 1063 int drm_dev_set_unique(struct drm_device *dev, const char *name) 1064 { 1065 drmm_kfree(dev, dev->unique); 1066 dev->unique = drmm_kstrdup(dev, name, GFP_KERNEL); 1067 1068 return dev->unique ? 0 : -ENOMEM; 1069 } 1070 EXPORT_SYMBOL(drm_dev_set_unique); 1071 1072 /* 1073 * DRM Core 1074 * The DRM core module initializes all global DRM objects and makes them 1075 * available to drivers. Once setup, drivers can probe their respective 1076 * devices. 1077 * Currently, core management includes: 1078 * - The "DRM-Global" key/value database 1079 * - Global ID management for connectors 1080 * - DRM major number allocation 1081 * - DRM minor management 1082 * - DRM sysfs class 1083 * - DRM debugfs root 1084 * 1085 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1086 * interface registered on a DRM device, you can request minor numbers from DRM 1087 * core. DRM core takes care of major-number management and char-dev 1088 * registration. A stub ->open() callback forwards any open() requests to the 1089 * registered minor. 1090 */ 1091 1092 #ifdef __linux__ 1093 static int drm_stub_open(struct inode *inode, struct file *filp) 1094 { 1095 const struct file_operations *new_fops; 1096 struct drm_minor *minor; 1097 int err; 1098 1099 DRM_DEBUG("\n"); 1100 1101 minor = drm_minor_acquire(iminor(inode)); 1102 if (IS_ERR(minor)) 1103 return PTR_ERR(minor); 1104 1105 new_fops = fops_get(minor->dev->driver->fops); 1106 if (!new_fops) { 1107 err = -ENODEV; 1108 goto out; 1109 } 1110 1111 replace_fops(filp, new_fops); 1112 if (filp->f_op->open) 1113 err = filp->f_op->open(inode, filp); 1114 else 1115 err = 0; 1116 1117 out: 1118 drm_minor_release(minor); 1119 1120 return err; 1121 } 1122 1123 static const struct file_operations drm_stub_fops = { 1124 .owner = THIS_MODULE, 1125 .open = drm_stub_open, 1126 .llseek = noop_llseek, 1127 }; 1128 #endif /* __linux__ */ 1129 1130 static void drm_core_exit(void) 1131 { 1132 drm_privacy_screen_lookup_exit(); 1133 #ifdef __linux__ 1134 unregister_chrdev(DRM_MAJOR, "drm"); 1135 debugfs_remove(drm_debugfs_root); 1136 drm_sysfs_destroy(); 1137 #endif 1138 idr_destroy(&drm_minors_idr); 1139 drm_connector_ida_destroy(); 1140 } 1141 1142 static int __init drm_core_init(void) 1143 { 1144 #ifdef __linux__ 1145 int ret; 1146 #endif 1147 1148 drm_connector_ida_init(); 1149 idr_init(&drm_minors_idr); 1150 drm_memcpy_init_early(); 1151 1152 #ifdef __linux__ 1153 ret = drm_sysfs_init(); 1154 if (ret < 0) { 1155 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1156 goto error; 1157 } 1158 1159 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1160 1161 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1162 if (ret < 0) 1163 goto error; 1164 #endif 1165 1166 drm_privacy_screen_lookup_init(); 1167 1168 drm_core_init_complete = true; 1169 1170 DRM_DEBUG("Initialized\n"); 1171 return 0; 1172 #ifdef __linux__ 1173 error: 1174 drm_core_exit(); 1175 return ret; 1176 #endif 1177 } 1178 1179 #ifdef __linux__ 1180 module_init(drm_core_init); 1181 module_exit(drm_core_exit); 1182 #endif 1183 1184 void 1185 drm_attach_platform(struct drm_driver *driver, bus_space_tag_t iot, 1186 bus_dma_tag_t dmat, struct device *dev, struct drm_device *drm) 1187 { 1188 struct drm_attach_args arg; 1189 1190 memset(&arg, 0, sizeof(arg)); 1191 arg.driver = driver; 1192 arg.bst = iot; 1193 arg.dmat = dmat; 1194 arg.drm = drm; 1195 1196 arg.busid = dev->dv_xname; 1197 arg.busid_len = strlen(dev->dv_xname) + 1; 1198 config_found_sm(dev, &arg, drmprint, drmsubmatch); 1199 } 1200 1201 struct drm_device * 1202 drm_attach_pci(const struct drm_driver *driver, struct pci_attach_args *pa, 1203 int is_agp, int primary, struct device *dev, struct drm_device *drm) 1204 { 1205 struct drm_attach_args arg; 1206 struct drm_softc *sc; 1207 1208 arg.drm = drm; 1209 arg.driver = driver; 1210 arg.dmat = pa->pa_dmat; 1211 arg.bst = pa->pa_memt; 1212 arg.is_agp = is_agp; 1213 arg.primary = primary; 1214 arg.pa = pa; 1215 1216 arg.busid_len = 20; 1217 arg.busid = malloc(arg.busid_len + 1, M_DRM, M_NOWAIT); 1218 if (arg.busid == NULL) { 1219 printf("%s: no memory for drm\n", dev->dv_xname); 1220 return (NULL); 1221 } 1222 snprintf(arg.busid, arg.busid_len, "pci:%04x:%02x:%02x.%1x", 1223 pa->pa_domain, pa->pa_bus, pa->pa_device, pa->pa_function); 1224 1225 sc = (struct drm_softc *)config_found_sm(dev, &arg, drmprint, drmsubmatch); 1226 if (sc == NULL) 1227 return NULL; 1228 1229 return sc->sc_drm; 1230 } 1231 1232 int 1233 drmprint(void *aux, const char *pnp) 1234 { 1235 if (pnp != NULL) 1236 printf("drm at %s", pnp); 1237 return (UNCONF); 1238 } 1239 1240 int 1241 drmsubmatch(struct device *parent, void *match, void *aux) 1242 { 1243 extern struct cfdriver drm_cd; 1244 struct cfdata *cf = match; 1245 1246 /* only allow drm to attach */ 1247 if (cf->cf_driver == &drm_cd) 1248 return ((*cf->cf_attach->ca_match)(parent, match, aux)); 1249 return (0); 1250 } 1251 1252 int 1253 drm_pciprobe(struct pci_attach_args *pa, const struct pci_device_id *idlist) 1254 { 1255 const struct pci_device_id *id_entry; 1256 1257 id_entry = drm_find_description(PCI_VENDOR(pa->pa_id), 1258 PCI_PRODUCT(pa->pa_id), idlist); 1259 if (id_entry != NULL) 1260 return 1; 1261 1262 return 0; 1263 } 1264 1265 int 1266 drm_probe(struct device *parent, void *match, void *aux) 1267 { 1268 struct cfdata *cf = match; 1269 struct drm_attach_args *da = aux; 1270 1271 if (cf->drmdevcf_primary != DRMDEVCF_PRIMARY_UNK) { 1272 /* 1273 * If primary-ness of device specified, either match 1274 * exactly (at high priority), or fail. 1275 */ 1276 if (cf->drmdevcf_primary != 0 && da->primary != 0) 1277 return (10); 1278 else 1279 return (0); 1280 } 1281 1282 /* If primary-ness unspecified, it wins. */ 1283 return (1); 1284 } 1285 1286 int drm_buddy_module_init(void); 1287 void drm_buddy_module_exit(void); 1288 1289 void 1290 drm_attach(struct device *parent, struct device *self, void *aux) 1291 { 1292 struct drm_softc *sc = (struct drm_softc *)self; 1293 struct drm_attach_args *da = aux; 1294 struct drm_device *dev = da->drm; 1295 int ret; 1296 1297 if (drm_refcnt == 0) { 1298 drm_linux_init(); 1299 drm_core_init(); 1300 drm_buddy_module_init(); 1301 } 1302 drm_refcnt++; 1303 1304 if (dev == NULL) { 1305 dev = malloc(sizeof(struct drm_device), M_DRM, 1306 M_WAITOK | M_ZERO); 1307 sc->sc_allocated = 1; 1308 } 1309 1310 sc->sc_drm = dev; 1311 1312 dev->dev = self; 1313 dev->dev_private = parent; 1314 dev->driver = da->driver; 1315 1316 INIT_LIST_HEAD(&dev->managed.resources); 1317 mtx_init(&dev->managed.lock, IPL_TTY); 1318 1319 /* no per-device feature limits by default */ 1320 dev->driver_features = ~0u; 1321 1322 dev->dmat = da->dmat; 1323 dev->bst = da->bst; 1324 dev->unique = da->busid; 1325 1326 if (da->pa) { 1327 struct pci_attach_args *pa = da->pa; 1328 pcireg_t subsys; 1329 1330 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, 1331 PCI_SUBSYS_ID_REG); 1332 1333 dev->pdev = &dev->_pdev; 1334 dev->pdev->vendor = PCI_VENDOR(pa->pa_id); 1335 dev->pdev->device = PCI_PRODUCT(pa->pa_id); 1336 dev->pdev->subsystem_vendor = PCI_VENDOR(subsys); 1337 dev->pdev->subsystem_device = PCI_PRODUCT(subsys); 1338 dev->pdev->revision = PCI_REVISION(pa->pa_class); 1339 dev->pdev->class = (PCI_CLASS(pa->pa_class) << 16) | 1340 (PCI_SUBCLASS(pa->pa_class) << 8) | 1341 PCI_INTERFACE(pa->pa_class); 1342 1343 dev->pdev->devfn = PCI_DEVFN(pa->pa_device, pa->pa_function); 1344 dev->pdev->bus = &dev->pdev->_bus; 1345 dev->pdev->bus->pc = pa->pa_pc; 1346 dev->pdev->bus->number = pa->pa_bus; 1347 dev->pdev->bus->domain_nr = pa->pa_domain; 1348 dev->pdev->bus->bridgetag = pa->pa_bridgetag; 1349 1350 if (pa->pa_bridgetag != NULL) { 1351 dev->pdev->bus->self = malloc(sizeof(struct pci_dev), 1352 M_DRM, M_WAITOK | M_ZERO); 1353 dev->pdev->bus->self->pc = pa->pa_pc; 1354 dev->pdev->bus->self->tag = *pa->pa_bridgetag; 1355 } 1356 1357 dev->pdev->pc = pa->pa_pc; 1358 dev->pdev->tag = pa->pa_tag; 1359 dev->pdev->pci = (struct pci_softc *)parent->dv_parent; 1360 1361 #ifdef CONFIG_ACPI 1362 dev->pdev->dev.node = acpi_find_pci(pa->pa_pc, pa->pa_tag); 1363 aml_register_notify(dev->pdev->dev.node, NULL, 1364 drm_linux_acpi_notify, NULL, ACPIDEV_NOPOLL); 1365 #endif 1366 } 1367 1368 mtx_init(&dev->quiesce_mtx, IPL_NONE); 1369 mtx_init(&dev->event_lock, IPL_TTY); 1370 rw_init(&dev->struct_mutex, "drmdevlk"); 1371 rw_init(&dev->filelist_mutex, "drmflist"); 1372 rw_init(&dev->clientlist_mutex, "drmclist"); 1373 rw_init(&dev->master_mutex, "drmmast"); 1374 1375 ret = drmm_add_action(dev, drm_dev_init_release, NULL); 1376 if (ret) 1377 goto error; 1378 1379 SPLAY_INIT(&dev->files); 1380 INIT_LIST_HEAD(&dev->filelist_internal); 1381 INIT_LIST_HEAD(&dev->clientlist); 1382 INIT_LIST_HEAD(&dev->vblank_event_list); 1383 1384 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 1385 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 1386 if (ret) 1387 goto error; 1388 } 1389 1390 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 1391 if (ret) 1392 goto error; 1393 1394 #ifdef CONFIG_DRM_LEGACY 1395 if (drm_core_check_feature(dev, DRIVER_USE_AGP)) { 1396 #if IS_ENABLED(CONFIG_AGP) 1397 if (da->is_agp) 1398 dev->agp = drm_agp_init(); 1399 #endif 1400 if (dev->agp != NULL) { 1401 if (drm_mtrr_add(dev->agp->info.ai_aperture_base, 1402 dev->agp->info.ai_aperture_size, DRM_MTRR_WC) == 0) 1403 dev->agp->mtrr = 1; 1404 } 1405 } 1406 #endif 1407 1408 if (dev->driver->gem_size > 0) { 1409 KASSERT(dev->driver->gem_size >= sizeof(struct drm_gem_object)); 1410 /* XXX unique name */ 1411 pool_init(&dev->objpl, dev->driver->gem_size, 0, IPL_NONE, 0, 1412 "drmobjpl", NULL); 1413 } 1414 1415 if (drm_core_check_feature(dev, DRIVER_GEM)) { 1416 ret = drm_gem_init(dev); 1417 if (ret) { 1418 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 1419 goto error; 1420 } 1421 } 1422 1423 drmm_add_final_kfree(dev, dev); 1424 1425 printf("\n"); 1426 return; 1427 1428 error: 1429 drm_managed_release(dev); 1430 dev->dev_private = NULL; 1431 } 1432 1433 int 1434 drm_detach(struct device *self, int flags) 1435 { 1436 struct drm_softc *sc = (struct drm_softc *)self; 1437 struct drm_device *dev = sc->sc_drm; 1438 1439 drm_refcnt--; 1440 if (drm_refcnt == 0) { 1441 drm_buddy_module_exit(); 1442 drm_core_exit(); 1443 drm_linux_exit(); 1444 } 1445 1446 drm_lastclose(dev); 1447 1448 if (drm_core_check_feature(dev, DRIVER_GEM)) { 1449 if (dev->driver->gem_size > 0) 1450 pool_destroy(&dev->objpl); 1451 } 1452 1453 #ifdef CONFIG_DRM_LEGACY 1454 if (dev->agp && dev->agp->mtrr) { 1455 int retcode; 1456 1457 retcode = drm_mtrr_del(0, dev->agp->info.ai_aperture_base, 1458 dev->agp->info.ai_aperture_size, DRM_MTRR_WC); 1459 DRM_DEBUG("mtrr_del = %d", retcode); 1460 } 1461 1462 free(dev->agp, M_DRM, 0); 1463 #endif 1464 if (dev->pdev && dev->pdev->bus) 1465 free(dev->pdev->bus->self, M_DRM, sizeof(struct pci_dev)); 1466 1467 if (sc->sc_allocated) 1468 free(dev, M_DRM, sizeof(struct drm_device)); 1469 1470 return 0; 1471 } 1472 1473 void 1474 drm_quiesce(struct drm_device *dev) 1475 { 1476 mtx_enter(&dev->quiesce_mtx); 1477 dev->quiesce = 1; 1478 while (dev->quiesce_count > 0) { 1479 msleep_nsec(&dev->quiesce_count, &dev->quiesce_mtx, 1480 PZERO, "drmqui", INFSLP); 1481 } 1482 mtx_leave(&dev->quiesce_mtx); 1483 } 1484 1485 void 1486 drm_wakeup(struct drm_device *dev) 1487 { 1488 mtx_enter(&dev->quiesce_mtx); 1489 dev->quiesce = 0; 1490 wakeup(&dev->quiesce); 1491 mtx_leave(&dev->quiesce_mtx); 1492 } 1493 1494 int 1495 drm_activate(struct device *self, int act) 1496 { 1497 struct drm_softc *sc = (struct drm_softc *)self; 1498 struct drm_device *dev = sc->sc_drm; 1499 1500 switch (act) { 1501 case DVACT_QUIESCE: 1502 drm_quiesce(dev); 1503 break; 1504 case DVACT_WAKEUP: 1505 drm_wakeup(dev); 1506 break; 1507 } 1508 1509 return (0); 1510 } 1511 1512 const struct cfattach drm_ca = { 1513 sizeof(struct drm_softc), drm_probe, drm_attach, 1514 drm_detach, drm_activate 1515 }; 1516 1517 struct cfdriver drm_cd = { 1518 0, "drm", DV_DULL 1519 }; 1520 1521 const struct pci_device_id * 1522 drm_find_description(int vendor, int device, const struct pci_device_id *idlist) 1523 { 1524 int i = 0; 1525 1526 for (i = 0; idlist[i].vendor != 0; i++) { 1527 if ((idlist[i].vendor == vendor) && 1528 (idlist[i].device == device || 1529 idlist[i].device == PCI_ANY_ID) && 1530 (idlist[i].subvendor == PCI_ANY_ID) && 1531 (idlist[i].subdevice == PCI_ANY_ID)) 1532 return &idlist[i]; 1533 } 1534 return NULL; 1535 } 1536 1537 int 1538 drm_file_cmp(struct drm_file *f1, struct drm_file *f2) 1539 { 1540 return (f1->fminor < f2->fminor ? -1 : f1->fminor > f2->fminor); 1541 } 1542 1543 SPLAY_GENERATE(drm_file_tree, drm_file, link, drm_file_cmp); 1544 1545 struct drm_file * 1546 drm_find_file_by_minor(struct drm_device *dev, int minor) 1547 { 1548 struct drm_file key; 1549 1550 key.fminor = minor; 1551 return (SPLAY_FIND(drm_file_tree, &dev->files, &key)); 1552 } 1553 1554 struct drm_device * 1555 drm_get_device_from_kdev(dev_t kdev) 1556 { 1557 int unit = minor(kdev) & ((1 << CLONE_SHIFT) - 1); 1558 /* control */ 1559 if (unit >= 64 && unit < 128) 1560 unit -= 64; 1561 /* render */ 1562 if (unit >= 128) 1563 unit -= 128; 1564 struct drm_softc *sc; 1565 1566 if (unit < drm_cd.cd_ndevs) { 1567 sc = (struct drm_softc *)drm_cd.cd_devs[unit]; 1568 if (sc) 1569 return sc->sc_drm; 1570 } 1571 1572 return NULL; 1573 } 1574 1575 void 1576 filt_drmdetach(struct knote *kn) 1577 { 1578 struct drm_device *dev = kn->kn_hook; 1579 int s; 1580 1581 s = spltty(); 1582 klist_remove_locked(&dev->note, kn); 1583 splx(s); 1584 } 1585 1586 int 1587 filt_drmkms(struct knote *kn, long hint) 1588 { 1589 if (kn->kn_sfflags & hint) 1590 kn->kn_fflags |= hint; 1591 return (kn->kn_fflags != 0); 1592 } 1593 1594 void 1595 filt_drmreaddetach(struct knote *kn) 1596 { 1597 struct drm_file *file_priv = kn->kn_hook; 1598 int s; 1599 1600 s = spltty(); 1601 klist_remove_locked(&file_priv->rsel.si_note, kn); 1602 splx(s); 1603 } 1604 1605 int 1606 filt_drmread(struct knote *kn, long hint) 1607 { 1608 struct drm_file *file_priv = kn->kn_hook; 1609 int val = 0; 1610 1611 if ((hint & NOTE_SUBMIT) == 0) 1612 mtx_enter(&file_priv->minor->dev->event_lock); 1613 val = !list_empty(&file_priv->event_list); 1614 if ((hint & NOTE_SUBMIT) == 0) 1615 mtx_leave(&file_priv->minor->dev->event_lock); 1616 return (val); 1617 } 1618 1619 const struct filterops drm_filtops = { 1620 .f_flags = FILTEROP_ISFD, 1621 .f_attach = NULL, 1622 .f_detach = filt_drmdetach, 1623 .f_event = filt_drmkms, 1624 }; 1625 1626 const struct filterops drmread_filtops = { 1627 .f_flags = FILTEROP_ISFD, 1628 .f_attach = NULL, 1629 .f_detach = filt_drmreaddetach, 1630 .f_event = filt_drmread, 1631 }; 1632 1633 int 1634 drmkqfilter(dev_t kdev, struct knote *kn) 1635 { 1636 struct drm_device *dev = NULL; 1637 struct drm_file *file_priv = NULL; 1638 int s; 1639 1640 dev = drm_get_device_from_kdev(kdev); 1641 if (dev == NULL || dev->dev_private == NULL) 1642 return (ENXIO); 1643 1644 switch (kn->kn_filter) { 1645 case EVFILT_READ: 1646 mutex_lock(&dev->struct_mutex); 1647 file_priv = drm_find_file_by_minor(dev, minor(kdev)); 1648 mutex_unlock(&dev->struct_mutex); 1649 if (file_priv == NULL) 1650 return (ENXIO); 1651 1652 kn->kn_fop = &drmread_filtops; 1653 kn->kn_hook = file_priv; 1654 1655 s = spltty(); 1656 klist_insert_locked(&file_priv->rsel.si_note, kn); 1657 splx(s); 1658 break; 1659 case EVFILT_DEVICE: 1660 kn->kn_fop = &drm_filtops; 1661 kn->kn_hook = dev; 1662 1663 s = spltty(); 1664 klist_insert_locked(&dev->note, kn); 1665 splx(s); 1666 break; 1667 default: 1668 return (EINVAL); 1669 } 1670 1671 return (0); 1672 } 1673 1674 int 1675 drmopen(dev_t kdev, int flags, int fmt, struct proc *p) 1676 { 1677 struct drm_device *dev = NULL; 1678 struct drm_file *file_priv; 1679 struct drm_minor *dm; 1680 int ret = 0; 1681 int dminor, realminor, minor_type; 1682 int need_setup = 0; 1683 1684 dev = drm_get_device_from_kdev(kdev); 1685 if (dev == NULL || dev->dev_private == NULL) 1686 return (ENXIO); 1687 1688 DRM_DEBUG("open_count = %d\n", atomic_read(&dev->open_count)); 1689 1690 if (flags & O_EXCL) 1691 return (EBUSY); /* No exclusive opens */ 1692 1693 if (drm_dev_needs_global_mutex(dev)) 1694 mutex_lock(&drm_global_mutex); 1695 1696 if (!atomic_fetch_inc(&dev->open_count)) 1697 need_setup = 1; 1698 1699 dminor = minor(kdev); 1700 realminor = dminor & ((1 << CLONE_SHIFT) - 1); 1701 if (realminor < 64) 1702 minor_type = DRM_MINOR_PRIMARY; 1703 else if (realminor >= 64 && realminor < 128) 1704 minor_type = DRM_MINOR_CONTROL; 1705 else 1706 minor_type = DRM_MINOR_RENDER; 1707 1708 dm = *drm_minor_get_slot(dev, minor_type); 1709 dm->index = minor(kdev); 1710 1711 file_priv = drm_file_alloc(dm); 1712 if (IS_ERR(file_priv)) { 1713 ret = ENOMEM; 1714 goto err; 1715 } 1716 1717 /* first opener automatically becomes master */ 1718 if (drm_is_primary_client(file_priv)) { 1719 ret = drm_master_open(file_priv); 1720 if (ret != 0) 1721 goto out_file_free; 1722 } 1723 1724 file_priv->filp = (void *)file_priv; 1725 file_priv->fminor = minor(kdev); 1726 1727 mutex_lock(&dev->filelist_mutex); 1728 SPLAY_INSERT(drm_file_tree, &dev->files, file_priv); 1729 mutex_unlock(&dev->filelist_mutex); 1730 1731 if (need_setup) { 1732 ret = drm_legacy_setup(dev); 1733 if (ret) 1734 goto out_file_free; 1735 } 1736 1737 if (drm_dev_needs_global_mutex(dev)) 1738 mutex_unlock(&drm_global_mutex); 1739 1740 return 0; 1741 1742 out_file_free: 1743 drm_file_free(file_priv); 1744 err: 1745 atomic_dec(&dev->open_count); 1746 if (drm_dev_needs_global_mutex(dev)) 1747 mutex_unlock(&drm_global_mutex); 1748 return (ret); 1749 } 1750 1751 int 1752 drmclose(dev_t kdev, int flags, int fmt, struct proc *p) 1753 { 1754 struct drm_device *dev = drm_get_device_from_kdev(kdev); 1755 struct drm_file *file_priv; 1756 int retcode = 0; 1757 1758 if (dev == NULL) 1759 return (ENXIO); 1760 1761 if (drm_dev_needs_global_mutex(dev)) 1762 mutex_lock(&drm_global_mutex); 1763 1764 DRM_DEBUG("open_count = %d\n", atomic_read(&dev->open_count)); 1765 1766 mutex_lock(&dev->filelist_mutex); 1767 file_priv = drm_find_file_by_minor(dev, minor(kdev)); 1768 if (file_priv == NULL) { 1769 DRM_ERROR("can't find authenticator\n"); 1770 retcode = EINVAL; 1771 mutex_unlock(&dev->filelist_mutex); 1772 goto done; 1773 } 1774 1775 SPLAY_REMOVE(drm_file_tree, &dev->files, file_priv); 1776 mutex_unlock(&dev->filelist_mutex); 1777 drm_file_free(file_priv); 1778 done: 1779 if (atomic_dec_and_test(&dev->open_count)) 1780 drm_lastclose(dev); 1781 1782 if (drm_dev_needs_global_mutex(dev)) 1783 mutex_unlock(&drm_global_mutex); 1784 1785 return (retcode); 1786 } 1787 1788 int 1789 drmread(dev_t kdev, struct uio *uio, int ioflag) 1790 { 1791 struct drm_device *dev = drm_get_device_from_kdev(kdev); 1792 struct drm_file *file_priv; 1793 struct drm_pending_event *ev; 1794 int error = 0; 1795 1796 if (dev == NULL) 1797 return (ENXIO); 1798 1799 mutex_lock(&dev->filelist_mutex); 1800 file_priv = drm_find_file_by_minor(dev, minor(kdev)); 1801 mutex_unlock(&dev->filelist_mutex); 1802 if (file_priv == NULL) 1803 return (ENXIO); 1804 1805 /* 1806 * The semantics are a little weird here. We will wait until we 1807 * have events to process, but as soon as we have events we will 1808 * only deliver as many as we have. 1809 * Note that events are atomic, if the read buffer will not fit in 1810 * a whole event, we won't read any of it out. 1811 */ 1812 mtx_enter(&dev->event_lock); 1813 while (error == 0 && list_empty(&file_priv->event_list)) { 1814 if (ioflag & IO_NDELAY) { 1815 mtx_leave(&dev->event_lock); 1816 return (EAGAIN); 1817 } 1818 error = msleep_nsec(&file_priv->event_wait, &dev->event_lock, 1819 PWAIT | PCATCH, "drmread", INFSLP); 1820 } 1821 if (error) { 1822 mtx_leave(&dev->event_lock); 1823 return (error); 1824 } 1825 while (drm_dequeue_event(dev, file_priv, uio->uio_resid, &ev)) { 1826 MUTEX_ASSERT_UNLOCKED(&dev->event_lock); 1827 /* XXX we always destroy the event on error. */ 1828 error = uiomove(ev->event, ev->event->length, uio); 1829 kfree(ev); 1830 if (error) 1831 break; 1832 mtx_enter(&dev->event_lock); 1833 } 1834 MUTEX_ASSERT_UNLOCKED(&dev->event_lock); 1835 1836 return (error); 1837 } 1838 1839 /* 1840 * Deqeue an event from the file priv in question. returning 1 if an 1841 * event was found. We take the resid from the read as a parameter because 1842 * we will only dequeue and event if the read buffer has space to fit the 1843 * entire thing. 1844 * 1845 * We are called locked, but we will *unlock* the queue on return so that 1846 * we may sleep to copyout the event. 1847 */ 1848 int 1849 drm_dequeue_event(struct drm_device *dev, struct drm_file *file_priv, 1850 size_t resid, struct drm_pending_event **out) 1851 { 1852 struct drm_pending_event *e = NULL; 1853 int gotone = 0; 1854 1855 MUTEX_ASSERT_LOCKED(&dev->event_lock); 1856 1857 *out = NULL; 1858 if (list_empty(&file_priv->event_list)) 1859 goto out; 1860 e = list_first_entry(&file_priv->event_list, 1861 struct drm_pending_event, link); 1862 if (e->event->length > resid) 1863 goto out; 1864 1865 file_priv->event_space += e->event->length; 1866 list_del(&e->link); 1867 *out = e; 1868 gotone = 1; 1869 1870 out: 1871 mtx_leave(&dev->event_lock); 1872 1873 return (gotone); 1874 } 1875 1876 paddr_t 1877 drmmmap(dev_t kdev, off_t offset, int prot) 1878 { 1879 return -1; 1880 } 1881 1882 struct drm_dmamem * 1883 drm_dmamem_alloc(bus_dma_tag_t dmat, bus_size_t size, bus_size_t alignment, 1884 int nsegments, bus_size_t maxsegsz, int mapflags, int loadflags) 1885 { 1886 struct drm_dmamem *mem; 1887 size_t strsize; 1888 /* 1889 * segs is the last member of the struct since we modify the size 1890 * to allow extra segments if more than one are allowed. 1891 */ 1892 strsize = sizeof(*mem) + (sizeof(bus_dma_segment_t) * (nsegments - 1)); 1893 mem = malloc(strsize, M_DRM, M_NOWAIT | M_ZERO); 1894 if (mem == NULL) 1895 return (NULL); 1896 1897 mem->size = size; 1898 1899 if (bus_dmamap_create(dmat, size, nsegments, maxsegsz, 0, 1900 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mem->map) != 0) 1901 goto strfree; 1902 1903 if (bus_dmamem_alloc(dmat, size, alignment, 0, mem->segs, nsegments, 1904 &mem->nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0) 1905 goto destroy; 1906 1907 if (bus_dmamem_map(dmat, mem->segs, mem->nsegs, size, 1908 &mem->kva, BUS_DMA_NOWAIT | mapflags) != 0) 1909 goto free; 1910 1911 if (bus_dmamap_load(dmat, mem->map, mem->kva, size, 1912 NULL, BUS_DMA_NOWAIT | loadflags) != 0) 1913 goto unmap; 1914 1915 return (mem); 1916 1917 unmap: 1918 bus_dmamem_unmap(dmat, mem->kva, size); 1919 free: 1920 bus_dmamem_free(dmat, mem->segs, mem->nsegs); 1921 destroy: 1922 bus_dmamap_destroy(dmat, mem->map); 1923 strfree: 1924 free(mem, M_DRM, 0); 1925 1926 return (NULL); 1927 } 1928 1929 void 1930 drm_dmamem_free(bus_dma_tag_t dmat, struct drm_dmamem *mem) 1931 { 1932 if (mem == NULL) 1933 return; 1934 1935 bus_dmamap_unload(dmat, mem->map); 1936 bus_dmamem_unmap(dmat, mem->kva, mem->size); 1937 bus_dmamem_free(dmat, mem->segs, mem->nsegs); 1938 bus_dmamap_destroy(dmat, mem->map); 1939 free(mem, M_DRM, 0); 1940 } 1941 1942 struct drm_dma_handle * 1943 drm_pci_alloc(struct drm_device *dev, size_t size, size_t align) 1944 { 1945 struct drm_dma_handle *dmah; 1946 1947 dmah = malloc(sizeof(*dmah), M_DRM, M_WAITOK); 1948 dmah->mem = drm_dmamem_alloc(dev->dmat, size, align, 1, size, 1949 BUS_DMA_NOCACHE, 0); 1950 if (dmah->mem == NULL) { 1951 free(dmah, M_DRM, sizeof(*dmah)); 1952 return NULL; 1953 } 1954 dmah->busaddr = dmah->mem->segs[0].ds_addr; 1955 dmah->size = dmah->mem->size; 1956 dmah->vaddr = dmah->mem->kva; 1957 return (dmah); 1958 } 1959 1960 void 1961 drm_pci_free(struct drm_device *dev, struct drm_dma_handle *dmah) 1962 { 1963 if (dmah == NULL) 1964 return; 1965 1966 drm_dmamem_free(dev->dmat, dmah->mem); 1967 free(dmah, M_DRM, sizeof(*dmah)); 1968 } 1969 1970 /* 1971 * Compute order. Can be made faster. 1972 */ 1973 int 1974 drm_order(unsigned long size) 1975 { 1976 int order; 1977 unsigned long tmp; 1978 1979 for (order = 0, tmp = size; tmp >>= 1; ++order) 1980 ; 1981 1982 if (size & ~(1 << order)) 1983 ++order; 1984 1985 return order; 1986 } 1987 1988 int 1989 drm_getpciinfo(struct drm_device *dev, void *data, struct drm_file *file_priv) 1990 { 1991 struct drm_pciinfo *info = data; 1992 1993 if (dev->pdev == NULL) 1994 return -ENOTTY; 1995 1996 info->domain = dev->pdev->bus->domain_nr; 1997 info->bus = dev->pdev->bus->number; 1998 info->dev = PCI_SLOT(dev->pdev->devfn); 1999 info->func = PCI_FUNC(dev->pdev->devfn); 2000 info->vendor_id = dev->pdev->vendor; 2001 info->device_id = dev->pdev->device; 2002 info->subvendor_id = dev->pdev->subsystem_vendor; 2003 info->subdevice_id = dev->pdev->subsystem_device; 2004 info->revision_id = 0; 2005 2006 return 0; 2007 } 2008