xref: /openbsd-src/sys/dev/pci/drm/amd/amdgpu/sdma_v4_0.c (revision 99fd087599a8791921855f21bd7e36130f39aadc)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 
30 #include "sdma0/sdma0_4_0_offset.h"
31 #include "sdma0/sdma0_4_0_sh_mask.h"
32 #include "sdma1/sdma1_4_0_offset.h"
33 #include "sdma1/sdma1_4_0_sh_mask.h"
34 #include "hdp/hdp_4_0_offset.h"
35 #include "sdma0/sdma0_4_1_default.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
45 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
46 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
47 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
48 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
50 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
51 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
52 
53 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
54 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
55 
56 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
57 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
58 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
59 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
60 
61 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
62 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
63 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
64 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
65 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
66 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
67 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
68 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
69 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
70 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
71 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
72 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
73 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
74 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
75 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
76 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
77 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
78 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
79 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
80 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
81 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
82 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
83 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
84 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
85 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
86 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
87 };
88 
89 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
90 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
91 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
92 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
93 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
94 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
95 };
96 
97 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
100 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
103 };
104 
105 static const struct soc15_reg_golden golden_settings_sdma_4_1[] =
106 {
107 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
108 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
109 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
110 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
112 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
113 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
114 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
115 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
117 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
118 };
119 
120 static const struct soc15_reg_golden golden_settings_sdma_4_2[] =
121 {
122 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
123 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
124 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
125 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
126 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
127 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
129 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
130 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
131 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
133 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
134 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
135 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
136 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
137 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
139 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
140 };
141 
142 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
143 {
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
146 };
147 
148 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
149 		u32 instance, u32 offset)
150 {
151 	return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
152 			(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
153 }
154 
155 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
156 {
157 	switch (adev->asic_type) {
158 	case CHIP_VEGA10:
159 		soc15_program_register_sequence(adev,
160 						 golden_settings_sdma_4,
161 						 ARRAY_SIZE(golden_settings_sdma_4));
162 		soc15_program_register_sequence(adev,
163 						 golden_settings_sdma_vg10,
164 						 ARRAY_SIZE(golden_settings_sdma_vg10));
165 		break;
166 	case CHIP_VEGA12:
167 		soc15_program_register_sequence(adev,
168 						golden_settings_sdma_4,
169 						ARRAY_SIZE(golden_settings_sdma_4));
170 		soc15_program_register_sequence(adev,
171 						golden_settings_sdma_vg12,
172 						ARRAY_SIZE(golden_settings_sdma_vg12));
173 		break;
174 	case CHIP_VEGA20:
175 		soc15_program_register_sequence(adev,
176 						golden_settings_sdma_4_2,
177 						ARRAY_SIZE(golden_settings_sdma_4_2));
178 		break;
179 	case CHIP_RAVEN:
180 		soc15_program_register_sequence(adev,
181 						 golden_settings_sdma_4_1,
182 						 ARRAY_SIZE(golden_settings_sdma_4_1));
183 		soc15_program_register_sequence(adev,
184 						 golden_settings_sdma_rv1,
185 						 ARRAY_SIZE(golden_settings_sdma_rv1));
186 		break;
187 	default:
188 		break;
189 	}
190 }
191 
192 /**
193  * sdma_v4_0_init_microcode - load ucode images from disk
194  *
195  * @adev: amdgpu_device pointer
196  *
197  * Use the firmware interface to load the ucode images into
198  * the driver (not loaded into hw).
199  * Returns 0 on success, error on failure.
200  */
201 
202 // emulation only, won't work on real chip
203 // vega10 real chip need to use PSP to load firmware
204 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
205 {
206 	const char *chip_name;
207 	char fw_name[30];
208 	int err = 0, i;
209 	struct amdgpu_firmware_info *info = NULL;
210 	const struct common_firmware_header *header = NULL;
211 	const struct sdma_firmware_header_v1_0 *hdr;
212 
213 	DRM_DEBUG("\n");
214 
215 	switch (adev->asic_type) {
216 	case CHIP_VEGA10:
217 		chip_name = "vega10";
218 		break;
219 	case CHIP_VEGA12:
220 		chip_name = "vega12";
221 		break;
222 	case CHIP_VEGA20:
223 		chip_name = "vega20";
224 		break;
225 	case CHIP_RAVEN:
226 		if (adev->pdev->device == 0x15d8)
227 			chip_name = "picasso";
228 		else
229 			chip_name = "raven";
230 		break;
231 	default:
232 		BUG();
233 	}
234 
235 	for (i = 0; i < adev->sdma.num_instances; i++) {
236 		if (i == 0)
237 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
238 		else
239 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
240 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
241 		if (err)
242 			goto out;
243 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
244 		if (err)
245 			goto out;
246 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
247 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
248 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
249 		if (adev->sdma.instance[i].feature_version >= 20)
250 			adev->sdma.instance[i].burst_nop = true;
251 		DRM_DEBUG("psp_load == '%s'\n",
252 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
253 
254 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
255 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
256 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
257 			info->fw = adev->sdma.instance[i].fw;
258 			header = (const struct common_firmware_header *)info->fw->data;
259 			adev->firmware.fw_size +=
260 				roundup2(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
261 		}
262 	}
263 out:
264 	if (err) {
265 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
266 		for (i = 0; i < adev->sdma.num_instances; i++) {
267 			release_firmware(adev->sdma.instance[i].fw);
268 			adev->sdma.instance[i].fw = NULL;
269 		}
270 	}
271 	return err;
272 }
273 
274 /**
275  * sdma_v4_0_ring_get_rptr - get the current read pointer
276  *
277  * @ring: amdgpu ring pointer
278  *
279  * Get the current rptr from the hardware (VEGA10+).
280  */
281 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
282 {
283 	u64 *rptr;
284 
285 	/* XXX check if swapping is necessary on BE */
286 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
287 
288 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
289 	return ((*rptr) >> 2);
290 }
291 
292 /**
293  * sdma_v4_0_ring_get_wptr - get the current write pointer
294  *
295  * @ring: amdgpu ring pointer
296  *
297  * Get the current wptr from the hardware (VEGA10+).
298  */
299 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
300 {
301 	struct amdgpu_device *adev = ring->adev;
302 	u64 wptr;
303 
304 	if (ring->use_doorbell) {
305 		/* XXX check if swapping is necessary on BE */
306 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
307 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
308 	} else {
309 		u32 lowbit, highbit;
310 
311 		lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)) >> 2;
312 		highbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
313 
314 		DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
315 				ring->me, highbit, lowbit);
316 		wptr = highbit;
317 		wptr = wptr << 32;
318 		wptr |= lowbit;
319 	}
320 
321 	return wptr >> 2;
322 }
323 
324 /**
325  * sdma_v4_0_ring_set_wptr - commit the write pointer
326  *
327  * @ring: amdgpu ring pointer
328  *
329  * Write the wptr back to the hardware (VEGA10+).
330  */
331 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
332 {
333 	struct amdgpu_device *adev = ring->adev;
334 
335 	DRM_DEBUG("Setting write pointer\n");
336 	if (ring->use_doorbell) {
337 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
338 
339 		DRM_DEBUG("Using doorbell -- "
340 				"wptr_offs == 0x%08x "
341 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
342 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
343 				ring->wptr_offs,
344 				lower_32_bits(ring->wptr << 2),
345 				upper_32_bits(ring->wptr << 2));
346 		/* XXX check if swapping is necessary on BE */
347 		WRITE_ONCE(*wb, (ring->wptr << 2));
348 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
349 				ring->doorbell_index, ring->wptr << 2);
350 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
351 	} else {
352 		DRM_DEBUG("Not using doorbell -- "
353 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
354 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
355 				ring->me,
356 				lower_32_bits(ring->wptr << 2),
357 				ring->me,
358 				upper_32_bits(ring->wptr << 2));
359 		WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
360 		WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
361 	}
362 }
363 
364 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
365 {
366 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
367 	int i;
368 
369 	for (i = 0; i < count; i++)
370 		if (sdma && sdma->burst_nop && (i == 0))
371 			amdgpu_ring_write(ring, ring->funcs->nop |
372 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
373 		else
374 			amdgpu_ring_write(ring, ring->funcs->nop);
375 }
376 
377 /**
378  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
379  *
380  * @ring: amdgpu ring pointer
381  * @ib: IB object to schedule
382  *
383  * Schedule an IB in the DMA ring (VEGA10).
384  */
385 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
386 					struct amdgpu_ib *ib,
387 					unsigned vmid, bool ctx_switch)
388 {
389 	/* IB packet must end on a 8 DW boundary */
390 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
391 
392 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
393 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
394 	/* base must be 32 byte aligned */
395 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
396 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
397 	amdgpu_ring_write(ring, ib->length_dw);
398 	amdgpu_ring_write(ring, 0);
399 	amdgpu_ring_write(ring, 0);
400 
401 }
402 
403 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
404 				   int mem_space, int hdp,
405 				   uint32_t addr0, uint32_t addr1,
406 				   uint32_t ref, uint32_t mask,
407 				   uint32_t inv)
408 {
409 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
410 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
411 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
412 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
413 	if (mem_space) {
414 		/* memory */
415 		amdgpu_ring_write(ring, addr0);
416 		amdgpu_ring_write(ring, addr1);
417 	} else {
418 		/* registers */
419 		amdgpu_ring_write(ring, addr0 << 2);
420 		amdgpu_ring_write(ring, addr1 << 2);
421 	}
422 	amdgpu_ring_write(ring, ref); /* reference */
423 	amdgpu_ring_write(ring, mask); /* mask */
424 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
425 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
426 }
427 
428 /**
429  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
430  *
431  * @ring: amdgpu ring pointer
432  *
433  * Emit an hdp flush packet on the requested DMA ring.
434  */
435 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
436 {
437 	struct amdgpu_device *adev = ring->adev;
438 	u32 ref_and_mask = 0;
439 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
440 
441 	if (ring->me == 0)
442 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
443 	else
444 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
445 
446 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
447 			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
448 			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
449 			       ref_and_mask, ref_and_mask, 10);
450 }
451 
452 /**
453  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
454  *
455  * @ring: amdgpu ring pointer
456  * @fence: amdgpu fence object
457  *
458  * Add a DMA fence packet to the ring to write
459  * the fence seq number and DMA trap packet to generate
460  * an interrupt if needed (VEGA10).
461  */
462 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
463 				      unsigned flags)
464 {
465 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
466 	/* write the fence */
467 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
468 	/* zero in first two bits */
469 	BUG_ON(addr & 0x3);
470 	amdgpu_ring_write(ring, lower_32_bits(addr));
471 	amdgpu_ring_write(ring, upper_32_bits(addr));
472 	amdgpu_ring_write(ring, lower_32_bits(seq));
473 
474 	/* optionally write high bits as well */
475 	if (write64bit) {
476 		addr += 4;
477 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
478 		/* zero in first two bits */
479 		BUG_ON(addr & 0x3);
480 		amdgpu_ring_write(ring, lower_32_bits(addr));
481 		amdgpu_ring_write(ring, upper_32_bits(addr));
482 		amdgpu_ring_write(ring, upper_32_bits(seq));
483 	}
484 
485 	/* generate an interrupt */
486 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
487 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
488 }
489 
490 
491 /**
492  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
493  *
494  * @adev: amdgpu_device pointer
495  *
496  * Stop the gfx async dma ring buffers (VEGA10).
497  */
498 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
499 {
500 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
501 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
502 	u32 rb_cntl, ib_cntl;
503 	int i;
504 
505 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
506 	    (adev->mman.buffer_funcs_ring == sdma1))
507 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
508 
509 	for (i = 0; i < adev->sdma.num_instances; i++) {
510 		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
511 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
512 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
513 		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
514 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
515 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
516 	}
517 
518 	sdma0->ready = false;
519 	sdma1->ready = false;
520 }
521 
522 /**
523  * sdma_v4_0_rlc_stop - stop the compute async dma engines
524  *
525  * @adev: amdgpu_device pointer
526  *
527  * Stop the compute async dma queues (VEGA10).
528  */
529 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
530 {
531 	/* XXX todo */
532 }
533 
534 /**
535  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
536  *
537  * @adev: amdgpu_device pointer
538  * @enable: enable/disable the DMA MEs context switch.
539  *
540  * Halt or unhalt the async dma engines context switch (VEGA10).
541  */
542 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
543 {
544 	u32 f32_cntl, phase_quantum = 0;
545 	int i;
546 
547 	if (amdgpu_sdma_phase_quantum) {
548 		unsigned value = amdgpu_sdma_phase_quantum;
549 		unsigned unit = 0;
550 
551 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
552 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
553 			value = (value + 1) >> 1;
554 			unit++;
555 		}
556 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
557 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
558 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
559 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
560 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
561 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
562 			WARN_ONCE(1,
563 			"clamping sdma_phase_quantum to %uK clock cycles\n",
564 				  value << unit);
565 		}
566 		phase_quantum =
567 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
568 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
569 	}
570 
571 	for (i = 0; i < adev->sdma.num_instances; i++) {
572 		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
573 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
574 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
575 		if (enable && amdgpu_sdma_phase_quantum) {
576 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
577 			       phase_quantum);
578 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
579 			       phase_quantum);
580 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
581 			       phase_quantum);
582 		}
583 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
584 	}
585 
586 }
587 
588 /**
589  * sdma_v4_0_enable - stop the async dma engines
590  *
591  * @adev: amdgpu_device pointer
592  * @enable: enable/disable the DMA MEs.
593  *
594  * Halt or unhalt the async dma engines (VEGA10).
595  */
596 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
597 {
598 	u32 f32_cntl;
599 	int i;
600 
601 	if (enable == false) {
602 		sdma_v4_0_gfx_stop(adev);
603 		sdma_v4_0_rlc_stop(adev);
604 	}
605 
606 	for (i = 0; i < adev->sdma.num_instances; i++) {
607 		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
608 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
609 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
610 	}
611 }
612 
613 /**
614  * sdma_v4_0_gfx_resume - setup and start the async dma engines
615  *
616  * @adev: amdgpu_device pointer
617  *
618  * Set up the gfx DMA ring buffers and enable them (VEGA10).
619  * Returns 0 for success, error for failure.
620  */
621 static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
622 {
623 	struct amdgpu_ring *ring;
624 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
625 	u32 rb_bufsz;
626 	u32 wb_offset;
627 	u32 doorbell;
628 	u32 doorbell_offset;
629 	u32 temp;
630 	u64 wptr_gpu_addr;
631 	int i, r;
632 
633 	for (i = 0; i < adev->sdma.num_instances; i++) {
634 		ring = &adev->sdma.instance[i].ring;
635 		wb_offset = (ring->rptr_offs * 4);
636 
637 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
638 
639 		/* Set ring buffer size in dwords */
640 		rb_bufsz = order_base_2(ring->ring_size / 4);
641 		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
642 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
643 #ifdef __BIG_ENDIAN
644 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
645 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
646 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
647 #endif
648 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
649 
650 		/* Initialize the ring buffer's read and write pointers */
651 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
652 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
653 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
654 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
655 
656 		/* set the wb address whether it's enabled or not */
657 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
658 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
659 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
660 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
661 
662 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
663 
664 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
665 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
666 
667 		ring->wptr = 0;
668 
669 		/* before programing wptr to a less value, need set minor_ptr_update first */
670 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
671 
672 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
673 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
674 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
675 		}
676 
677 		doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
678 		doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
679 
680 		if (ring->use_doorbell) {
681 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
682 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
683 					OFFSET, ring->doorbell_index);
684 		} else {
685 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
686 		}
687 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
688 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
689 		adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
690 						      ring->doorbell_index);
691 
692 		if (amdgpu_sriov_vf(adev))
693 			sdma_v4_0_ring_set_wptr(ring);
694 
695 		/* set minor_ptr_update to 0 after wptr programed */
696 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
697 
698 		/* set utc l1 enable flag always to 1 */
699 		temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
700 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
701 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
702 
703 		if (!amdgpu_sriov_vf(adev)) {
704 			/* unhalt engine */
705 			temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
706 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
707 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
708 		}
709 
710 		/* setup the wptr shadow polling */
711 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
712 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
713 		       lower_32_bits(wptr_gpu_addr));
714 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
715 		       upper_32_bits(wptr_gpu_addr));
716 		wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
717 		if (amdgpu_sriov_vf(adev))
718 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
719 		else
720 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
721 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
722 
723 		/* enable DMA RB */
724 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
725 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
726 
727 		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
728 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
729 #ifdef __BIG_ENDIAN
730 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
731 #endif
732 		/* enable DMA IBs */
733 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
734 
735 		ring->ready = true;
736 
737 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
738 			sdma_v4_0_ctx_switch_enable(adev, true);
739 			sdma_v4_0_enable(adev, true);
740 		}
741 
742 		r = amdgpu_ring_test_ring(ring);
743 		if (r) {
744 			ring->ready = false;
745 			return r;
746 		}
747 
748 		if (adev->mman.buffer_funcs_ring == ring)
749 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
750 
751 	}
752 
753 	return 0;
754 }
755 
756 static void
757 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
758 {
759 	uint32_t def, data;
760 
761 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
762 		/* disable idle interrupt */
763 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
764 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
765 
766 		if (data != def)
767 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
768 	} else {
769 		/* disable idle interrupt */
770 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
771 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
772 		if (data != def)
773 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
774 	}
775 }
776 
777 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
778 {
779 	uint32_t def, data;
780 
781 	/* Enable HW based PG. */
782 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
783 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
784 	if (data != def)
785 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
786 
787 	/* enable interrupt */
788 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
789 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
790 	if (data != def)
791 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
792 
793 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
794 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
795 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
796 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
797 	/* Configure switch time for hysteresis purpose. Use default right now */
798 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
799 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
800 	if(data != def)
801 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
802 }
803 
804 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
805 {
806 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
807 		return;
808 
809 	switch (adev->asic_type) {
810 	case CHIP_RAVEN:
811 		sdma_v4_1_init_power_gating(adev);
812 		sdma_v4_1_update_power_gating(adev, true);
813 		break;
814 	default:
815 		break;
816 	}
817 }
818 
819 /**
820  * sdma_v4_0_rlc_resume - setup and start the async dma engines
821  *
822  * @adev: amdgpu_device pointer
823  *
824  * Set up the compute DMA queues and enable them (VEGA10).
825  * Returns 0 for success, error for failure.
826  */
827 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
828 {
829 	sdma_v4_0_init_pg(adev);
830 
831 	return 0;
832 }
833 
834 /**
835  * sdma_v4_0_load_microcode - load the sDMA ME ucode
836  *
837  * @adev: amdgpu_device pointer
838  *
839  * Loads the sDMA0/1 ucode.
840  * Returns 0 for success, -EINVAL if the ucode is not available.
841  */
842 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
843 {
844 	const struct sdma_firmware_header_v1_0 *hdr;
845 	const __le32 *fw_data;
846 	u32 fw_size;
847 	int i, j;
848 
849 	/* halt the MEs */
850 	sdma_v4_0_enable(adev, false);
851 
852 	for (i = 0; i < adev->sdma.num_instances; i++) {
853 		if (!adev->sdma.instance[i].fw)
854 			return -EINVAL;
855 
856 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
857 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
858 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
859 
860 		fw_data = (const __le32 *)
861 			(adev->sdma.instance[i].fw->data +
862 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
863 
864 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
865 
866 		for (j = 0; j < fw_size; j++)
867 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
868 
869 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
870 	}
871 
872 	return 0;
873 }
874 
875 /**
876  * sdma_v4_0_start - setup and start the async dma engines
877  *
878  * @adev: amdgpu_device pointer
879  *
880  * Set up the DMA engines and enable them (VEGA10).
881  * Returns 0 for success, error for failure.
882  */
883 static int sdma_v4_0_start(struct amdgpu_device *adev)
884 {
885 	int r = 0;
886 
887 	if (amdgpu_sriov_vf(adev)) {
888 		sdma_v4_0_ctx_switch_enable(adev, false);
889 		sdma_v4_0_enable(adev, false);
890 
891 		/* set RB registers */
892 		r = sdma_v4_0_gfx_resume(adev);
893 		return r;
894 	}
895 
896 	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
897 		r = sdma_v4_0_load_microcode(adev);
898 		if (r)
899 			return r;
900 	}
901 
902 	/* unhalt the MEs */
903 	sdma_v4_0_enable(adev, true);
904 	/* enable sdma ring preemption */
905 	sdma_v4_0_ctx_switch_enable(adev, true);
906 
907 	/* start the gfx rings and rlc compute queues */
908 	r = sdma_v4_0_gfx_resume(adev);
909 	if (r)
910 		return r;
911 	r = sdma_v4_0_rlc_resume(adev);
912 
913 	return r;
914 }
915 
916 /**
917  * sdma_v4_0_ring_test_ring - simple async dma engine test
918  *
919  * @ring: amdgpu_ring structure holding ring information
920  *
921  * Test the DMA engine by writing using it to write an
922  * value to memory. (VEGA10).
923  * Returns 0 for success, error for failure.
924  */
925 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
926 {
927 	struct amdgpu_device *adev = ring->adev;
928 	unsigned i;
929 	unsigned index;
930 	int r;
931 	u32 tmp;
932 	u64 gpu_addr;
933 
934 	r = amdgpu_device_wb_get(adev, &index);
935 	if (r) {
936 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
937 		return r;
938 	}
939 
940 	gpu_addr = adev->wb.gpu_addr + (index * 4);
941 	tmp = 0xCAFEDEAD;
942 	adev->wb.wb[index] = cpu_to_le32(tmp);
943 
944 	r = amdgpu_ring_alloc(ring, 5);
945 	if (r) {
946 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
947 		amdgpu_device_wb_free(adev, index);
948 		return r;
949 	}
950 
951 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
952 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
953 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
954 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
955 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
956 	amdgpu_ring_write(ring, 0xDEADBEEF);
957 	amdgpu_ring_commit(ring);
958 
959 	for (i = 0; i < adev->usec_timeout; i++) {
960 		tmp = le32_to_cpu(adev->wb.wb[index]);
961 		if (tmp == 0xDEADBEEF)
962 			break;
963 		DRM_UDELAY(1);
964 	}
965 
966 	if (i < adev->usec_timeout) {
967 		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
968 	} else {
969 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
970 			  ring->idx, tmp);
971 		r = -EINVAL;
972 	}
973 	amdgpu_device_wb_free(adev, index);
974 
975 	return r;
976 }
977 
978 /**
979  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
980  *
981  * @ring: amdgpu_ring structure holding ring information
982  *
983  * Test a simple IB in the DMA ring (VEGA10).
984  * Returns 0 on success, error on failure.
985  */
986 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
987 {
988 	struct amdgpu_device *adev = ring->adev;
989 	struct amdgpu_ib ib;
990 	struct dma_fence *f = NULL;
991 	unsigned index;
992 	long r;
993 	u32 tmp = 0;
994 	u64 gpu_addr;
995 
996 	r = amdgpu_device_wb_get(adev, &index);
997 	if (r) {
998 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
999 		return r;
1000 	}
1001 
1002 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1003 	tmp = 0xCAFEDEAD;
1004 	adev->wb.wb[index] = cpu_to_le32(tmp);
1005 	memset(&ib, 0, sizeof(ib));
1006 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1007 	if (r) {
1008 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1009 		goto err0;
1010 	}
1011 
1012 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1013 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1014 	ib.ptr[1] = lower_32_bits(gpu_addr);
1015 	ib.ptr[2] = upper_32_bits(gpu_addr);
1016 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1017 	ib.ptr[4] = 0xDEADBEEF;
1018 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1019 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1020 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1021 	ib.length_dw = 8;
1022 
1023 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1024 	if (r)
1025 		goto err1;
1026 
1027 	r = dma_fence_wait_timeout(f, false, timeout);
1028 	if (r == 0) {
1029 		DRM_ERROR("amdgpu: IB test timed out\n");
1030 		r = -ETIMEDOUT;
1031 		goto err1;
1032 	} else if (r < 0) {
1033 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1034 		goto err1;
1035 	}
1036 	tmp = le32_to_cpu(adev->wb.wb[index]);
1037 	if (tmp == 0xDEADBEEF) {
1038 		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
1039 		r = 0;
1040 	} else {
1041 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
1042 		r = -EINVAL;
1043 	}
1044 err1:
1045 	amdgpu_ib_free(adev, &ib, NULL);
1046 	dma_fence_put(f);
1047 err0:
1048 	amdgpu_device_wb_free(adev, index);
1049 	return r;
1050 }
1051 
1052 
1053 /**
1054  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1055  *
1056  * @ib: indirect buffer to fill with commands
1057  * @pe: addr of the page entry
1058  * @src: src addr to copy from
1059  * @count: number of page entries to update
1060  *
1061  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1062  */
1063 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1064 				  uint64_t pe, uint64_t src,
1065 				  unsigned count)
1066 {
1067 	unsigned bytes = count * 8;
1068 
1069 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1070 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1071 	ib->ptr[ib->length_dw++] = bytes - 1;
1072 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1073 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1074 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1075 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1076 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1077 
1078 }
1079 
1080 /**
1081  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1082  *
1083  * @ib: indirect buffer to fill with commands
1084  * @pe: addr of the page entry
1085  * @addr: dst addr to write into pe
1086  * @count: number of page entries to update
1087  * @incr: increase next addr by incr bytes
1088  * @flags: access flags
1089  *
1090  * Update PTEs by writing them manually using sDMA (VEGA10).
1091  */
1092 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1093 				   uint64_t value, unsigned count,
1094 				   uint32_t incr)
1095 {
1096 	unsigned ndw = count * 2;
1097 
1098 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1099 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1100 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1101 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1102 	ib->ptr[ib->length_dw++] = ndw - 1;
1103 	for (; ndw > 0; ndw -= 2) {
1104 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1105 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1106 		value += incr;
1107 	}
1108 }
1109 
1110 /**
1111  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1112  *
1113  * @ib: indirect buffer to fill with commands
1114  * @pe: addr of the page entry
1115  * @addr: dst addr to write into pe
1116  * @count: number of page entries to update
1117  * @incr: increase next addr by incr bytes
1118  * @flags: access flags
1119  *
1120  * Update the page tables using sDMA (VEGA10).
1121  */
1122 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1123 				     uint64_t pe,
1124 				     uint64_t addr, unsigned count,
1125 				     uint32_t incr, uint64_t flags)
1126 {
1127 	/* for physically contiguous pages (vram) */
1128 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1129 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1130 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1131 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1132 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1133 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1134 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1135 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1136 	ib->ptr[ib->length_dw++] = 0;
1137 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1138 }
1139 
1140 /**
1141  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1142  *
1143  * @ib: indirect buffer to fill with padding
1144  *
1145  */
1146 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1147 {
1148 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1149 	u32 pad_count;
1150 	int i;
1151 
1152 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1153 	for (i = 0; i < pad_count; i++)
1154 		if (sdma && sdma->burst_nop && (i == 0))
1155 			ib->ptr[ib->length_dw++] =
1156 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1157 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1158 		else
1159 			ib->ptr[ib->length_dw++] =
1160 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1161 }
1162 
1163 
1164 /**
1165  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1166  *
1167  * @ring: amdgpu_ring pointer
1168  *
1169  * Make sure all previous operations are completed (CIK).
1170  */
1171 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1172 {
1173 	uint32_t seq = ring->fence_drv.sync_seq;
1174 	uint64_t addr = ring->fence_drv.gpu_addr;
1175 
1176 	/* wait for idle */
1177 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1178 			       addr & 0xfffffffc,
1179 			       upper_32_bits(addr) & 0xffffffff,
1180 			       seq, 0xffffffff, 4);
1181 }
1182 
1183 
1184 /**
1185  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1186  *
1187  * @ring: amdgpu_ring pointer
1188  * @vm: amdgpu_vm pointer
1189  *
1190  * Update the page table base and flush the VM TLB
1191  * using sDMA (VEGA10).
1192  */
1193 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1194 					 unsigned vmid, uint64_t pd_addr)
1195 {
1196 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1197 }
1198 
1199 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1200 				     uint32_t reg, uint32_t val)
1201 {
1202 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1203 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1204 	amdgpu_ring_write(ring, reg);
1205 	amdgpu_ring_write(ring, val);
1206 }
1207 
1208 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1209 					 uint32_t val, uint32_t mask)
1210 {
1211 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1212 }
1213 
1214 static int sdma_v4_0_early_init(void *handle)
1215 {
1216 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1217 
1218 	if (adev->asic_type == CHIP_RAVEN)
1219 		adev->sdma.num_instances = 1;
1220 	else
1221 		adev->sdma.num_instances = 2;
1222 
1223 	sdma_v4_0_set_ring_funcs(adev);
1224 	sdma_v4_0_set_buffer_funcs(adev);
1225 	sdma_v4_0_set_vm_pte_funcs(adev);
1226 	sdma_v4_0_set_irq_funcs(adev);
1227 
1228 	return 0;
1229 }
1230 
1231 
1232 static int sdma_v4_0_sw_init(void *handle)
1233 {
1234 	struct amdgpu_ring *ring;
1235 	int r, i;
1236 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1237 
1238 	/* SDMA trap event */
1239 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1240 			      &adev->sdma.trap_irq);
1241 	if (r)
1242 		return r;
1243 
1244 	/* SDMA trap event */
1245 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1246 			      &adev->sdma.trap_irq);
1247 	if (r)
1248 		return r;
1249 
1250 	r = sdma_v4_0_init_microcode(adev);
1251 	if (r) {
1252 		DRM_ERROR("Failed to load sdma firmware!\n");
1253 		return r;
1254 	}
1255 
1256 	for (i = 0; i < adev->sdma.num_instances; i++) {
1257 		ring = &adev->sdma.instance[i].ring;
1258 		ring->ring_obj = NULL;
1259 		ring->use_doorbell = true;
1260 
1261 		DRM_INFO("use_doorbell being set to: [%s]\n",
1262 				ring->use_doorbell?"true":"false");
1263 
1264 		ring->doorbell_index = (i == 0) ?
1265 			(AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
1266 			: (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
1267 
1268 		snprintf(ring->name, sizeof(ring->name), "sdma%d", i);
1269 		r = amdgpu_ring_init(adev, ring, 1024,
1270 				     &adev->sdma.trap_irq,
1271 				     (i == 0) ?
1272 				     AMDGPU_SDMA_IRQ_TRAP0 :
1273 				     AMDGPU_SDMA_IRQ_TRAP1);
1274 		if (r)
1275 			return r;
1276 	}
1277 
1278 	return r;
1279 }
1280 
1281 static int sdma_v4_0_sw_fini(void *handle)
1282 {
1283 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1284 	int i;
1285 
1286 	for (i = 0; i < adev->sdma.num_instances; i++)
1287 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1288 
1289 	for (i = 0; i < adev->sdma.num_instances; i++) {
1290 		release_firmware(adev->sdma.instance[i].fw);
1291 		adev->sdma.instance[i].fw = NULL;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static int sdma_v4_0_hw_init(void *handle)
1298 {
1299 	int r;
1300 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1301 
1302 	sdma_v4_0_init_golden_registers(adev);
1303 
1304 	r = sdma_v4_0_start(adev);
1305 
1306 	return r;
1307 }
1308 
1309 static int sdma_v4_0_hw_fini(void *handle)
1310 {
1311 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1312 
1313 	if (amdgpu_sriov_vf(adev))
1314 		return 0;
1315 
1316 	sdma_v4_0_ctx_switch_enable(adev, false);
1317 	sdma_v4_0_enable(adev, false);
1318 
1319 	return 0;
1320 }
1321 
1322 static int sdma_v4_0_suspend(void *handle)
1323 {
1324 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1325 
1326 	return sdma_v4_0_hw_fini(adev);
1327 }
1328 
1329 static int sdma_v4_0_resume(void *handle)
1330 {
1331 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1332 
1333 	return sdma_v4_0_hw_init(adev);
1334 }
1335 
1336 static bool sdma_v4_0_is_idle(void *handle)
1337 {
1338 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1339 	u32 i;
1340 
1341 	for (i = 0; i < adev->sdma.num_instances; i++) {
1342 		u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1343 
1344 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1345 			return false;
1346 	}
1347 
1348 	return true;
1349 }
1350 
1351 static int sdma_v4_0_wait_for_idle(void *handle)
1352 {
1353 	unsigned i;
1354 	u32 sdma0, sdma1;
1355 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1356 
1357 	for (i = 0; i < adev->usec_timeout; i++) {
1358 		sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1359 		sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1360 
1361 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1362 			return 0;
1363 		udelay(1);
1364 	}
1365 	return -ETIMEDOUT;
1366 }
1367 
1368 static int sdma_v4_0_soft_reset(void *handle)
1369 {
1370 	/* todo */
1371 
1372 	return 0;
1373 }
1374 
1375 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1376 					struct amdgpu_irq_src *source,
1377 					unsigned type,
1378 					enum amdgpu_interrupt_state state)
1379 {
1380 	u32 sdma_cntl;
1381 
1382 	u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
1383 		sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1384 		sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1385 
1386 	sdma_cntl = RREG32(reg_offset);
1387 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1388 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1389 	WREG32(reg_offset, sdma_cntl);
1390 
1391 	return 0;
1392 }
1393 
1394 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1395 				      struct amdgpu_irq_src *source,
1396 				      struct amdgpu_iv_entry *entry)
1397 {
1398 	DRM_DEBUG("IH: SDMA trap\n");
1399 	switch (entry->client_id) {
1400 	case SOC15_IH_CLIENTID_SDMA0:
1401 		switch (entry->ring_id) {
1402 		case 0:
1403 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1404 			break;
1405 		case 1:
1406 			/* XXX compute */
1407 			break;
1408 		case 2:
1409 			/* XXX compute */
1410 			break;
1411 		case 3:
1412 			/* XXX page queue*/
1413 			break;
1414 		}
1415 		break;
1416 	case SOC15_IH_CLIENTID_SDMA1:
1417 		switch (entry->ring_id) {
1418 		case 0:
1419 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1420 			break;
1421 		case 1:
1422 			/* XXX compute */
1423 			break;
1424 		case 2:
1425 			/* XXX compute */
1426 			break;
1427 		case 3:
1428 			/* XXX page queue*/
1429 			break;
1430 		}
1431 		break;
1432 	}
1433 	return 0;
1434 }
1435 
1436 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1437 					      struct amdgpu_irq_src *source,
1438 					      struct amdgpu_iv_entry *entry)
1439 {
1440 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1441 	schedule_work(&adev->reset_work);
1442 	return 0;
1443 }
1444 
1445 
1446 static void sdma_v4_0_update_medium_grain_clock_gating(
1447 		struct amdgpu_device *adev,
1448 		bool enable)
1449 {
1450 	uint32_t data, def;
1451 
1452 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1453 		/* enable sdma0 clock gating */
1454 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1455 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1456 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1457 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1458 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1459 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1460 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1461 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1462 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1463 		if (def != data)
1464 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1465 
1466 		if (adev->sdma.num_instances > 1) {
1467 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1468 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1469 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1470 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1471 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1472 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1473 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1474 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1475 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1476 			if (def != data)
1477 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1478 		}
1479 	} else {
1480 		/* disable sdma0 clock gating */
1481 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1482 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1483 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1484 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1485 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1486 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1487 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1488 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1489 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1490 
1491 		if (def != data)
1492 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1493 
1494 		if (adev->sdma.num_instances > 1) {
1495 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1496 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1497 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1498 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1499 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1500 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1501 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1502 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1503 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1504 			if (def != data)
1505 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1506 		}
1507 	}
1508 }
1509 
1510 
1511 static void sdma_v4_0_update_medium_grain_light_sleep(
1512 		struct amdgpu_device *adev,
1513 		bool enable)
1514 {
1515 	uint32_t data, def;
1516 
1517 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1518 		/* 1-not override: enable sdma0 mem light sleep */
1519 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1520 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1521 		if (def != data)
1522 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1523 
1524 		/* 1-not override: enable sdma1 mem light sleep */
1525 		if (adev->sdma.num_instances > 1) {
1526 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1527 			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1528 			if (def != data)
1529 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1530 		}
1531 	} else {
1532 		/* 0-override:disable sdma0 mem light sleep */
1533 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1534 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1535 		if (def != data)
1536 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1537 
1538 		/* 0-override:disable sdma1 mem light sleep */
1539 		if (adev->sdma.num_instances > 1) {
1540 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1541 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1542 			if (def != data)
1543 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1544 		}
1545 	}
1546 }
1547 
1548 static int sdma_v4_0_set_clockgating_state(void *handle,
1549 					  enum amd_clockgating_state state)
1550 {
1551 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1552 
1553 	if (amdgpu_sriov_vf(adev))
1554 		return 0;
1555 
1556 	switch (adev->asic_type) {
1557 	case CHIP_VEGA10:
1558 	case CHIP_VEGA12:
1559 	case CHIP_VEGA20:
1560 	case CHIP_RAVEN:
1561 		sdma_v4_0_update_medium_grain_clock_gating(adev,
1562 				state == AMD_CG_STATE_GATE ? true : false);
1563 		sdma_v4_0_update_medium_grain_light_sleep(adev,
1564 				state == AMD_CG_STATE_GATE ? true : false);
1565 		break;
1566 	default:
1567 		break;
1568 	}
1569 	return 0;
1570 }
1571 
1572 static int sdma_v4_0_set_powergating_state(void *handle,
1573 					  enum amd_powergating_state state)
1574 {
1575 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1576 
1577 	switch (adev->asic_type) {
1578 	case CHIP_RAVEN:
1579 		sdma_v4_1_update_power_gating(adev,
1580 				state == AMD_PG_STATE_GATE ? true : false);
1581 		break;
1582 	default:
1583 		break;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
1590 {
1591 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1592 	int data;
1593 
1594 	if (amdgpu_sriov_vf(adev))
1595 		*flags = 0;
1596 
1597 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1598 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1599 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1600 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1601 
1602 	/* AMD_CG_SUPPORT_SDMA_LS */
1603 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1604 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1605 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1606 }
1607 
1608 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
1609 	.name = "sdma_v4_0",
1610 	.early_init = sdma_v4_0_early_init,
1611 	.late_init = NULL,
1612 	.sw_init = sdma_v4_0_sw_init,
1613 	.sw_fini = sdma_v4_0_sw_fini,
1614 	.hw_init = sdma_v4_0_hw_init,
1615 	.hw_fini = sdma_v4_0_hw_fini,
1616 	.suspend = sdma_v4_0_suspend,
1617 	.resume = sdma_v4_0_resume,
1618 	.is_idle = sdma_v4_0_is_idle,
1619 	.wait_for_idle = sdma_v4_0_wait_for_idle,
1620 	.soft_reset = sdma_v4_0_soft_reset,
1621 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
1622 	.set_powergating_state = sdma_v4_0_set_powergating_state,
1623 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
1624 };
1625 
1626 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
1627 	.type = AMDGPU_RING_TYPE_SDMA,
1628 	.align_mask = 0xf,
1629 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1630 	.support_64bit_ptrs = true,
1631 	.vmhub = AMDGPU_MMHUB,
1632 	.get_rptr = sdma_v4_0_ring_get_rptr,
1633 	.get_wptr = sdma_v4_0_ring_get_wptr,
1634 	.set_wptr = sdma_v4_0_ring_set_wptr,
1635 	.emit_frame_size =
1636 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1637 		3 + /* hdp invalidate */
1638 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1639 		/* sdma_v4_0_ring_emit_vm_flush */
1640 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1641 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1642 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1643 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1644 	.emit_ib = sdma_v4_0_ring_emit_ib,
1645 	.emit_fence = sdma_v4_0_ring_emit_fence,
1646 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1647 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1648 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1649 	.test_ring = sdma_v4_0_ring_test_ring,
1650 	.test_ib = sdma_v4_0_ring_test_ib,
1651 	.insert_nop = sdma_v4_0_ring_insert_nop,
1652 	.pad_ib = sdma_v4_0_ring_pad_ib,
1653 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
1654 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1655 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1656 };
1657 
1658 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
1659 {
1660 	int i;
1661 
1662 	for (i = 0; i < adev->sdma.num_instances; i++) {
1663 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1664 		adev->sdma.instance[i].ring.me = i;
1665 	}
1666 }
1667 
1668 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
1669 	.set = sdma_v4_0_set_trap_irq_state,
1670 	.process = sdma_v4_0_process_trap_irq,
1671 };
1672 
1673 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
1674 	.process = sdma_v4_0_process_illegal_inst_irq,
1675 };
1676 
1677 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
1678 {
1679 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1680 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
1681 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
1682 }
1683 
1684 /**
1685  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
1686  *
1687  * @ring: amdgpu_ring structure holding ring information
1688  * @src_offset: src GPU address
1689  * @dst_offset: dst GPU address
1690  * @byte_count: number of bytes to xfer
1691  *
1692  * Copy GPU buffers using the DMA engine (VEGA10/12).
1693  * Used by the amdgpu ttm implementation to move pages if
1694  * registered as the asic copy callback.
1695  */
1696 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
1697 				       uint64_t src_offset,
1698 				       uint64_t dst_offset,
1699 				       uint32_t byte_count)
1700 {
1701 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1702 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1703 	ib->ptr[ib->length_dw++] = byte_count - 1;
1704 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1705 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1706 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1707 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1708 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1709 }
1710 
1711 /**
1712  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
1713  *
1714  * @ring: amdgpu_ring structure holding ring information
1715  * @src_data: value to write to buffer
1716  * @dst_offset: dst GPU address
1717  * @byte_count: number of bytes to xfer
1718  *
1719  * Fill GPU buffers using the DMA engine (VEGA10/12).
1720  */
1721 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
1722 				       uint32_t src_data,
1723 				       uint64_t dst_offset,
1724 				       uint32_t byte_count)
1725 {
1726 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1727 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1728 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1729 	ib->ptr[ib->length_dw++] = src_data;
1730 	ib->ptr[ib->length_dw++] = byte_count - 1;
1731 }
1732 
1733 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
1734 	.copy_max_bytes = 0x400000,
1735 	.copy_num_dw = 7,
1736 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
1737 
1738 	.fill_max_bytes = 0x400000,
1739 	.fill_num_dw = 5,
1740 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
1741 };
1742 
1743 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
1744 {
1745 	if (adev->mman.buffer_funcs == NULL) {
1746 		adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
1747 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1748 	}
1749 }
1750 
1751 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
1752 	.copy_pte_num_dw = 7,
1753 	.copy_pte = sdma_v4_0_vm_copy_pte,
1754 
1755 	.write_pte = sdma_v4_0_vm_write_pte,
1756 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
1757 };
1758 
1759 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1760 {
1761 	unsigned i;
1762 
1763 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1764 		adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
1765 		for (i = 0; i < adev->sdma.num_instances; i++)
1766 			adev->vm_manager.vm_pte_rings[i] =
1767 				&adev->sdma.instance[i].ring;
1768 
1769 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1770 	}
1771 }
1772 
1773 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
1774 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1775 	.major = 4,
1776 	.minor = 0,
1777 	.rev = 0,
1778 	.funcs = &sdma_v4_0_ip_funcs,
1779 };
1780