1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_amdkfd.h" 39 #include "amdgpu_gmc.h" 40 #include "amdgpu_xgmi.h" 41 #include "amdgpu_dma_buf.h" 42 #include "amdgpu_res_cursor.h" 43 #include "../amdkfd/kfd_svm.h" 44 45 /** 46 * DOC: GPUVM 47 * 48 * GPUVM is similar to the legacy gart on older asics, however 49 * rather than there being a single global gart table 50 * for the entire GPU, there are multiple VM page tables active 51 * at any given time. The VM page tables can contain a mix 52 * vram pages and system memory pages and system memory pages 53 * can be mapped as snooped (cached system pages) or unsnooped 54 * (uncached system pages). 55 * Each VM has an ID associated with it and there is a page table 56 * associated with each VMID. When execting a command buffer, 57 * the kernel tells the the ring what VMID to use for that command 58 * buffer. VMIDs are allocated dynamically as commands are submitted. 59 * The userspace drivers maintain their own address space and the kernel 60 * sets up their pages tables accordingly when they submit their 61 * command buffers and a VMID is assigned. 62 * Cayman/Trinity support up to 8 active VMs at any given time; 63 * SI supports 16. 64 */ 65 66 #define START(node) ((node)->start) 67 #define LAST(node) ((node)->last) 68 69 #ifdef __linux__ 70 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 71 START, LAST, static, amdgpu_vm_it) 72 #else 73 static struct amdgpu_bo_va_mapping * 74 amdgpu_vm_it_iter_first(struct rb_root_cached *root, uint64_t start, 75 uint64_t last) 76 { 77 struct amdgpu_bo_va_mapping *node; 78 struct rb_node *rb; 79 80 for (rb = rb_first_cached(root); rb; rb = rb_next(rb)) { 81 node = rb_entry(rb, typeof(*node), rb); 82 if (LAST(node) >= start && START(node) <= last) 83 return node; 84 } 85 return NULL; 86 } 87 88 static struct amdgpu_bo_va_mapping * 89 amdgpu_vm_it_iter_next(struct amdgpu_bo_va_mapping *node, uint64_t start, 90 uint64_t last) 91 { 92 struct rb_node *rb = &node->rb; 93 94 for (rb = rb_next(rb); rb; rb = rb_next(rb)) { 95 node = rb_entry(rb, typeof(*node), rb); 96 if (LAST(node) >= start && START(node) <= last) 97 return node; 98 } 99 return NULL; 100 } 101 102 static void 103 amdgpu_vm_it_remove(struct amdgpu_bo_va_mapping *node, 104 struct rb_root_cached *root) 105 { 106 rb_erase_cached(&node->rb, root); 107 } 108 109 static void 110 amdgpu_vm_it_insert(struct amdgpu_bo_va_mapping *node, 111 struct rb_root_cached *root) 112 { 113 struct rb_node **iter = &root->rb_root.rb_node; 114 struct rb_node *parent = NULL; 115 struct amdgpu_bo_va_mapping *iter_node; 116 117 while (*iter) { 118 parent = *iter; 119 iter_node = rb_entry(*iter, struct amdgpu_bo_va_mapping, rb); 120 121 if (node->start < iter_node->start) 122 iter = &(*iter)->rb_left; 123 else 124 iter = &(*iter)->rb_right; 125 } 126 127 rb_link_node(&node->rb, parent, iter); 128 rb_insert_color_cached(&node->rb, root, false); 129 } 130 #endif 131 132 #undef START 133 #undef LAST 134 135 /** 136 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 137 */ 138 struct amdgpu_prt_cb { 139 140 /** 141 * @adev: amdgpu device 142 */ 143 struct amdgpu_device *adev; 144 145 /** 146 * @cb: callback 147 */ 148 struct dma_fence_cb cb; 149 }; 150 151 /** 152 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 153 * 154 * @adev: amdgpu_device pointer 155 * @vm: amdgpu_vm pointer 156 * @pasid: the pasid the VM is using on this GPU 157 * 158 * Set the pasid this VM is using on this GPU, can also be used to remove the 159 * pasid by passing in zero. 160 * 161 */ 162 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 163 u32 pasid) 164 { 165 int r; 166 167 if (vm->pasid == pasid) 168 return 0; 169 170 if (vm->pasid) { 171 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 172 if (r < 0) 173 return r; 174 175 vm->pasid = 0; 176 } 177 178 if (pasid) { 179 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 180 GFP_KERNEL)); 181 if (r < 0) 182 return r; 183 184 vm->pasid = pasid; 185 } 186 187 188 return 0; 189 } 190 191 /* 192 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 193 * happens while holding this lock anywhere to prevent deadlocks when 194 * an MMU notifier runs in reclaim-FS context. 195 */ 196 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 197 { 198 mutex_lock(&vm->eviction_lock); 199 #ifdef notyet 200 vm->saved_flags = memalloc_noreclaim_save(); 201 #endif 202 } 203 204 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 205 { 206 if (mutex_trylock(&vm->eviction_lock)) { 207 #ifdef notyet 208 vm->saved_flags = memalloc_noreclaim_save(); 209 #endif 210 return 1; 211 } 212 return 0; 213 } 214 215 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 216 { 217 #ifdef notyet 218 memalloc_noreclaim_restore(vm->saved_flags); 219 #endif 220 mutex_unlock(&vm->eviction_lock); 221 } 222 223 /** 224 * amdgpu_vm_level_shift - return the addr shift for each level 225 * 226 * @adev: amdgpu_device pointer 227 * @level: VMPT level 228 * 229 * Returns: 230 * The number of bits the pfn needs to be right shifted for a level. 231 */ 232 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 233 unsigned level) 234 { 235 switch (level) { 236 case AMDGPU_VM_PDB2: 237 case AMDGPU_VM_PDB1: 238 case AMDGPU_VM_PDB0: 239 return 9 * (AMDGPU_VM_PDB0 - level) + 240 adev->vm_manager.block_size; 241 case AMDGPU_VM_PTB: 242 return 0; 243 default: 244 return ~0; 245 } 246 } 247 248 /** 249 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 250 * 251 * @adev: amdgpu_device pointer 252 * @level: VMPT level 253 * 254 * Returns: 255 * The number of entries in a page directory or page table. 256 */ 257 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 258 unsigned level) 259 { 260 unsigned shift = amdgpu_vm_level_shift(adev, 261 adev->vm_manager.root_level); 262 263 if (level == adev->vm_manager.root_level) 264 /* For the root directory */ 265 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 266 >> shift; 267 else if (level != AMDGPU_VM_PTB) 268 /* Everything in between */ 269 return 512; 270 else 271 /* For the page tables on the leaves */ 272 return AMDGPU_VM_PTE_COUNT(adev); 273 } 274 275 /** 276 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 277 * 278 * @adev: amdgpu_device pointer 279 * 280 * Returns: 281 * The number of entries in the root page directory which needs the ATS setting. 282 */ 283 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 284 { 285 unsigned shift; 286 287 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 288 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 289 } 290 291 /** 292 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 293 * 294 * @adev: amdgpu_device pointer 295 * @level: VMPT level 296 * 297 * Returns: 298 * The mask to extract the entry number of a PD/PT from an address. 299 */ 300 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 301 unsigned int level) 302 { 303 if (level <= adev->vm_manager.root_level) 304 return 0xffffffff; 305 else if (level != AMDGPU_VM_PTB) 306 return 0x1ff; 307 else 308 return AMDGPU_VM_PTE_COUNT(adev) - 1; 309 } 310 311 /** 312 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 313 * 314 * @adev: amdgpu_device pointer 315 * @level: VMPT level 316 * 317 * Returns: 318 * The size of the BO for a page directory or page table in bytes. 319 */ 320 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 321 { 322 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 323 } 324 325 /** 326 * amdgpu_vm_bo_evicted - vm_bo is evicted 327 * 328 * @vm_bo: vm_bo which is evicted 329 * 330 * State for PDs/PTs and per VM BOs which are not at the location they should 331 * be. 332 */ 333 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 334 { 335 struct amdgpu_vm *vm = vm_bo->vm; 336 struct amdgpu_bo *bo = vm_bo->bo; 337 338 vm_bo->moved = true; 339 if (bo->tbo.type == ttm_bo_type_kernel) 340 list_move(&vm_bo->vm_status, &vm->evicted); 341 else 342 list_move_tail(&vm_bo->vm_status, &vm->evicted); 343 } 344 /** 345 * amdgpu_vm_bo_moved - vm_bo is moved 346 * 347 * @vm_bo: vm_bo which is moved 348 * 349 * State for per VM BOs which are moved, but that change is not yet reflected 350 * in the page tables. 351 */ 352 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 353 { 354 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 355 } 356 357 /** 358 * amdgpu_vm_bo_idle - vm_bo is idle 359 * 360 * @vm_bo: vm_bo which is now idle 361 * 362 * State for PDs/PTs and per VM BOs which have gone through the state machine 363 * and are now idle. 364 */ 365 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 366 { 367 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 368 vm_bo->moved = false; 369 } 370 371 /** 372 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 373 * 374 * @vm_bo: vm_bo which is now invalidated 375 * 376 * State for normal BOs which are invalidated and that change not yet reflected 377 * in the PTs. 378 */ 379 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 380 { 381 spin_lock(&vm_bo->vm->invalidated_lock); 382 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 383 spin_unlock(&vm_bo->vm->invalidated_lock); 384 } 385 386 /** 387 * amdgpu_vm_bo_relocated - vm_bo is reloacted 388 * 389 * @vm_bo: vm_bo which is relocated 390 * 391 * State for PDs/PTs which needs to update their parent PD. 392 * For the root PD, just move to idle state. 393 */ 394 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 395 { 396 if (vm_bo->bo->parent) 397 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 398 else 399 amdgpu_vm_bo_idle(vm_bo); 400 } 401 402 /** 403 * amdgpu_vm_bo_done - vm_bo is done 404 * 405 * @vm_bo: vm_bo which is now done 406 * 407 * State for normal BOs which are invalidated and that change has been updated 408 * in the PTs. 409 */ 410 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 411 { 412 spin_lock(&vm_bo->vm->invalidated_lock); 413 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 414 spin_unlock(&vm_bo->vm->invalidated_lock); 415 } 416 417 /** 418 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 419 * 420 * @base: base structure for tracking BO usage in a VM 421 * @vm: vm to which bo is to be added 422 * @bo: amdgpu buffer object 423 * 424 * Initialize a bo_va_base structure and add it to the appropriate lists 425 * 426 */ 427 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 428 struct amdgpu_vm *vm, 429 struct amdgpu_bo *bo) 430 { 431 base->vm = vm; 432 base->bo = bo; 433 base->next = NULL; 434 INIT_LIST_HEAD(&base->vm_status); 435 436 if (!bo) 437 return; 438 base->next = bo->vm_bo; 439 bo->vm_bo = base; 440 441 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 442 return; 443 444 vm->bulk_moveable = false; 445 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 446 amdgpu_vm_bo_relocated(base); 447 else 448 amdgpu_vm_bo_idle(base); 449 450 if (bo->preferred_domains & 451 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 452 return; 453 454 /* 455 * we checked all the prerequisites, but it looks like this per vm bo 456 * is currently evicted. add the bo to the evicted list to make sure it 457 * is validated on next vm use to avoid fault. 458 * */ 459 amdgpu_vm_bo_evicted(base); 460 } 461 462 /** 463 * amdgpu_vm_pt_parent - get the parent page directory 464 * 465 * @pt: child page table 466 * 467 * Helper to get the parent entry for the child page table. NULL if we are at 468 * the root page directory. 469 */ 470 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 471 { 472 struct amdgpu_bo *parent = pt->bo->parent; 473 474 if (!parent) 475 return NULL; 476 477 return parent->vm_bo; 478 } 479 480 /* 481 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 482 */ 483 struct amdgpu_vm_pt_cursor { 484 uint64_t pfn; 485 struct amdgpu_vm_bo_base *parent; 486 struct amdgpu_vm_bo_base *entry; 487 unsigned level; 488 }; 489 490 /** 491 * amdgpu_vm_pt_start - start PD/PT walk 492 * 493 * @adev: amdgpu_device pointer 494 * @vm: amdgpu_vm structure 495 * @start: start address of the walk 496 * @cursor: state to initialize 497 * 498 * Initialize a amdgpu_vm_pt_cursor to start a walk. 499 */ 500 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 501 struct amdgpu_vm *vm, uint64_t start, 502 struct amdgpu_vm_pt_cursor *cursor) 503 { 504 cursor->pfn = start; 505 cursor->parent = NULL; 506 cursor->entry = &vm->root; 507 cursor->level = adev->vm_manager.root_level; 508 } 509 510 /** 511 * amdgpu_vm_pt_descendant - go to child node 512 * 513 * @adev: amdgpu_device pointer 514 * @cursor: current state 515 * 516 * Walk to the child node of the current node. 517 * Returns: 518 * True if the walk was possible, false otherwise. 519 */ 520 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 521 struct amdgpu_vm_pt_cursor *cursor) 522 { 523 unsigned mask, shift, idx; 524 525 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 526 !cursor->entry->bo) 527 return false; 528 529 mask = amdgpu_vm_entries_mask(adev, cursor->level); 530 shift = amdgpu_vm_level_shift(adev, cursor->level); 531 532 ++cursor->level; 533 idx = (cursor->pfn >> shift) & mask; 534 cursor->parent = cursor->entry; 535 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 536 return true; 537 } 538 539 /** 540 * amdgpu_vm_pt_sibling - go to sibling node 541 * 542 * @adev: amdgpu_device pointer 543 * @cursor: current state 544 * 545 * Walk to the sibling node of the current node. 546 * Returns: 547 * True if the walk was possible, false otherwise. 548 */ 549 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 550 struct amdgpu_vm_pt_cursor *cursor) 551 { 552 unsigned shift, num_entries; 553 554 /* Root doesn't have a sibling */ 555 if (!cursor->parent) 556 return false; 557 558 /* Go to our parents and see if we got a sibling */ 559 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 560 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 561 562 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1]) 563 return false; 564 565 cursor->pfn += 1ULL << shift; 566 cursor->pfn &= ~((1ULL << shift) - 1); 567 ++cursor->entry; 568 return true; 569 } 570 571 /** 572 * amdgpu_vm_pt_ancestor - go to parent node 573 * 574 * @cursor: current state 575 * 576 * Walk to the parent node of the current node. 577 * Returns: 578 * True if the walk was possible, false otherwise. 579 */ 580 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 581 { 582 if (!cursor->parent) 583 return false; 584 585 --cursor->level; 586 cursor->entry = cursor->parent; 587 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 588 return true; 589 } 590 591 /** 592 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 593 * 594 * @adev: amdgpu_device pointer 595 * @cursor: current state 596 * 597 * Walk the PD/PT tree to the next node. 598 */ 599 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 600 struct amdgpu_vm_pt_cursor *cursor) 601 { 602 /* First try a newborn child */ 603 if (amdgpu_vm_pt_descendant(adev, cursor)) 604 return; 605 606 /* If that didn't worked try to find a sibling */ 607 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 608 /* No sibling, go to our parents and grandparents */ 609 if (!amdgpu_vm_pt_ancestor(cursor)) { 610 cursor->pfn = ~0ll; 611 return; 612 } 613 } 614 } 615 616 /** 617 * amdgpu_vm_pt_first_dfs - start a deep first search 618 * 619 * @adev: amdgpu_device structure 620 * @vm: amdgpu_vm structure 621 * @start: optional cursor to start with 622 * @cursor: state to initialize 623 * 624 * Starts a deep first traversal of the PD/PT tree. 625 */ 626 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 627 struct amdgpu_vm *vm, 628 struct amdgpu_vm_pt_cursor *start, 629 struct amdgpu_vm_pt_cursor *cursor) 630 { 631 if (start) 632 *cursor = *start; 633 else 634 amdgpu_vm_pt_start(adev, vm, 0, cursor); 635 while (amdgpu_vm_pt_descendant(adev, cursor)); 636 } 637 638 /** 639 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 640 * 641 * @start: starting point for the search 642 * @entry: current entry 643 * 644 * Returns: 645 * True when the search should continue, false otherwise. 646 */ 647 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 648 struct amdgpu_vm_bo_base *entry) 649 { 650 return entry && (!start || entry != start->entry); 651 } 652 653 /** 654 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 655 * 656 * @adev: amdgpu_device structure 657 * @cursor: current state 658 * 659 * Move the cursor to the next node in a deep first search. 660 */ 661 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 662 struct amdgpu_vm_pt_cursor *cursor) 663 { 664 if (!cursor->entry) 665 return; 666 667 if (!cursor->parent) 668 cursor->entry = NULL; 669 else if (amdgpu_vm_pt_sibling(adev, cursor)) 670 while (amdgpu_vm_pt_descendant(adev, cursor)); 671 else 672 amdgpu_vm_pt_ancestor(cursor); 673 } 674 675 /* 676 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 677 */ 678 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 679 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 680 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 681 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 682 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 683 684 /** 685 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 686 * 687 * @vm: vm providing the BOs 688 * @validated: head of validation list 689 * @entry: entry to add 690 * 691 * Add the page directory to the list of BOs to 692 * validate for command submission. 693 */ 694 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 695 struct list_head *validated, 696 struct amdgpu_bo_list_entry *entry) 697 { 698 entry->priority = 0; 699 entry->tv.bo = &vm->root.bo->tbo; 700 /* Two for VM updates, one for TTM and one for the CS job */ 701 entry->tv.num_shared = 4; 702 entry->user_pages = NULL; 703 list_add(&entry->tv.head, validated); 704 } 705 706 /** 707 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 708 * 709 * @bo: BO which was removed from the LRU 710 * 711 * Make sure the bulk_moveable flag is updated when a BO is removed from the 712 * LRU. 713 */ 714 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 715 { 716 struct amdgpu_bo *abo; 717 struct amdgpu_vm_bo_base *bo_base; 718 719 if (!amdgpu_bo_is_amdgpu_bo(bo)) 720 return; 721 722 if (bo->pin_count) 723 return; 724 725 abo = ttm_to_amdgpu_bo(bo); 726 if (!abo->parent) 727 return; 728 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 729 struct amdgpu_vm *vm = bo_base->vm; 730 731 if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv) 732 vm->bulk_moveable = false; 733 } 734 735 } 736 /** 737 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 738 * 739 * @adev: amdgpu device pointer 740 * @vm: vm providing the BOs 741 * 742 * Move all BOs to the end of LRU and remember their positions to put them 743 * together. 744 */ 745 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 746 struct amdgpu_vm *vm) 747 { 748 struct amdgpu_vm_bo_base *bo_base; 749 750 if (vm->bulk_moveable) { 751 spin_lock(&adev->mman.bdev.lru_lock); 752 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 753 spin_unlock(&adev->mman.bdev.lru_lock); 754 return; 755 } 756 757 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 758 759 spin_lock(&adev->mman.bdev.lru_lock); 760 list_for_each_entry(bo_base, &vm->idle, vm_status) { 761 struct amdgpu_bo *bo = bo_base->bo; 762 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 763 764 if (!bo->parent) 765 continue; 766 767 ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource, 768 &vm->lru_bulk_move); 769 if (shadow) 770 ttm_bo_move_to_lru_tail(&shadow->tbo, 771 shadow->tbo.resource, 772 &vm->lru_bulk_move); 773 } 774 spin_unlock(&adev->mman.bdev.lru_lock); 775 776 vm->bulk_moveable = true; 777 } 778 779 /** 780 * amdgpu_vm_validate_pt_bos - validate the page table BOs 781 * 782 * @adev: amdgpu device pointer 783 * @vm: vm providing the BOs 784 * @validate: callback to do the validation 785 * @param: parameter for the validation callback 786 * 787 * Validate the page table BOs on command submission if neccessary. 788 * 789 * Returns: 790 * Validation result. 791 */ 792 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 793 int (*validate)(void *p, struct amdgpu_bo *bo), 794 void *param) 795 { 796 struct amdgpu_vm_bo_base *bo_base, *tmp; 797 int r; 798 799 vm->bulk_moveable &= list_empty(&vm->evicted); 800 801 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 802 struct amdgpu_bo *bo = bo_base->bo; 803 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 804 805 r = validate(param, bo); 806 if (r) 807 return r; 808 if (shadow) { 809 r = validate(param, shadow); 810 if (r) 811 return r; 812 } 813 814 if (bo->tbo.type != ttm_bo_type_kernel) { 815 amdgpu_vm_bo_moved(bo_base); 816 } else { 817 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 818 amdgpu_vm_bo_relocated(bo_base); 819 } 820 } 821 822 amdgpu_vm_eviction_lock(vm); 823 vm->evicting = false; 824 amdgpu_vm_eviction_unlock(vm); 825 826 return 0; 827 } 828 829 /** 830 * amdgpu_vm_ready - check VM is ready for updates 831 * 832 * @vm: VM to check 833 * 834 * Check if all VM PDs/PTs are ready for updates 835 * 836 * Returns: 837 * True if VM is not evicting. 838 */ 839 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 840 { 841 bool ret; 842 843 amdgpu_vm_eviction_lock(vm); 844 ret = !vm->evicting; 845 amdgpu_vm_eviction_unlock(vm); 846 847 return ret && list_empty(&vm->evicted); 848 } 849 850 /** 851 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 852 * 853 * @adev: amdgpu_device pointer 854 * @vm: VM to clear BO from 855 * @vmbo: BO to clear 856 * @immediate: use an immediate update 857 * 858 * Root PD needs to be reserved when calling this. 859 * 860 * Returns: 861 * 0 on success, errno otherwise. 862 */ 863 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 864 struct amdgpu_vm *vm, 865 struct amdgpu_bo_vm *vmbo, 866 bool immediate) 867 { 868 struct ttm_operation_ctx ctx = { true, false }; 869 unsigned level = adev->vm_manager.root_level; 870 struct amdgpu_vm_update_params params; 871 struct amdgpu_bo *ancestor = &vmbo->bo; 872 struct amdgpu_bo *bo = &vmbo->bo; 873 unsigned entries, ats_entries; 874 uint64_t addr; 875 int r; 876 877 /* Figure out our place in the hierarchy */ 878 if (ancestor->parent) { 879 ++level; 880 while (ancestor->parent->parent) { 881 ++level; 882 ancestor = ancestor->parent; 883 } 884 } 885 886 entries = amdgpu_bo_size(bo) / 8; 887 if (!vm->pte_support_ats) { 888 ats_entries = 0; 889 890 } else if (!bo->parent) { 891 ats_entries = amdgpu_vm_num_ats_entries(adev); 892 ats_entries = min(ats_entries, entries); 893 entries -= ats_entries; 894 895 } else { 896 struct amdgpu_vm_bo_base *pt; 897 898 pt = ancestor->vm_bo; 899 ats_entries = amdgpu_vm_num_ats_entries(adev); 900 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) { 901 ats_entries = 0; 902 } else { 903 ats_entries = entries; 904 entries = 0; 905 } 906 } 907 908 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 909 if (r) 910 return r; 911 912 if (vmbo->shadow) { 913 struct amdgpu_bo *shadow = vmbo->shadow; 914 915 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 916 if (r) 917 return r; 918 } 919 920 r = vm->update_funcs->map_table(vmbo); 921 if (r) 922 return r; 923 924 memset(¶ms, 0, sizeof(params)); 925 params.adev = adev; 926 params.vm = vm; 927 params.immediate = immediate; 928 929 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 930 if (r) 931 return r; 932 933 addr = 0; 934 if (ats_entries) { 935 uint64_t value = 0, flags; 936 937 flags = AMDGPU_PTE_DEFAULT_ATC; 938 if (level != AMDGPU_VM_PTB) { 939 /* Handle leaf PDEs as PTEs */ 940 flags |= AMDGPU_PDE_PTE; 941 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 942 } 943 944 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, 945 value, flags); 946 if (r) 947 return r; 948 949 addr += ats_entries * 8; 950 } 951 952 if (entries) { 953 uint64_t value = 0, flags = 0; 954 955 if (adev->asic_type >= CHIP_VEGA10) { 956 if (level != AMDGPU_VM_PTB) { 957 /* Handle leaf PDEs as PTEs */ 958 flags |= AMDGPU_PDE_PTE; 959 amdgpu_gmc_get_vm_pde(adev, level, 960 &value, &flags); 961 } else { 962 /* Workaround for fault priority problem on GMC9 */ 963 flags = AMDGPU_PTE_EXECUTABLE; 964 } 965 } 966 967 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 968 value, flags); 969 if (r) 970 return r; 971 } 972 973 return vm->update_funcs->commit(¶ms, NULL); 974 } 975 976 /** 977 * amdgpu_vm_pt_create - create bo for PD/PT 978 * 979 * @adev: amdgpu_device pointer 980 * @vm: requesting vm 981 * @level: the page table level 982 * @immediate: use a immediate update 983 * @vmbo: pointer to the buffer object pointer 984 */ 985 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 986 struct amdgpu_vm *vm, 987 int level, bool immediate, 988 struct amdgpu_bo_vm **vmbo) 989 { 990 struct amdgpu_bo_param bp; 991 struct amdgpu_bo *bo; 992 struct dma_resv *resv; 993 unsigned int num_entries; 994 int r; 995 996 memset(&bp, 0, sizeof(bp)); 997 998 bp.size = amdgpu_vm_bo_size(adev, level); 999 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 1000 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1001 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 1002 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 1003 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 1004 1005 if (level < AMDGPU_VM_PTB) 1006 num_entries = amdgpu_vm_num_entries(adev, level); 1007 else 1008 num_entries = 0; 1009 1010 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 1011 1012 if (vm->use_cpu_for_update) 1013 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 1014 1015 bp.type = ttm_bo_type_kernel; 1016 bp.no_wait_gpu = immediate; 1017 if (vm->root.bo) 1018 bp.resv = vm->root.bo->tbo.base.resv; 1019 1020 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 1021 if (r) 1022 return r; 1023 1024 bo = &(*vmbo)->bo; 1025 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 1026 (*vmbo)->shadow = NULL; 1027 return 0; 1028 } 1029 1030 if (!bp.resv) 1031 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 1032 NULL)); 1033 resv = bp.resv; 1034 memset(&bp, 0, sizeof(bp)); 1035 bp.size = amdgpu_vm_bo_size(adev, level); 1036 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 1037 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 1038 bp.type = ttm_bo_type_kernel; 1039 bp.resv = bo->tbo.base.resv; 1040 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 1041 1042 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 1043 1044 if (!resv) 1045 dma_resv_unlock(bo->tbo.base.resv); 1046 1047 if (r) { 1048 amdgpu_bo_unref(&bo); 1049 return r; 1050 } 1051 1052 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); 1053 amdgpu_bo_add_to_shadow_list(*vmbo); 1054 1055 return 0; 1056 } 1057 1058 /** 1059 * amdgpu_vm_alloc_pts - Allocate a specific page table 1060 * 1061 * @adev: amdgpu_device pointer 1062 * @vm: VM to allocate page tables for 1063 * @cursor: Which page table to allocate 1064 * @immediate: use an immediate update 1065 * 1066 * Make sure a specific page table or directory is allocated. 1067 * 1068 * Returns: 1069 * 1 if page table needed to be allocated, 0 if page table was already 1070 * allocated, negative errno if an error occurred. 1071 */ 1072 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 1073 struct amdgpu_vm *vm, 1074 struct amdgpu_vm_pt_cursor *cursor, 1075 bool immediate) 1076 { 1077 struct amdgpu_vm_bo_base *entry = cursor->entry; 1078 struct amdgpu_bo *pt_bo; 1079 struct amdgpu_bo_vm *pt; 1080 int r; 1081 1082 if (entry->bo) 1083 return 0; 1084 1085 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 1086 if (r) 1087 return r; 1088 1089 /* Keep a reference to the root directory to avoid 1090 * freeing them up in the wrong order. 1091 */ 1092 pt_bo = &pt->bo; 1093 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 1094 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 1095 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 1096 if (r) 1097 goto error_free_pt; 1098 1099 return 0; 1100 1101 error_free_pt: 1102 amdgpu_bo_unref(&pt->shadow); 1103 amdgpu_bo_unref(&pt_bo); 1104 return r; 1105 } 1106 1107 /** 1108 * amdgpu_vm_free_table - fre one PD/PT 1109 * 1110 * @entry: PDE to free 1111 */ 1112 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry) 1113 { 1114 struct amdgpu_bo *shadow; 1115 1116 if (!entry->bo) 1117 return; 1118 shadow = amdgpu_bo_shadowed(entry->bo); 1119 entry->bo->vm_bo = NULL; 1120 list_del(&entry->vm_status); 1121 amdgpu_bo_unref(&shadow); 1122 amdgpu_bo_unref(&entry->bo); 1123 } 1124 1125 /** 1126 * amdgpu_vm_free_pts - free PD/PT levels 1127 * 1128 * @adev: amdgpu device structure 1129 * @vm: amdgpu vm structure 1130 * @start: optional cursor where to start freeing PDs/PTs 1131 * 1132 * Free the page directory or page table level and all sub levels. 1133 */ 1134 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1135 struct amdgpu_vm *vm, 1136 struct amdgpu_vm_pt_cursor *start) 1137 { 1138 struct amdgpu_vm_pt_cursor cursor; 1139 struct amdgpu_vm_bo_base *entry; 1140 1141 vm->bulk_moveable = false; 1142 1143 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1144 amdgpu_vm_free_table(entry); 1145 1146 if (start) 1147 amdgpu_vm_free_table(start->entry); 1148 } 1149 1150 /** 1151 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1152 * 1153 * @adev: amdgpu_device pointer 1154 */ 1155 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1156 { 1157 const struct amdgpu_ip_block *ip_block; 1158 bool has_compute_vm_bug; 1159 struct amdgpu_ring *ring; 1160 int i; 1161 1162 has_compute_vm_bug = false; 1163 1164 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1165 if (ip_block) { 1166 /* Compute has a VM bug for GFX version < 7. 1167 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1168 if (ip_block->version->major <= 7) 1169 has_compute_vm_bug = true; 1170 else if (ip_block->version->major == 8) 1171 if (adev->gfx.mec_fw_version < 673) 1172 has_compute_vm_bug = true; 1173 } 1174 1175 for (i = 0; i < adev->num_rings; i++) { 1176 ring = adev->rings[i]; 1177 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1178 /* only compute rings */ 1179 ring->has_compute_vm_bug = has_compute_vm_bug; 1180 else 1181 ring->has_compute_vm_bug = false; 1182 } 1183 } 1184 1185 /** 1186 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1187 * 1188 * @ring: ring on which the job will be submitted 1189 * @job: job to submit 1190 * 1191 * Returns: 1192 * True if sync is needed. 1193 */ 1194 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1195 struct amdgpu_job *job) 1196 { 1197 struct amdgpu_device *adev = ring->adev; 1198 unsigned vmhub = ring->funcs->vmhub; 1199 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1200 struct amdgpu_vmid *id; 1201 bool gds_switch_needed; 1202 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1203 1204 if (job->vmid == 0) 1205 return false; 1206 id = &id_mgr->ids[job->vmid]; 1207 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1208 id->gds_base != job->gds_base || 1209 id->gds_size != job->gds_size || 1210 id->gws_base != job->gws_base || 1211 id->gws_size != job->gws_size || 1212 id->oa_base != job->oa_base || 1213 id->oa_size != job->oa_size); 1214 1215 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1216 return true; 1217 1218 return vm_flush_needed || gds_switch_needed; 1219 } 1220 1221 /** 1222 * amdgpu_vm_flush - hardware flush the vm 1223 * 1224 * @ring: ring to use for flush 1225 * @job: related job 1226 * @need_pipe_sync: is pipe sync needed 1227 * 1228 * Emit a VM flush when it is necessary. 1229 * 1230 * Returns: 1231 * 0 on success, errno otherwise. 1232 */ 1233 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1234 bool need_pipe_sync) 1235 { 1236 struct amdgpu_device *adev = ring->adev; 1237 unsigned vmhub = ring->funcs->vmhub; 1238 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1239 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1240 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1241 id->gds_base != job->gds_base || 1242 id->gds_size != job->gds_size || 1243 id->gws_base != job->gws_base || 1244 id->gws_size != job->gws_size || 1245 id->oa_base != job->oa_base || 1246 id->oa_size != job->oa_size); 1247 bool vm_flush_needed = job->vm_needs_flush; 1248 struct dma_fence *fence = NULL; 1249 bool pasid_mapping_needed = false; 1250 unsigned patch_offset = 0; 1251 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1252 int r; 1253 1254 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1255 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1256 1257 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1258 gds_switch_needed = true; 1259 vm_flush_needed = true; 1260 pasid_mapping_needed = true; 1261 } 1262 1263 mutex_lock(&id_mgr->lock); 1264 if (id->pasid != job->pasid || !id->pasid_mapping || 1265 !dma_fence_is_signaled(id->pasid_mapping)) 1266 pasid_mapping_needed = true; 1267 mutex_unlock(&id_mgr->lock); 1268 1269 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1270 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1271 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1272 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1273 ring->funcs->emit_wreg; 1274 1275 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1276 return 0; 1277 1278 if (ring->funcs->init_cond_exec) 1279 patch_offset = amdgpu_ring_init_cond_exec(ring); 1280 1281 if (need_pipe_sync) 1282 amdgpu_ring_emit_pipeline_sync(ring); 1283 1284 if (vm_flush_needed) { 1285 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1286 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1287 } 1288 1289 if (pasid_mapping_needed) 1290 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1291 1292 if (vm_flush_needed || pasid_mapping_needed) { 1293 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 1294 if (r) 1295 return r; 1296 } 1297 1298 if (vm_flush_needed) { 1299 mutex_lock(&id_mgr->lock); 1300 dma_fence_put(id->last_flush); 1301 id->last_flush = dma_fence_get(fence); 1302 id->current_gpu_reset_count = 1303 atomic_read(&adev->gpu_reset_counter); 1304 mutex_unlock(&id_mgr->lock); 1305 } 1306 1307 if (pasid_mapping_needed) { 1308 mutex_lock(&id_mgr->lock); 1309 id->pasid = job->pasid; 1310 dma_fence_put(id->pasid_mapping); 1311 id->pasid_mapping = dma_fence_get(fence); 1312 mutex_unlock(&id_mgr->lock); 1313 } 1314 dma_fence_put(fence); 1315 1316 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1317 id->gds_base = job->gds_base; 1318 id->gds_size = job->gds_size; 1319 id->gws_base = job->gws_base; 1320 id->gws_size = job->gws_size; 1321 id->oa_base = job->oa_base; 1322 id->oa_size = job->oa_size; 1323 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1324 job->gds_size, job->gws_base, 1325 job->gws_size, job->oa_base, 1326 job->oa_size); 1327 } 1328 1329 if (ring->funcs->patch_cond_exec) 1330 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1331 1332 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1333 if (ring->funcs->emit_switch_buffer) { 1334 amdgpu_ring_emit_switch_buffer(ring); 1335 amdgpu_ring_emit_switch_buffer(ring); 1336 } 1337 return 0; 1338 } 1339 1340 /** 1341 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1342 * 1343 * @vm: requested vm 1344 * @bo: requested buffer object 1345 * 1346 * Find @bo inside the requested vm. 1347 * Search inside the @bos vm list for the requested vm 1348 * Returns the found bo_va or NULL if none is found 1349 * 1350 * Object has to be reserved! 1351 * 1352 * Returns: 1353 * Found bo_va or NULL. 1354 */ 1355 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1356 struct amdgpu_bo *bo) 1357 { 1358 struct amdgpu_vm_bo_base *base; 1359 1360 for (base = bo->vm_bo; base; base = base->next) { 1361 if (base->vm != vm) 1362 continue; 1363 1364 return container_of(base, struct amdgpu_bo_va, base); 1365 } 1366 return NULL; 1367 } 1368 1369 /** 1370 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1371 * 1372 * @pages_addr: optional DMA address to use for lookup 1373 * @addr: the unmapped addr 1374 * 1375 * Look up the physical address of the page that the pte resolves 1376 * to. 1377 * 1378 * Returns: 1379 * The pointer for the page table entry. 1380 */ 1381 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1382 { 1383 uint64_t result; 1384 1385 /* page table offset */ 1386 result = pages_addr[addr >> PAGE_SHIFT]; 1387 1388 /* in case cpu page size != gpu page size*/ 1389 result |= addr & (~LINUX_PAGE_MASK); 1390 1391 result &= 0xFFFFFFFFFFFFF000ULL; 1392 1393 return result; 1394 } 1395 1396 /** 1397 * amdgpu_vm_update_pde - update a single level in the hierarchy 1398 * 1399 * @params: parameters for the update 1400 * @vm: requested vm 1401 * @entry: entry to update 1402 * 1403 * Makes sure the requested entry in parent is up to date. 1404 */ 1405 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1406 struct amdgpu_vm *vm, 1407 struct amdgpu_vm_bo_base *entry) 1408 { 1409 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 1410 struct amdgpu_bo *bo = parent->bo, *pbo; 1411 uint64_t pde, pt, flags; 1412 unsigned level; 1413 1414 for (level = 0, pbo = bo->parent; pbo; ++level) 1415 pbo = pbo->parent; 1416 1417 level += params->adev->vm_manager.root_level; 1418 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 1419 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 1420 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1421 1, 0, flags); 1422 } 1423 1424 /** 1425 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1426 * 1427 * @adev: amdgpu_device pointer 1428 * @vm: related vm 1429 * 1430 * Mark all PD level as invalid after an error. 1431 */ 1432 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1433 struct amdgpu_vm *vm) 1434 { 1435 struct amdgpu_vm_pt_cursor cursor; 1436 struct amdgpu_vm_bo_base *entry; 1437 1438 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1439 if (entry->bo && !entry->moved) 1440 amdgpu_vm_bo_relocated(entry); 1441 } 1442 1443 /** 1444 * amdgpu_vm_update_pdes - make sure that all directories are valid 1445 * 1446 * @adev: amdgpu_device pointer 1447 * @vm: requested vm 1448 * @immediate: submit immediately to the paging queue 1449 * 1450 * Makes sure all directories are up to date. 1451 * 1452 * Returns: 1453 * 0 for success, error for failure. 1454 */ 1455 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1456 struct amdgpu_vm *vm, bool immediate) 1457 { 1458 struct amdgpu_vm_update_params params; 1459 int r; 1460 1461 if (list_empty(&vm->relocated)) 1462 return 0; 1463 1464 memset(¶ms, 0, sizeof(params)); 1465 params.adev = adev; 1466 params.vm = vm; 1467 params.immediate = immediate; 1468 1469 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1470 if (r) 1471 return r; 1472 1473 while (!list_empty(&vm->relocated)) { 1474 struct amdgpu_vm_bo_base *entry; 1475 1476 entry = list_first_entry(&vm->relocated, 1477 struct amdgpu_vm_bo_base, 1478 vm_status); 1479 amdgpu_vm_bo_idle(entry); 1480 1481 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1482 if (r) 1483 goto error; 1484 } 1485 1486 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1487 if (r) 1488 goto error; 1489 return 0; 1490 1491 error: 1492 amdgpu_vm_invalidate_pds(adev, vm); 1493 return r; 1494 } 1495 1496 /* 1497 * amdgpu_vm_update_flags - figure out flags for PTE updates 1498 * 1499 * Make sure to set the right flags for the PTEs at the desired level. 1500 */ 1501 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1502 struct amdgpu_bo_vm *pt, unsigned int level, 1503 uint64_t pe, uint64_t addr, 1504 unsigned int count, uint32_t incr, 1505 uint64_t flags) 1506 1507 { 1508 if (level != AMDGPU_VM_PTB) { 1509 flags |= AMDGPU_PDE_PTE; 1510 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1511 1512 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1513 !(flags & AMDGPU_PTE_VALID) && 1514 !(flags & AMDGPU_PTE_PRT)) { 1515 1516 /* Workaround for fault priority problem on GMC9 */ 1517 flags |= AMDGPU_PTE_EXECUTABLE; 1518 } 1519 1520 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 1521 flags); 1522 } 1523 1524 /** 1525 * amdgpu_vm_fragment - get fragment for PTEs 1526 * 1527 * @params: see amdgpu_vm_update_params definition 1528 * @start: first PTE to handle 1529 * @end: last PTE to handle 1530 * @flags: hw mapping flags 1531 * @frag: resulting fragment size 1532 * @frag_end: end of this fragment 1533 * 1534 * Returns the first possible fragment for the start and end address. 1535 */ 1536 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1537 uint64_t start, uint64_t end, uint64_t flags, 1538 unsigned int *frag, uint64_t *frag_end) 1539 { 1540 /** 1541 * The MC L1 TLB supports variable sized pages, based on a fragment 1542 * field in the PTE. When this field is set to a non-zero value, page 1543 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1544 * flags are considered valid for all PTEs within the fragment range 1545 * and corresponding mappings are assumed to be physically contiguous. 1546 * 1547 * The L1 TLB can store a single PTE for the whole fragment, 1548 * significantly increasing the space available for translation 1549 * caching. This leads to large improvements in throughput when the 1550 * TLB is under pressure. 1551 * 1552 * The L2 TLB distributes small and large fragments into two 1553 * asymmetric partitions. The large fragment cache is significantly 1554 * larger. Thus, we try to use large fragments wherever possible. 1555 * Userspace can support this by aligning virtual base address and 1556 * allocation size to the fragment size. 1557 * 1558 * Starting with Vega10 the fragment size only controls the L1. The L2 1559 * is now directly feed with small/huge/giant pages from the walker. 1560 */ 1561 unsigned max_frag; 1562 1563 if (params->adev->asic_type < CHIP_VEGA10) 1564 max_frag = params->adev->vm_manager.fragment_size; 1565 else 1566 max_frag = 31; 1567 1568 /* system pages are non continuously */ 1569 if (params->pages_addr) { 1570 *frag = 0; 1571 *frag_end = end; 1572 return; 1573 } 1574 1575 /* This intentionally wraps around if no bit is set */ 1576 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1577 if (*frag >= max_frag) { 1578 *frag = max_frag; 1579 *frag_end = end & ~((1ULL << max_frag) - 1); 1580 } else { 1581 *frag_end = start + (1 << *frag); 1582 } 1583 } 1584 1585 /** 1586 * amdgpu_vm_update_ptes - make sure that page tables are valid 1587 * 1588 * @params: see amdgpu_vm_update_params definition 1589 * @start: start of GPU address range 1590 * @end: end of GPU address range 1591 * @dst: destination address to map to, the next dst inside the function 1592 * @flags: mapping flags 1593 * 1594 * Update the page tables in the range @start - @end. 1595 * 1596 * Returns: 1597 * 0 for success, -EINVAL for failure. 1598 */ 1599 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1600 uint64_t start, uint64_t end, 1601 uint64_t dst, uint64_t flags) 1602 { 1603 struct amdgpu_device *adev = params->adev; 1604 struct amdgpu_vm_pt_cursor cursor; 1605 uint64_t frag_start = start, frag_end; 1606 unsigned int frag; 1607 int r; 1608 1609 /* figure out the initial fragment */ 1610 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1611 1612 /* walk over the address space and update the PTs */ 1613 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1614 while (cursor.pfn < end) { 1615 unsigned shift, parent_shift, mask; 1616 uint64_t incr, entry_end, pe_start; 1617 struct amdgpu_bo *pt; 1618 1619 if (!params->unlocked) { 1620 /* make sure that the page tables covering the 1621 * address range are actually allocated 1622 */ 1623 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1624 &cursor, params->immediate); 1625 if (r) 1626 return r; 1627 } 1628 1629 shift = amdgpu_vm_level_shift(adev, cursor.level); 1630 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1631 if (params->unlocked) { 1632 /* Unlocked updates are only allowed on the leaves */ 1633 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1634 continue; 1635 } else if (adev->asic_type < CHIP_VEGA10 && 1636 (flags & AMDGPU_PTE_VALID)) { 1637 /* No huge page support before GMC v9 */ 1638 if (cursor.level != AMDGPU_VM_PTB) { 1639 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1640 return -ENOENT; 1641 continue; 1642 } 1643 } else if (frag < shift) { 1644 /* We can't use this level when the fragment size is 1645 * smaller than the address shift. Go to the next 1646 * child entry and try again. 1647 */ 1648 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1649 continue; 1650 } else if (frag >= parent_shift) { 1651 /* If the fragment size is even larger than the parent 1652 * shift we should go up one level and check it again. 1653 */ 1654 if (!amdgpu_vm_pt_ancestor(&cursor)) 1655 return -EINVAL; 1656 continue; 1657 } 1658 1659 pt = cursor.entry->bo; 1660 if (!pt) { 1661 /* We need all PDs and PTs for mapping something, */ 1662 if (flags & AMDGPU_PTE_VALID) 1663 return -ENOENT; 1664 1665 /* but unmapping something can happen at a higher 1666 * level. 1667 */ 1668 if (!amdgpu_vm_pt_ancestor(&cursor)) 1669 return -EINVAL; 1670 1671 pt = cursor.entry->bo; 1672 shift = parent_shift; 1673 frag_end = max(frag_end, roundup2(frag_start + 1, 1674 1ULL << shift)); 1675 } 1676 1677 /* Looks good so far, calculate parameters for the update */ 1678 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1679 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1680 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1681 entry_end = ((uint64_t)mask + 1) << shift; 1682 entry_end += cursor.pfn & ~(entry_end - 1); 1683 entry_end = min(entry_end, end); 1684 1685 do { 1686 struct amdgpu_vm *vm = params->vm; 1687 uint64_t upd_end = min(entry_end, frag_end); 1688 unsigned nptes = (upd_end - frag_start) >> shift; 1689 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1690 1691 /* This can happen when we set higher level PDs to 1692 * silent to stop fault floods. 1693 */ 1694 nptes = max(nptes, 1u); 1695 1696 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1697 nptes, dst, incr, upd_flags, 1698 vm->task_info.pid, 1699 vm->immediate.fence_context); 1700 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt), 1701 cursor.level, pe_start, dst, 1702 nptes, incr, upd_flags); 1703 1704 pe_start += nptes * 8; 1705 dst += nptes * incr; 1706 1707 frag_start = upd_end; 1708 if (frag_start >= frag_end) { 1709 /* figure out the next fragment */ 1710 amdgpu_vm_fragment(params, frag_start, end, 1711 flags, &frag, &frag_end); 1712 if (frag < shift) 1713 break; 1714 } 1715 } while (frag_start < entry_end); 1716 1717 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1718 /* Free all child entries. 1719 * Update the tables with the flags and addresses and free up subsequent 1720 * tables in the case of huge pages or freed up areas. 1721 * This is the maximum you can free, because all other page tables are not 1722 * completely covered by the range and so potentially still in use. 1723 */ 1724 while (cursor.pfn < frag_start) { 1725 /* Make sure previous mapping is freed */ 1726 if (cursor.entry->bo) { 1727 params->table_freed = true; 1728 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1729 } 1730 amdgpu_vm_pt_next(adev, &cursor); 1731 } 1732 1733 } else if (frag >= shift) { 1734 /* or just move on to the next on the same level. */ 1735 amdgpu_vm_pt_next(adev, &cursor); 1736 } 1737 } 1738 1739 return 0; 1740 } 1741 1742 /** 1743 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1744 * 1745 * @adev: amdgpu_device pointer of the VM 1746 * @bo_adev: amdgpu_device pointer of the mapped BO 1747 * @vm: requested vm 1748 * @immediate: immediate submission in a page fault 1749 * @unlocked: unlocked invalidation during MM callback 1750 * @resv: fences we need to sync to 1751 * @start: start of mapped range 1752 * @last: last mapped entry 1753 * @flags: flags for the entries 1754 * @offset: offset into nodes and pages_addr 1755 * @res: ttm_resource to map 1756 * @pages_addr: DMA addresses to use for mapping 1757 * @fence: optional resulting fence 1758 * @table_freed: return true if page table is freed 1759 * 1760 * Fill in the page table entries between @start and @last. 1761 * 1762 * Returns: 1763 * 0 for success, -EINVAL for failure. 1764 */ 1765 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1766 struct amdgpu_device *bo_adev, 1767 struct amdgpu_vm *vm, bool immediate, 1768 bool unlocked, struct dma_resv *resv, 1769 uint64_t start, uint64_t last, 1770 uint64_t flags, uint64_t offset, 1771 struct ttm_resource *res, 1772 dma_addr_t *pages_addr, 1773 struct dma_fence **fence, 1774 bool *table_freed) 1775 { 1776 struct amdgpu_vm_update_params params; 1777 struct amdgpu_res_cursor cursor; 1778 enum amdgpu_sync_mode sync_mode; 1779 int r, idx; 1780 1781 if (!drm_dev_enter(&adev->ddev, &idx)) 1782 return -ENODEV; 1783 1784 memset(¶ms, 0, sizeof(params)); 1785 params.adev = adev; 1786 params.vm = vm; 1787 params.immediate = immediate; 1788 params.pages_addr = pages_addr; 1789 params.unlocked = unlocked; 1790 1791 /* Implicitly sync to command submissions in the same VM before 1792 * unmapping. Sync to moving fences before mapping. 1793 */ 1794 if (!(flags & AMDGPU_PTE_VALID)) 1795 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1796 else 1797 sync_mode = AMDGPU_SYNC_EXPLICIT; 1798 1799 amdgpu_vm_eviction_lock(vm); 1800 if (vm->evicting) { 1801 r = -EBUSY; 1802 goto error_unlock; 1803 } 1804 1805 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1806 struct dma_fence *tmp = dma_fence_get_stub(); 1807 1808 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1809 swap(vm->last_unlocked, tmp); 1810 dma_fence_put(tmp); 1811 } 1812 1813 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1814 if (r) 1815 goto error_unlock; 1816 1817 amdgpu_res_first(pages_addr ? NULL : res, offset, 1818 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1819 while (cursor.remaining) { 1820 uint64_t tmp, num_entries, addr; 1821 1822 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1823 if (pages_addr) { 1824 bool contiguous = true; 1825 1826 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1827 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1828 uint64_t count; 1829 1830 contiguous = pages_addr[pfn + 1] == 1831 pages_addr[pfn] + PAGE_SIZE; 1832 1833 tmp = num_entries / 1834 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1835 for (count = 2; count < tmp; ++count) { 1836 uint64_t idx = pfn + count; 1837 1838 if (contiguous != (pages_addr[idx] == 1839 pages_addr[idx - 1] + PAGE_SIZE)) 1840 break; 1841 } 1842 num_entries = count * 1843 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1844 } 1845 1846 if (!contiguous) { 1847 addr = cursor.start; 1848 params.pages_addr = pages_addr; 1849 } else { 1850 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1851 params.pages_addr = NULL; 1852 } 1853 1854 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1855 addr = bo_adev->vm_manager.vram_base_offset + 1856 cursor.start; 1857 } else { 1858 addr = 0; 1859 } 1860 1861 tmp = start + num_entries; 1862 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1863 if (r) 1864 goto error_unlock; 1865 1866 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1867 start = tmp; 1868 } 1869 1870 r = vm->update_funcs->commit(¶ms, fence); 1871 1872 if (table_freed) 1873 *table_freed = *table_freed || params.table_freed; 1874 1875 error_unlock: 1876 amdgpu_vm_eviction_unlock(vm); 1877 drm_dev_exit(idx); 1878 return r; 1879 } 1880 1881 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem, 1882 uint64_t *gtt_mem, uint64_t *cpu_mem) 1883 { 1884 struct amdgpu_bo_va *bo_va, *tmp; 1885 1886 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 1887 if (!bo_va->base.bo) 1888 continue; 1889 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1890 gtt_mem, cpu_mem); 1891 } 1892 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 1893 if (!bo_va->base.bo) 1894 continue; 1895 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1896 gtt_mem, cpu_mem); 1897 } 1898 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 1899 if (!bo_va->base.bo) 1900 continue; 1901 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1902 gtt_mem, cpu_mem); 1903 } 1904 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1905 if (!bo_va->base.bo) 1906 continue; 1907 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1908 gtt_mem, cpu_mem); 1909 } 1910 spin_lock(&vm->invalidated_lock); 1911 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 1912 if (!bo_va->base.bo) 1913 continue; 1914 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1915 gtt_mem, cpu_mem); 1916 } 1917 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 1918 if (!bo_va->base.bo) 1919 continue; 1920 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1921 gtt_mem, cpu_mem); 1922 } 1923 spin_unlock(&vm->invalidated_lock); 1924 } 1925 /** 1926 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1927 * 1928 * @adev: amdgpu_device pointer 1929 * @bo_va: requested BO and VM object 1930 * @clear: if true clear the entries 1931 * @table_freed: return true if page table is freed 1932 * 1933 * Fill in the page table entries for @bo_va. 1934 * 1935 * Returns: 1936 * 0 for success, -EINVAL for failure. 1937 */ 1938 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1939 bool clear, bool *table_freed) 1940 { 1941 struct amdgpu_bo *bo = bo_va->base.bo; 1942 struct amdgpu_vm *vm = bo_va->base.vm; 1943 struct amdgpu_bo_va_mapping *mapping; 1944 dma_addr_t *pages_addr = NULL; 1945 struct ttm_resource *mem; 1946 struct dma_fence **last_update; 1947 struct dma_resv *resv; 1948 uint64_t flags; 1949 struct amdgpu_device *bo_adev = adev; 1950 int r; 1951 1952 if (clear || !bo) { 1953 mem = NULL; 1954 resv = vm->root.bo->tbo.base.resv; 1955 } else { 1956 struct drm_gem_object *obj = &bo->tbo.base; 1957 1958 resv = bo->tbo.base.resv; 1959 #ifdef notyet 1960 if (obj->import_attach && bo_va->is_xgmi) { 1961 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1962 struct drm_gem_object *gobj = dma_buf->priv; 1963 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1964 1965 if (abo->tbo.resource->mem_type == TTM_PL_VRAM) 1966 bo = gem_to_amdgpu_bo(gobj); 1967 } 1968 #endif 1969 mem = bo->tbo.resource; 1970 if (mem->mem_type == TTM_PL_TT || 1971 mem->mem_type == AMDGPU_PL_PREEMPT) 1972 pages_addr = bo->tbo.ttm->dma_address; 1973 } 1974 1975 if (bo) { 1976 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1977 1978 if (amdgpu_bo_encrypted(bo)) 1979 flags |= AMDGPU_PTE_TMZ; 1980 1981 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1982 } else { 1983 flags = 0x0; 1984 } 1985 1986 if (clear || (bo && bo->tbo.base.resv == 1987 vm->root.bo->tbo.base.resv)) 1988 last_update = &vm->last_update; 1989 else 1990 last_update = &bo_va->last_pt_update; 1991 1992 if (!clear && bo_va->base.moved) { 1993 bo_va->base.moved = false; 1994 list_splice_init(&bo_va->valids, &bo_va->invalids); 1995 1996 } else if (bo_va->cleared != clear) { 1997 list_splice_init(&bo_va->valids, &bo_va->invalids); 1998 } 1999 2000 list_for_each_entry(mapping, &bo_va->invalids, list) { 2001 uint64_t update_flags = flags; 2002 2003 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 2004 * but in case of something, we filter the flags in first place 2005 */ 2006 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 2007 update_flags &= ~AMDGPU_PTE_READABLE; 2008 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 2009 update_flags &= ~AMDGPU_PTE_WRITEABLE; 2010 2011 /* Apply ASIC specific mapping flags */ 2012 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 2013 2014 trace_amdgpu_vm_bo_update(mapping); 2015 2016 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 2017 resv, mapping->start, 2018 mapping->last, update_flags, 2019 mapping->offset, mem, 2020 pages_addr, last_update, table_freed); 2021 if (r) 2022 return r; 2023 } 2024 2025 /* If the BO is not in its preferred location add it back to 2026 * the evicted list so that it gets validated again on the 2027 * next command submission. 2028 */ 2029 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 2030 uint32_t mem_type = bo->tbo.resource->mem_type; 2031 2032 if (!(bo->preferred_domains & 2033 amdgpu_mem_type_to_domain(mem_type))) 2034 amdgpu_vm_bo_evicted(&bo_va->base); 2035 else 2036 amdgpu_vm_bo_idle(&bo_va->base); 2037 } else { 2038 amdgpu_vm_bo_done(&bo_va->base); 2039 } 2040 2041 list_splice_init(&bo_va->invalids, &bo_va->valids); 2042 bo_va->cleared = clear; 2043 2044 if (trace_amdgpu_vm_bo_mapping_enabled()) { 2045 list_for_each_entry(mapping, &bo_va->valids, list) 2046 trace_amdgpu_vm_bo_mapping(mapping); 2047 } 2048 2049 return 0; 2050 } 2051 2052 /** 2053 * amdgpu_vm_update_prt_state - update the global PRT state 2054 * 2055 * @adev: amdgpu_device pointer 2056 */ 2057 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2058 { 2059 unsigned long flags; 2060 bool enable; 2061 2062 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2063 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2064 adev->gmc.gmc_funcs->set_prt(adev, enable); 2065 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2066 } 2067 2068 /** 2069 * amdgpu_vm_prt_get - add a PRT user 2070 * 2071 * @adev: amdgpu_device pointer 2072 */ 2073 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2074 { 2075 if (!adev->gmc.gmc_funcs->set_prt) 2076 return; 2077 2078 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2079 amdgpu_vm_update_prt_state(adev); 2080 } 2081 2082 /** 2083 * amdgpu_vm_prt_put - drop a PRT user 2084 * 2085 * @adev: amdgpu_device pointer 2086 */ 2087 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2088 { 2089 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2090 amdgpu_vm_update_prt_state(adev); 2091 } 2092 2093 /** 2094 * amdgpu_vm_prt_cb - callback for updating the PRT status 2095 * 2096 * @fence: fence for the callback 2097 * @_cb: the callback function 2098 */ 2099 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2100 { 2101 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2102 2103 amdgpu_vm_prt_put(cb->adev); 2104 kfree(cb); 2105 } 2106 2107 /** 2108 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2109 * 2110 * @adev: amdgpu_device pointer 2111 * @fence: fence for the callback 2112 */ 2113 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2114 struct dma_fence *fence) 2115 { 2116 struct amdgpu_prt_cb *cb; 2117 2118 if (!adev->gmc.gmc_funcs->set_prt) 2119 return; 2120 2121 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2122 if (!cb) { 2123 /* Last resort when we are OOM */ 2124 if (fence) 2125 dma_fence_wait(fence, false); 2126 2127 amdgpu_vm_prt_put(adev); 2128 } else { 2129 cb->adev = adev; 2130 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2131 amdgpu_vm_prt_cb)) 2132 amdgpu_vm_prt_cb(fence, &cb->cb); 2133 } 2134 } 2135 2136 /** 2137 * amdgpu_vm_free_mapping - free a mapping 2138 * 2139 * @adev: amdgpu_device pointer 2140 * @vm: requested vm 2141 * @mapping: mapping to be freed 2142 * @fence: fence of the unmap operation 2143 * 2144 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2145 */ 2146 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2147 struct amdgpu_vm *vm, 2148 struct amdgpu_bo_va_mapping *mapping, 2149 struct dma_fence *fence) 2150 { 2151 if (mapping->flags & AMDGPU_PTE_PRT) 2152 amdgpu_vm_add_prt_cb(adev, fence); 2153 kfree(mapping); 2154 } 2155 2156 /** 2157 * amdgpu_vm_prt_fini - finish all prt mappings 2158 * 2159 * @adev: amdgpu_device pointer 2160 * @vm: requested vm 2161 * 2162 * Register a cleanup callback to disable PRT support after VM dies. 2163 */ 2164 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2165 { 2166 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2167 struct dma_fence *excl, **shared; 2168 unsigned i, shared_count; 2169 int r; 2170 2171 r = dma_resv_get_fences(resv, &excl, &shared_count, &shared); 2172 if (r) { 2173 /* Not enough memory to grab the fence list, as last resort 2174 * block for all the fences to complete. 2175 */ 2176 dma_resv_wait_timeout(resv, true, false, 2177 MAX_SCHEDULE_TIMEOUT); 2178 return; 2179 } 2180 2181 /* Add a callback for each fence in the reservation object */ 2182 amdgpu_vm_prt_get(adev); 2183 amdgpu_vm_add_prt_cb(adev, excl); 2184 2185 for (i = 0; i < shared_count; ++i) { 2186 amdgpu_vm_prt_get(adev); 2187 amdgpu_vm_add_prt_cb(adev, shared[i]); 2188 } 2189 2190 kfree(shared); 2191 } 2192 2193 /** 2194 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2195 * 2196 * @adev: amdgpu_device pointer 2197 * @vm: requested vm 2198 * @fence: optional resulting fence (unchanged if no work needed to be done 2199 * or if an error occurred) 2200 * 2201 * Make sure all freed BOs are cleared in the PT. 2202 * PTs have to be reserved and mutex must be locked! 2203 * 2204 * Returns: 2205 * 0 for success. 2206 * 2207 */ 2208 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2209 struct amdgpu_vm *vm, 2210 struct dma_fence **fence) 2211 { 2212 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2213 struct amdgpu_bo_va_mapping *mapping; 2214 uint64_t init_pte_value = 0; 2215 struct dma_fence *f = NULL; 2216 int r; 2217 2218 while (!list_empty(&vm->freed)) { 2219 mapping = list_first_entry(&vm->freed, 2220 struct amdgpu_bo_va_mapping, list); 2221 list_del(&mapping->list); 2222 2223 if (vm->pte_support_ats && 2224 mapping->start < AMDGPU_GMC_HOLE_START) 2225 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2226 2227 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2228 resv, mapping->start, 2229 mapping->last, init_pte_value, 2230 0, NULL, NULL, &f, NULL); 2231 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2232 if (r) { 2233 dma_fence_put(f); 2234 return r; 2235 } 2236 } 2237 2238 if (fence && f) { 2239 dma_fence_put(*fence); 2240 *fence = f; 2241 } else { 2242 dma_fence_put(f); 2243 } 2244 2245 return 0; 2246 2247 } 2248 2249 /** 2250 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2251 * 2252 * @adev: amdgpu_device pointer 2253 * @vm: requested vm 2254 * 2255 * Make sure all BOs which are moved are updated in the PTs. 2256 * 2257 * Returns: 2258 * 0 for success. 2259 * 2260 * PTs have to be reserved! 2261 */ 2262 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2263 struct amdgpu_vm *vm) 2264 { 2265 struct amdgpu_bo_va *bo_va, *tmp; 2266 struct dma_resv *resv; 2267 bool clear; 2268 int r; 2269 2270 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2271 /* Per VM BOs never need to bo cleared in the page tables */ 2272 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 2273 if (r) 2274 return r; 2275 } 2276 2277 spin_lock(&vm->invalidated_lock); 2278 while (!list_empty(&vm->invalidated)) { 2279 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2280 base.vm_status); 2281 resv = bo_va->base.bo->tbo.base.resv; 2282 spin_unlock(&vm->invalidated_lock); 2283 2284 /* Try to reserve the BO to avoid clearing its ptes */ 2285 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2286 clear = false; 2287 /* Somebody else is using the BO right now */ 2288 else 2289 clear = true; 2290 2291 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL); 2292 if (r) 2293 return r; 2294 2295 if (!clear) 2296 dma_resv_unlock(resv); 2297 spin_lock(&vm->invalidated_lock); 2298 } 2299 spin_unlock(&vm->invalidated_lock); 2300 2301 return 0; 2302 } 2303 2304 /** 2305 * amdgpu_vm_bo_add - add a bo to a specific vm 2306 * 2307 * @adev: amdgpu_device pointer 2308 * @vm: requested vm 2309 * @bo: amdgpu buffer object 2310 * 2311 * Add @bo into the requested vm. 2312 * Add @bo to the list of bos associated with the vm 2313 * 2314 * Returns: 2315 * Newly added bo_va or NULL for failure 2316 * 2317 * Object has to be reserved! 2318 */ 2319 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2320 struct amdgpu_vm *vm, 2321 struct amdgpu_bo *bo) 2322 { 2323 struct amdgpu_bo_va *bo_va; 2324 2325 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2326 if (bo_va == NULL) { 2327 return NULL; 2328 } 2329 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2330 2331 bo_va->ref_count = 1; 2332 INIT_LIST_HEAD(&bo_va->valids); 2333 INIT_LIST_HEAD(&bo_va->invalids); 2334 2335 if (!bo) 2336 return bo_va; 2337 2338 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2339 bo_va->is_xgmi = true; 2340 /* Power up XGMI if it can be potentially used */ 2341 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2342 } 2343 2344 return bo_va; 2345 } 2346 2347 2348 /** 2349 * amdgpu_vm_bo_insert_map - insert a new mapping 2350 * 2351 * @adev: amdgpu_device pointer 2352 * @bo_va: bo_va to store the address 2353 * @mapping: the mapping to insert 2354 * 2355 * Insert a new mapping into all structures. 2356 */ 2357 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2358 struct amdgpu_bo_va *bo_va, 2359 struct amdgpu_bo_va_mapping *mapping) 2360 { 2361 struct amdgpu_vm *vm = bo_va->base.vm; 2362 struct amdgpu_bo *bo = bo_va->base.bo; 2363 2364 mapping->bo_va = bo_va; 2365 list_add(&mapping->list, &bo_va->invalids); 2366 amdgpu_vm_it_insert(mapping, &vm->va); 2367 2368 if (mapping->flags & AMDGPU_PTE_PRT) 2369 amdgpu_vm_prt_get(adev); 2370 2371 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 2372 !bo_va->base.moved) { 2373 list_move(&bo_va->base.vm_status, &vm->moved); 2374 } 2375 trace_amdgpu_vm_bo_map(bo_va, mapping); 2376 } 2377 2378 /** 2379 * amdgpu_vm_bo_map - map bo inside a vm 2380 * 2381 * @adev: amdgpu_device pointer 2382 * @bo_va: bo_va to store the address 2383 * @saddr: where to map the BO 2384 * @offset: requested offset in the BO 2385 * @size: BO size in bytes 2386 * @flags: attributes of pages (read/write/valid/etc.) 2387 * 2388 * Add a mapping of the BO at the specefied addr into the VM. 2389 * 2390 * Returns: 2391 * 0 for success, error for failure. 2392 * 2393 * Object has to be reserved and unreserved outside! 2394 */ 2395 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2396 struct amdgpu_bo_va *bo_va, 2397 uint64_t saddr, uint64_t offset, 2398 uint64_t size, uint64_t flags) 2399 { 2400 struct amdgpu_bo_va_mapping *mapping, *tmp; 2401 struct amdgpu_bo *bo = bo_va->base.bo; 2402 struct amdgpu_vm *vm = bo_va->base.vm; 2403 uint64_t eaddr; 2404 2405 /* validate the parameters */ 2406 if (saddr & ~LINUX_PAGE_MASK || offset & ~LINUX_PAGE_MASK || 2407 size == 0 || size & ~LINUX_PAGE_MASK) 2408 return -EINVAL; 2409 2410 /* make sure object fit at this offset */ 2411 eaddr = saddr + size - 1; 2412 if (saddr >= eaddr || 2413 (bo && offset + size > amdgpu_bo_size(bo)) || 2414 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2415 return -EINVAL; 2416 2417 saddr /= AMDGPU_GPU_PAGE_SIZE; 2418 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2419 2420 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2421 if (tmp) { 2422 /* bo and tmp overlap, invalid addr */ 2423 dev_err(adev->dev, "bo %p va 0x%010llx-0x%010llx conflict with " 2424 "0x%010llx-0x%010llx\n", bo, saddr, eaddr, 2425 tmp->start, tmp->last + 1); 2426 return -EINVAL; 2427 } 2428 2429 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2430 if (!mapping) 2431 return -ENOMEM; 2432 2433 mapping->start = saddr; 2434 mapping->last = eaddr; 2435 mapping->offset = offset; 2436 mapping->flags = flags; 2437 2438 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2439 2440 return 0; 2441 } 2442 2443 /** 2444 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2445 * 2446 * @adev: amdgpu_device pointer 2447 * @bo_va: bo_va to store the address 2448 * @saddr: where to map the BO 2449 * @offset: requested offset in the BO 2450 * @size: BO size in bytes 2451 * @flags: attributes of pages (read/write/valid/etc.) 2452 * 2453 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2454 * mappings as we do so. 2455 * 2456 * Returns: 2457 * 0 for success, error for failure. 2458 * 2459 * Object has to be reserved and unreserved outside! 2460 */ 2461 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2462 struct amdgpu_bo_va *bo_va, 2463 uint64_t saddr, uint64_t offset, 2464 uint64_t size, uint64_t flags) 2465 { 2466 struct amdgpu_bo_va_mapping *mapping; 2467 struct amdgpu_bo *bo = bo_va->base.bo; 2468 uint64_t eaddr; 2469 int r; 2470 2471 /* validate the parameters */ 2472 if (saddr & ~LINUX_PAGE_MASK || offset & ~LINUX_PAGE_MASK || 2473 size == 0 || size & ~LINUX_PAGE_MASK) 2474 return -EINVAL; 2475 2476 /* make sure object fit at this offset */ 2477 eaddr = saddr + size - 1; 2478 if (saddr >= eaddr || 2479 (bo && offset + size > amdgpu_bo_size(bo)) || 2480 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2481 return -EINVAL; 2482 2483 /* Allocate all the needed memory */ 2484 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2485 if (!mapping) 2486 return -ENOMEM; 2487 2488 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2489 if (r) { 2490 kfree(mapping); 2491 return r; 2492 } 2493 2494 saddr /= AMDGPU_GPU_PAGE_SIZE; 2495 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2496 2497 mapping->start = saddr; 2498 mapping->last = eaddr; 2499 mapping->offset = offset; 2500 mapping->flags = flags; 2501 2502 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2503 2504 return 0; 2505 } 2506 2507 /** 2508 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2509 * 2510 * @adev: amdgpu_device pointer 2511 * @bo_va: bo_va to remove the address from 2512 * @saddr: where to the BO is mapped 2513 * 2514 * Remove a mapping of the BO at the specefied addr from the VM. 2515 * 2516 * Returns: 2517 * 0 for success, error for failure. 2518 * 2519 * Object has to be reserved and unreserved outside! 2520 */ 2521 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2522 struct amdgpu_bo_va *bo_va, 2523 uint64_t saddr) 2524 { 2525 struct amdgpu_bo_va_mapping *mapping; 2526 struct amdgpu_vm *vm = bo_va->base.vm; 2527 bool valid = true; 2528 2529 saddr /= AMDGPU_GPU_PAGE_SIZE; 2530 2531 list_for_each_entry(mapping, &bo_va->valids, list) { 2532 if (mapping->start == saddr) 2533 break; 2534 } 2535 2536 if (&mapping->list == &bo_va->valids) { 2537 valid = false; 2538 2539 list_for_each_entry(mapping, &bo_va->invalids, list) { 2540 if (mapping->start == saddr) 2541 break; 2542 } 2543 2544 if (&mapping->list == &bo_va->invalids) 2545 return -ENOENT; 2546 } 2547 2548 list_del(&mapping->list); 2549 amdgpu_vm_it_remove(mapping, &vm->va); 2550 mapping->bo_va = NULL; 2551 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2552 2553 if (valid) 2554 list_add(&mapping->list, &vm->freed); 2555 else 2556 amdgpu_vm_free_mapping(adev, vm, mapping, 2557 bo_va->last_pt_update); 2558 2559 return 0; 2560 } 2561 2562 /** 2563 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2564 * 2565 * @adev: amdgpu_device pointer 2566 * @vm: VM structure to use 2567 * @saddr: start of the range 2568 * @size: size of the range 2569 * 2570 * Remove all mappings in a range, split them as appropriate. 2571 * 2572 * Returns: 2573 * 0 for success, error for failure. 2574 */ 2575 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2576 struct amdgpu_vm *vm, 2577 uint64_t saddr, uint64_t size) 2578 { 2579 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2580 DRM_LIST_HEAD(removed); 2581 uint64_t eaddr; 2582 2583 eaddr = saddr + size - 1; 2584 saddr /= AMDGPU_GPU_PAGE_SIZE; 2585 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2586 2587 /* Allocate all the needed memory */ 2588 before = kzalloc(sizeof(*before), GFP_KERNEL); 2589 if (!before) 2590 return -ENOMEM; 2591 INIT_LIST_HEAD(&before->list); 2592 2593 after = kzalloc(sizeof(*after), GFP_KERNEL); 2594 if (!after) { 2595 kfree(before); 2596 return -ENOMEM; 2597 } 2598 INIT_LIST_HEAD(&after->list); 2599 2600 /* Now gather all removed mappings */ 2601 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2602 while (tmp) { 2603 /* Remember mapping split at the start */ 2604 if (tmp->start < saddr) { 2605 before->start = tmp->start; 2606 before->last = saddr - 1; 2607 before->offset = tmp->offset; 2608 before->flags = tmp->flags; 2609 before->bo_va = tmp->bo_va; 2610 list_add(&before->list, &tmp->bo_va->invalids); 2611 } 2612 2613 /* Remember mapping split at the end */ 2614 if (tmp->last > eaddr) { 2615 after->start = eaddr + 1; 2616 after->last = tmp->last; 2617 after->offset = tmp->offset; 2618 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2619 after->flags = tmp->flags; 2620 after->bo_va = tmp->bo_va; 2621 list_add(&after->list, &tmp->bo_va->invalids); 2622 } 2623 2624 list_del(&tmp->list); 2625 list_add(&tmp->list, &removed); 2626 2627 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2628 } 2629 2630 /* And free them up */ 2631 list_for_each_entry_safe(tmp, next, &removed, list) { 2632 amdgpu_vm_it_remove(tmp, &vm->va); 2633 list_del(&tmp->list); 2634 2635 if (tmp->start < saddr) 2636 tmp->start = saddr; 2637 if (tmp->last > eaddr) 2638 tmp->last = eaddr; 2639 2640 tmp->bo_va = NULL; 2641 list_add(&tmp->list, &vm->freed); 2642 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2643 } 2644 2645 /* Insert partial mapping before the range */ 2646 if (!list_empty(&before->list)) { 2647 amdgpu_vm_it_insert(before, &vm->va); 2648 if (before->flags & AMDGPU_PTE_PRT) 2649 amdgpu_vm_prt_get(adev); 2650 } else { 2651 kfree(before); 2652 } 2653 2654 /* Insert partial mapping after the range */ 2655 if (!list_empty(&after->list)) { 2656 amdgpu_vm_it_insert(after, &vm->va); 2657 if (after->flags & AMDGPU_PTE_PRT) 2658 amdgpu_vm_prt_get(adev); 2659 } else { 2660 kfree(after); 2661 } 2662 2663 return 0; 2664 } 2665 2666 /** 2667 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2668 * 2669 * @vm: the requested VM 2670 * @addr: the address 2671 * 2672 * Find a mapping by it's address. 2673 * 2674 * Returns: 2675 * The amdgpu_bo_va_mapping matching for addr or NULL 2676 * 2677 */ 2678 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2679 uint64_t addr) 2680 { 2681 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2682 } 2683 2684 /** 2685 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2686 * 2687 * @vm: the requested vm 2688 * @ticket: CS ticket 2689 * 2690 * Trace all mappings of BOs reserved during a command submission. 2691 */ 2692 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2693 { 2694 struct amdgpu_bo_va_mapping *mapping; 2695 2696 if (!trace_amdgpu_vm_bo_cs_enabled()) 2697 return; 2698 2699 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2700 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2701 if (mapping->bo_va && mapping->bo_va->base.bo) { 2702 struct amdgpu_bo *bo; 2703 2704 bo = mapping->bo_va->base.bo; 2705 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2706 ticket) 2707 continue; 2708 } 2709 2710 trace_amdgpu_vm_bo_cs(mapping); 2711 } 2712 } 2713 2714 /** 2715 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2716 * 2717 * @adev: amdgpu_device pointer 2718 * @bo_va: requested bo_va 2719 * 2720 * Remove @bo_va->bo from the requested vm. 2721 * 2722 * Object have to be reserved! 2723 */ 2724 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2725 struct amdgpu_bo_va *bo_va) 2726 { 2727 struct amdgpu_bo_va_mapping *mapping, *next; 2728 struct amdgpu_bo *bo = bo_va->base.bo; 2729 struct amdgpu_vm *vm = bo_va->base.vm; 2730 struct amdgpu_vm_bo_base **base; 2731 2732 if (bo) { 2733 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2734 vm->bulk_moveable = false; 2735 2736 for (base = &bo_va->base.bo->vm_bo; *base; 2737 base = &(*base)->next) { 2738 if (*base != &bo_va->base) 2739 continue; 2740 2741 *base = bo_va->base.next; 2742 break; 2743 } 2744 } 2745 2746 spin_lock(&vm->invalidated_lock); 2747 list_del(&bo_va->base.vm_status); 2748 spin_unlock(&vm->invalidated_lock); 2749 2750 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2751 list_del(&mapping->list); 2752 amdgpu_vm_it_remove(mapping, &vm->va); 2753 mapping->bo_va = NULL; 2754 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2755 list_add(&mapping->list, &vm->freed); 2756 } 2757 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2758 list_del(&mapping->list); 2759 amdgpu_vm_it_remove(mapping, &vm->va); 2760 amdgpu_vm_free_mapping(adev, vm, mapping, 2761 bo_va->last_pt_update); 2762 } 2763 2764 dma_fence_put(bo_va->last_pt_update); 2765 2766 if (bo && bo_va->is_xgmi) 2767 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2768 2769 kfree(bo_va); 2770 } 2771 2772 /** 2773 * amdgpu_vm_evictable - check if we can evict a VM 2774 * 2775 * @bo: A page table of the VM. 2776 * 2777 * Check if it is possible to evict a VM. 2778 */ 2779 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2780 { 2781 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2782 2783 /* Page tables of a destroyed VM can go away immediately */ 2784 if (!bo_base || !bo_base->vm) 2785 return true; 2786 2787 /* Don't evict VM page tables while they are busy */ 2788 if (!dma_resv_test_signaled(bo->tbo.base.resv, true)) 2789 return false; 2790 2791 /* Try to block ongoing updates */ 2792 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2793 return false; 2794 2795 /* Don't evict VM page tables while they are updated */ 2796 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2797 amdgpu_vm_eviction_unlock(bo_base->vm); 2798 return false; 2799 } 2800 2801 bo_base->vm->evicting = true; 2802 amdgpu_vm_eviction_unlock(bo_base->vm); 2803 return true; 2804 } 2805 2806 /** 2807 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2808 * 2809 * @adev: amdgpu_device pointer 2810 * @bo: amdgpu buffer object 2811 * @evicted: is the BO evicted 2812 * 2813 * Mark @bo as invalid. 2814 */ 2815 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2816 struct amdgpu_bo *bo, bool evicted) 2817 { 2818 struct amdgpu_vm_bo_base *bo_base; 2819 2820 /* shadow bo doesn't have bo base, its validation needs its parent */ 2821 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2822 bo = bo->parent; 2823 2824 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2825 struct amdgpu_vm *vm = bo_base->vm; 2826 2827 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 2828 amdgpu_vm_bo_evicted(bo_base); 2829 continue; 2830 } 2831 2832 if (bo_base->moved) 2833 continue; 2834 bo_base->moved = true; 2835 2836 if (bo->tbo.type == ttm_bo_type_kernel) 2837 amdgpu_vm_bo_relocated(bo_base); 2838 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2839 amdgpu_vm_bo_moved(bo_base); 2840 else 2841 amdgpu_vm_bo_invalidated(bo_base); 2842 } 2843 } 2844 2845 /** 2846 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2847 * 2848 * @vm_size: VM size 2849 * 2850 * Returns: 2851 * VM page table as power of two 2852 */ 2853 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2854 { 2855 /* Total bits covered by PD + PTs */ 2856 unsigned bits = ilog2(vm_size) + 18; 2857 2858 /* Make sure the PD is 4K in size up to 8GB address space. 2859 Above that split equal between PD and PTs */ 2860 if (vm_size <= 8) 2861 return (bits - 9); 2862 else 2863 return ((bits + 3) / 2); 2864 } 2865 2866 /** 2867 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2868 * 2869 * @adev: amdgpu_device pointer 2870 * @min_vm_size: the minimum vm size in GB if it's set auto 2871 * @fragment_size_default: Default PTE fragment size 2872 * @max_level: max VMPT level 2873 * @max_bits: max address space size in bits 2874 * 2875 */ 2876 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2877 uint32_t fragment_size_default, unsigned max_level, 2878 unsigned max_bits) 2879 { 2880 unsigned int max_size = 1 << (max_bits - 30); 2881 unsigned int vm_size; 2882 uint64_t tmp; 2883 2884 /* adjust vm size first */ 2885 if (amdgpu_vm_size != -1) { 2886 vm_size = amdgpu_vm_size; 2887 if (vm_size > max_size) { 2888 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2889 amdgpu_vm_size, max_size); 2890 vm_size = max_size; 2891 } 2892 } else { 2893 #ifdef __linux__ 2894 struct sysinfo si; 2895 #endif 2896 unsigned int phys_ram_gb; 2897 2898 /* Optimal VM size depends on the amount of physical 2899 * RAM available. Underlying requirements and 2900 * assumptions: 2901 * 2902 * - Need to map system memory and VRAM from all GPUs 2903 * - VRAM from other GPUs not known here 2904 * - Assume VRAM <= system memory 2905 * - On GFX8 and older, VM space can be segmented for 2906 * different MTYPEs 2907 * - Need to allow room for fragmentation, guard pages etc. 2908 * 2909 * This adds up to a rough guess of system memory x3. 2910 * Round up to power of two to maximize the available 2911 * VM size with the given page table size. 2912 */ 2913 #ifdef __linux__ 2914 si_meminfo(&si); 2915 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2916 (1 << 30) - 1) >> 30; 2917 #else 2918 phys_ram_gb = ((uint64_t)ptoa(physmem) + 2919 (1 << 30) - 1) >> 30; 2920 #endif 2921 vm_size = roundup_pow_of_two( 2922 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2923 } 2924 2925 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2926 2927 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2928 if (amdgpu_vm_block_size != -1) 2929 tmp >>= amdgpu_vm_block_size - 9; 2930 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2931 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2932 switch (adev->vm_manager.num_level) { 2933 case 3: 2934 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2935 break; 2936 case 2: 2937 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2938 break; 2939 case 1: 2940 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2941 break; 2942 default: 2943 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2944 } 2945 /* block size depends on vm size and hw setup*/ 2946 if (amdgpu_vm_block_size != -1) 2947 adev->vm_manager.block_size = 2948 min((unsigned)amdgpu_vm_block_size, max_bits 2949 - AMDGPU_GPU_PAGE_SHIFT 2950 - 9 * adev->vm_manager.num_level); 2951 else if (adev->vm_manager.num_level > 1) 2952 adev->vm_manager.block_size = 9; 2953 else 2954 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2955 2956 if (amdgpu_vm_fragment_size == -1) 2957 adev->vm_manager.fragment_size = fragment_size_default; 2958 else 2959 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2960 2961 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2962 vm_size, adev->vm_manager.num_level + 1, 2963 adev->vm_manager.block_size, 2964 adev->vm_manager.fragment_size); 2965 } 2966 2967 /** 2968 * amdgpu_vm_wait_idle - wait for the VM to become idle 2969 * 2970 * @vm: VM object to wait for 2971 * @timeout: timeout to wait for VM to become idle 2972 */ 2973 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2974 { 2975 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true, 2976 true, timeout); 2977 if (timeout <= 0) 2978 return timeout; 2979 2980 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2981 } 2982 2983 /** 2984 * amdgpu_vm_init - initialize a vm instance 2985 * 2986 * @adev: amdgpu_device pointer 2987 * @vm: requested vm 2988 * 2989 * Init @vm fields. 2990 * 2991 * Returns: 2992 * 0 for success, error for failure. 2993 */ 2994 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2995 { 2996 struct amdgpu_bo *root_bo; 2997 struct amdgpu_bo_vm *root; 2998 int r, i; 2999 3000 vm->va = RB_ROOT_CACHED; 3001 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3002 vm->reserved_vmid[i] = NULL; 3003 INIT_LIST_HEAD(&vm->evicted); 3004 INIT_LIST_HEAD(&vm->relocated); 3005 INIT_LIST_HEAD(&vm->moved); 3006 INIT_LIST_HEAD(&vm->idle); 3007 INIT_LIST_HEAD(&vm->invalidated); 3008 mtx_init(&vm->invalidated_lock, IPL_NONE); 3009 INIT_LIST_HEAD(&vm->freed); 3010 INIT_LIST_HEAD(&vm->done); 3011 3012 /* create scheduler entities for page table updates */ 3013 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 3014 adev->vm_manager.vm_pte_scheds, 3015 adev->vm_manager.vm_pte_num_scheds, NULL); 3016 if (r) 3017 return r; 3018 3019 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 3020 adev->vm_manager.vm_pte_scheds, 3021 adev->vm_manager.vm_pte_num_scheds, NULL); 3022 if (r) 3023 goto error_free_immediate; 3024 3025 vm->pte_support_ats = false; 3026 vm->is_compute_context = false; 3027 3028 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3029 AMDGPU_VM_USE_CPU_FOR_GFX); 3030 3031 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3032 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3033 WARN_ONCE((vm->use_cpu_for_update && 3034 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3035 "CPU update of VM recommended only for large BAR system\n"); 3036 3037 if (vm->use_cpu_for_update) 3038 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3039 else 3040 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3041 vm->last_update = NULL; 3042 vm->last_unlocked = dma_fence_get_stub(); 3043 3044 rw_init(&vm->eviction_lock, "avmev"); 3045 vm->evicting = false; 3046 3047 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 3048 false, &root); 3049 if (r) 3050 goto error_free_delayed; 3051 root_bo = &root->bo; 3052 r = amdgpu_bo_reserve(root_bo, true); 3053 if (r) 3054 goto error_free_root; 3055 3056 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1); 3057 if (r) 3058 goto error_unreserve; 3059 3060 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 3061 3062 r = amdgpu_vm_clear_bo(adev, vm, root, false); 3063 if (r) 3064 goto error_unreserve; 3065 3066 amdgpu_bo_unreserve(vm->root.bo); 3067 3068 #ifdef __linux__ 3069 INIT_KFIFO(vm->faults); 3070 #else 3071 SIMPLEQ_INIT(&vm->faults); 3072 #endif 3073 3074 return 0; 3075 3076 error_unreserve: 3077 amdgpu_bo_unreserve(vm->root.bo); 3078 3079 error_free_root: 3080 amdgpu_bo_unref(&root->shadow); 3081 amdgpu_bo_unref(&root_bo); 3082 vm->root.bo = NULL; 3083 3084 error_free_delayed: 3085 dma_fence_put(vm->last_unlocked); 3086 drm_sched_entity_destroy(&vm->delayed); 3087 3088 error_free_immediate: 3089 drm_sched_entity_destroy(&vm->immediate); 3090 3091 return r; 3092 } 3093 3094 /** 3095 * amdgpu_vm_check_clean_reserved - check if a VM is clean 3096 * 3097 * @adev: amdgpu_device pointer 3098 * @vm: the VM to check 3099 * 3100 * check all entries of the root PD, if any subsequent PDs are allocated, 3101 * it means there are page table creating and filling, and is no a clean 3102 * VM 3103 * 3104 * Returns: 3105 * 0 if this VM is clean 3106 */ 3107 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 3108 struct amdgpu_vm *vm) 3109 { 3110 enum amdgpu_vm_level root = adev->vm_manager.root_level; 3111 unsigned int entries = amdgpu_vm_num_entries(adev, root); 3112 unsigned int i = 0; 3113 3114 for (i = 0; i < entries; i++) { 3115 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 3116 return -EINVAL; 3117 } 3118 3119 return 0; 3120 } 3121 3122 /** 3123 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3124 * 3125 * @adev: amdgpu_device pointer 3126 * @vm: requested vm 3127 * 3128 * This only works on GFX VMs that don't have any BOs added and no 3129 * page tables allocated yet. 3130 * 3131 * Changes the following VM parameters: 3132 * - use_cpu_for_update 3133 * - pte_supports_ats 3134 * 3135 * Reinitializes the page directory to reflect the changed ATS 3136 * setting. 3137 * 3138 * Returns: 3139 * 0 for success, -errno for errors. 3140 */ 3141 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3142 { 3143 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3144 int r; 3145 3146 r = amdgpu_bo_reserve(vm->root.bo, true); 3147 if (r) 3148 return r; 3149 3150 /* Sanity checks */ 3151 r = amdgpu_vm_check_clean_reserved(adev, vm); 3152 if (r) 3153 goto unreserve_bo; 3154 3155 /* Check if PD needs to be reinitialized and do it before 3156 * changing any other state, in case it fails. 3157 */ 3158 if (pte_support_ats != vm->pte_support_ats) { 3159 vm->pte_support_ats = pte_support_ats; 3160 r = amdgpu_vm_clear_bo(adev, vm, 3161 to_amdgpu_bo_vm(vm->root.bo), 3162 false); 3163 if (r) 3164 goto unreserve_bo; 3165 } 3166 3167 /* Update VM state */ 3168 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3169 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3170 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3171 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3172 WARN_ONCE((vm->use_cpu_for_update && 3173 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3174 "CPU update of VM recommended only for large BAR system\n"); 3175 3176 if (vm->use_cpu_for_update) { 3177 /* Sync with last SDMA update/clear before switching to CPU */ 3178 r = amdgpu_bo_sync_wait(vm->root.bo, 3179 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3180 if (r) 3181 goto unreserve_bo; 3182 3183 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3184 } else { 3185 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3186 } 3187 dma_fence_put(vm->last_update); 3188 vm->last_update = NULL; 3189 vm->is_compute_context = true; 3190 3191 /* Free the shadow bo for compute VM */ 3192 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 3193 3194 goto unreserve_bo; 3195 3196 unreserve_bo: 3197 amdgpu_bo_unreserve(vm->root.bo); 3198 return r; 3199 } 3200 3201 /** 3202 * amdgpu_vm_release_compute - release a compute vm 3203 * @adev: amdgpu_device pointer 3204 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3205 * 3206 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3207 * pasid from vm. Compute should stop use of vm after this call. 3208 */ 3209 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3210 { 3211 amdgpu_vm_set_pasid(adev, vm, 0); 3212 vm->is_compute_context = false; 3213 } 3214 3215 /** 3216 * amdgpu_vm_fini - tear down a vm instance 3217 * 3218 * @adev: amdgpu_device pointer 3219 * @vm: requested vm 3220 * 3221 * Tear down @vm. 3222 * Unbind the VM and remove all bos from the vm bo list 3223 */ 3224 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3225 { 3226 struct amdgpu_bo_va_mapping *mapping, *tmp; 3227 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3228 struct amdgpu_bo *root; 3229 int i; 3230 3231 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3232 3233 root = amdgpu_bo_ref(vm->root.bo); 3234 amdgpu_bo_reserve(root, true); 3235 amdgpu_vm_set_pasid(adev, vm, 0); 3236 dma_fence_wait(vm->last_unlocked, false); 3237 dma_fence_put(vm->last_unlocked); 3238 3239 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3240 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3241 amdgpu_vm_prt_fini(adev, vm); 3242 prt_fini_needed = false; 3243 } 3244 3245 list_del(&mapping->list); 3246 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3247 } 3248 3249 amdgpu_vm_free_pts(adev, vm, NULL); 3250 amdgpu_bo_unreserve(root); 3251 amdgpu_bo_unref(&root); 3252 WARN_ON(vm->root.bo); 3253 3254 drm_sched_entity_destroy(&vm->immediate); 3255 drm_sched_entity_destroy(&vm->delayed); 3256 3257 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3258 dev_err(adev->dev, "still active bo inside vm\n"); 3259 } 3260 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3261 &vm->va.rb_root, rb) { 3262 /* Don't remove the mapping here, we don't want to trigger a 3263 * rebalance and the tree is about to be destroyed anyway. 3264 */ 3265 list_del(&mapping->list); 3266 kfree(mapping); 3267 } 3268 3269 dma_fence_put(vm->last_update); 3270 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3271 amdgpu_vmid_free_reserved(adev, vm, i); 3272 } 3273 3274 /** 3275 * amdgpu_vm_manager_init - init the VM manager 3276 * 3277 * @adev: amdgpu_device pointer 3278 * 3279 * Initialize the VM manager structures 3280 */ 3281 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3282 { 3283 unsigned i; 3284 3285 /* Concurrent flushes are only possible starting with Vega10 and 3286 * are broken on Navi10 and Navi14. 3287 */ 3288 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3289 adev->asic_type == CHIP_NAVI10 || 3290 adev->asic_type == CHIP_NAVI14); 3291 amdgpu_vmid_mgr_init(adev); 3292 3293 adev->vm_manager.fence_context = 3294 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3295 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3296 adev->vm_manager.seqno[i] = 0; 3297 3298 mtx_init(&adev->vm_manager.prt_lock, IPL_TTY); 3299 atomic_set(&adev->vm_manager.num_prt_users, 0); 3300 3301 /* If not overridden by the user, by default, only in large BAR systems 3302 * Compute VM tables will be updated by CPU 3303 */ 3304 #ifdef CONFIG_X86_64 3305 if (amdgpu_vm_update_mode == -1) { 3306 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3307 adev->vm_manager.vm_update_mode = 3308 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3309 else 3310 adev->vm_manager.vm_update_mode = 0; 3311 } else 3312 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3313 #else 3314 adev->vm_manager.vm_update_mode = 0; 3315 #endif 3316 3317 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 3318 } 3319 3320 /** 3321 * amdgpu_vm_manager_fini - cleanup VM manager 3322 * 3323 * @adev: amdgpu_device pointer 3324 * 3325 * Cleanup the VM manager and free resources. 3326 */ 3327 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3328 { 3329 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 3330 xa_destroy(&adev->vm_manager.pasids); 3331 3332 amdgpu_vmid_mgr_fini(adev); 3333 } 3334 3335 /** 3336 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3337 * 3338 * @dev: drm device pointer 3339 * @data: drm_amdgpu_vm 3340 * @filp: drm file pointer 3341 * 3342 * Returns: 3343 * 0 for success, -errno for errors. 3344 */ 3345 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3346 { 3347 union drm_amdgpu_vm *args = data; 3348 struct amdgpu_device *adev = drm_to_adev(dev); 3349 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3350 long timeout = msecs_to_jiffies(2000); 3351 int r; 3352 3353 switch (args->in.op) { 3354 case AMDGPU_VM_OP_RESERVE_VMID: 3355 /* We only have requirement to reserve vmid from gfxhub */ 3356 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3357 AMDGPU_GFXHUB_0); 3358 if (r) 3359 return r; 3360 break; 3361 case AMDGPU_VM_OP_UNRESERVE_VMID: 3362 if (amdgpu_sriov_runtime(adev)) 3363 timeout = 8 * timeout; 3364 3365 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3366 * not referenced anymore. 3367 */ 3368 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true); 3369 if (r) 3370 return r; 3371 3372 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3373 if (r < 0) 3374 return r; 3375 3376 amdgpu_bo_unreserve(fpriv->vm.root.bo); 3377 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3378 break; 3379 default: 3380 return -EINVAL; 3381 } 3382 3383 return 0; 3384 } 3385 3386 /** 3387 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3388 * 3389 * @adev: drm device pointer 3390 * @pasid: PASID identifier for VM 3391 * @task_info: task_info to fill. 3392 */ 3393 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3394 struct amdgpu_task_info *task_info) 3395 { 3396 struct amdgpu_vm *vm; 3397 unsigned long flags; 3398 3399 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3400 3401 vm = xa_load(&adev->vm_manager.pasids, pasid); 3402 if (vm) 3403 *task_info = vm->task_info; 3404 3405 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3406 } 3407 3408 /** 3409 * amdgpu_vm_set_task_info - Sets VMs task info. 3410 * 3411 * @vm: vm for which to set the info 3412 */ 3413 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3414 { 3415 if (vm->task_info.pid) 3416 return; 3417 3418 #ifdef __linux__ 3419 vm->task_info.pid = current->pid; 3420 get_task_comm(vm->task_info.task_name, current); 3421 3422 if (current->group_leader->mm != current->mm) 3423 return; 3424 3425 vm->task_info.tgid = current->group_leader->pid; 3426 get_task_comm(vm->task_info.process_name, current->group_leader); 3427 #else 3428 /* thread */ 3429 vm->task_info.pid = curproc->p_tid; 3430 strlcpy(vm->task_info.task_name, curproc->p_p->ps_comm, 3431 sizeof(vm->task_info.task_name)); 3432 3433 /* process */ 3434 vm->task_info.tgid = curproc->p_p->ps_pid; 3435 strlcpy(vm->task_info.process_name, curproc->p_p->ps_comm, 3436 sizeof(vm->task_info.process_name)); 3437 #endif 3438 } 3439 3440 /** 3441 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3442 * @adev: amdgpu device pointer 3443 * @pasid: PASID of the VM 3444 * @addr: Address of the fault 3445 * @write_fault: true is write fault, false is read fault 3446 * 3447 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3448 * shouldn't be reported any more. 3449 */ 3450 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3451 uint64_t addr, bool write_fault) 3452 { 3453 bool is_compute_context = false; 3454 struct amdgpu_bo *root; 3455 unsigned long irqflags; 3456 uint64_t value, flags; 3457 struct amdgpu_vm *vm; 3458 int r; 3459 3460 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3461 vm = xa_load(&adev->vm_manager.pasids, pasid); 3462 if (vm) { 3463 root = amdgpu_bo_ref(vm->root.bo); 3464 is_compute_context = vm->is_compute_context; 3465 } else { 3466 root = NULL; 3467 } 3468 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3469 3470 if (!root) 3471 return false; 3472 3473 addr /= AMDGPU_GPU_PAGE_SIZE; 3474 3475 if (is_compute_context && 3476 !svm_range_restore_pages(adev, pasid, addr, write_fault)) { 3477 amdgpu_bo_unref(&root); 3478 return true; 3479 } 3480 3481 r = amdgpu_bo_reserve(root, true); 3482 if (r) 3483 goto error_unref; 3484 3485 /* Double check that the VM still exists */ 3486 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3487 vm = xa_load(&adev->vm_manager.pasids, pasid); 3488 if (vm && vm->root.bo != root) 3489 vm = NULL; 3490 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3491 if (!vm) 3492 goto error_unlock; 3493 3494 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3495 AMDGPU_PTE_SYSTEM; 3496 3497 if (is_compute_context) { 3498 /* Intentionally setting invalid PTE flag 3499 * combination to force a no-retry-fault 3500 */ 3501 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3502 AMDGPU_PTE_TF; 3503 value = 0; 3504 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3505 /* Redirect the access to the dummy page */ 3506 value = adev->dummy_page_addr; 3507 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3508 AMDGPU_PTE_WRITEABLE; 3509 3510 } else { 3511 /* Let the hw retry silently on the PTE */ 3512 value = 0; 3513 } 3514 3515 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3516 if (r) { 3517 pr_debug("failed %d to reserve fence slot\n", r); 3518 goto error_unlock; 3519 } 3520 3521 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3522 addr, flags, value, NULL, NULL, NULL, 3523 NULL); 3524 if (r) 3525 goto error_unlock; 3526 3527 r = amdgpu_vm_update_pdes(adev, vm, true); 3528 3529 error_unlock: 3530 amdgpu_bo_unreserve(root); 3531 if (r < 0) 3532 DRM_ERROR("Can't handle page fault (%d)\n", r); 3533 3534 error_unref: 3535 amdgpu_bo_unref(&root); 3536 3537 return false; 3538 } 3539 3540 #if defined(CONFIG_DEBUG_FS) 3541 /** 3542 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3543 * 3544 * @vm: Requested VM for printing BO info 3545 * @m: debugfs file 3546 * 3547 * Print BO information in debugfs file for the VM 3548 */ 3549 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3550 { 3551 struct amdgpu_bo_va *bo_va, *tmp; 3552 u64 total_idle = 0; 3553 u64 total_evicted = 0; 3554 u64 total_relocated = 0; 3555 u64 total_moved = 0; 3556 u64 total_invalidated = 0; 3557 u64 total_done = 0; 3558 unsigned int total_idle_objs = 0; 3559 unsigned int total_evicted_objs = 0; 3560 unsigned int total_relocated_objs = 0; 3561 unsigned int total_moved_objs = 0; 3562 unsigned int total_invalidated_objs = 0; 3563 unsigned int total_done_objs = 0; 3564 unsigned int id = 0; 3565 3566 seq_puts(m, "\tIdle BOs:\n"); 3567 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3568 if (!bo_va->base.bo) 3569 continue; 3570 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3571 } 3572 total_idle_objs = id; 3573 id = 0; 3574 3575 seq_puts(m, "\tEvicted BOs:\n"); 3576 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3577 if (!bo_va->base.bo) 3578 continue; 3579 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3580 } 3581 total_evicted_objs = id; 3582 id = 0; 3583 3584 seq_puts(m, "\tRelocated BOs:\n"); 3585 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3586 if (!bo_va->base.bo) 3587 continue; 3588 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3589 } 3590 total_relocated_objs = id; 3591 id = 0; 3592 3593 seq_puts(m, "\tMoved BOs:\n"); 3594 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3595 if (!bo_va->base.bo) 3596 continue; 3597 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3598 } 3599 total_moved_objs = id; 3600 id = 0; 3601 3602 seq_puts(m, "\tInvalidated BOs:\n"); 3603 spin_lock(&vm->invalidated_lock); 3604 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3605 if (!bo_va->base.bo) 3606 continue; 3607 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3608 } 3609 total_invalidated_objs = id; 3610 id = 0; 3611 3612 seq_puts(m, "\tDone BOs:\n"); 3613 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3614 if (!bo_va->base.bo) 3615 continue; 3616 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3617 } 3618 spin_unlock(&vm->invalidated_lock); 3619 total_done_objs = id; 3620 3621 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3622 total_idle_objs); 3623 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3624 total_evicted_objs); 3625 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3626 total_relocated_objs); 3627 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3628 total_moved_objs); 3629 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3630 total_invalidated_objs); 3631 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3632 total_done_objs); 3633 } 3634 #endif 3635