xref: /openbsd-src/sys/dev/pci/drm/amd/amdgpu/amdgpu_vm.c (revision dcc91c2622318df8f66a9bca2d2864253df1bfc3)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include <drm/ttm/ttm_tt.h>
37 #include <drm/drm_exec.h>
38 #include "amdgpu.h"
39 #include "amdgpu_trace.h"
40 #include "amdgpu_amdkfd.h"
41 #include "amdgpu_gmc.h"
42 #include "amdgpu_xgmi.h"
43 #include "amdgpu_dma_buf.h"
44 #include "amdgpu_res_cursor.h"
45 #include "../amdkfd/kfd_svm.h"
46 
47 /**
48  * DOC: GPUVM
49  *
50  * GPUVM is the MMU functionality provided on the GPU.
51  * GPUVM is similar to the legacy GART on older asics, however
52  * rather than there being a single global GART table
53  * for the entire GPU, there can be multiple GPUVM page tables active
54  * at any given time.  The GPUVM page tables can contain a mix
55  * VRAM pages and system pages (both memory and MMIO) and system pages
56  * can be mapped as snooped (cached system pages) or unsnooped
57  * (uncached system pages).
58  *
59  * Each active GPUVM has an ID associated with it and there is a page table
60  * linked with each VMID.  When executing a command buffer,
61  * the kernel tells the engine what VMID to use for that command
62  * buffer.  VMIDs are allocated dynamically as commands are submitted.
63  * The userspace drivers maintain their own address space and the kernel
64  * sets up their pages tables accordingly when they submit their
65  * command buffers and a VMID is assigned.
66  * The hardware supports up to 16 active GPUVMs at any given time.
67  *
68  * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending
69  * on the ASIC family.  GPUVM supports RWX attributes on each page as well
70  * as other features such as encryption and caching attributes.
71  *
72  * VMID 0 is special.  It is the GPUVM used for the kernel driver.  In
73  * addition to an aperture managed by a page table, VMID 0 also has
74  * several other apertures.  There is an aperture for direct access to VRAM
75  * and there is a legacy AGP aperture which just forwards accesses directly
76  * to the matching system physical addresses (or IOVAs when an IOMMU is
77  * present).  These apertures provide direct access to these memories without
78  * incurring the overhead of a page table.  VMID 0 is used by the kernel
79  * driver for tasks like memory management.
80  *
81  * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory.
82  * For user applications, each application can have their own unique GPUVM
83  * address space.  The application manages the address space and the kernel
84  * driver manages the GPUVM page tables for each process.  If an GPU client
85  * accesses an invalid page, it will generate a GPU page fault, similar to
86  * accessing an invalid page on a CPU.
87  */
88 
89 #define START(node) ((node)->start)
90 #define LAST(node) ((node)->last)
91 
92 #ifdef __linux__
93 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
94 		     START, LAST, static, amdgpu_vm_it)
95 #else
96 static struct amdgpu_bo_va_mapping *
97 amdgpu_vm_it_iter_first(struct rb_root_cached *root, uint64_t start,
98     uint64_t last)
99 {
100 	struct amdgpu_bo_va_mapping *node;
101 	struct rb_node *rb;
102 
103 	for (rb = rb_first_cached(root); rb; rb = rb_next(rb)) {
104 		node = rb_entry(rb, typeof(*node), rb);
105 		if (LAST(node) >= start && START(node) <= last)
106 			return node;
107 	}
108 	return NULL;
109 }
110 
111 static struct amdgpu_bo_va_mapping *
112 amdgpu_vm_it_iter_next(struct amdgpu_bo_va_mapping *node, uint64_t start,
113     uint64_t last)
114 {
115 	struct rb_node *rb = &node->rb;
116 
117 	for (rb = rb_next(rb); rb; rb = rb_next(rb)) {
118 		node = rb_entry(rb, typeof(*node), rb);
119 		if (LAST(node) >= start && START(node) <= last)
120 			return node;
121 	}
122 	return NULL;
123 }
124 
125 static void
126 amdgpu_vm_it_remove(struct amdgpu_bo_va_mapping *node,
127     struct rb_root_cached *root)
128 {
129 	rb_erase_cached(&node->rb, root);
130 }
131 
132 static void
133 amdgpu_vm_it_insert(struct amdgpu_bo_va_mapping *node,
134     struct rb_root_cached *root)
135 {
136 	struct rb_node **iter = &root->rb_root.rb_node;
137 	struct rb_node *parent = NULL;
138 	struct amdgpu_bo_va_mapping *iter_node;
139 
140 	while (*iter) {
141 		parent = *iter;
142 		iter_node = rb_entry(*iter, struct amdgpu_bo_va_mapping, rb);
143 
144 		if (node->start < iter_node->start)
145 			iter = &(*iter)->rb_left;
146 		else
147 			iter = &(*iter)->rb_right;
148 	}
149 
150 	rb_link_node(&node->rb, parent, iter);
151 	rb_insert_color_cached(&node->rb, root, false);
152 }
153 #endif
154 
155 #undef START
156 #undef LAST
157 
158 /**
159  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
160  */
161 struct amdgpu_prt_cb {
162 
163 	/**
164 	 * @adev: amdgpu device
165 	 */
166 	struct amdgpu_device *adev;
167 
168 	/**
169 	 * @cb: callback
170 	 */
171 	struct dma_fence_cb cb;
172 };
173 
174 /**
175  * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence
176  */
177 struct amdgpu_vm_tlb_seq_struct {
178 	/**
179 	 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on
180 	 */
181 	struct amdgpu_vm *vm;
182 
183 	/**
184 	 * @cb: callback
185 	 */
186 	struct dma_fence_cb cb;
187 };
188 
189 /**
190  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
191  *
192  * @adev: amdgpu_device pointer
193  * @vm: amdgpu_vm pointer
194  * @pasid: the pasid the VM is using on this GPU
195  *
196  * Set the pasid this VM is using on this GPU, can also be used to remove the
197  * pasid by passing in zero.
198  *
199  */
200 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
201 			u32 pasid)
202 {
203 	int r;
204 
205 	if (vm->pasid == pasid)
206 		return 0;
207 
208 	if (vm->pasid) {
209 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
210 		if (r < 0)
211 			return r;
212 
213 		vm->pasid = 0;
214 	}
215 
216 	if (pasid) {
217 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
218 					GFP_KERNEL));
219 		if (r < 0)
220 			return r;
221 
222 		vm->pasid = pasid;
223 	}
224 
225 
226 	return 0;
227 }
228 
229 /**
230  * amdgpu_vm_bo_evicted - vm_bo is evicted
231  *
232  * @vm_bo: vm_bo which is evicted
233  *
234  * State for PDs/PTs and per VM BOs which are not at the location they should
235  * be.
236  */
237 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
238 {
239 	struct amdgpu_vm *vm = vm_bo->vm;
240 	struct amdgpu_bo *bo = vm_bo->bo;
241 
242 	vm_bo->moved = true;
243 	spin_lock(&vm_bo->vm->status_lock);
244 	if (bo->tbo.type == ttm_bo_type_kernel)
245 		list_move(&vm_bo->vm_status, &vm->evicted);
246 	else
247 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
248 	spin_unlock(&vm_bo->vm->status_lock);
249 }
250 /**
251  * amdgpu_vm_bo_moved - vm_bo is moved
252  *
253  * @vm_bo: vm_bo which is moved
254  *
255  * State for per VM BOs which are moved, but that change is not yet reflected
256  * in the page tables.
257  */
258 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
259 {
260 	spin_lock(&vm_bo->vm->status_lock);
261 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
262 	spin_unlock(&vm_bo->vm->status_lock);
263 }
264 
265 /**
266  * amdgpu_vm_bo_idle - vm_bo is idle
267  *
268  * @vm_bo: vm_bo which is now idle
269  *
270  * State for PDs/PTs and per VM BOs which have gone through the state machine
271  * and are now idle.
272  */
273 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
274 {
275 	spin_lock(&vm_bo->vm->status_lock);
276 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
277 	spin_unlock(&vm_bo->vm->status_lock);
278 	vm_bo->moved = false;
279 }
280 
281 /**
282  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
283  *
284  * @vm_bo: vm_bo which is now invalidated
285  *
286  * State for normal BOs which are invalidated and that change not yet reflected
287  * in the PTs.
288  */
289 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
290 {
291 	spin_lock(&vm_bo->vm->status_lock);
292 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
293 	spin_unlock(&vm_bo->vm->status_lock);
294 }
295 
296 /**
297  * amdgpu_vm_bo_relocated - vm_bo is reloacted
298  *
299  * @vm_bo: vm_bo which is relocated
300  *
301  * State for PDs/PTs which needs to update their parent PD.
302  * For the root PD, just move to idle state.
303  */
304 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
305 {
306 	if (vm_bo->bo->parent) {
307 		spin_lock(&vm_bo->vm->status_lock);
308 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
309 		spin_unlock(&vm_bo->vm->status_lock);
310 	} else {
311 		amdgpu_vm_bo_idle(vm_bo);
312 	}
313 }
314 
315 /**
316  * amdgpu_vm_bo_done - vm_bo is done
317  *
318  * @vm_bo: vm_bo which is now done
319  *
320  * State for normal BOs which are invalidated and that change has been updated
321  * in the PTs.
322  */
323 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
324 {
325 	spin_lock(&vm_bo->vm->status_lock);
326 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
327 	spin_unlock(&vm_bo->vm->status_lock);
328 }
329 
330 /**
331  * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine
332  * @vm: the VM which state machine to reset
333  *
334  * Move all vm_bo object in the VM into a state where they will be updated
335  * again during validation.
336  */
337 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm)
338 {
339 	struct amdgpu_vm_bo_base *vm_bo, *tmp;
340 
341 	spin_lock(&vm->status_lock);
342 	list_splice_init(&vm->done, &vm->invalidated);
343 	list_for_each_entry(vm_bo, &vm->invalidated, vm_status)
344 		vm_bo->moved = true;
345 	list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) {
346 		struct amdgpu_bo *bo = vm_bo->bo;
347 
348 		vm_bo->moved = true;
349 		if (!bo || bo->tbo.type != ttm_bo_type_kernel)
350 			list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
351 		else if (bo->parent)
352 			list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
353 	}
354 	spin_unlock(&vm->status_lock);
355 }
356 
357 /**
358  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
359  *
360  * @base: base structure for tracking BO usage in a VM
361  * @vm: vm to which bo is to be added
362  * @bo: amdgpu buffer object
363  *
364  * Initialize a bo_va_base structure and add it to the appropriate lists
365  *
366  */
367 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
368 			    struct amdgpu_vm *vm, struct amdgpu_bo *bo)
369 {
370 	base->vm = vm;
371 	base->bo = bo;
372 	base->next = NULL;
373 	INIT_LIST_HEAD(&base->vm_status);
374 
375 	if (!bo)
376 		return;
377 	base->next = bo->vm_bo;
378 	bo->vm_bo = base;
379 
380 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
381 		return;
382 
383 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
384 
385 	ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move);
386 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
387 		amdgpu_vm_bo_relocated(base);
388 	else
389 		amdgpu_vm_bo_idle(base);
390 
391 	if (bo->preferred_domains &
392 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
393 		return;
394 
395 	/*
396 	 * we checked all the prerequisites, but it looks like this per vm bo
397 	 * is currently evicted. add the bo to the evicted list to make sure it
398 	 * is validated on next vm use to avoid fault.
399 	 * */
400 	amdgpu_vm_bo_evicted(base);
401 }
402 
403 /**
404  * amdgpu_vm_lock_pd - lock PD in drm_exec
405  *
406  * @vm: vm providing the BOs
407  * @exec: drm execution context
408  * @num_fences: number of extra fences to reserve
409  *
410  * Lock the VM root PD in the DRM execution context.
411  */
412 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec,
413 		      unsigned int num_fences)
414 {
415 	/* We need at least two fences for the VM PD/PT updates */
416 	return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base,
417 				    2 + num_fences);
418 }
419 
420 /**
421  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
422  *
423  * @adev: amdgpu device pointer
424  * @vm: vm providing the BOs
425  *
426  * Move all BOs to the end of LRU and remember their positions to put them
427  * together.
428  */
429 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
430 				struct amdgpu_vm *vm)
431 {
432 	spin_lock(&adev->mman.bdev.lru_lock);
433 	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
434 	spin_unlock(&adev->mman.bdev.lru_lock);
435 }
436 
437 /* Create scheduler entities for page table updates */
438 static int amdgpu_vm_init_entities(struct amdgpu_device *adev,
439 				   struct amdgpu_vm *vm)
440 {
441 	int r;
442 
443 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
444 				  adev->vm_manager.vm_pte_scheds,
445 				  adev->vm_manager.vm_pte_num_scheds, NULL);
446 	if (r)
447 		goto error;
448 
449 	return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
450 				     adev->vm_manager.vm_pte_scheds,
451 				     adev->vm_manager.vm_pte_num_scheds, NULL);
452 
453 error:
454 	drm_sched_entity_destroy(&vm->immediate);
455 	return r;
456 }
457 
458 /* Destroy the entities for page table updates again */
459 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm)
460 {
461 	drm_sched_entity_destroy(&vm->immediate);
462 	drm_sched_entity_destroy(&vm->delayed);
463 }
464 
465 /**
466  * amdgpu_vm_generation - return the page table re-generation counter
467  * @adev: the amdgpu_device
468  * @vm: optional VM to check, might be NULL
469  *
470  * Returns a page table re-generation token to allow checking if submissions
471  * are still valid to use this VM. The VM parameter might be NULL in which case
472  * just the VRAM lost counter will be used.
473  */
474 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm)
475 {
476 	uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32;
477 
478 	if (!vm)
479 		return result;
480 
481 	result += lower_32_bits(vm->generation);
482 	/* Add one if the page tables will be re-generated on next CS */
483 	if (drm_sched_entity_error(&vm->delayed))
484 		++result;
485 
486 	return result;
487 }
488 
489 /**
490  * amdgpu_vm_validate_pt_bos - validate the page table BOs
491  *
492  * @adev: amdgpu device pointer
493  * @vm: vm providing the BOs
494  * @validate: callback to do the validation
495  * @param: parameter for the validation callback
496  *
497  * Validate the page table BOs on command submission if neccessary.
498  *
499  * Returns:
500  * Validation result.
501  */
502 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
503 			      int (*validate)(void *p, struct amdgpu_bo *bo),
504 			      void *param)
505 {
506 	uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm);
507 	struct amdgpu_vm_bo_base *bo_base;
508 	struct amdgpu_bo *shadow;
509 	struct amdgpu_bo *bo;
510 	int r;
511 
512 	if (vm->generation != new_vm_generation) {
513 		vm->generation = new_vm_generation;
514 		amdgpu_vm_bo_reset_state_machine(vm);
515 		amdgpu_vm_fini_entities(vm);
516 		r = amdgpu_vm_init_entities(adev, vm);
517 		if (r)
518 			return r;
519 	}
520 
521 	spin_lock(&vm->status_lock);
522 	while (!list_empty(&vm->evicted)) {
523 		bo_base = list_first_entry(&vm->evicted,
524 					   struct amdgpu_vm_bo_base,
525 					   vm_status);
526 		spin_unlock(&vm->status_lock);
527 
528 		bo = bo_base->bo;
529 		shadow = amdgpu_bo_shadowed(bo);
530 
531 		r = validate(param, bo);
532 		if (r)
533 			return r;
534 		if (shadow) {
535 			r = validate(param, shadow);
536 			if (r)
537 				return r;
538 		}
539 
540 		if (bo->tbo.type != ttm_bo_type_kernel) {
541 			amdgpu_vm_bo_moved(bo_base);
542 		} else {
543 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
544 			amdgpu_vm_bo_relocated(bo_base);
545 		}
546 		spin_lock(&vm->status_lock);
547 	}
548 	spin_unlock(&vm->status_lock);
549 
550 	amdgpu_vm_eviction_lock(vm);
551 	vm->evicting = false;
552 	amdgpu_vm_eviction_unlock(vm);
553 
554 	return 0;
555 }
556 
557 /**
558  * amdgpu_vm_ready - check VM is ready for updates
559  *
560  * @vm: VM to check
561  *
562  * Check if all VM PDs/PTs are ready for updates
563  *
564  * Returns:
565  * True if VM is not evicting.
566  */
567 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
568 {
569 	bool empty;
570 	bool ret;
571 
572 	amdgpu_vm_eviction_lock(vm);
573 	ret = !vm->evicting;
574 	amdgpu_vm_eviction_unlock(vm);
575 
576 	spin_lock(&vm->status_lock);
577 	empty = list_empty(&vm->evicted);
578 	spin_unlock(&vm->status_lock);
579 
580 	return ret && empty;
581 }
582 
583 /**
584  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
585  *
586  * @adev: amdgpu_device pointer
587  */
588 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
589 {
590 	const struct amdgpu_ip_block *ip_block;
591 	bool has_compute_vm_bug;
592 	struct amdgpu_ring *ring;
593 	int i;
594 
595 	has_compute_vm_bug = false;
596 
597 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
598 	if (ip_block) {
599 		/* Compute has a VM bug for GFX version < 7.
600 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
601 		if (ip_block->version->major <= 7)
602 			has_compute_vm_bug = true;
603 		else if (ip_block->version->major == 8)
604 			if (adev->gfx.mec_fw_version < 673)
605 				has_compute_vm_bug = true;
606 	}
607 
608 	for (i = 0; i < adev->num_rings; i++) {
609 		ring = adev->rings[i];
610 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
611 			/* only compute rings */
612 			ring->has_compute_vm_bug = has_compute_vm_bug;
613 		else
614 			ring->has_compute_vm_bug = false;
615 	}
616 }
617 
618 /**
619  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
620  *
621  * @ring: ring on which the job will be submitted
622  * @job: job to submit
623  *
624  * Returns:
625  * True if sync is needed.
626  */
627 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
628 				  struct amdgpu_job *job)
629 {
630 	struct amdgpu_device *adev = ring->adev;
631 	unsigned vmhub = ring->vm_hub;
632 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
633 
634 	if (job->vmid == 0)
635 		return false;
636 
637 	if (job->vm_needs_flush || ring->has_compute_vm_bug)
638 		return true;
639 
640 	if (ring->funcs->emit_gds_switch && job->gds_switch_needed)
641 		return true;
642 
643 	if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid]))
644 		return true;
645 
646 	return false;
647 }
648 
649 /**
650  * amdgpu_vm_flush - hardware flush the vm
651  *
652  * @ring: ring to use for flush
653  * @job:  related job
654  * @need_pipe_sync: is pipe sync needed
655  *
656  * Emit a VM flush when it is necessary.
657  *
658  * Returns:
659  * 0 on success, errno otherwise.
660  */
661 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
662 		    bool need_pipe_sync)
663 {
664 	struct amdgpu_device *adev = ring->adev;
665 	unsigned vmhub = ring->vm_hub;
666 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
667 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
668 	bool spm_update_needed = job->spm_update_needed;
669 	bool gds_switch_needed = ring->funcs->emit_gds_switch &&
670 		job->gds_switch_needed;
671 	bool vm_flush_needed = job->vm_needs_flush;
672 	struct dma_fence *fence = NULL;
673 	bool pasid_mapping_needed = false;
674 	unsigned patch_offset = 0;
675 	int r;
676 
677 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
678 		gds_switch_needed = true;
679 		vm_flush_needed = true;
680 		pasid_mapping_needed = true;
681 		spm_update_needed = true;
682 	}
683 
684 	mutex_lock(&id_mgr->lock);
685 	if (id->pasid != job->pasid || !id->pasid_mapping ||
686 	    !dma_fence_is_signaled(id->pasid_mapping))
687 		pasid_mapping_needed = true;
688 	mutex_unlock(&id_mgr->lock);
689 
690 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
691 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
692 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
693 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
694 		ring->funcs->emit_wreg;
695 
696 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
697 		return 0;
698 
699 	amdgpu_ring_ib_begin(ring);
700 	if (ring->funcs->init_cond_exec)
701 		patch_offset = amdgpu_ring_init_cond_exec(ring);
702 
703 	if (need_pipe_sync)
704 		amdgpu_ring_emit_pipeline_sync(ring);
705 
706 	if (vm_flush_needed) {
707 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
708 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
709 	}
710 
711 	if (pasid_mapping_needed)
712 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
713 
714 	if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid)
715 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
716 
717 	if (!ring->is_mes_queue && ring->funcs->emit_gds_switch &&
718 	    gds_switch_needed) {
719 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
720 					    job->gds_size, job->gws_base,
721 					    job->gws_size, job->oa_base,
722 					    job->oa_size);
723 	}
724 
725 	if (vm_flush_needed || pasid_mapping_needed) {
726 		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
727 		if (r)
728 			return r;
729 	}
730 
731 	if (vm_flush_needed) {
732 		mutex_lock(&id_mgr->lock);
733 		dma_fence_put(id->last_flush);
734 		id->last_flush = dma_fence_get(fence);
735 		id->current_gpu_reset_count =
736 			atomic_read(&adev->gpu_reset_counter);
737 		mutex_unlock(&id_mgr->lock);
738 	}
739 
740 	if (pasid_mapping_needed) {
741 		mutex_lock(&id_mgr->lock);
742 		id->pasid = job->pasid;
743 		dma_fence_put(id->pasid_mapping);
744 		id->pasid_mapping = dma_fence_get(fence);
745 		mutex_unlock(&id_mgr->lock);
746 	}
747 	dma_fence_put(fence);
748 
749 	if (ring->funcs->patch_cond_exec)
750 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
751 
752 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
753 	if (ring->funcs->emit_switch_buffer) {
754 		amdgpu_ring_emit_switch_buffer(ring);
755 		amdgpu_ring_emit_switch_buffer(ring);
756 	}
757 	amdgpu_ring_ib_end(ring);
758 	return 0;
759 }
760 
761 /**
762  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
763  *
764  * @vm: requested vm
765  * @bo: requested buffer object
766  *
767  * Find @bo inside the requested vm.
768  * Search inside the @bos vm list for the requested vm
769  * Returns the found bo_va or NULL if none is found
770  *
771  * Object has to be reserved!
772  *
773  * Returns:
774  * Found bo_va or NULL.
775  */
776 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
777 				       struct amdgpu_bo *bo)
778 {
779 	struct amdgpu_vm_bo_base *base;
780 
781 	for (base = bo->vm_bo; base; base = base->next) {
782 		if (base->vm != vm)
783 			continue;
784 
785 		return container_of(base, struct amdgpu_bo_va, base);
786 	}
787 	return NULL;
788 }
789 
790 /**
791  * amdgpu_vm_map_gart - Resolve gart mapping of addr
792  *
793  * @pages_addr: optional DMA address to use for lookup
794  * @addr: the unmapped addr
795  *
796  * Look up the physical address of the page that the pte resolves
797  * to.
798  *
799  * Returns:
800  * The pointer for the page table entry.
801  */
802 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
803 {
804 	uint64_t result;
805 
806 	/* page table offset */
807 	result = pages_addr[addr >> PAGE_SHIFT];
808 
809 	/* in case cpu page size != gpu page size*/
810 	result |= addr & (~LINUX_PAGE_MASK);
811 
812 	result &= 0xFFFFFFFFFFFFF000ULL;
813 
814 	return result;
815 }
816 
817 /**
818  * amdgpu_vm_update_pdes - make sure that all directories are valid
819  *
820  * @adev: amdgpu_device pointer
821  * @vm: requested vm
822  * @immediate: submit immediately to the paging queue
823  *
824  * Makes sure all directories are up to date.
825  *
826  * Returns:
827  * 0 for success, error for failure.
828  */
829 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
830 			  struct amdgpu_vm *vm, bool immediate)
831 {
832 	struct amdgpu_vm_update_params params;
833 	struct amdgpu_vm_bo_base *entry;
834 	bool flush_tlb_needed = false;
835 	DRM_LIST_HEAD(relocated);
836 	int r, idx;
837 
838 	spin_lock(&vm->status_lock);
839 	list_splice_init(&vm->relocated, &relocated);
840 	spin_unlock(&vm->status_lock);
841 
842 	if (list_empty(&relocated))
843 		return 0;
844 
845 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
846 		return -ENODEV;
847 
848 	memset(&params, 0, sizeof(params));
849 	params.adev = adev;
850 	params.vm = vm;
851 	params.immediate = immediate;
852 
853 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
854 	if (r)
855 		goto error;
856 
857 	list_for_each_entry(entry, &relocated, vm_status) {
858 		/* vm_flush_needed after updating moved PDEs */
859 		flush_tlb_needed |= entry->moved;
860 
861 		r = amdgpu_vm_pde_update(&params, entry);
862 		if (r)
863 			goto error;
864 	}
865 
866 	r = vm->update_funcs->commit(&params, &vm->last_update);
867 	if (r)
868 		goto error;
869 
870 	if (flush_tlb_needed)
871 		atomic64_inc(&vm->tlb_seq);
872 
873 	while (!list_empty(&relocated)) {
874 		entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base,
875 					 vm_status);
876 		amdgpu_vm_bo_idle(entry);
877 	}
878 
879 error:
880 	drm_dev_exit(idx);
881 	return r;
882 }
883 
884 /**
885  * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence
886  * @fence: unused
887  * @cb: the callback structure
888  *
889  * Increments the tlb sequence to make sure that future CS execute a VM flush.
890  */
891 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence,
892 				 struct dma_fence_cb *cb)
893 {
894 	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
895 
896 	tlb_cb = container_of(cb, typeof(*tlb_cb), cb);
897 	atomic64_inc(&tlb_cb->vm->tlb_seq);
898 	kfree(tlb_cb);
899 }
900 
901 /**
902  * amdgpu_vm_update_range - update a range in the vm page table
903  *
904  * @adev: amdgpu_device pointer to use for commands
905  * @vm: the VM to update the range
906  * @immediate: immediate submission in a page fault
907  * @unlocked: unlocked invalidation during MM callback
908  * @flush_tlb: trigger tlb invalidation after update completed
909  * @resv: fences we need to sync to
910  * @start: start of mapped range
911  * @last: last mapped entry
912  * @flags: flags for the entries
913  * @offset: offset into nodes and pages_addr
914  * @vram_base: base for vram mappings
915  * @res: ttm_resource to map
916  * @pages_addr: DMA addresses to use for mapping
917  * @fence: optional resulting fence
918  *
919  * Fill in the page table entries between @start and @last.
920  *
921  * Returns:
922  * 0 for success, negative erro code for failure.
923  */
924 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm,
925 			   bool immediate, bool unlocked, bool flush_tlb,
926 			   struct dma_resv *resv, uint64_t start, uint64_t last,
927 			   uint64_t flags, uint64_t offset, uint64_t vram_base,
928 			   struct ttm_resource *res, dma_addr_t *pages_addr,
929 			   struct dma_fence **fence)
930 {
931 	struct amdgpu_vm_update_params params;
932 	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
933 	struct amdgpu_res_cursor cursor;
934 	enum amdgpu_sync_mode sync_mode;
935 	int r, idx;
936 
937 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
938 		return -ENODEV;
939 
940 	tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL);
941 	if (!tlb_cb) {
942 		r = -ENOMEM;
943 		goto error_unlock;
944 	}
945 
946 	/* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache,
947 	 * heavy-weight flush TLB unconditionally.
948 	 */
949 	flush_tlb |= adev->gmc.xgmi.num_physical_nodes &&
950 		     adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 0);
951 
952 	/*
953 	 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB
954 	 */
955 	flush_tlb |= adev->ip_versions[GC_HWIP][0] < IP_VERSION(9, 0, 0);
956 
957 	memset(&params, 0, sizeof(params));
958 	params.adev = adev;
959 	params.vm = vm;
960 	params.immediate = immediate;
961 	params.pages_addr = pages_addr;
962 	params.unlocked = unlocked;
963 
964 	/* Implicitly sync to command submissions in the same VM before
965 	 * unmapping. Sync to moving fences before mapping.
966 	 */
967 	if (!(flags & AMDGPU_PTE_VALID))
968 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
969 	else
970 		sync_mode = AMDGPU_SYNC_EXPLICIT;
971 
972 	amdgpu_vm_eviction_lock(vm);
973 	if (vm->evicting) {
974 		r = -EBUSY;
975 		goto error_free;
976 	}
977 
978 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
979 		struct dma_fence *tmp = dma_fence_get_stub();
980 
981 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
982 		swap(vm->last_unlocked, tmp);
983 		dma_fence_put(tmp);
984 	}
985 
986 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
987 	if (r)
988 		goto error_free;
989 
990 	amdgpu_res_first(pages_addr ? NULL : res, offset,
991 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
992 	while (cursor.remaining) {
993 		uint64_t tmp, num_entries, addr;
994 
995 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
996 		if (pages_addr) {
997 			bool contiguous = true;
998 
999 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1000 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1001 				uint64_t count;
1002 
1003 				contiguous = pages_addr[pfn + 1] ==
1004 					pages_addr[pfn] + PAGE_SIZE;
1005 
1006 				tmp = num_entries /
1007 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1008 				for (count = 2; count < tmp; ++count) {
1009 					uint64_t idx = pfn + count;
1010 
1011 					if (contiguous != (pages_addr[idx] ==
1012 					    pages_addr[idx - 1] + PAGE_SIZE))
1013 						break;
1014 				}
1015 				if (!contiguous)
1016 					count--;
1017 				num_entries = count *
1018 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1019 			}
1020 
1021 			if (!contiguous) {
1022 				addr = cursor.start;
1023 				params.pages_addr = pages_addr;
1024 			} else {
1025 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1026 				params.pages_addr = NULL;
1027 			}
1028 
1029 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1030 			addr = vram_base + cursor.start;
1031 		} else {
1032 			addr = 0;
1033 		}
1034 
1035 		tmp = start + num_entries;
1036 		r = amdgpu_vm_ptes_update(&params, start, tmp, addr, flags);
1037 		if (r)
1038 			goto error_free;
1039 
1040 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1041 		start = tmp;
1042 	}
1043 
1044 	r = vm->update_funcs->commit(&params, fence);
1045 
1046 	if (flush_tlb || params.table_freed) {
1047 		tlb_cb->vm = vm;
1048 		if (fence && *fence &&
1049 		    !dma_fence_add_callback(*fence, &tlb_cb->cb,
1050 					   amdgpu_vm_tlb_seq_cb)) {
1051 			dma_fence_put(vm->last_tlb_flush);
1052 			vm->last_tlb_flush = dma_fence_get(*fence);
1053 		} else {
1054 			amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb);
1055 		}
1056 		tlb_cb = NULL;
1057 	}
1058 
1059 error_free:
1060 	kfree(tlb_cb);
1061 
1062 error_unlock:
1063 	amdgpu_vm_eviction_unlock(vm);
1064 	drm_dev_exit(idx);
1065 	return r;
1066 }
1067 
1068 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va,
1069 				    struct amdgpu_mem_stats *stats)
1070 {
1071 	struct amdgpu_vm *vm = bo_va->base.vm;
1072 	struct amdgpu_bo *bo = bo_va->base.bo;
1073 
1074 	if (!bo)
1075 		return;
1076 
1077 	/*
1078 	 * For now ignore BOs which are currently locked and potentially
1079 	 * changing their location.
1080 	 */
1081 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv &&
1082 	    !dma_resv_trylock(bo->tbo.base.resv))
1083 		return;
1084 
1085 	amdgpu_bo_get_memory(bo, stats);
1086 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
1087 	    dma_resv_unlock(bo->tbo.base.resv);
1088 }
1089 
1090 void amdgpu_vm_get_memory(struct amdgpu_vm *vm,
1091 			  struct amdgpu_mem_stats *stats)
1092 {
1093 	struct amdgpu_bo_va *bo_va, *tmp;
1094 
1095 	spin_lock(&vm->status_lock);
1096 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status)
1097 		amdgpu_vm_bo_get_memory(bo_va, stats);
1098 
1099 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status)
1100 		amdgpu_vm_bo_get_memory(bo_va, stats);
1101 
1102 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status)
1103 		amdgpu_vm_bo_get_memory(bo_va, stats);
1104 
1105 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status)
1106 		amdgpu_vm_bo_get_memory(bo_va, stats);
1107 
1108 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status)
1109 		amdgpu_vm_bo_get_memory(bo_va, stats);
1110 
1111 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status)
1112 		amdgpu_vm_bo_get_memory(bo_va, stats);
1113 	spin_unlock(&vm->status_lock);
1114 }
1115 
1116 /**
1117  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1118  *
1119  * @adev: amdgpu_device pointer
1120  * @bo_va: requested BO and VM object
1121  * @clear: if true clear the entries
1122  *
1123  * Fill in the page table entries for @bo_va.
1124  *
1125  * Returns:
1126  * 0 for success, -EINVAL for failure.
1127  */
1128 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1129 			bool clear)
1130 {
1131 	struct amdgpu_bo *bo = bo_va->base.bo;
1132 	struct amdgpu_vm *vm = bo_va->base.vm;
1133 	struct amdgpu_bo_va_mapping *mapping;
1134 	dma_addr_t *pages_addr = NULL;
1135 	struct ttm_resource *mem;
1136 	struct dma_fence **last_update;
1137 	bool flush_tlb = clear;
1138 	struct dma_resv *resv;
1139 	uint64_t vram_base;
1140 	uint64_t flags;
1141 	int r;
1142 
1143 	if (clear || !bo) {
1144 		mem = NULL;
1145 		resv = vm->root.bo->tbo.base.resv;
1146 	} else {
1147 		struct drm_gem_object *obj = &bo->tbo.base;
1148 
1149 		resv = bo->tbo.base.resv;
1150 #ifdef notyet
1151 		if (obj->import_attach && bo_va->is_xgmi) {
1152 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1153 			struct drm_gem_object *gobj = dma_buf->priv;
1154 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1155 
1156 			if (abo->tbo.resource &&
1157 			    abo->tbo.resource->mem_type == TTM_PL_VRAM)
1158 				bo = gem_to_amdgpu_bo(gobj);
1159 		}
1160 #endif
1161 		mem = bo->tbo.resource;
1162 		if (mem && (mem->mem_type == TTM_PL_TT ||
1163 			    mem->mem_type == AMDGPU_PL_PREEMPT))
1164 			pages_addr = bo->tbo.ttm->dma_address;
1165 	}
1166 
1167 	if (bo) {
1168 		struct amdgpu_device *bo_adev;
1169 
1170 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1171 
1172 		if (amdgpu_bo_encrypted(bo))
1173 			flags |= AMDGPU_PTE_TMZ;
1174 
1175 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1176 		vram_base = bo_adev->vm_manager.vram_base_offset;
1177 	} else {
1178 		flags = 0x0;
1179 		vram_base = 0;
1180 	}
1181 
1182 	if (clear || (bo && bo->tbo.base.resv ==
1183 		      vm->root.bo->tbo.base.resv))
1184 		last_update = &vm->last_update;
1185 	else
1186 		last_update = &bo_va->last_pt_update;
1187 
1188 	if (!clear && bo_va->base.moved) {
1189 		flush_tlb = true;
1190 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1191 
1192 	} else if (bo_va->cleared != clear) {
1193 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1194 	}
1195 
1196 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1197 		uint64_t update_flags = flags;
1198 
1199 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1200 		 * but in case of something, we filter the flags in first place
1201 		 */
1202 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1203 			update_flags &= ~AMDGPU_PTE_READABLE;
1204 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1205 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1206 
1207 		/* Apply ASIC specific mapping flags */
1208 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1209 
1210 		trace_amdgpu_vm_bo_update(mapping);
1211 
1212 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb,
1213 					   resv, mapping->start, mapping->last,
1214 					   update_flags, mapping->offset,
1215 					   vram_base, mem, pages_addr,
1216 					   last_update);
1217 		if (r)
1218 			return r;
1219 	}
1220 
1221 	/* If the BO is not in its preferred location add it back to
1222 	 * the evicted list so that it gets validated again on the
1223 	 * next command submission.
1224 	 */
1225 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1226 		uint32_t mem_type = bo->tbo.resource->mem_type;
1227 
1228 		if (!(bo->preferred_domains &
1229 		      amdgpu_mem_type_to_domain(mem_type)))
1230 			amdgpu_vm_bo_evicted(&bo_va->base);
1231 		else
1232 			amdgpu_vm_bo_idle(&bo_va->base);
1233 	} else {
1234 		amdgpu_vm_bo_done(&bo_va->base);
1235 	}
1236 
1237 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1238 	bo_va->cleared = clear;
1239 	bo_va->base.moved = false;
1240 
1241 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1242 		list_for_each_entry(mapping, &bo_va->valids, list)
1243 			trace_amdgpu_vm_bo_mapping(mapping);
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 /**
1250  * amdgpu_vm_update_prt_state - update the global PRT state
1251  *
1252  * @adev: amdgpu_device pointer
1253  */
1254 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1255 {
1256 	unsigned long flags;
1257 	bool enable;
1258 
1259 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1260 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1261 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1262 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1263 }
1264 
1265 /**
1266  * amdgpu_vm_prt_get - add a PRT user
1267  *
1268  * @adev: amdgpu_device pointer
1269  */
1270 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1271 {
1272 	if (!adev->gmc.gmc_funcs->set_prt)
1273 		return;
1274 
1275 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1276 		amdgpu_vm_update_prt_state(adev);
1277 }
1278 
1279 /**
1280  * amdgpu_vm_prt_put - drop a PRT user
1281  *
1282  * @adev: amdgpu_device pointer
1283  */
1284 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1285 {
1286 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1287 		amdgpu_vm_update_prt_state(adev);
1288 }
1289 
1290 /**
1291  * amdgpu_vm_prt_cb - callback for updating the PRT status
1292  *
1293  * @fence: fence for the callback
1294  * @_cb: the callback function
1295  */
1296 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1297 {
1298 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1299 
1300 	amdgpu_vm_prt_put(cb->adev);
1301 	kfree(cb);
1302 }
1303 
1304 /**
1305  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1306  *
1307  * @adev: amdgpu_device pointer
1308  * @fence: fence for the callback
1309  */
1310 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1311 				 struct dma_fence *fence)
1312 {
1313 	struct amdgpu_prt_cb *cb;
1314 
1315 	if (!adev->gmc.gmc_funcs->set_prt)
1316 		return;
1317 
1318 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1319 	if (!cb) {
1320 		/* Last resort when we are OOM */
1321 		if (fence)
1322 			dma_fence_wait(fence, false);
1323 
1324 		amdgpu_vm_prt_put(adev);
1325 	} else {
1326 		cb->adev = adev;
1327 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1328 						     amdgpu_vm_prt_cb))
1329 			amdgpu_vm_prt_cb(fence, &cb->cb);
1330 	}
1331 }
1332 
1333 /**
1334  * amdgpu_vm_free_mapping - free a mapping
1335  *
1336  * @adev: amdgpu_device pointer
1337  * @vm: requested vm
1338  * @mapping: mapping to be freed
1339  * @fence: fence of the unmap operation
1340  *
1341  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1342  */
1343 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1344 				   struct amdgpu_vm *vm,
1345 				   struct amdgpu_bo_va_mapping *mapping,
1346 				   struct dma_fence *fence)
1347 {
1348 	if (mapping->flags & AMDGPU_PTE_PRT)
1349 		amdgpu_vm_add_prt_cb(adev, fence);
1350 	kfree(mapping);
1351 }
1352 
1353 /**
1354  * amdgpu_vm_prt_fini - finish all prt mappings
1355  *
1356  * @adev: amdgpu_device pointer
1357  * @vm: requested vm
1358  *
1359  * Register a cleanup callback to disable PRT support after VM dies.
1360  */
1361 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1362 {
1363 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1364 	struct dma_resv_iter cursor;
1365 	struct dma_fence *fence;
1366 
1367 	dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
1368 		/* Add a callback for each fence in the reservation object */
1369 		amdgpu_vm_prt_get(adev);
1370 		amdgpu_vm_add_prt_cb(adev, fence);
1371 	}
1372 }
1373 
1374 /**
1375  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1376  *
1377  * @adev: amdgpu_device pointer
1378  * @vm: requested vm
1379  * @fence: optional resulting fence (unchanged if no work needed to be done
1380  * or if an error occurred)
1381  *
1382  * Make sure all freed BOs are cleared in the PT.
1383  * PTs have to be reserved and mutex must be locked!
1384  *
1385  * Returns:
1386  * 0 for success.
1387  *
1388  */
1389 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1390 			  struct amdgpu_vm *vm,
1391 			  struct dma_fence **fence)
1392 {
1393 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1394 	struct amdgpu_bo_va_mapping *mapping;
1395 	uint64_t init_pte_value = 0;
1396 	struct dma_fence *f = NULL;
1397 	int r;
1398 
1399 	while (!list_empty(&vm->freed)) {
1400 		mapping = list_first_entry(&vm->freed,
1401 			struct amdgpu_bo_va_mapping, list);
1402 		list_del(&mapping->list);
1403 
1404 		if (vm->pte_support_ats &&
1405 		    mapping->start < AMDGPU_GMC_HOLE_START)
1406 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1407 
1408 		r = amdgpu_vm_update_range(adev, vm, false, false, true, resv,
1409 					   mapping->start, mapping->last,
1410 					   init_pte_value, 0, 0, NULL, NULL,
1411 					   &f);
1412 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1413 		if (r) {
1414 			dma_fence_put(f);
1415 			return r;
1416 		}
1417 	}
1418 
1419 	if (fence && f) {
1420 		dma_fence_put(*fence);
1421 		*fence = f;
1422 	} else {
1423 		dma_fence_put(f);
1424 	}
1425 
1426 	return 0;
1427 
1428 }
1429 
1430 /**
1431  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1432  *
1433  * @adev: amdgpu_device pointer
1434  * @vm: requested vm
1435  *
1436  * Make sure all BOs which are moved are updated in the PTs.
1437  *
1438  * Returns:
1439  * 0 for success.
1440  *
1441  * PTs have to be reserved!
1442  */
1443 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1444 			   struct amdgpu_vm *vm)
1445 {
1446 	struct amdgpu_bo_va *bo_va;
1447 	struct dma_resv *resv;
1448 	bool clear;
1449 	int r;
1450 
1451 	spin_lock(&vm->status_lock);
1452 	while (!list_empty(&vm->moved)) {
1453 		bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va,
1454 					 base.vm_status);
1455 		spin_unlock(&vm->status_lock);
1456 
1457 		/* Per VM BOs never need to bo cleared in the page tables */
1458 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1459 		if (r)
1460 			return r;
1461 		spin_lock(&vm->status_lock);
1462 	}
1463 
1464 	while (!list_empty(&vm->invalidated)) {
1465 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1466 					 base.vm_status);
1467 		resv = bo_va->base.bo->tbo.base.resv;
1468 		spin_unlock(&vm->status_lock);
1469 
1470 		/* Try to reserve the BO to avoid clearing its ptes */
1471 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
1472 			clear = false;
1473 		/* Somebody else is using the BO right now */
1474 		else
1475 			clear = true;
1476 
1477 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1478 		if (r)
1479 			return r;
1480 
1481 		if (!clear)
1482 			dma_resv_unlock(resv);
1483 		spin_lock(&vm->status_lock);
1484 	}
1485 	spin_unlock(&vm->status_lock);
1486 
1487 	return 0;
1488 }
1489 
1490 /**
1491  * amdgpu_vm_bo_add - add a bo to a specific vm
1492  *
1493  * @adev: amdgpu_device pointer
1494  * @vm: requested vm
1495  * @bo: amdgpu buffer object
1496  *
1497  * Add @bo into the requested vm.
1498  * Add @bo to the list of bos associated with the vm
1499  *
1500  * Returns:
1501  * Newly added bo_va or NULL for failure
1502  *
1503  * Object has to be reserved!
1504  */
1505 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1506 				      struct amdgpu_vm *vm,
1507 				      struct amdgpu_bo *bo)
1508 {
1509 	struct amdgpu_bo_va *bo_va;
1510 
1511 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1512 	if (bo_va == NULL) {
1513 		return NULL;
1514 	}
1515 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
1516 
1517 	bo_va->ref_count = 1;
1518 	bo_va->last_pt_update = dma_fence_get_stub();
1519 	INIT_LIST_HEAD(&bo_va->valids);
1520 	INIT_LIST_HEAD(&bo_va->invalids);
1521 
1522 	if (!bo)
1523 		return bo_va;
1524 
1525 	dma_resv_assert_held(bo->tbo.base.resv);
1526 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
1527 		bo_va->is_xgmi = true;
1528 		/* Power up XGMI if it can be potentially used */
1529 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
1530 	}
1531 
1532 	return bo_va;
1533 }
1534 
1535 
1536 /**
1537  * amdgpu_vm_bo_insert_map - insert a new mapping
1538  *
1539  * @adev: amdgpu_device pointer
1540  * @bo_va: bo_va to store the address
1541  * @mapping: the mapping to insert
1542  *
1543  * Insert a new mapping into all structures.
1544  */
1545 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1546 				    struct amdgpu_bo_va *bo_va,
1547 				    struct amdgpu_bo_va_mapping *mapping)
1548 {
1549 	struct amdgpu_vm *vm = bo_va->base.vm;
1550 	struct amdgpu_bo *bo = bo_va->base.bo;
1551 
1552 	mapping->bo_va = bo_va;
1553 	list_add(&mapping->list, &bo_va->invalids);
1554 	amdgpu_vm_it_insert(mapping, &vm->va);
1555 
1556 	if (mapping->flags & AMDGPU_PTE_PRT)
1557 		amdgpu_vm_prt_get(adev);
1558 
1559 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1560 	    !bo_va->base.moved) {
1561 		amdgpu_vm_bo_moved(&bo_va->base);
1562 	}
1563 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1564 }
1565 
1566 /* Validate operation parameters to prevent potential abuse */
1567 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev,
1568 					  struct amdgpu_bo *bo,
1569 					  uint64_t saddr,
1570 					  uint64_t offset,
1571 					  uint64_t size)
1572 {
1573 	uint64_t tmp, lpfn;
1574 
1575 	if (saddr & AMDGPU_GPU_PAGE_MASK
1576 	    || offset & AMDGPU_GPU_PAGE_MASK
1577 	    || size & AMDGPU_GPU_PAGE_MASK)
1578 		return -EINVAL;
1579 
1580 	if (check_add_overflow(saddr, size, &tmp)
1581 	    || check_add_overflow(offset, size, &tmp)
1582 	    || size == 0 /* which also leads to end < begin */)
1583 		return -EINVAL;
1584 
1585 	/* make sure object fit at this offset */
1586 	if (bo && offset + size > amdgpu_bo_size(bo))
1587 		return -EINVAL;
1588 
1589 	/* Ensure last pfn not exceed max_pfn */
1590 	lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT;
1591 	if (lpfn >= adev->vm_manager.max_pfn)
1592 		return -EINVAL;
1593 
1594 	return 0;
1595 }
1596 
1597 /**
1598  * amdgpu_vm_bo_map - map bo inside a vm
1599  *
1600  * @adev: amdgpu_device pointer
1601  * @bo_va: bo_va to store the address
1602  * @saddr: where to map the BO
1603  * @offset: requested offset in the BO
1604  * @size: BO size in bytes
1605  * @flags: attributes of pages (read/write/valid/etc.)
1606  *
1607  * Add a mapping of the BO at the specefied addr into the VM.
1608  *
1609  * Returns:
1610  * 0 for success, error for failure.
1611  *
1612  * Object has to be reserved and unreserved outside!
1613  */
1614 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1615 		     struct amdgpu_bo_va *bo_va,
1616 		     uint64_t saddr, uint64_t offset,
1617 		     uint64_t size, uint64_t flags)
1618 {
1619 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1620 	struct amdgpu_bo *bo = bo_va->base.bo;
1621 	struct amdgpu_vm *vm = bo_va->base.vm;
1622 	uint64_t eaddr;
1623 	int r;
1624 
1625 	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
1626 	if (r)
1627 		return r;
1628 
1629 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1630 	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1631 
1632 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1633 	if (tmp) {
1634 		/* bo and tmp overlap, invalid addr */
1635 		dev_err(adev->dev, "bo %p va 0x%010llx-0x%010llx conflict with "
1636 			"0x%010llx-0x%010llx\n", bo, saddr, eaddr,
1637 			tmp->start, tmp->last + 1);
1638 		return -EINVAL;
1639 	}
1640 
1641 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1642 	if (!mapping)
1643 		return -ENOMEM;
1644 
1645 	mapping->start = saddr;
1646 	mapping->last = eaddr;
1647 	mapping->offset = offset;
1648 	mapping->flags = flags;
1649 
1650 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1651 
1652 	return 0;
1653 }
1654 
1655 /**
1656  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1657  *
1658  * @adev: amdgpu_device pointer
1659  * @bo_va: bo_va to store the address
1660  * @saddr: where to map the BO
1661  * @offset: requested offset in the BO
1662  * @size: BO size in bytes
1663  * @flags: attributes of pages (read/write/valid/etc.)
1664  *
1665  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1666  * mappings as we do so.
1667  *
1668  * Returns:
1669  * 0 for success, error for failure.
1670  *
1671  * Object has to be reserved and unreserved outside!
1672  */
1673 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1674 			     struct amdgpu_bo_va *bo_va,
1675 			     uint64_t saddr, uint64_t offset,
1676 			     uint64_t size, uint64_t flags)
1677 {
1678 	struct amdgpu_bo_va_mapping *mapping;
1679 	struct amdgpu_bo *bo = bo_va->base.bo;
1680 	uint64_t eaddr;
1681 	int r;
1682 
1683 	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
1684 	if (r)
1685 		return r;
1686 
1687 	/* Allocate all the needed memory */
1688 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1689 	if (!mapping)
1690 		return -ENOMEM;
1691 
1692 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1693 	if (r) {
1694 		kfree(mapping);
1695 		return r;
1696 	}
1697 
1698 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1699 	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1700 
1701 	mapping->start = saddr;
1702 	mapping->last = eaddr;
1703 	mapping->offset = offset;
1704 	mapping->flags = flags;
1705 
1706 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1707 
1708 	return 0;
1709 }
1710 
1711 /**
1712  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1713  *
1714  * @adev: amdgpu_device pointer
1715  * @bo_va: bo_va to remove the address from
1716  * @saddr: where to the BO is mapped
1717  *
1718  * Remove a mapping of the BO at the specefied addr from the VM.
1719  *
1720  * Returns:
1721  * 0 for success, error for failure.
1722  *
1723  * Object has to be reserved and unreserved outside!
1724  */
1725 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1726 		       struct amdgpu_bo_va *bo_va,
1727 		       uint64_t saddr)
1728 {
1729 	struct amdgpu_bo_va_mapping *mapping;
1730 	struct amdgpu_vm *vm = bo_va->base.vm;
1731 	bool valid = true;
1732 
1733 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1734 
1735 	list_for_each_entry(mapping, &bo_va->valids, list) {
1736 		if (mapping->start == saddr)
1737 			break;
1738 	}
1739 
1740 	if (&mapping->list == &bo_va->valids) {
1741 		valid = false;
1742 
1743 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1744 			if (mapping->start == saddr)
1745 				break;
1746 		}
1747 
1748 		if (&mapping->list == &bo_va->invalids)
1749 			return -ENOENT;
1750 	}
1751 
1752 	list_del(&mapping->list);
1753 	amdgpu_vm_it_remove(mapping, &vm->va);
1754 	mapping->bo_va = NULL;
1755 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1756 
1757 	if (valid)
1758 		list_add(&mapping->list, &vm->freed);
1759 	else
1760 		amdgpu_vm_free_mapping(adev, vm, mapping,
1761 				       bo_va->last_pt_update);
1762 
1763 	return 0;
1764 }
1765 
1766 /**
1767  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1768  *
1769  * @adev: amdgpu_device pointer
1770  * @vm: VM structure to use
1771  * @saddr: start of the range
1772  * @size: size of the range
1773  *
1774  * Remove all mappings in a range, split them as appropriate.
1775  *
1776  * Returns:
1777  * 0 for success, error for failure.
1778  */
1779 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1780 				struct amdgpu_vm *vm,
1781 				uint64_t saddr, uint64_t size)
1782 {
1783 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1784 	DRM_LIST_HEAD(removed);
1785 	uint64_t eaddr;
1786 	int r;
1787 
1788 	r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size);
1789 	if (r)
1790 		return r;
1791 
1792 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1793 	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1794 
1795 	/* Allocate all the needed memory */
1796 	before = kzalloc(sizeof(*before), GFP_KERNEL);
1797 	if (!before)
1798 		return -ENOMEM;
1799 	INIT_LIST_HEAD(&before->list);
1800 
1801 	after = kzalloc(sizeof(*after), GFP_KERNEL);
1802 	if (!after) {
1803 		kfree(before);
1804 		return -ENOMEM;
1805 	}
1806 	INIT_LIST_HEAD(&after->list);
1807 
1808 	/* Now gather all removed mappings */
1809 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1810 	while (tmp) {
1811 		/* Remember mapping split at the start */
1812 		if (tmp->start < saddr) {
1813 			before->start = tmp->start;
1814 			before->last = saddr - 1;
1815 			before->offset = tmp->offset;
1816 			before->flags = tmp->flags;
1817 			before->bo_va = tmp->bo_va;
1818 			list_add(&before->list, &tmp->bo_va->invalids);
1819 		}
1820 
1821 		/* Remember mapping split at the end */
1822 		if (tmp->last > eaddr) {
1823 			after->start = eaddr + 1;
1824 			after->last = tmp->last;
1825 			after->offset = tmp->offset;
1826 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
1827 			after->flags = tmp->flags;
1828 			after->bo_va = tmp->bo_va;
1829 			list_add(&after->list, &tmp->bo_va->invalids);
1830 		}
1831 
1832 		list_del(&tmp->list);
1833 		list_add(&tmp->list, &removed);
1834 
1835 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1836 	}
1837 
1838 	/* And free them up */
1839 	list_for_each_entry_safe(tmp, next, &removed, list) {
1840 		amdgpu_vm_it_remove(tmp, &vm->va);
1841 		list_del(&tmp->list);
1842 
1843 		if (tmp->start < saddr)
1844 		    tmp->start = saddr;
1845 		if (tmp->last > eaddr)
1846 		    tmp->last = eaddr;
1847 
1848 		tmp->bo_va = NULL;
1849 		list_add(&tmp->list, &vm->freed);
1850 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
1851 	}
1852 
1853 	/* Insert partial mapping before the range */
1854 	if (!list_empty(&before->list)) {
1855 		struct amdgpu_bo *bo = before->bo_va->base.bo;
1856 
1857 		amdgpu_vm_it_insert(before, &vm->va);
1858 		if (before->flags & AMDGPU_PTE_PRT)
1859 			amdgpu_vm_prt_get(adev);
1860 
1861 		if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1862 		    !before->bo_va->base.moved)
1863 			amdgpu_vm_bo_moved(&before->bo_va->base);
1864 	} else {
1865 		kfree(before);
1866 	}
1867 
1868 	/* Insert partial mapping after the range */
1869 	if (!list_empty(&after->list)) {
1870 		struct amdgpu_bo *bo = after->bo_va->base.bo;
1871 
1872 		amdgpu_vm_it_insert(after, &vm->va);
1873 		if (after->flags & AMDGPU_PTE_PRT)
1874 			amdgpu_vm_prt_get(adev);
1875 
1876 		if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1877 		    !after->bo_va->base.moved)
1878 			amdgpu_vm_bo_moved(&after->bo_va->base);
1879 	} else {
1880 		kfree(after);
1881 	}
1882 
1883 	return 0;
1884 }
1885 
1886 /**
1887  * amdgpu_vm_bo_lookup_mapping - find mapping by address
1888  *
1889  * @vm: the requested VM
1890  * @addr: the address
1891  *
1892  * Find a mapping by it's address.
1893  *
1894  * Returns:
1895  * The amdgpu_bo_va_mapping matching for addr or NULL
1896  *
1897  */
1898 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
1899 							 uint64_t addr)
1900 {
1901 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
1902 }
1903 
1904 /**
1905  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
1906  *
1907  * @vm: the requested vm
1908  * @ticket: CS ticket
1909  *
1910  * Trace all mappings of BOs reserved during a command submission.
1911  */
1912 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
1913 {
1914 	struct amdgpu_bo_va_mapping *mapping;
1915 
1916 	if (!trace_amdgpu_vm_bo_cs_enabled())
1917 		return;
1918 
1919 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
1920 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
1921 		if (mapping->bo_va && mapping->bo_va->base.bo) {
1922 			struct amdgpu_bo *bo;
1923 
1924 			bo = mapping->bo_va->base.bo;
1925 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
1926 			    ticket)
1927 				continue;
1928 		}
1929 
1930 		trace_amdgpu_vm_bo_cs(mapping);
1931 	}
1932 }
1933 
1934 /**
1935  * amdgpu_vm_bo_del - remove a bo from a specific vm
1936  *
1937  * @adev: amdgpu_device pointer
1938  * @bo_va: requested bo_va
1939  *
1940  * Remove @bo_va->bo from the requested vm.
1941  *
1942  * Object have to be reserved!
1943  */
1944 void amdgpu_vm_bo_del(struct amdgpu_device *adev,
1945 		      struct amdgpu_bo_va *bo_va)
1946 {
1947 	struct amdgpu_bo_va_mapping *mapping, *next;
1948 	struct amdgpu_bo *bo = bo_va->base.bo;
1949 	struct amdgpu_vm *vm = bo_va->base.vm;
1950 	struct amdgpu_vm_bo_base **base;
1951 
1952 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
1953 
1954 	if (bo) {
1955 		dma_resv_assert_held(bo->tbo.base.resv);
1956 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
1957 			ttm_bo_set_bulk_move(&bo->tbo, NULL);
1958 
1959 		for (base = &bo_va->base.bo->vm_bo; *base;
1960 		     base = &(*base)->next) {
1961 			if (*base != &bo_va->base)
1962 				continue;
1963 
1964 			*base = bo_va->base.next;
1965 			break;
1966 		}
1967 	}
1968 
1969 	spin_lock(&vm->status_lock);
1970 	list_del(&bo_va->base.vm_status);
1971 	spin_unlock(&vm->status_lock);
1972 
1973 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1974 		list_del(&mapping->list);
1975 		amdgpu_vm_it_remove(mapping, &vm->va);
1976 		mapping->bo_va = NULL;
1977 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1978 		list_add(&mapping->list, &vm->freed);
1979 	}
1980 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1981 		list_del(&mapping->list);
1982 		amdgpu_vm_it_remove(mapping, &vm->va);
1983 		amdgpu_vm_free_mapping(adev, vm, mapping,
1984 				       bo_va->last_pt_update);
1985 	}
1986 
1987 	dma_fence_put(bo_va->last_pt_update);
1988 
1989 	if (bo && bo_va->is_xgmi)
1990 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
1991 
1992 	kfree(bo_va);
1993 }
1994 
1995 /**
1996  * amdgpu_vm_evictable - check if we can evict a VM
1997  *
1998  * @bo: A page table of the VM.
1999  *
2000  * Check if it is possible to evict a VM.
2001  */
2002 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2003 {
2004 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2005 
2006 	/* Page tables of a destroyed VM can go away immediately */
2007 	if (!bo_base || !bo_base->vm)
2008 		return true;
2009 
2010 	/* Don't evict VM page tables while they are busy */
2011 	if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP))
2012 		return false;
2013 
2014 	/* Try to block ongoing updates */
2015 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2016 		return false;
2017 
2018 	/* Don't evict VM page tables while they are updated */
2019 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2020 		amdgpu_vm_eviction_unlock(bo_base->vm);
2021 		return false;
2022 	}
2023 
2024 	bo_base->vm->evicting = true;
2025 	amdgpu_vm_eviction_unlock(bo_base->vm);
2026 	return true;
2027 }
2028 
2029 /**
2030  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2031  *
2032  * @adev: amdgpu_device pointer
2033  * @bo: amdgpu buffer object
2034  * @evicted: is the BO evicted
2035  *
2036  * Mark @bo as invalid.
2037  */
2038 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2039 			     struct amdgpu_bo *bo, bool evicted)
2040 {
2041 	struct amdgpu_vm_bo_base *bo_base;
2042 
2043 	/* shadow bo doesn't have bo base, its validation needs its parent */
2044 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2045 		bo = bo->parent;
2046 
2047 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2048 		struct amdgpu_vm *vm = bo_base->vm;
2049 
2050 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2051 			amdgpu_vm_bo_evicted(bo_base);
2052 			continue;
2053 		}
2054 
2055 		if (bo_base->moved)
2056 			continue;
2057 		bo_base->moved = true;
2058 
2059 		if (bo->tbo.type == ttm_bo_type_kernel)
2060 			amdgpu_vm_bo_relocated(bo_base);
2061 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2062 			amdgpu_vm_bo_moved(bo_base);
2063 		else
2064 			amdgpu_vm_bo_invalidated(bo_base);
2065 	}
2066 }
2067 
2068 /**
2069  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2070  *
2071  * @vm_size: VM size
2072  *
2073  * Returns:
2074  * VM page table as power of two
2075  */
2076 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2077 {
2078 	/* Total bits covered by PD + PTs */
2079 	unsigned bits = ilog2(vm_size) + 18;
2080 
2081 	/* Make sure the PD is 4K in size up to 8GB address space.
2082 	   Above that split equal between PD and PTs */
2083 	if (vm_size <= 8)
2084 		return (bits - 9);
2085 	else
2086 		return ((bits + 3) / 2);
2087 }
2088 
2089 /**
2090  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2091  *
2092  * @adev: amdgpu_device pointer
2093  * @min_vm_size: the minimum vm size in GB if it's set auto
2094  * @fragment_size_default: Default PTE fragment size
2095  * @max_level: max VMPT level
2096  * @max_bits: max address space size in bits
2097  *
2098  */
2099 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2100 			   uint32_t fragment_size_default, unsigned max_level,
2101 			   unsigned max_bits)
2102 {
2103 	unsigned int max_size = 1 << (max_bits - 30);
2104 	unsigned int vm_size;
2105 	uint64_t tmp;
2106 
2107 	/* adjust vm size first */
2108 	if (amdgpu_vm_size != -1) {
2109 		vm_size = amdgpu_vm_size;
2110 		if (vm_size > max_size) {
2111 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2112 				 amdgpu_vm_size, max_size);
2113 			vm_size = max_size;
2114 		}
2115 	} else {
2116 #ifdef __linux__
2117 		struct sysinfo si;
2118 #endif
2119 		unsigned int phys_ram_gb;
2120 
2121 		/* Optimal VM size depends on the amount of physical
2122 		 * RAM available. Underlying requirements and
2123 		 * assumptions:
2124 		 *
2125 		 *  - Need to map system memory and VRAM from all GPUs
2126 		 *     - VRAM from other GPUs not known here
2127 		 *     - Assume VRAM <= system memory
2128 		 *  - On GFX8 and older, VM space can be segmented for
2129 		 *    different MTYPEs
2130 		 *  - Need to allow room for fragmentation, guard pages etc.
2131 		 *
2132 		 * This adds up to a rough guess of system memory x3.
2133 		 * Round up to power of two to maximize the available
2134 		 * VM size with the given page table size.
2135 		 */
2136 #ifdef __linux__
2137 		si_meminfo(&si);
2138 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2139 			       (1 << 30) - 1) >> 30;
2140 #else
2141 		phys_ram_gb = ((uint64_t)ptoa(physmem) +
2142 			       (1 << 30) - 1) >> 30;
2143 #endif
2144 		vm_size = roundup_pow_of_two(
2145 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2146 	}
2147 
2148 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2149 
2150 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2151 	if (amdgpu_vm_block_size != -1)
2152 		tmp >>= amdgpu_vm_block_size - 9;
2153 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2154 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2155 	switch (adev->vm_manager.num_level) {
2156 	case 3:
2157 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2158 		break;
2159 	case 2:
2160 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2161 		break;
2162 	case 1:
2163 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2164 		break;
2165 	default:
2166 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2167 	}
2168 	/* block size depends on vm size and hw setup*/
2169 	if (amdgpu_vm_block_size != -1)
2170 		adev->vm_manager.block_size =
2171 			min((unsigned)amdgpu_vm_block_size, max_bits
2172 			    - AMDGPU_GPU_PAGE_SHIFT
2173 			    - 9 * adev->vm_manager.num_level);
2174 	else if (adev->vm_manager.num_level > 1)
2175 		adev->vm_manager.block_size = 9;
2176 	else
2177 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2178 
2179 	if (amdgpu_vm_fragment_size == -1)
2180 		adev->vm_manager.fragment_size = fragment_size_default;
2181 	else
2182 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2183 
2184 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2185 		 vm_size, adev->vm_manager.num_level + 1,
2186 		 adev->vm_manager.block_size,
2187 		 adev->vm_manager.fragment_size);
2188 }
2189 
2190 /**
2191  * amdgpu_vm_wait_idle - wait for the VM to become idle
2192  *
2193  * @vm: VM object to wait for
2194  * @timeout: timeout to wait for VM to become idle
2195  */
2196 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2197 {
2198 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv,
2199 					DMA_RESV_USAGE_BOOKKEEP,
2200 					true, timeout);
2201 	if (timeout <= 0)
2202 		return timeout;
2203 
2204 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2205 }
2206 
2207 /**
2208  * amdgpu_vm_init - initialize a vm instance
2209  *
2210  * @adev: amdgpu_device pointer
2211  * @vm: requested vm
2212  * @xcp_id: GPU partition selection id
2213  *
2214  * Init @vm fields.
2215  *
2216  * Returns:
2217  * 0 for success, error for failure.
2218  */
2219 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2220 		   int32_t xcp_id)
2221 {
2222 	struct amdgpu_bo *root_bo;
2223 	struct amdgpu_bo_vm *root;
2224 	int r, i;
2225 
2226 	vm->va = RB_ROOT_CACHED;
2227 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2228 		vm->reserved_vmid[i] = NULL;
2229 	INIT_LIST_HEAD(&vm->evicted);
2230 	INIT_LIST_HEAD(&vm->relocated);
2231 	INIT_LIST_HEAD(&vm->moved);
2232 	INIT_LIST_HEAD(&vm->idle);
2233 	INIT_LIST_HEAD(&vm->invalidated);
2234 	mtx_init(&vm->status_lock, IPL_NONE);
2235 	INIT_LIST_HEAD(&vm->freed);
2236 	INIT_LIST_HEAD(&vm->done);
2237 	INIT_LIST_HEAD(&vm->pt_freed);
2238 	INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work);
2239 #ifdef __linux__
2240 	INIT_KFIFO(vm->faults);
2241 #else
2242 	SIMPLEQ_INIT(&vm->faults);
2243 #endif
2244 
2245 	r = amdgpu_vm_init_entities(adev, vm);
2246 	if (r)
2247 		return r;
2248 
2249 	vm->pte_support_ats = false;
2250 	vm->is_compute_context = false;
2251 
2252 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2253 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2254 
2255 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2256 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2257 	WARN_ONCE((vm->use_cpu_for_update &&
2258 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2259 		  "CPU update of VM recommended only for large BAR system\n");
2260 
2261 	if (vm->use_cpu_for_update)
2262 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2263 	else
2264 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2265 
2266 	vm->last_update = dma_fence_get_stub();
2267 	vm->last_unlocked = dma_fence_get_stub();
2268 	vm->last_tlb_flush = dma_fence_get_stub();
2269 	vm->generation = amdgpu_vm_generation(adev, NULL);
2270 
2271 	rw_init(&vm->eviction_lock, "avmev");
2272 	vm->evicting = false;
2273 
2274 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2275 				false, &root, xcp_id);
2276 	if (r)
2277 		goto error_free_delayed;
2278 
2279 	root_bo = amdgpu_bo_ref(&root->bo);
2280 	r = amdgpu_bo_reserve(root_bo, true);
2281 	if (r) {
2282 		amdgpu_bo_unref(&root->shadow);
2283 		amdgpu_bo_unref(&root_bo);
2284 		goto error_free_delayed;
2285 	}
2286 
2287 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2288 	r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1);
2289 	if (r)
2290 		goto error_free_root;
2291 
2292 	r = amdgpu_vm_pt_clear(adev, vm, root, false);
2293 	if (r)
2294 		goto error_free_root;
2295 
2296 	amdgpu_bo_unreserve(vm->root.bo);
2297 	amdgpu_bo_unref(&root_bo);
2298 
2299 	return 0;
2300 
2301 error_free_root:
2302 	amdgpu_vm_pt_free_root(adev, vm);
2303 	amdgpu_bo_unreserve(vm->root.bo);
2304 	amdgpu_bo_unref(&root_bo);
2305 
2306 error_free_delayed:
2307 	dma_fence_put(vm->last_tlb_flush);
2308 	dma_fence_put(vm->last_unlocked);
2309 	amdgpu_vm_fini_entities(vm);
2310 
2311 	return r;
2312 }
2313 
2314 /**
2315  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2316  *
2317  * @adev: amdgpu_device pointer
2318  * @vm: requested vm
2319  *
2320  * This only works on GFX VMs that don't have any BOs added and no
2321  * page tables allocated yet.
2322  *
2323  * Changes the following VM parameters:
2324  * - use_cpu_for_update
2325  * - pte_supports_ats
2326  *
2327  * Reinitializes the page directory to reflect the changed ATS
2328  * setting.
2329  *
2330  * Returns:
2331  * 0 for success, -errno for errors.
2332  */
2333 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2334 {
2335 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2336 	int r;
2337 
2338 	r = amdgpu_bo_reserve(vm->root.bo, true);
2339 	if (r)
2340 		return r;
2341 
2342 	/* Check if PD needs to be reinitialized and do it before
2343 	 * changing any other state, in case it fails.
2344 	 */
2345 	if (pte_support_ats != vm->pte_support_ats) {
2346 		/* Sanity checks */
2347 		if (!amdgpu_vm_pt_is_root_clean(adev, vm)) {
2348 			r = -EINVAL;
2349 			goto unreserve_bo;
2350 		}
2351 
2352 		vm->pte_support_ats = pte_support_ats;
2353 		r = amdgpu_vm_pt_clear(adev, vm, to_amdgpu_bo_vm(vm->root.bo),
2354 				       false);
2355 		if (r)
2356 			goto unreserve_bo;
2357 	}
2358 
2359 	/* Update VM state */
2360 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2361 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2362 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2363 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2364 	WARN_ONCE((vm->use_cpu_for_update &&
2365 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2366 		  "CPU update of VM recommended only for large BAR system\n");
2367 
2368 	if (vm->use_cpu_for_update) {
2369 		/* Sync with last SDMA update/clear before switching to CPU */
2370 		r = amdgpu_bo_sync_wait(vm->root.bo,
2371 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
2372 		if (r)
2373 			goto unreserve_bo;
2374 
2375 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2376 		r = amdgpu_vm_pt_map_tables(adev, vm);
2377 		if (r)
2378 			goto unreserve_bo;
2379 
2380 	} else {
2381 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2382 	}
2383 
2384 	dma_fence_put(vm->last_update);
2385 	vm->last_update = dma_fence_get_stub();
2386 	vm->is_compute_context = true;
2387 
2388 	/* Free the shadow bo for compute VM */
2389 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
2390 
2391 	goto unreserve_bo;
2392 
2393 unreserve_bo:
2394 	amdgpu_bo_unreserve(vm->root.bo);
2395 	return r;
2396 }
2397 
2398 /**
2399  * amdgpu_vm_release_compute - release a compute vm
2400  * @adev: amdgpu_device pointer
2401  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2402  *
2403  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2404  * pasid from vm. Compute should stop use of vm after this call.
2405  */
2406 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2407 {
2408 	amdgpu_vm_set_pasid(adev, vm, 0);
2409 	vm->is_compute_context = false;
2410 }
2411 
2412 /**
2413  * amdgpu_vm_fini - tear down a vm instance
2414  *
2415  * @adev: amdgpu_device pointer
2416  * @vm: requested vm
2417  *
2418  * Tear down @vm.
2419  * Unbind the VM and remove all bos from the vm bo list
2420  */
2421 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2422 {
2423 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2424 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2425 	struct amdgpu_bo *root;
2426 	unsigned long flags;
2427 	int i;
2428 
2429 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2430 
2431 	flush_work(&vm->pt_free_work);
2432 
2433 	root = amdgpu_bo_ref(vm->root.bo);
2434 	amdgpu_bo_reserve(root, true);
2435 	amdgpu_vm_set_pasid(adev, vm, 0);
2436 	dma_fence_wait(vm->last_unlocked, false);
2437 	dma_fence_put(vm->last_unlocked);
2438 	dma_fence_wait(vm->last_tlb_flush, false);
2439 	/* Make sure that all fence callbacks have completed */
2440 	spin_lock_irqsave(vm->last_tlb_flush->lock, flags);
2441 	spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags);
2442 	dma_fence_put(vm->last_tlb_flush);
2443 
2444 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2445 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2446 			amdgpu_vm_prt_fini(adev, vm);
2447 			prt_fini_needed = false;
2448 		}
2449 
2450 		list_del(&mapping->list);
2451 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2452 	}
2453 
2454 	amdgpu_vm_pt_free_root(adev, vm);
2455 	amdgpu_bo_unreserve(root);
2456 	amdgpu_bo_unref(&root);
2457 	WARN_ON(vm->root.bo);
2458 
2459 	amdgpu_vm_fini_entities(vm);
2460 
2461 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2462 		dev_err(adev->dev, "still active bo inside vm\n");
2463 	}
2464 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2465 					     &vm->va.rb_root, rb) {
2466 		/* Don't remove the mapping here, we don't want to trigger a
2467 		 * rebalance and the tree is about to be destroyed anyway.
2468 		 */
2469 		list_del(&mapping->list);
2470 		kfree(mapping);
2471 	}
2472 
2473 	dma_fence_put(vm->last_update);
2474 
2475 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) {
2476 		if (vm->reserved_vmid[i]) {
2477 			amdgpu_vmid_free_reserved(adev, i);
2478 			vm->reserved_vmid[i] = false;
2479 		}
2480 	}
2481 
2482 }
2483 
2484 /**
2485  * amdgpu_vm_manager_init - init the VM manager
2486  *
2487  * @adev: amdgpu_device pointer
2488  *
2489  * Initialize the VM manager structures
2490  */
2491 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2492 {
2493 	unsigned i;
2494 
2495 	/* Concurrent flushes are only possible starting with Vega10 and
2496 	 * are broken on Navi10 and Navi14.
2497 	 */
2498 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
2499 					      adev->asic_type == CHIP_NAVI10 ||
2500 					      adev->asic_type == CHIP_NAVI14);
2501 	amdgpu_vmid_mgr_init(adev);
2502 
2503 	adev->vm_manager.fence_context =
2504 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2505 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2506 		adev->vm_manager.seqno[i] = 0;
2507 
2508 	mtx_init(&adev->vm_manager.prt_lock, IPL_TTY);
2509 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2510 
2511 	/* If not overridden by the user, by default, only in large BAR systems
2512 	 * Compute VM tables will be updated by CPU
2513 	 */
2514 #ifdef CONFIG_X86_64
2515 	if (amdgpu_vm_update_mode == -1) {
2516 		/* For asic with VF MMIO access protection
2517 		 * avoid using CPU for VM table updates
2518 		 */
2519 		if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
2520 		    !amdgpu_sriov_vf_mmio_access_protection(adev))
2521 			adev->vm_manager.vm_update_mode =
2522 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2523 		else
2524 			adev->vm_manager.vm_update_mode = 0;
2525 	} else
2526 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2527 #else
2528 	adev->vm_manager.vm_update_mode = 0;
2529 #endif
2530 
2531 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
2532 }
2533 
2534 /**
2535  * amdgpu_vm_manager_fini - cleanup VM manager
2536  *
2537  * @adev: amdgpu_device pointer
2538  *
2539  * Cleanup the VM manager and free resources.
2540  */
2541 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2542 {
2543 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
2544 	xa_destroy(&adev->vm_manager.pasids);
2545 
2546 	amdgpu_vmid_mgr_fini(adev);
2547 }
2548 
2549 /**
2550  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
2551  *
2552  * @dev: drm device pointer
2553  * @data: drm_amdgpu_vm
2554  * @filp: drm file pointer
2555  *
2556  * Returns:
2557  * 0 for success, -errno for errors.
2558  */
2559 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2560 {
2561 	union drm_amdgpu_vm *args = data;
2562 	struct amdgpu_device *adev = drm_to_adev(dev);
2563 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2564 
2565 	/* No valid flags defined yet */
2566 	if (args->in.flags)
2567 		return -EINVAL;
2568 
2569 	switch (args->in.op) {
2570 	case AMDGPU_VM_OP_RESERVE_VMID:
2571 		/* We only have requirement to reserve vmid from gfxhub */
2572 		if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2573 			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0));
2574 			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true;
2575 		}
2576 
2577 		break;
2578 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2579 		if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2580 			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0));
2581 			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false;
2582 		}
2583 		break;
2584 	default:
2585 		return -EINVAL;
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 /**
2592  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
2593  *
2594  * @adev: drm device pointer
2595  * @pasid: PASID identifier for VM
2596  * @task_info: task_info to fill.
2597  */
2598 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
2599 			 struct amdgpu_task_info *task_info)
2600 {
2601 	struct amdgpu_vm *vm;
2602 	unsigned long flags;
2603 
2604 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2605 
2606 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2607 	if (vm)
2608 		*task_info = vm->task_info;
2609 
2610 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2611 }
2612 
2613 /**
2614  * amdgpu_vm_set_task_info - Sets VMs task info.
2615  *
2616  * @vm: vm for which to set the info
2617  */
2618 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
2619 {
2620 	if (vm->task_info.pid)
2621 		return;
2622 
2623 #ifdef __linux__
2624 	vm->task_info.pid = current->pid;
2625 	get_task_comm(vm->task_info.task_name, current);
2626 
2627 	if (current->group_leader->mm != current->mm)
2628 		return;
2629 
2630 	vm->task_info.tgid = current->group_leader->pid;
2631 	get_task_comm(vm->task_info.process_name, current->group_leader);
2632 #else
2633 	/* thread */
2634 	vm->task_info.pid = curproc->p_tid;
2635 	strlcpy(vm->task_info.task_name, curproc->p_p->ps_comm,
2636 	    sizeof(vm->task_info.task_name));
2637 
2638 	/* process */
2639 	vm->task_info.tgid = curproc->p_p->ps_pid;
2640 	strlcpy(vm->task_info.process_name, curproc->p_p->ps_comm,
2641 	    sizeof(vm->task_info.process_name));
2642 #endif
2643 }
2644 
2645 /**
2646  * amdgpu_vm_handle_fault - graceful handling of VM faults.
2647  * @adev: amdgpu device pointer
2648  * @pasid: PASID of the VM
2649  * @vmid: VMID, only used for GFX 9.4.3.
2650  * @node_id: Node_id received in IH cookie. Only applicable for
2651  *           GFX 9.4.3.
2652  * @addr: Address of the fault
2653  * @write_fault: true is write fault, false is read fault
2654  *
2655  * Try to gracefully handle a VM fault. Return true if the fault was handled and
2656  * shouldn't be reported any more.
2657  */
2658 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
2659 			    u32 vmid, u32 node_id, uint64_t addr,
2660 			    bool write_fault)
2661 {
2662 	bool is_compute_context = false;
2663 	struct amdgpu_bo *root;
2664 	unsigned long irqflags;
2665 	uint64_t value, flags;
2666 	struct amdgpu_vm *vm;
2667 	int r;
2668 
2669 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2670 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2671 	if (vm) {
2672 		root = amdgpu_bo_ref(vm->root.bo);
2673 		is_compute_context = vm->is_compute_context;
2674 	} else {
2675 		root = NULL;
2676 	}
2677 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2678 
2679 	if (!root)
2680 		return false;
2681 
2682 	addr /= AMDGPU_GPU_PAGE_SIZE;
2683 
2684 	if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid,
2685 	    node_id, addr, write_fault)) {
2686 		amdgpu_bo_unref(&root);
2687 		return true;
2688 	}
2689 
2690 	r = amdgpu_bo_reserve(root, true);
2691 	if (r)
2692 		goto error_unref;
2693 
2694 	/* Double check that the VM still exists */
2695 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2696 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2697 	if (vm && vm->root.bo != root)
2698 		vm = NULL;
2699 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2700 	if (!vm)
2701 		goto error_unlock;
2702 
2703 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
2704 		AMDGPU_PTE_SYSTEM;
2705 
2706 	if (is_compute_context) {
2707 		/* Intentionally setting invalid PTE flag
2708 		 * combination to force a no-retry-fault
2709 		 */
2710 		flags = AMDGPU_VM_NORETRY_FLAGS;
2711 		value = 0;
2712 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
2713 		/* Redirect the access to the dummy page */
2714 		value = adev->dummy_page_addr;
2715 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
2716 			AMDGPU_PTE_WRITEABLE;
2717 
2718 	} else {
2719 		/* Let the hw retry silently on the PTE */
2720 		value = 0;
2721 	}
2722 
2723 	r = dma_resv_reserve_fences(root->tbo.base.resv, 1);
2724 	if (r) {
2725 		pr_debug("failed %d to reserve fence slot\n", r);
2726 		goto error_unlock;
2727 	}
2728 
2729 	r = amdgpu_vm_update_range(adev, vm, true, false, false, NULL, addr,
2730 				   addr, flags, value, 0, NULL, NULL, NULL);
2731 	if (r)
2732 		goto error_unlock;
2733 
2734 	r = amdgpu_vm_update_pdes(adev, vm, true);
2735 
2736 error_unlock:
2737 	amdgpu_bo_unreserve(root);
2738 	if (r < 0)
2739 		DRM_ERROR("Can't handle page fault (%d)\n", r);
2740 
2741 error_unref:
2742 	amdgpu_bo_unref(&root);
2743 
2744 	return false;
2745 }
2746 
2747 #if defined(CONFIG_DEBUG_FS)
2748 /**
2749  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
2750  *
2751  * @vm: Requested VM for printing BO info
2752  * @m: debugfs file
2753  *
2754  * Print BO information in debugfs file for the VM
2755  */
2756 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
2757 {
2758 	struct amdgpu_bo_va *bo_va, *tmp;
2759 	u64 total_idle = 0;
2760 	u64 total_evicted = 0;
2761 	u64 total_relocated = 0;
2762 	u64 total_moved = 0;
2763 	u64 total_invalidated = 0;
2764 	u64 total_done = 0;
2765 	unsigned int total_idle_objs = 0;
2766 	unsigned int total_evicted_objs = 0;
2767 	unsigned int total_relocated_objs = 0;
2768 	unsigned int total_moved_objs = 0;
2769 	unsigned int total_invalidated_objs = 0;
2770 	unsigned int total_done_objs = 0;
2771 	unsigned int id = 0;
2772 
2773 	spin_lock(&vm->status_lock);
2774 	seq_puts(m, "\tIdle BOs:\n");
2775 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
2776 		if (!bo_va->base.bo)
2777 			continue;
2778 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2779 	}
2780 	total_idle_objs = id;
2781 	id = 0;
2782 
2783 	seq_puts(m, "\tEvicted BOs:\n");
2784 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
2785 		if (!bo_va->base.bo)
2786 			continue;
2787 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2788 	}
2789 	total_evicted_objs = id;
2790 	id = 0;
2791 
2792 	seq_puts(m, "\tRelocated BOs:\n");
2793 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
2794 		if (!bo_va->base.bo)
2795 			continue;
2796 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2797 	}
2798 	total_relocated_objs = id;
2799 	id = 0;
2800 
2801 	seq_puts(m, "\tMoved BOs:\n");
2802 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2803 		if (!bo_va->base.bo)
2804 			continue;
2805 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2806 	}
2807 	total_moved_objs = id;
2808 	id = 0;
2809 
2810 	seq_puts(m, "\tInvalidated BOs:\n");
2811 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
2812 		if (!bo_va->base.bo)
2813 			continue;
2814 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
2815 	}
2816 	total_invalidated_objs = id;
2817 	id = 0;
2818 
2819 	seq_puts(m, "\tDone BOs:\n");
2820 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
2821 		if (!bo_va->base.bo)
2822 			continue;
2823 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2824 	}
2825 	spin_unlock(&vm->status_lock);
2826 	total_done_objs = id;
2827 
2828 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
2829 		   total_idle_objs);
2830 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
2831 		   total_evicted_objs);
2832 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
2833 		   total_relocated_objs);
2834 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
2835 		   total_moved_objs);
2836 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
2837 		   total_invalidated_objs);
2838 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
2839 		   total_done_objs);
2840 }
2841 #endif
2842