1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 #ifdef __linux__ 63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 64 START, LAST, static, amdgpu_vm_it) 65 #else 66 static struct amdgpu_bo_va_mapping * 67 amdgpu_vm_it_iter_first(struct rb_root_cached *root, uint64_t start, 68 uint64_t last) 69 { 70 struct amdgpu_bo_va_mapping *node; 71 struct rb_node *rb; 72 73 for (rb = rb_first(root); rb; rb = rb_next(rb)) { 74 node = rb_entry(rb, typeof(*node), rb); 75 if (LAST(node) >= start && START(node) <= last) 76 return node; 77 } 78 return NULL; 79 } 80 81 static struct amdgpu_bo_va_mapping * 82 amdgpu_vm_it_iter_next(struct amdgpu_bo_va_mapping *node, uint64_t start, 83 uint64_t last) 84 { 85 STUB(); 86 struct rb_node *rb = &node->rb; 87 88 for (rb = rb_next(rb); rb; rb = rb_next(rb)) { 89 node = rb_entry(rb, typeof(*node), rb); 90 if (LAST(node) >= start && START(node) <= last) 91 return node; 92 } 93 return NULL; 94 } 95 96 static void 97 amdgpu_vm_it_remove(struct amdgpu_bo_va_mapping *node, 98 struct rb_root_cached *root) 99 { 100 rb_erase(&node->rb, root); 101 } 102 103 static void 104 amdgpu_vm_it_insert(struct amdgpu_bo_va_mapping *node, 105 struct rb_root_cached *root) 106 { 107 struct rb_node **iter = &root->rb_node; 108 struct rb_node *parent = NULL; 109 struct amdgpu_bo_va_mapping *iter_node; 110 111 while (*iter) { 112 parent = *iter; 113 iter_node = rb_entry(*iter, struct amdgpu_bo_va_mapping, rb); 114 115 if (node->start < iter_node->start) 116 iter = &(*iter)->rb_left; 117 else 118 iter = &(*iter)->rb_right; 119 } 120 121 rb_link_node(&node->rb, parent, iter); 122 rb_insert_color(&node->rb, root); 123 } 124 #endif 125 126 #undef START 127 #undef LAST 128 129 /** 130 * struct amdgpu_pte_update_params - Local structure 131 * 132 * Encapsulate some VM table update parameters to reduce 133 * the number of function parameters 134 * 135 */ 136 struct amdgpu_pte_update_params { 137 138 /** 139 * @adev: amdgpu device we do this update for 140 */ 141 struct amdgpu_device *adev; 142 143 /** 144 * @vm: optional amdgpu_vm we do this update for 145 */ 146 struct amdgpu_vm *vm; 147 148 /** 149 * @src: address where to copy page table entries from 150 */ 151 uint64_t src; 152 153 /** 154 * @ib: indirect buffer to fill with commands 155 */ 156 struct amdgpu_ib *ib; 157 158 /** 159 * @func: Function which actually does the update 160 */ 161 void (*func)(struct amdgpu_pte_update_params *params, 162 struct amdgpu_bo *bo, uint64_t pe, 163 uint64_t addr, unsigned count, uint32_t incr, 164 uint64_t flags); 165 /** 166 * @pages_addr: 167 * 168 * DMA addresses to use for mapping, used during VM update by CPU 169 */ 170 dma_addr_t *pages_addr; 171 172 /** 173 * @kptr: 174 * 175 * Kernel pointer of PD/PT BO that needs to be updated, 176 * used during VM update by CPU 177 */ 178 void *kptr; 179 }; 180 181 /** 182 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 183 */ 184 struct amdgpu_prt_cb { 185 186 /** 187 * @adev: amdgpu device 188 */ 189 struct amdgpu_device *adev; 190 191 /** 192 * @cb: callback 193 */ 194 struct dma_fence_cb cb; 195 }; 196 197 /** 198 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 199 * 200 * @base: base structure for tracking BO usage in a VM 201 * @vm: vm to which bo is to be added 202 * @bo: amdgpu buffer object 203 * 204 * Initialize a bo_va_base structure and add it to the appropriate lists 205 * 206 */ 207 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 208 struct amdgpu_vm *vm, 209 struct amdgpu_bo *bo) 210 { 211 base->vm = vm; 212 base->bo = bo; 213 INIT_LIST_HEAD(&base->bo_list); 214 INIT_LIST_HEAD(&base->vm_status); 215 216 if (!bo) 217 return; 218 list_add_tail(&base->bo_list, &bo->va); 219 220 if (bo->tbo.type == ttm_bo_type_kernel) 221 list_move(&base->vm_status, &vm->relocated); 222 223 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 224 return; 225 226 if (bo->preferred_domains & 227 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 228 return; 229 230 /* 231 * we checked all the prerequisites, but it looks like this per vm bo 232 * is currently evicted. add the bo to the evicted list to make sure it 233 * is validated on next vm use to avoid fault. 234 * */ 235 list_move_tail(&base->vm_status, &vm->evicted); 236 base->moved = true; 237 } 238 239 /** 240 * amdgpu_vm_level_shift - return the addr shift for each level 241 * 242 * @adev: amdgpu_device pointer 243 * @level: VMPT level 244 * 245 * Returns: 246 * The number of bits the pfn needs to be right shifted for a level. 247 */ 248 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 249 unsigned level) 250 { 251 unsigned shift = 0xff; 252 253 switch (level) { 254 case AMDGPU_VM_PDB2: 255 case AMDGPU_VM_PDB1: 256 case AMDGPU_VM_PDB0: 257 shift = 9 * (AMDGPU_VM_PDB0 - level) + 258 adev->vm_manager.block_size; 259 break; 260 case AMDGPU_VM_PTB: 261 shift = 0; 262 break; 263 default: 264 dev_err(adev->dev, "the level%d isn't supported.\n", level); 265 } 266 267 return shift; 268 } 269 270 /** 271 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 272 * 273 * @adev: amdgpu_device pointer 274 * @level: VMPT level 275 * 276 * Returns: 277 * The number of entries in a page directory or page table. 278 */ 279 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 280 unsigned level) 281 { 282 unsigned shift = amdgpu_vm_level_shift(adev, 283 adev->vm_manager.root_level); 284 285 if (level == adev->vm_manager.root_level) 286 /* For the root directory */ 287 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift; 288 else if (level != AMDGPU_VM_PTB) 289 /* Everything in between */ 290 return 512; 291 else 292 /* For the page tables on the leaves */ 293 return AMDGPU_VM_PTE_COUNT(adev); 294 } 295 296 /** 297 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 298 * 299 * @adev: amdgpu_device pointer 300 * @level: VMPT level 301 * 302 * Returns: 303 * The size of the BO for a page directory or page table in bytes. 304 */ 305 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 306 { 307 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 308 } 309 310 /** 311 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 312 * 313 * @vm: vm providing the BOs 314 * @validated: head of validation list 315 * @entry: entry to add 316 * 317 * Add the page directory to the list of BOs to 318 * validate for command submission. 319 */ 320 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 321 struct list_head *validated, 322 struct amdgpu_bo_list_entry *entry) 323 { 324 entry->robj = vm->root.base.bo; 325 entry->priority = 0; 326 entry->tv.bo = &entry->robj->tbo; 327 entry->tv.shared = true; 328 entry->user_pages = NULL; 329 list_add(&entry->tv.head, validated); 330 } 331 332 /** 333 * amdgpu_vm_validate_pt_bos - validate the page table BOs 334 * 335 * @adev: amdgpu device pointer 336 * @vm: vm providing the BOs 337 * @validate: callback to do the validation 338 * @param: parameter for the validation callback 339 * 340 * Validate the page table BOs on command submission if neccessary. 341 * 342 * Returns: 343 * Validation result. 344 */ 345 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 346 int (*validate)(void *p, struct amdgpu_bo *bo), 347 void *param) 348 { 349 struct ttm_bo_global *glob = adev->mman.bdev.glob; 350 struct amdgpu_vm_bo_base *bo_base, *tmp; 351 int r = 0; 352 353 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 354 struct amdgpu_bo *bo = bo_base->bo; 355 356 if (bo->parent) { 357 r = validate(param, bo); 358 if (r) 359 break; 360 361 spin_lock(&glob->lru_lock); 362 ttm_bo_move_to_lru_tail(&bo->tbo); 363 if (bo->shadow) 364 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 365 spin_unlock(&glob->lru_lock); 366 } 367 368 if (bo->tbo.type != ttm_bo_type_kernel) { 369 spin_lock(&vm->moved_lock); 370 list_move(&bo_base->vm_status, &vm->moved); 371 spin_unlock(&vm->moved_lock); 372 } else { 373 list_move(&bo_base->vm_status, &vm->relocated); 374 } 375 } 376 377 spin_lock(&glob->lru_lock); 378 list_for_each_entry(bo_base, &vm->idle, vm_status) { 379 struct amdgpu_bo *bo = bo_base->bo; 380 381 if (!bo->parent) 382 continue; 383 384 ttm_bo_move_to_lru_tail(&bo->tbo); 385 if (bo->shadow) 386 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 387 } 388 spin_unlock(&glob->lru_lock); 389 390 return r; 391 } 392 393 /** 394 * amdgpu_vm_ready - check VM is ready for updates 395 * 396 * @vm: VM to check 397 * 398 * Check if all VM PDs/PTs are ready for updates 399 * 400 * Returns: 401 * True if eviction list is empty. 402 */ 403 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 404 { 405 return list_empty(&vm->evicted); 406 } 407 408 /** 409 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 410 * 411 * @adev: amdgpu_device pointer 412 * @vm: VM to clear BO from 413 * @bo: BO to clear 414 * @level: level this BO is at 415 * @pte_support_ats: indicate ATS support from PTE 416 * 417 * Root PD needs to be reserved when calling this. 418 * 419 * Returns: 420 * 0 on success, errno otherwise. 421 */ 422 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 423 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 424 unsigned level, bool pte_support_ats) 425 { 426 struct ttm_operation_ctx ctx = { true, false }; 427 struct dma_fence *fence = NULL; 428 unsigned entries, ats_entries; 429 struct amdgpu_ring *ring; 430 struct amdgpu_job *job; 431 uint64_t addr; 432 int r; 433 434 entries = amdgpu_bo_size(bo) / 8; 435 436 if (pte_support_ats) { 437 if (level == adev->vm_manager.root_level) { 438 ats_entries = amdgpu_vm_level_shift(adev, level); 439 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 440 ats_entries = AMDGPU_VA_HOLE_START >> ats_entries; 441 ats_entries = min(ats_entries, entries); 442 entries -= ats_entries; 443 } else { 444 ats_entries = entries; 445 entries = 0; 446 } 447 } else { 448 ats_entries = 0; 449 } 450 451 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 452 453 r = reservation_object_reserve_shared(bo->tbo.resv); 454 if (r) 455 return r; 456 457 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 458 if (r) 459 goto error; 460 461 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 462 if (r) 463 goto error; 464 465 addr = amdgpu_bo_gpu_offset(bo); 466 if (ats_entries) { 467 uint64_t ats_value; 468 469 ats_value = AMDGPU_PTE_DEFAULT_ATC; 470 if (level != AMDGPU_VM_PTB) 471 ats_value |= AMDGPU_PDE_PTE; 472 473 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 474 ats_entries, 0, ats_value); 475 addr += ats_entries * 8; 476 } 477 478 if (entries) 479 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 480 entries, 0, 0); 481 482 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 483 484 WARN_ON(job->ibs[0].length_dw > 64); 485 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 486 AMDGPU_FENCE_OWNER_UNDEFINED, false); 487 if (r) 488 goto error_free; 489 490 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 491 &fence); 492 if (r) 493 goto error_free; 494 495 amdgpu_bo_fence(bo, fence, true); 496 dma_fence_put(fence); 497 498 if (bo->shadow) 499 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 500 level, pte_support_ats); 501 502 return 0; 503 504 error_free: 505 amdgpu_job_free(job); 506 507 error: 508 return r; 509 } 510 511 /** 512 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 513 * 514 * @adev: amdgpu_device pointer 515 * @vm: requested vm 516 * @parent: parent PT 517 * @saddr: start of the address range 518 * @eaddr: end of the address range 519 * @level: VMPT level 520 * @ats: indicate ATS support from PTE 521 * 522 * Make sure the page directories and page tables are allocated 523 * 524 * Returns: 525 * 0 on success, errno otherwise. 526 */ 527 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 528 struct amdgpu_vm *vm, 529 struct amdgpu_vm_pt *parent, 530 uint64_t saddr, uint64_t eaddr, 531 unsigned level, bool ats) 532 { 533 unsigned shift = amdgpu_vm_level_shift(adev, level); 534 unsigned pt_idx, from, to; 535 u64 flags; 536 int r; 537 538 if (!parent->entries) { 539 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 540 541 parent->entries = kvmalloc_array(num_entries, 542 sizeof(struct amdgpu_vm_pt), 543 GFP_KERNEL | __GFP_ZERO); 544 if (!parent->entries) 545 return -ENOMEM; 546 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 547 } 548 549 from = saddr >> shift; 550 to = eaddr >> shift; 551 if (from >= amdgpu_vm_num_entries(adev, level) || 552 to >= amdgpu_vm_num_entries(adev, level)) 553 return -EINVAL; 554 555 ++level; 556 saddr = saddr & ((1 << shift) - 1); 557 eaddr = eaddr & ((1 << shift) - 1); 558 559 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 560 if (vm->root.base.bo->shadow) 561 flags |= AMDGPU_GEM_CREATE_SHADOW; 562 if (vm->use_cpu_for_update) 563 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 564 else 565 flags |= AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 566 567 /* walk over the address space and allocate the page tables */ 568 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 569 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 570 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 571 struct amdgpu_bo *pt; 572 573 if (!entry->base.bo) { 574 struct amdgpu_bo_param bp; 575 576 memset(&bp, 0, sizeof(bp)); 577 bp.size = amdgpu_vm_bo_size(adev, level); 578 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 579 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 580 bp.flags = flags; 581 bp.type = ttm_bo_type_kernel; 582 bp.resv = resv; 583 r = amdgpu_bo_create(adev, &bp, &pt); 584 if (r) 585 return r; 586 587 r = amdgpu_vm_clear_bo(adev, vm, pt, level, ats); 588 if (r) { 589 amdgpu_bo_unref(&pt->shadow); 590 amdgpu_bo_unref(&pt); 591 return r; 592 } 593 594 if (vm->use_cpu_for_update) { 595 r = amdgpu_bo_kmap(pt, NULL); 596 if (r) { 597 amdgpu_bo_unref(&pt->shadow); 598 amdgpu_bo_unref(&pt); 599 return r; 600 } 601 } 602 603 /* Keep a reference to the root directory to avoid 604 * freeing them up in the wrong order. 605 */ 606 pt->parent = amdgpu_bo_ref(parent->base.bo); 607 608 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 609 } 610 611 if (level < AMDGPU_VM_PTB) { 612 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 613 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 614 ((1 << shift) - 1); 615 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 616 sub_eaddr, level, ats); 617 if (r) 618 return r; 619 } 620 } 621 622 return 0; 623 } 624 625 /** 626 * amdgpu_vm_alloc_pts - Allocate page tables. 627 * 628 * @adev: amdgpu_device pointer 629 * @vm: VM to allocate page tables for 630 * @saddr: Start address which needs to be allocated 631 * @size: Size from start address we need. 632 * 633 * Make sure the page tables are allocated. 634 * 635 * Returns: 636 * 0 on success, errno otherwise. 637 */ 638 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 639 struct amdgpu_vm *vm, 640 uint64_t saddr, uint64_t size) 641 { 642 uint64_t eaddr; 643 bool ats = false; 644 645 /* validate the parameters */ 646 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 647 return -EINVAL; 648 649 eaddr = saddr + size - 1; 650 651 if (vm->pte_support_ats) 652 ats = saddr < AMDGPU_VA_HOLE_START; 653 654 saddr /= AMDGPU_GPU_PAGE_SIZE; 655 eaddr /= AMDGPU_GPU_PAGE_SIZE; 656 657 if (eaddr >= adev->vm_manager.max_pfn) { 658 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 659 eaddr, adev->vm_manager.max_pfn); 660 return -EINVAL; 661 } 662 663 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 664 adev->vm_manager.root_level, ats); 665 } 666 667 /** 668 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 669 * 670 * @adev: amdgpu_device pointer 671 */ 672 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 673 { 674 const struct amdgpu_ip_block *ip_block; 675 bool has_compute_vm_bug; 676 struct amdgpu_ring *ring; 677 int i; 678 679 has_compute_vm_bug = false; 680 681 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 682 if (ip_block) { 683 /* Compute has a VM bug for GFX version < 7. 684 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 685 if (ip_block->version->major <= 7) 686 has_compute_vm_bug = true; 687 else if (ip_block->version->major == 8) 688 if (adev->gfx.mec_fw_version < 673) 689 has_compute_vm_bug = true; 690 } 691 692 for (i = 0; i < adev->num_rings; i++) { 693 ring = adev->rings[i]; 694 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 695 /* only compute rings */ 696 ring->has_compute_vm_bug = has_compute_vm_bug; 697 else 698 ring->has_compute_vm_bug = false; 699 } 700 } 701 702 /** 703 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 704 * 705 * @ring: ring on which the job will be submitted 706 * @job: job to submit 707 * 708 * Returns: 709 * True if sync is needed. 710 */ 711 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 712 struct amdgpu_job *job) 713 { 714 struct amdgpu_device *adev = ring->adev; 715 unsigned vmhub = ring->funcs->vmhub; 716 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 717 struct amdgpu_vmid *id; 718 bool gds_switch_needed; 719 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 720 721 if (job->vmid == 0) 722 return false; 723 id = &id_mgr->ids[job->vmid]; 724 gds_switch_needed = ring->funcs->emit_gds_switch && ( 725 id->gds_base != job->gds_base || 726 id->gds_size != job->gds_size || 727 id->gws_base != job->gws_base || 728 id->gws_size != job->gws_size || 729 id->oa_base != job->oa_base || 730 id->oa_size != job->oa_size); 731 732 if (amdgpu_vmid_had_gpu_reset(adev, id)) 733 return true; 734 735 return vm_flush_needed || gds_switch_needed; 736 } 737 738 /** 739 * amdgpu_vm_flush - hardware flush the vm 740 * 741 * @ring: ring to use for flush 742 * @job: related job 743 * @need_pipe_sync: is pipe sync needed 744 * 745 * Emit a VM flush when it is necessary. 746 * 747 * Returns: 748 * 0 on success, errno otherwise. 749 */ 750 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 751 { 752 struct amdgpu_device *adev = ring->adev; 753 unsigned vmhub = ring->funcs->vmhub; 754 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 755 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 756 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 757 id->gds_base != job->gds_base || 758 id->gds_size != job->gds_size || 759 id->gws_base != job->gws_base || 760 id->gws_size != job->gws_size || 761 id->oa_base != job->oa_base || 762 id->oa_size != job->oa_size); 763 bool vm_flush_needed = job->vm_needs_flush; 764 struct dma_fence *fence = NULL; 765 bool pasid_mapping_needed = false; 766 unsigned patch_offset = 0; 767 int r; 768 769 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 770 gds_switch_needed = true; 771 vm_flush_needed = true; 772 pasid_mapping_needed = true; 773 } 774 775 mutex_lock(&id_mgr->lock); 776 if (id->pasid != job->pasid || !id->pasid_mapping || 777 !dma_fence_is_signaled(id->pasid_mapping)) 778 pasid_mapping_needed = true; 779 mutex_unlock(&id_mgr->lock); 780 781 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 782 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 783 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 784 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 785 ring->funcs->emit_wreg; 786 787 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 788 return 0; 789 790 if (ring->funcs->init_cond_exec) 791 patch_offset = amdgpu_ring_init_cond_exec(ring); 792 793 if (need_pipe_sync) 794 amdgpu_ring_emit_pipeline_sync(ring); 795 796 if (vm_flush_needed) { 797 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 798 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 799 } 800 801 if (pasid_mapping_needed) 802 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 803 804 if (vm_flush_needed || pasid_mapping_needed) { 805 r = amdgpu_fence_emit(ring, &fence, 0); 806 if (r) 807 return r; 808 } 809 810 if (vm_flush_needed) { 811 mutex_lock(&id_mgr->lock); 812 dma_fence_put(id->last_flush); 813 id->last_flush = dma_fence_get(fence); 814 id->current_gpu_reset_count = 815 atomic_read(&adev->gpu_reset_counter); 816 mutex_unlock(&id_mgr->lock); 817 } 818 819 if (pasid_mapping_needed) { 820 mutex_lock(&id_mgr->lock); 821 id->pasid = job->pasid; 822 dma_fence_put(id->pasid_mapping); 823 id->pasid_mapping = dma_fence_get(fence); 824 mutex_unlock(&id_mgr->lock); 825 } 826 dma_fence_put(fence); 827 828 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 829 id->gds_base = job->gds_base; 830 id->gds_size = job->gds_size; 831 id->gws_base = job->gws_base; 832 id->gws_size = job->gws_size; 833 id->oa_base = job->oa_base; 834 id->oa_size = job->oa_size; 835 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 836 job->gds_size, job->gws_base, 837 job->gws_size, job->oa_base, 838 job->oa_size); 839 } 840 841 if (ring->funcs->patch_cond_exec) 842 amdgpu_ring_patch_cond_exec(ring, patch_offset); 843 844 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 845 if (ring->funcs->emit_switch_buffer) { 846 amdgpu_ring_emit_switch_buffer(ring); 847 amdgpu_ring_emit_switch_buffer(ring); 848 } 849 return 0; 850 } 851 852 /** 853 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 854 * 855 * @vm: requested vm 856 * @bo: requested buffer object 857 * 858 * Find @bo inside the requested vm. 859 * Search inside the @bos vm list for the requested vm 860 * Returns the found bo_va or NULL if none is found 861 * 862 * Object has to be reserved! 863 * 864 * Returns: 865 * Found bo_va or NULL. 866 */ 867 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 868 struct amdgpu_bo *bo) 869 { 870 struct amdgpu_bo_va *bo_va; 871 872 list_for_each_entry(bo_va, &bo->va, base.bo_list) { 873 if (bo_va->base.vm == vm) { 874 return bo_va; 875 } 876 } 877 return NULL; 878 } 879 880 /** 881 * amdgpu_vm_do_set_ptes - helper to call the right asic function 882 * 883 * @params: see amdgpu_pte_update_params definition 884 * @bo: PD/PT to update 885 * @pe: addr of the page entry 886 * @addr: dst addr to write into pe 887 * @count: number of page entries to update 888 * @incr: increase next addr by incr bytes 889 * @flags: hw access flags 890 * 891 * Traces the parameters and calls the right asic functions 892 * to setup the page table using the DMA. 893 */ 894 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 895 struct amdgpu_bo *bo, 896 uint64_t pe, uint64_t addr, 897 unsigned count, uint32_t incr, 898 uint64_t flags) 899 { 900 pe += amdgpu_bo_gpu_offset(bo); 901 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 902 903 if (count < 3) { 904 amdgpu_vm_write_pte(params->adev, params->ib, pe, 905 addr | flags, count, incr); 906 907 } else { 908 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 909 count, incr, flags); 910 } 911 } 912 913 /** 914 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 915 * 916 * @params: see amdgpu_pte_update_params definition 917 * @bo: PD/PT to update 918 * @pe: addr of the page entry 919 * @addr: dst addr to write into pe 920 * @count: number of page entries to update 921 * @incr: increase next addr by incr bytes 922 * @flags: hw access flags 923 * 924 * Traces the parameters and calls the DMA function to copy the PTEs. 925 */ 926 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 927 struct amdgpu_bo *bo, 928 uint64_t pe, uint64_t addr, 929 unsigned count, uint32_t incr, 930 uint64_t flags) 931 { 932 uint64_t src = (params->src + (addr >> 12) * 8); 933 934 pe += amdgpu_bo_gpu_offset(bo); 935 trace_amdgpu_vm_copy_ptes(pe, src, count); 936 937 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 938 } 939 940 /** 941 * amdgpu_vm_map_gart - Resolve gart mapping of addr 942 * 943 * @pages_addr: optional DMA address to use for lookup 944 * @addr: the unmapped addr 945 * 946 * Look up the physical address of the page that the pte resolves 947 * to. 948 * 949 * Returns: 950 * The pointer for the page table entry. 951 */ 952 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 953 { 954 uint64_t result; 955 956 /* page table offset */ 957 result = pages_addr[addr >> PAGE_SHIFT]; 958 959 /* in case cpu page size != gpu page size*/ 960 result |= addr & (PAGE_MASK); 961 962 result &= 0xFFFFFFFFFFFFF000ULL; 963 964 return result; 965 } 966 967 /** 968 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 969 * 970 * @params: see amdgpu_pte_update_params definition 971 * @bo: PD/PT to update 972 * @pe: kmap addr of the page entry 973 * @addr: dst addr to write into pe 974 * @count: number of page entries to update 975 * @incr: increase next addr by incr bytes 976 * @flags: hw access flags 977 * 978 * Write count number of PT/PD entries directly. 979 */ 980 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 981 struct amdgpu_bo *bo, 982 uint64_t pe, uint64_t addr, 983 unsigned count, uint32_t incr, 984 uint64_t flags) 985 { 986 unsigned int i; 987 uint64_t value; 988 989 pe += (unsigned long)amdgpu_bo_kptr(bo); 990 991 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 992 993 for (i = 0; i < count; i++) { 994 value = params->pages_addr ? 995 amdgpu_vm_map_gart(params->pages_addr, addr) : 996 addr; 997 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 998 i, value, flags); 999 addr += incr; 1000 } 1001 } 1002 1003 1004 /** 1005 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 1006 * 1007 * @adev: amdgpu_device pointer 1008 * @vm: related vm 1009 * @owner: fence owner 1010 * 1011 * Returns: 1012 * 0 on success, errno otherwise. 1013 */ 1014 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1015 void *owner) 1016 { 1017 struct amdgpu_sync sync; 1018 int r; 1019 1020 amdgpu_sync_create(&sync); 1021 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 1022 r = amdgpu_sync_wait(&sync, true); 1023 amdgpu_sync_free(&sync); 1024 1025 return r; 1026 } 1027 1028 /* 1029 * amdgpu_vm_update_pde - update a single level in the hierarchy 1030 * 1031 * @param: parameters for the update 1032 * @vm: requested vm 1033 * @parent: parent directory 1034 * @entry: entry to update 1035 * 1036 * Makes sure the requested entry in parent is up to date. 1037 */ 1038 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1039 struct amdgpu_vm *vm, 1040 struct amdgpu_vm_pt *parent, 1041 struct amdgpu_vm_pt *entry) 1042 { 1043 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1044 uint64_t pde, pt, flags; 1045 unsigned level; 1046 1047 /* Don't update huge pages here */ 1048 if (entry->huge) 1049 return; 1050 1051 for (level = 0, pbo = bo->parent; pbo; ++level) 1052 pbo = pbo->parent; 1053 1054 level += params->adev->vm_manager.root_level; 1055 pt = amdgpu_bo_gpu_offset(entry->base.bo); 1056 flags = AMDGPU_PTE_VALID; 1057 amdgpu_gmc_get_vm_pde(params->adev, level, &pt, &flags); 1058 pde = (entry - parent->entries) * 8; 1059 if (bo->shadow) 1060 params->func(params, bo->shadow, pde, pt, 1, 0, flags); 1061 params->func(params, bo, pde, pt, 1, 0, flags); 1062 } 1063 1064 /* 1065 * amdgpu_vm_invalidate_level - mark all PD levels as invalid 1066 * 1067 * @adev: amdgpu_device pointer 1068 * @vm: related vm 1069 * @parent: parent PD 1070 * @level: VMPT level 1071 * 1072 * Mark all PD level as invalid after an error. 1073 */ 1074 static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev, 1075 struct amdgpu_vm *vm, 1076 struct amdgpu_vm_pt *parent, 1077 unsigned level) 1078 { 1079 unsigned pt_idx, num_entries; 1080 1081 /* 1082 * Recurse into the subdirectories. This recursion is harmless because 1083 * we only have a maximum of 5 layers. 1084 */ 1085 num_entries = amdgpu_vm_num_entries(adev, level); 1086 for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) { 1087 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 1088 1089 if (!entry->base.bo) 1090 continue; 1091 1092 if (!entry->base.moved) 1093 list_move(&entry->base.vm_status, &vm->relocated); 1094 amdgpu_vm_invalidate_level(adev, vm, entry, level + 1); 1095 } 1096 } 1097 1098 /* 1099 * amdgpu_vm_update_directories - make sure that all directories are valid 1100 * 1101 * @adev: amdgpu_device pointer 1102 * @vm: requested vm 1103 * 1104 * Makes sure all directories are up to date. 1105 * 1106 * Returns: 1107 * 0 for success, error for failure. 1108 */ 1109 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1110 struct amdgpu_vm *vm) 1111 { 1112 struct amdgpu_pte_update_params params; 1113 struct amdgpu_job *job; 1114 unsigned ndw = 0; 1115 int r = 0; 1116 1117 if (list_empty(&vm->relocated)) 1118 return 0; 1119 1120 restart: 1121 memset(¶ms, 0, sizeof(params)); 1122 params.adev = adev; 1123 1124 if (vm->use_cpu_for_update) { 1125 struct amdgpu_vm_bo_base *bo_base; 1126 1127 list_for_each_entry(bo_base, &vm->relocated, vm_status) { 1128 r = amdgpu_bo_kmap(bo_base->bo, NULL); 1129 if (unlikely(r)) 1130 return r; 1131 } 1132 1133 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1134 if (unlikely(r)) 1135 return r; 1136 1137 params.func = amdgpu_vm_cpu_set_ptes; 1138 } else { 1139 ndw = 512 * 8; 1140 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1141 if (r) 1142 return r; 1143 1144 params.ib = &job->ibs[0]; 1145 params.func = amdgpu_vm_do_set_ptes; 1146 } 1147 1148 while (!list_empty(&vm->relocated)) { 1149 struct amdgpu_vm_bo_base *bo_base, *parent; 1150 struct amdgpu_vm_pt *pt, *entry; 1151 struct amdgpu_bo *bo; 1152 1153 bo_base = list_first_entry(&vm->relocated, 1154 struct amdgpu_vm_bo_base, 1155 vm_status); 1156 bo_base->moved = false; 1157 list_del_init(&bo_base->vm_status); 1158 1159 bo = bo_base->bo->parent; 1160 if (!bo) 1161 continue; 1162 1163 parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base, 1164 bo_list); 1165 pt = container_of(parent, struct amdgpu_vm_pt, base); 1166 entry = container_of(bo_base, struct amdgpu_vm_pt, base); 1167 1168 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1169 1170 if (!vm->use_cpu_for_update && 1171 (ndw - params.ib->length_dw) < 32) 1172 break; 1173 } 1174 1175 if (vm->use_cpu_for_update) { 1176 /* Flush HDP */ 1177 mb(); 1178 amdgpu_asic_flush_hdp(adev, NULL); 1179 } else if (params.ib->length_dw == 0) { 1180 amdgpu_job_free(job); 1181 } else { 1182 struct amdgpu_bo *root = vm->root.base.bo; 1183 struct amdgpu_ring *ring; 1184 struct dma_fence *fence; 1185 1186 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1187 sched); 1188 1189 amdgpu_ring_pad_ib(ring, params.ib); 1190 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1191 AMDGPU_FENCE_OWNER_VM, false); 1192 WARN_ON(params.ib->length_dw > ndw); 1193 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1194 &fence); 1195 if (r) 1196 goto error; 1197 1198 amdgpu_bo_fence(root, fence, true); 1199 dma_fence_put(vm->last_update); 1200 vm->last_update = fence; 1201 } 1202 1203 if (!list_empty(&vm->relocated)) 1204 goto restart; 1205 1206 return 0; 1207 1208 error: 1209 amdgpu_vm_invalidate_level(adev, vm, &vm->root, 1210 adev->vm_manager.root_level); 1211 amdgpu_job_free(job); 1212 return r; 1213 } 1214 1215 /** 1216 * amdgpu_vm_find_entry - find the entry for an address 1217 * 1218 * @p: see amdgpu_pte_update_params definition 1219 * @addr: virtual address in question 1220 * @entry: resulting entry or NULL 1221 * @parent: parent entry 1222 * 1223 * Find the vm_pt entry and it's parent for the given address. 1224 */ 1225 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr, 1226 struct amdgpu_vm_pt **entry, 1227 struct amdgpu_vm_pt **parent) 1228 { 1229 unsigned level = p->adev->vm_manager.root_level; 1230 1231 *parent = NULL; 1232 *entry = &p->vm->root; 1233 while ((*entry)->entries) { 1234 unsigned shift = amdgpu_vm_level_shift(p->adev, level++); 1235 1236 *parent = *entry; 1237 *entry = &(*entry)->entries[addr >> shift]; 1238 addr &= (1ULL << shift) - 1; 1239 } 1240 1241 if (level != AMDGPU_VM_PTB) 1242 *entry = NULL; 1243 } 1244 1245 /** 1246 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages 1247 * 1248 * @p: see amdgpu_pte_update_params definition 1249 * @entry: vm_pt entry to check 1250 * @parent: parent entry 1251 * @nptes: number of PTEs updated with this operation 1252 * @dst: destination address where the PTEs should point to 1253 * @flags: access flags fro the PTEs 1254 * 1255 * Check if we can update the PD with a huge page. 1256 */ 1257 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p, 1258 struct amdgpu_vm_pt *entry, 1259 struct amdgpu_vm_pt *parent, 1260 unsigned nptes, uint64_t dst, 1261 uint64_t flags) 1262 { 1263 uint64_t pde; 1264 1265 /* In the case of a mixed PT the PDE must point to it*/ 1266 if (p->adev->asic_type >= CHIP_VEGA10 && !p->src && 1267 nptes == AMDGPU_VM_PTE_COUNT(p->adev)) { 1268 /* Set the huge page flag to stop scanning at this PDE */ 1269 flags |= AMDGPU_PDE_PTE; 1270 } 1271 1272 if (!(flags & AMDGPU_PDE_PTE)) { 1273 if (entry->huge) { 1274 /* Add the entry to the relocated list to update it. */ 1275 entry->huge = false; 1276 list_move(&entry->base.vm_status, &p->vm->relocated); 1277 } 1278 return; 1279 } 1280 1281 entry->huge = true; 1282 amdgpu_gmc_get_vm_pde(p->adev, AMDGPU_VM_PDB0, &dst, &flags); 1283 1284 pde = (entry - parent->entries) * 8; 1285 if (parent->base.bo->shadow) 1286 p->func(p, parent->base.bo->shadow, pde, dst, 1, 0, flags); 1287 p->func(p, parent->base.bo, pde, dst, 1, 0, flags); 1288 } 1289 1290 /** 1291 * amdgpu_vm_update_ptes - make sure that page tables are valid 1292 * 1293 * @params: see amdgpu_pte_update_params definition 1294 * @start: start of GPU address range 1295 * @end: end of GPU address range 1296 * @dst: destination address to map to, the next dst inside the function 1297 * @flags: mapping flags 1298 * 1299 * Update the page tables in the range @start - @end. 1300 * 1301 * Returns: 1302 * 0 for success, -EINVAL for failure. 1303 */ 1304 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1305 uint64_t start, uint64_t end, 1306 uint64_t dst, uint64_t flags) 1307 { 1308 struct amdgpu_device *adev = params->adev; 1309 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1310 1311 uint64_t addr, pe_start; 1312 struct amdgpu_bo *pt; 1313 unsigned nptes; 1314 1315 /* walk over the address space and update the page tables */ 1316 for (addr = start; addr < end; addr += nptes, 1317 dst += nptes * AMDGPU_GPU_PAGE_SIZE) { 1318 struct amdgpu_vm_pt *entry, *parent; 1319 1320 amdgpu_vm_get_entry(params, addr, &entry, &parent); 1321 if (!entry) 1322 return -ENOENT; 1323 1324 if ((addr & ~mask) == (end & ~mask)) 1325 nptes = end - addr; 1326 else 1327 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1328 1329 amdgpu_vm_handle_huge_pages(params, entry, parent, 1330 nptes, dst, flags); 1331 /* We don't need to update PTEs for huge pages */ 1332 if (entry->huge) 1333 continue; 1334 1335 pt = entry->base.bo; 1336 pe_start = (addr & mask) * 8; 1337 if (pt->shadow) 1338 params->func(params, pt->shadow, pe_start, dst, nptes, 1339 AMDGPU_GPU_PAGE_SIZE, flags); 1340 params->func(params, pt, pe_start, dst, nptes, 1341 AMDGPU_GPU_PAGE_SIZE, flags); 1342 } 1343 1344 return 0; 1345 } 1346 1347 /* 1348 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1349 * 1350 * @params: see amdgpu_pte_update_params definition 1351 * @vm: requested vm 1352 * @start: first PTE to handle 1353 * @end: last PTE to handle 1354 * @dst: addr those PTEs should point to 1355 * @flags: hw mapping flags 1356 * 1357 * Returns: 1358 * 0 for success, -EINVAL for failure. 1359 */ 1360 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1361 uint64_t start, uint64_t end, 1362 uint64_t dst, uint64_t flags) 1363 { 1364 /** 1365 * The MC L1 TLB supports variable sized pages, based on a fragment 1366 * field in the PTE. When this field is set to a non-zero value, page 1367 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1368 * flags are considered valid for all PTEs within the fragment range 1369 * and corresponding mappings are assumed to be physically contiguous. 1370 * 1371 * The L1 TLB can store a single PTE for the whole fragment, 1372 * significantly increasing the space available for translation 1373 * caching. This leads to large improvements in throughput when the 1374 * TLB is under pressure. 1375 * 1376 * The L2 TLB distributes small and large fragments into two 1377 * asymmetric partitions. The large fragment cache is significantly 1378 * larger. Thus, we try to use large fragments wherever possible. 1379 * Userspace can support this by aligning virtual base address and 1380 * allocation size to the fragment size. 1381 */ 1382 unsigned max_frag = params->adev->vm_manager.fragment_size; 1383 int r; 1384 1385 /* system pages are non continuously */ 1386 if (params->src || !(flags & AMDGPU_PTE_VALID)) 1387 return amdgpu_vm_update_ptes(params, start, end, dst, flags); 1388 1389 while (start != end) { 1390 uint64_t frag_flags, frag_end; 1391 unsigned frag; 1392 1393 /* This intentionally wraps around if no bit is set */ 1394 frag = min((unsigned)ffs(start) - 1, 1395 (unsigned)fls64(end - start) - 1); 1396 if (frag >= max_frag) { 1397 frag_flags = AMDGPU_PTE_FRAG(max_frag); 1398 frag_end = end & ~((1ULL << max_frag) - 1); 1399 } else { 1400 frag_flags = AMDGPU_PTE_FRAG(frag); 1401 frag_end = start + (1 << frag); 1402 } 1403 1404 r = amdgpu_vm_update_ptes(params, start, frag_end, dst, 1405 flags | frag_flags); 1406 if (r) 1407 return r; 1408 1409 dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE; 1410 start = frag_end; 1411 } 1412 1413 return 0; 1414 } 1415 1416 /** 1417 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1418 * 1419 * @adev: amdgpu_device pointer 1420 * @exclusive: fence we need to sync to 1421 * @pages_addr: DMA addresses to use for mapping 1422 * @vm: requested vm 1423 * @start: start of mapped range 1424 * @last: last mapped entry 1425 * @flags: flags for the entries 1426 * @addr: addr to set the area to 1427 * @fence: optional resulting fence 1428 * 1429 * Fill in the page table entries between @start and @last. 1430 * 1431 * Returns: 1432 * 0 for success, -EINVAL for failure. 1433 */ 1434 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1435 struct dma_fence *exclusive, 1436 dma_addr_t *pages_addr, 1437 struct amdgpu_vm *vm, 1438 uint64_t start, uint64_t last, 1439 uint64_t flags, uint64_t addr, 1440 struct dma_fence **fence) 1441 { 1442 struct amdgpu_ring *ring; 1443 void *owner = AMDGPU_FENCE_OWNER_VM; 1444 unsigned nptes, ncmds, ndw; 1445 struct amdgpu_job *job; 1446 struct amdgpu_pte_update_params params; 1447 struct dma_fence *f = NULL; 1448 int r; 1449 1450 memset(¶ms, 0, sizeof(params)); 1451 params.adev = adev; 1452 params.vm = vm; 1453 1454 /* sync to everything on unmapping */ 1455 if (!(flags & AMDGPU_PTE_VALID)) 1456 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1457 1458 if (vm->use_cpu_for_update) { 1459 /* params.src is used as flag to indicate system Memory */ 1460 if (pages_addr) 1461 params.src = ~0; 1462 1463 /* Wait for PT BOs to be free. PTs share the same resv. object 1464 * as the root PD BO 1465 */ 1466 r = amdgpu_vm_wait_pd(adev, vm, owner); 1467 if (unlikely(r)) 1468 return r; 1469 1470 params.func = amdgpu_vm_cpu_set_ptes; 1471 params.pages_addr = pages_addr; 1472 return amdgpu_vm_frag_ptes(¶ms, start, last + 1, 1473 addr, flags); 1474 } 1475 1476 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1477 1478 nptes = last - start + 1; 1479 1480 /* 1481 * reserve space for two commands every (1 << BLOCK_SIZE) 1482 * entries or 2k dwords (whatever is smaller) 1483 * 1484 * The second command is for the shadow pagetables. 1485 */ 1486 if (vm->root.base.bo->shadow) 1487 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1488 else 1489 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1490 1491 /* padding, etc. */ 1492 ndw = 64; 1493 1494 if (pages_addr) { 1495 /* copy commands needed */ 1496 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1497 1498 /* and also PTEs */ 1499 ndw += nptes * 2; 1500 1501 params.func = amdgpu_vm_do_copy_ptes; 1502 1503 } else { 1504 /* set page commands needed */ 1505 ndw += ncmds * 10; 1506 1507 /* extra commands for begin/end fragments */ 1508 if (vm->root.base.bo->shadow) 1509 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1510 else 1511 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1512 1513 params.func = amdgpu_vm_do_set_ptes; 1514 } 1515 1516 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1517 if (r) 1518 return r; 1519 1520 params.ib = &job->ibs[0]; 1521 1522 if (pages_addr) { 1523 uint64_t *pte; 1524 unsigned i; 1525 1526 /* Put the PTEs at the end of the IB. */ 1527 i = ndw - nptes * 2; 1528 pte= (uint64_t *)&(job->ibs->ptr[i]); 1529 params.src = job->ibs->gpu_addr + i * 4; 1530 1531 for (i = 0; i < nptes; ++i) { 1532 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1533 AMDGPU_GPU_PAGE_SIZE); 1534 pte[i] |= flags; 1535 } 1536 addr = 0; 1537 } 1538 1539 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1540 if (r) 1541 goto error_free; 1542 1543 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1544 owner, false); 1545 if (r) 1546 goto error_free; 1547 1548 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1549 if (r) 1550 goto error_free; 1551 1552 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1553 if (r) 1554 goto error_free; 1555 1556 amdgpu_ring_pad_ib(ring, params.ib); 1557 WARN_ON(params.ib->length_dw > ndw); 1558 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1559 if (r) 1560 goto error_free; 1561 1562 amdgpu_bo_fence(vm->root.base.bo, f, true); 1563 dma_fence_put(*fence); 1564 *fence = f; 1565 return 0; 1566 1567 error_free: 1568 amdgpu_job_free(job); 1569 return r; 1570 } 1571 1572 /** 1573 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1574 * 1575 * @adev: amdgpu_device pointer 1576 * @exclusive: fence we need to sync to 1577 * @pages_addr: DMA addresses to use for mapping 1578 * @vm: requested vm 1579 * @mapping: mapped range and flags to use for the update 1580 * @flags: HW flags for the mapping 1581 * @nodes: array of drm_mm_nodes with the MC addresses 1582 * @fence: optional resulting fence 1583 * 1584 * Split the mapping into smaller chunks so that each update fits 1585 * into a SDMA IB. 1586 * 1587 * Returns: 1588 * 0 for success, -EINVAL for failure. 1589 */ 1590 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1591 struct dma_fence *exclusive, 1592 dma_addr_t *pages_addr, 1593 struct amdgpu_vm *vm, 1594 struct amdgpu_bo_va_mapping *mapping, 1595 uint64_t flags, 1596 struct drm_mm_node *nodes, 1597 struct dma_fence **fence) 1598 { 1599 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1600 uint64_t pfn, start = mapping->start; 1601 int r; 1602 1603 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1604 * but in case of something, we filter the flags in first place 1605 */ 1606 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1607 flags &= ~AMDGPU_PTE_READABLE; 1608 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1609 flags &= ~AMDGPU_PTE_WRITEABLE; 1610 1611 flags &= ~AMDGPU_PTE_EXECUTABLE; 1612 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1613 1614 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1615 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1616 1617 if ((mapping->flags & AMDGPU_PTE_PRT) && 1618 (adev->asic_type >= CHIP_VEGA10)) { 1619 flags |= AMDGPU_PTE_PRT; 1620 flags &= ~AMDGPU_PTE_VALID; 1621 } 1622 1623 trace_amdgpu_vm_bo_update(mapping); 1624 1625 pfn = mapping->offset >> PAGE_SHIFT; 1626 if (nodes) { 1627 while (pfn >= nodes->size) { 1628 pfn -= nodes->size; 1629 ++nodes; 1630 } 1631 } 1632 1633 do { 1634 dma_addr_t *dma_addr = NULL; 1635 uint64_t max_entries; 1636 uint64_t addr, last; 1637 1638 if (nodes) { 1639 addr = nodes->start << PAGE_SHIFT; 1640 max_entries = (nodes->size - pfn) * 1641 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1642 } else { 1643 addr = 0; 1644 max_entries = S64_MAX; 1645 } 1646 1647 if (pages_addr) { 1648 uint64_t count; 1649 1650 max_entries = min(max_entries, 16ull * 1024ull); 1651 for (count = 1; 1652 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1653 ++count) { 1654 uint64_t idx = pfn + count; 1655 1656 if (pages_addr[idx] != 1657 (pages_addr[idx - 1] + PAGE_SIZE)) 1658 break; 1659 } 1660 1661 if (count < min_linear_pages) { 1662 addr = pfn << PAGE_SHIFT; 1663 dma_addr = pages_addr; 1664 } else { 1665 addr = pages_addr[pfn]; 1666 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1667 } 1668 1669 } else if (flags & AMDGPU_PTE_VALID) { 1670 addr += adev->vm_manager.vram_base_offset; 1671 addr += pfn << PAGE_SHIFT; 1672 } 1673 1674 last = min((uint64_t)mapping->last, start + max_entries - 1); 1675 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1676 start, last, flags, addr, 1677 fence); 1678 if (r) 1679 return r; 1680 1681 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1682 if (nodes && nodes->size == pfn) { 1683 pfn = 0; 1684 ++nodes; 1685 } 1686 start = last + 1; 1687 1688 } while (unlikely(start != mapping->last + 1)); 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1695 * 1696 * @adev: amdgpu_device pointer 1697 * @bo_va: requested BO and VM object 1698 * @clear: if true clear the entries 1699 * 1700 * Fill in the page table entries for @bo_va. 1701 * 1702 * Returns: 1703 * 0 for success, -EINVAL for failure. 1704 */ 1705 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1706 struct amdgpu_bo_va *bo_va, 1707 bool clear) 1708 { 1709 struct amdgpu_bo *bo = bo_va->base.bo; 1710 struct amdgpu_vm *vm = bo_va->base.vm; 1711 struct amdgpu_bo_va_mapping *mapping; 1712 dma_addr_t *pages_addr = NULL; 1713 struct ttm_mem_reg *mem; 1714 struct drm_mm_node *nodes; 1715 struct dma_fence *exclusive, **last_update; 1716 uint64_t flags; 1717 int r; 1718 1719 if (clear || !bo) { 1720 mem = NULL; 1721 nodes = NULL; 1722 exclusive = NULL; 1723 } else { 1724 struct ttm_dma_tt *ttm; 1725 1726 mem = &bo->tbo.mem; 1727 nodes = mem->mm_node; 1728 if (mem->mem_type == TTM_PL_TT) { 1729 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1730 pages_addr = ttm->dma_address; 1731 } 1732 exclusive = reservation_object_get_excl(bo->tbo.resv); 1733 } 1734 1735 if (bo) 1736 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1737 else 1738 flags = 0x0; 1739 1740 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 1741 last_update = &vm->last_update; 1742 else 1743 last_update = &bo_va->last_pt_update; 1744 1745 if (!clear && bo_va->base.moved) { 1746 bo_va->base.moved = false; 1747 list_splice_init(&bo_va->valids, &bo_va->invalids); 1748 1749 } else if (bo_va->cleared != clear) { 1750 list_splice_init(&bo_va->valids, &bo_va->invalids); 1751 } 1752 1753 list_for_each_entry(mapping, &bo_va->invalids, list) { 1754 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1755 mapping, flags, nodes, 1756 last_update); 1757 if (r) 1758 return r; 1759 } 1760 1761 if (vm->use_cpu_for_update) { 1762 /* Flush HDP */ 1763 mb(); 1764 amdgpu_asic_flush_hdp(adev, NULL); 1765 } 1766 1767 spin_lock(&vm->moved_lock); 1768 list_del_init(&bo_va->base.vm_status); 1769 spin_unlock(&vm->moved_lock); 1770 1771 /* If the BO is not in its preferred location add it back to 1772 * the evicted list so that it gets validated again on the 1773 * next command submission. 1774 */ 1775 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 1776 uint32_t mem_type = bo->tbo.mem.mem_type; 1777 1778 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 1779 list_add_tail(&bo_va->base.vm_status, &vm->evicted); 1780 else 1781 list_add(&bo_va->base.vm_status, &vm->idle); 1782 } 1783 1784 list_splice_init(&bo_va->invalids, &bo_va->valids); 1785 bo_va->cleared = clear; 1786 1787 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1788 list_for_each_entry(mapping, &bo_va->valids, list) 1789 trace_amdgpu_vm_bo_mapping(mapping); 1790 } 1791 1792 return 0; 1793 } 1794 1795 /** 1796 * amdgpu_vm_update_prt_state - update the global PRT state 1797 * 1798 * @adev: amdgpu_device pointer 1799 */ 1800 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1801 { 1802 unsigned long flags; 1803 bool enable; 1804 1805 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1806 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1807 adev->gmc.gmc_funcs->set_prt(adev, enable); 1808 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1809 } 1810 1811 /** 1812 * amdgpu_vm_prt_get - add a PRT user 1813 * 1814 * @adev: amdgpu_device pointer 1815 */ 1816 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1817 { 1818 if (!adev->gmc.gmc_funcs->set_prt) 1819 return; 1820 1821 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1822 amdgpu_vm_update_prt_state(adev); 1823 } 1824 1825 /** 1826 * amdgpu_vm_prt_put - drop a PRT user 1827 * 1828 * @adev: amdgpu_device pointer 1829 */ 1830 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1831 { 1832 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1833 amdgpu_vm_update_prt_state(adev); 1834 } 1835 1836 /** 1837 * amdgpu_vm_prt_cb - callback for updating the PRT status 1838 * 1839 * @fence: fence for the callback 1840 * @_cb: the callback function 1841 */ 1842 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1843 { 1844 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1845 1846 amdgpu_vm_prt_put(cb->adev); 1847 kfree(cb); 1848 } 1849 1850 /** 1851 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1852 * 1853 * @adev: amdgpu_device pointer 1854 * @fence: fence for the callback 1855 */ 1856 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1857 struct dma_fence *fence) 1858 { 1859 struct amdgpu_prt_cb *cb; 1860 1861 if (!adev->gmc.gmc_funcs->set_prt) 1862 return; 1863 1864 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1865 if (!cb) { 1866 /* Last resort when we are OOM */ 1867 if (fence) 1868 dma_fence_wait(fence, false); 1869 1870 amdgpu_vm_prt_put(adev); 1871 } else { 1872 cb->adev = adev; 1873 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1874 amdgpu_vm_prt_cb)) 1875 amdgpu_vm_prt_cb(fence, &cb->cb); 1876 } 1877 } 1878 1879 /** 1880 * amdgpu_vm_free_mapping - free a mapping 1881 * 1882 * @adev: amdgpu_device pointer 1883 * @vm: requested vm 1884 * @mapping: mapping to be freed 1885 * @fence: fence of the unmap operation 1886 * 1887 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1888 */ 1889 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1890 struct amdgpu_vm *vm, 1891 struct amdgpu_bo_va_mapping *mapping, 1892 struct dma_fence *fence) 1893 { 1894 if (mapping->flags & AMDGPU_PTE_PRT) 1895 amdgpu_vm_add_prt_cb(adev, fence); 1896 kfree(mapping); 1897 } 1898 1899 /** 1900 * amdgpu_vm_prt_fini - finish all prt mappings 1901 * 1902 * @adev: amdgpu_device pointer 1903 * @vm: requested vm 1904 * 1905 * Register a cleanup callback to disable PRT support after VM dies. 1906 */ 1907 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1908 { 1909 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 1910 struct dma_fence *excl, **shared; 1911 unsigned i, shared_count; 1912 int r; 1913 1914 r = reservation_object_get_fences_rcu(resv, &excl, 1915 &shared_count, &shared); 1916 if (r) { 1917 /* Not enough memory to grab the fence list, as last resort 1918 * block for all the fences to complete. 1919 */ 1920 reservation_object_wait_timeout_rcu(resv, true, false, 1921 MAX_SCHEDULE_TIMEOUT); 1922 return; 1923 } 1924 1925 /* Add a callback for each fence in the reservation object */ 1926 amdgpu_vm_prt_get(adev); 1927 amdgpu_vm_add_prt_cb(adev, excl); 1928 1929 for (i = 0; i < shared_count; ++i) { 1930 amdgpu_vm_prt_get(adev); 1931 amdgpu_vm_add_prt_cb(adev, shared[i]); 1932 } 1933 1934 kfree(shared); 1935 } 1936 1937 /** 1938 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1939 * 1940 * @adev: amdgpu_device pointer 1941 * @vm: requested vm 1942 * @fence: optional resulting fence (unchanged if no work needed to be done 1943 * or if an error occurred) 1944 * 1945 * Make sure all freed BOs are cleared in the PT. 1946 * PTs have to be reserved and mutex must be locked! 1947 * 1948 * Returns: 1949 * 0 for success. 1950 * 1951 */ 1952 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1953 struct amdgpu_vm *vm, 1954 struct dma_fence **fence) 1955 { 1956 struct amdgpu_bo_va_mapping *mapping; 1957 uint64_t init_pte_value = 0; 1958 struct dma_fence *f = NULL; 1959 int r; 1960 1961 while (!list_empty(&vm->freed)) { 1962 mapping = list_first_entry(&vm->freed, 1963 struct amdgpu_bo_va_mapping, list); 1964 list_del(&mapping->list); 1965 1966 if (vm->pte_support_ats && mapping->start < AMDGPU_VA_HOLE_START) 1967 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1968 1969 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 1970 mapping->start, mapping->last, 1971 init_pte_value, 0, &f); 1972 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1973 if (r) { 1974 dma_fence_put(f); 1975 return r; 1976 } 1977 } 1978 1979 if (fence && f) { 1980 dma_fence_put(*fence); 1981 *fence = f; 1982 } else { 1983 dma_fence_put(f); 1984 } 1985 1986 return 0; 1987 1988 } 1989 1990 /** 1991 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1992 * 1993 * @adev: amdgpu_device pointer 1994 * @vm: requested vm 1995 * 1996 * Make sure all BOs which are moved are updated in the PTs. 1997 * 1998 * Returns: 1999 * 0 for success. 2000 * 2001 * PTs have to be reserved! 2002 */ 2003 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2004 struct amdgpu_vm *vm) 2005 { 2006 struct amdgpu_bo_va *bo_va, *tmp; 2007 struct list_head moved; 2008 bool clear; 2009 int r; 2010 2011 INIT_LIST_HEAD(&moved); 2012 spin_lock(&vm->moved_lock); 2013 list_splice_init(&vm->moved, &moved); 2014 spin_unlock(&vm->moved_lock); 2015 2016 list_for_each_entry_safe(bo_va, tmp, &moved, base.vm_status) { 2017 struct reservation_object *resv = bo_va->base.bo->tbo.resv; 2018 2019 /* Per VM BOs never need to bo cleared in the page tables */ 2020 if (resv == vm->root.base.bo->tbo.resv) 2021 clear = false; 2022 /* Try to reserve the BO to avoid clearing its ptes */ 2023 else if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2024 clear = false; 2025 /* Somebody else is using the BO right now */ 2026 else 2027 clear = true; 2028 2029 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2030 if (r) { 2031 spin_lock(&vm->moved_lock); 2032 list_splice(&moved, &vm->moved); 2033 spin_unlock(&vm->moved_lock); 2034 return r; 2035 } 2036 2037 if (!clear && resv != vm->root.base.bo->tbo.resv) 2038 reservation_object_unlock(resv); 2039 2040 } 2041 2042 return 0; 2043 } 2044 2045 /** 2046 * amdgpu_vm_bo_add - add a bo to a specific vm 2047 * 2048 * @adev: amdgpu_device pointer 2049 * @vm: requested vm 2050 * @bo: amdgpu buffer object 2051 * 2052 * Add @bo into the requested vm. 2053 * Add @bo to the list of bos associated with the vm 2054 * 2055 * Returns: 2056 * Newly added bo_va or NULL for failure 2057 * 2058 * Object has to be reserved! 2059 */ 2060 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2061 struct amdgpu_vm *vm, 2062 struct amdgpu_bo *bo) 2063 { 2064 struct amdgpu_bo_va *bo_va; 2065 2066 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2067 if (bo_va == NULL) { 2068 return NULL; 2069 } 2070 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2071 2072 bo_va->ref_count = 1; 2073 INIT_LIST_HEAD(&bo_va->valids); 2074 INIT_LIST_HEAD(&bo_va->invalids); 2075 2076 return bo_va; 2077 } 2078 2079 2080 /** 2081 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2082 * 2083 * @adev: amdgpu_device pointer 2084 * @bo_va: bo_va to store the address 2085 * @mapping: the mapping to insert 2086 * 2087 * Insert a new mapping into all structures. 2088 */ 2089 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2090 struct amdgpu_bo_va *bo_va, 2091 struct amdgpu_bo_va_mapping *mapping) 2092 { 2093 struct amdgpu_vm *vm = bo_va->base.vm; 2094 struct amdgpu_bo *bo = bo_va->base.bo; 2095 2096 mapping->bo_va = bo_va; 2097 list_add(&mapping->list, &bo_va->invalids); 2098 amdgpu_vm_it_insert(mapping, &vm->va); 2099 2100 if (mapping->flags & AMDGPU_PTE_PRT) 2101 amdgpu_vm_prt_get(adev); 2102 2103 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2104 !bo_va->base.moved) { 2105 spin_lock(&vm->moved_lock); 2106 list_move(&bo_va->base.vm_status, &vm->moved); 2107 spin_unlock(&vm->moved_lock); 2108 } 2109 trace_amdgpu_vm_bo_map(bo_va, mapping); 2110 } 2111 2112 /** 2113 * amdgpu_vm_bo_map - map bo inside a vm 2114 * 2115 * @adev: amdgpu_device pointer 2116 * @bo_va: bo_va to store the address 2117 * @saddr: where to map the BO 2118 * @offset: requested offset in the BO 2119 * @size: BO size in bytes 2120 * @flags: attributes of pages (read/write/valid/etc.) 2121 * 2122 * Add a mapping of the BO at the specefied addr into the VM. 2123 * 2124 * Returns: 2125 * 0 for success, error for failure. 2126 * 2127 * Object has to be reserved and unreserved outside! 2128 */ 2129 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2130 struct amdgpu_bo_va *bo_va, 2131 uint64_t saddr, uint64_t offset, 2132 uint64_t size, uint64_t flags) 2133 { 2134 struct amdgpu_bo_va_mapping *mapping, *tmp; 2135 struct amdgpu_bo *bo = bo_va->base.bo; 2136 struct amdgpu_vm *vm = bo_va->base.vm; 2137 uint64_t eaddr; 2138 2139 /* validate the parameters */ 2140 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2141 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2142 return -EINVAL; 2143 2144 /* make sure object fit at this offset */ 2145 eaddr = saddr + size - 1; 2146 if (saddr >= eaddr || 2147 (bo && offset + size > amdgpu_bo_size(bo))) 2148 return -EINVAL; 2149 2150 saddr /= AMDGPU_GPU_PAGE_SIZE; 2151 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2152 2153 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2154 if (tmp) { 2155 /* bo and tmp overlap, invalid addr */ 2156 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2157 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2158 tmp->start, tmp->last + 1); 2159 return -EINVAL; 2160 } 2161 2162 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2163 if (!mapping) 2164 return -ENOMEM; 2165 2166 mapping->start = saddr; 2167 mapping->last = eaddr; 2168 mapping->offset = offset; 2169 mapping->flags = flags; 2170 2171 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2172 2173 return 0; 2174 } 2175 2176 /** 2177 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2178 * 2179 * @adev: amdgpu_device pointer 2180 * @bo_va: bo_va to store the address 2181 * @saddr: where to map the BO 2182 * @offset: requested offset in the BO 2183 * @size: BO size in bytes 2184 * @flags: attributes of pages (read/write/valid/etc.) 2185 * 2186 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2187 * mappings as we do so. 2188 * 2189 * Returns: 2190 * 0 for success, error for failure. 2191 * 2192 * Object has to be reserved and unreserved outside! 2193 */ 2194 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2195 struct amdgpu_bo_va *bo_va, 2196 uint64_t saddr, uint64_t offset, 2197 uint64_t size, uint64_t flags) 2198 { 2199 struct amdgpu_bo_va_mapping *mapping; 2200 struct amdgpu_bo *bo = bo_va->base.bo; 2201 uint64_t eaddr; 2202 int r; 2203 2204 /* validate the parameters */ 2205 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2206 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2207 return -EINVAL; 2208 2209 /* make sure object fit at this offset */ 2210 eaddr = saddr + size - 1; 2211 if (saddr >= eaddr || 2212 (bo && offset + size > amdgpu_bo_size(bo))) 2213 return -EINVAL; 2214 2215 /* Allocate all the needed memory */ 2216 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2217 if (!mapping) 2218 return -ENOMEM; 2219 2220 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2221 if (r) { 2222 kfree(mapping); 2223 return r; 2224 } 2225 2226 saddr /= AMDGPU_GPU_PAGE_SIZE; 2227 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2228 2229 mapping->start = saddr; 2230 mapping->last = eaddr; 2231 mapping->offset = offset; 2232 mapping->flags = flags; 2233 2234 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2235 2236 return 0; 2237 } 2238 2239 /** 2240 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2241 * 2242 * @adev: amdgpu_device pointer 2243 * @bo_va: bo_va to remove the address from 2244 * @saddr: where to the BO is mapped 2245 * 2246 * Remove a mapping of the BO at the specefied addr from the VM. 2247 * 2248 * Returns: 2249 * 0 for success, error for failure. 2250 * 2251 * Object has to be reserved and unreserved outside! 2252 */ 2253 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2254 struct amdgpu_bo_va *bo_va, 2255 uint64_t saddr) 2256 { 2257 struct amdgpu_bo_va_mapping *mapping; 2258 struct amdgpu_vm *vm = bo_va->base.vm; 2259 bool valid = true; 2260 2261 saddr /= AMDGPU_GPU_PAGE_SIZE; 2262 2263 list_for_each_entry(mapping, &bo_va->valids, list) { 2264 if (mapping->start == saddr) 2265 break; 2266 } 2267 2268 if (&mapping->list == &bo_va->valids) { 2269 valid = false; 2270 2271 list_for_each_entry(mapping, &bo_va->invalids, list) { 2272 if (mapping->start == saddr) 2273 break; 2274 } 2275 2276 if (&mapping->list == &bo_va->invalids) 2277 return -ENOENT; 2278 } 2279 2280 list_del(&mapping->list); 2281 amdgpu_vm_it_remove(mapping, &vm->va); 2282 mapping->bo_va = NULL; 2283 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2284 2285 if (valid) 2286 list_add(&mapping->list, &vm->freed); 2287 else 2288 amdgpu_vm_free_mapping(adev, vm, mapping, 2289 bo_va->last_pt_update); 2290 2291 return 0; 2292 } 2293 2294 /** 2295 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2296 * 2297 * @adev: amdgpu_device pointer 2298 * @vm: VM structure to use 2299 * @saddr: start of the range 2300 * @size: size of the range 2301 * 2302 * Remove all mappings in a range, split them as appropriate. 2303 * 2304 * Returns: 2305 * 0 for success, error for failure. 2306 */ 2307 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2308 struct amdgpu_vm *vm, 2309 uint64_t saddr, uint64_t size) 2310 { 2311 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2312 DRM_LIST_HEAD(removed); 2313 uint64_t eaddr; 2314 2315 eaddr = saddr + size - 1; 2316 saddr /= AMDGPU_GPU_PAGE_SIZE; 2317 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2318 2319 /* Allocate all the needed memory */ 2320 before = kzalloc(sizeof(*before), GFP_KERNEL); 2321 if (!before) 2322 return -ENOMEM; 2323 INIT_LIST_HEAD(&before->list); 2324 2325 after = kzalloc(sizeof(*after), GFP_KERNEL); 2326 if (!after) { 2327 kfree(before); 2328 return -ENOMEM; 2329 } 2330 INIT_LIST_HEAD(&after->list); 2331 2332 /* Now gather all removed mappings */ 2333 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2334 while (tmp) { 2335 /* Remember mapping split at the start */ 2336 if (tmp->start < saddr) { 2337 before->start = tmp->start; 2338 before->last = saddr - 1; 2339 before->offset = tmp->offset; 2340 before->flags = tmp->flags; 2341 before->bo_va = tmp->bo_va; 2342 list_add(&before->list, &tmp->bo_va->invalids); 2343 } 2344 2345 /* Remember mapping split at the end */ 2346 if (tmp->last > eaddr) { 2347 after->start = eaddr + 1; 2348 after->last = tmp->last; 2349 after->offset = tmp->offset; 2350 after->offset += after->start - tmp->start; 2351 after->flags = tmp->flags; 2352 after->bo_va = tmp->bo_va; 2353 list_add(&after->list, &tmp->bo_va->invalids); 2354 } 2355 2356 list_del(&tmp->list); 2357 list_add(&tmp->list, &removed); 2358 2359 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2360 } 2361 2362 /* And free them up */ 2363 list_for_each_entry_safe(tmp, next, &removed, list) { 2364 amdgpu_vm_it_remove(tmp, &vm->va); 2365 list_del(&tmp->list); 2366 2367 if (tmp->start < saddr) 2368 tmp->start = saddr; 2369 if (tmp->last > eaddr) 2370 tmp->last = eaddr; 2371 2372 tmp->bo_va = NULL; 2373 list_add(&tmp->list, &vm->freed); 2374 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2375 } 2376 2377 /* Insert partial mapping before the range */ 2378 if (!list_empty(&before->list)) { 2379 amdgpu_vm_it_insert(before, &vm->va); 2380 if (before->flags & AMDGPU_PTE_PRT) 2381 amdgpu_vm_prt_get(adev); 2382 } else { 2383 kfree(before); 2384 } 2385 2386 /* Insert partial mapping after the range */ 2387 if (!list_empty(&after->list)) { 2388 amdgpu_vm_it_insert(after, &vm->va); 2389 if (after->flags & AMDGPU_PTE_PRT) 2390 amdgpu_vm_prt_get(adev); 2391 } else { 2392 kfree(after); 2393 } 2394 2395 return 0; 2396 } 2397 2398 /** 2399 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2400 * 2401 * @vm: the requested VM 2402 * @addr: the address 2403 * 2404 * Find a mapping by it's address. 2405 * 2406 * Returns: 2407 * The amdgpu_bo_va_mapping matching for addr or NULL 2408 * 2409 */ 2410 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2411 uint64_t addr) 2412 { 2413 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2414 } 2415 2416 /** 2417 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2418 * 2419 * @vm: the requested vm 2420 * @ticket: CS ticket 2421 * 2422 * Trace all mappings of BOs reserved during a command submission. 2423 */ 2424 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2425 { 2426 struct amdgpu_bo_va_mapping *mapping; 2427 2428 if (!trace_amdgpu_vm_bo_cs_enabled()) 2429 return; 2430 2431 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2432 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2433 if (mapping->bo_va && mapping->bo_va->base.bo) { 2434 struct amdgpu_bo *bo; 2435 2436 bo = mapping->bo_va->base.bo; 2437 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2438 continue; 2439 } 2440 2441 trace_amdgpu_vm_bo_cs(mapping); 2442 } 2443 } 2444 2445 /** 2446 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2447 * 2448 * @adev: amdgpu_device pointer 2449 * @bo_va: requested bo_va 2450 * 2451 * Remove @bo_va->bo from the requested vm. 2452 * 2453 * Object have to be reserved! 2454 */ 2455 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2456 struct amdgpu_bo_va *bo_va) 2457 { 2458 struct amdgpu_bo_va_mapping *mapping, *next; 2459 struct amdgpu_vm *vm = bo_va->base.vm; 2460 2461 list_del(&bo_va->base.bo_list); 2462 2463 spin_lock(&vm->moved_lock); 2464 list_del(&bo_va->base.vm_status); 2465 spin_unlock(&vm->moved_lock); 2466 2467 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2468 list_del(&mapping->list); 2469 amdgpu_vm_it_remove(mapping, &vm->va); 2470 mapping->bo_va = NULL; 2471 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2472 list_add(&mapping->list, &vm->freed); 2473 } 2474 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2475 list_del(&mapping->list); 2476 amdgpu_vm_it_remove(mapping, &vm->va); 2477 amdgpu_vm_free_mapping(adev, vm, mapping, 2478 bo_va->last_pt_update); 2479 } 2480 2481 dma_fence_put(bo_va->last_pt_update); 2482 kfree(bo_va); 2483 } 2484 2485 /** 2486 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2487 * 2488 * @adev: amdgpu_device pointer 2489 * @bo: amdgpu buffer object 2490 * @evicted: is the BO evicted 2491 * 2492 * Mark @bo as invalid. 2493 */ 2494 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2495 struct amdgpu_bo *bo, bool evicted) 2496 { 2497 struct amdgpu_vm_bo_base *bo_base; 2498 2499 /* shadow bo doesn't have bo base, its validation needs its parent */ 2500 if (bo->parent && bo->parent->shadow == bo) 2501 bo = bo->parent; 2502 2503 list_for_each_entry(bo_base, &bo->va, bo_list) { 2504 struct amdgpu_vm *vm = bo_base->vm; 2505 bool was_moved = bo_base->moved; 2506 2507 bo_base->moved = true; 2508 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2509 if (bo->tbo.type == ttm_bo_type_kernel) 2510 list_move(&bo_base->vm_status, &vm->evicted); 2511 else 2512 list_move_tail(&bo_base->vm_status, 2513 &vm->evicted); 2514 continue; 2515 } 2516 2517 if (was_moved) 2518 continue; 2519 2520 if (bo->tbo.type == ttm_bo_type_kernel) { 2521 list_move(&bo_base->vm_status, &vm->relocated); 2522 } else { 2523 spin_lock(&bo_base->vm->moved_lock); 2524 list_move(&bo_base->vm_status, &vm->moved); 2525 spin_unlock(&bo_base->vm->moved_lock); 2526 } 2527 } 2528 } 2529 2530 /** 2531 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2532 * 2533 * @vm_size: VM size 2534 * 2535 * Returns: 2536 * VM page table as power of two 2537 */ 2538 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2539 { 2540 /* Total bits covered by PD + PTs */ 2541 unsigned bits = ilog2(vm_size) + 18; 2542 2543 /* Make sure the PD is 4K in size up to 8GB address space. 2544 Above that split equal between PD and PTs */ 2545 if (vm_size <= 8) 2546 return (bits - 9); 2547 else 2548 return ((bits + 3) / 2); 2549 } 2550 2551 /** 2552 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2553 * 2554 * @adev: amdgpu_device pointer 2555 * @min_vm_size: the minimum vm size in GB if it's set auto 2556 * @fragment_size_default: Default PTE fragment size 2557 * @max_level: max VMPT level 2558 * @max_bits: max address space size in bits 2559 * 2560 */ 2561 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2562 uint32_t fragment_size_default, unsigned max_level, 2563 unsigned max_bits) 2564 { 2565 unsigned int max_size = 1 << (max_bits - 30); 2566 unsigned int vm_size; 2567 uint64_t tmp; 2568 2569 /* adjust vm size first */ 2570 if (amdgpu_vm_size != -1) { 2571 vm_size = amdgpu_vm_size; 2572 if (vm_size > max_size) { 2573 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2574 amdgpu_vm_size, max_size); 2575 vm_size = max_size; 2576 } 2577 } else { 2578 #ifdef __linux__ 2579 struct sysinfo si; 2580 #endif 2581 unsigned int phys_ram_gb; 2582 2583 /* Optimal VM size depends on the amount of physical 2584 * RAM available. Underlying requirements and 2585 * assumptions: 2586 * 2587 * - Need to map system memory and VRAM from all GPUs 2588 * - VRAM from other GPUs not known here 2589 * - Assume VRAM <= system memory 2590 * - On GFX8 and older, VM space can be segmented for 2591 * different MTYPEs 2592 * - Need to allow room for fragmentation, guard pages etc. 2593 * 2594 * This adds up to a rough guess of system memory x3. 2595 * Round up to power of two to maximize the available 2596 * VM size with the given page table size. 2597 */ 2598 #ifdef __linux__ 2599 si_meminfo(&si); 2600 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2601 (1 << 30) - 1) >> 30; 2602 #else 2603 phys_ram_gb = ((uint64_t)ptoa(physmem) + 2604 (1 << 30) - 1) >> 30; 2605 #endif 2606 vm_size = roundup_pow_of_two( 2607 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2608 } 2609 2610 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2611 2612 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2613 if (amdgpu_vm_block_size != -1) 2614 tmp >>= amdgpu_vm_block_size - 9; 2615 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2616 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2617 switch (adev->vm_manager.num_level) { 2618 case 3: 2619 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2620 break; 2621 case 2: 2622 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2623 break; 2624 case 1: 2625 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2626 break; 2627 default: 2628 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2629 } 2630 /* block size depends on vm size and hw setup*/ 2631 if (amdgpu_vm_block_size != -1) 2632 adev->vm_manager.block_size = 2633 min((unsigned)amdgpu_vm_block_size, max_bits 2634 - AMDGPU_GPU_PAGE_SHIFT 2635 - 9 * adev->vm_manager.num_level); 2636 else if (adev->vm_manager.num_level > 1) 2637 adev->vm_manager.block_size = 9; 2638 else 2639 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2640 2641 if (amdgpu_vm_fragment_size == -1) 2642 adev->vm_manager.fragment_size = fragment_size_default; 2643 else 2644 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2645 2646 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2647 vm_size, adev->vm_manager.num_level + 1, 2648 adev->vm_manager.block_size, 2649 adev->vm_manager.fragment_size); 2650 } 2651 2652 /** 2653 * amdgpu_vm_init - initialize a vm instance 2654 * 2655 * @adev: amdgpu_device pointer 2656 * @vm: requested vm 2657 * @vm_context: Indicates if it GFX or Compute context 2658 * @pasid: Process address space identifier 2659 * 2660 * Init @vm fields. 2661 * 2662 * Returns: 2663 * 0 for success, error for failure. 2664 */ 2665 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2666 int vm_context, unsigned int pasid) 2667 { 2668 struct amdgpu_bo_param bp; 2669 struct amdgpu_bo *root; 2670 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2671 AMDGPU_VM_PTE_COUNT(adev) * 8); 2672 unsigned ring_instance; 2673 struct amdgpu_ring *ring; 2674 struct drm_sched_rq *rq; 2675 unsigned long size; 2676 uint64_t flags; 2677 int r, i; 2678 2679 vm->va = RB_ROOT_CACHED; 2680 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2681 vm->reserved_vmid[i] = NULL; 2682 INIT_LIST_HEAD(&vm->evicted); 2683 INIT_LIST_HEAD(&vm->relocated); 2684 mtx_init(&vm->moved_lock, IPL_TTY); 2685 INIT_LIST_HEAD(&vm->moved); 2686 INIT_LIST_HEAD(&vm->idle); 2687 INIT_LIST_HEAD(&vm->freed); 2688 2689 /* create scheduler entity for page table updates */ 2690 2691 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2692 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2693 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2694 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 2695 r = drm_sched_entity_init(&vm->entity, &rq, 1, NULL); 2696 if (r) 2697 return r; 2698 2699 vm->pte_support_ats = false; 2700 2701 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2702 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2703 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2704 2705 if (adev->asic_type == CHIP_RAVEN) 2706 vm->pte_support_ats = true; 2707 } else { 2708 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2709 AMDGPU_VM_USE_CPU_FOR_GFX); 2710 } 2711 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2712 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2713 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2714 "CPU update of VM recommended only for large BAR system\n"); 2715 vm->last_update = NULL; 2716 2717 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 2718 if (vm->use_cpu_for_update) 2719 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 2720 else if (vm_context != AMDGPU_VM_CONTEXT_COMPUTE) 2721 flags |= AMDGPU_GEM_CREATE_SHADOW; 2722 2723 size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level); 2724 memset(&bp, 0, sizeof(bp)); 2725 bp.size = size; 2726 bp.byte_align = align; 2727 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 2728 bp.flags = flags; 2729 bp.type = ttm_bo_type_kernel; 2730 bp.resv = NULL; 2731 r = amdgpu_bo_create(adev, &bp, &root); 2732 if (r) 2733 goto error_free_sched_entity; 2734 2735 r = amdgpu_bo_reserve(root, true); 2736 if (r) 2737 goto error_free_root; 2738 2739 r = amdgpu_vm_clear_bo(adev, vm, root, 2740 adev->vm_manager.root_level, 2741 vm->pte_support_ats); 2742 if (r) 2743 goto error_unreserve; 2744 2745 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2746 amdgpu_bo_unreserve(vm->root.base.bo); 2747 2748 if (pasid) { 2749 unsigned long flags; 2750 2751 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2752 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2753 GFP_ATOMIC); 2754 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2755 if (r < 0) 2756 goto error_free_root; 2757 2758 vm->pasid = pasid; 2759 } 2760 2761 #ifdef __linux__ 2762 INIT_KFIFO(vm->faults); 2763 #else 2764 SIMPLEQ_INIT(&vm->faults); 2765 #endif 2766 vm->fault_credit = 16; 2767 2768 return 0; 2769 2770 error_unreserve: 2771 amdgpu_bo_unreserve(vm->root.base.bo); 2772 2773 error_free_root: 2774 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2775 amdgpu_bo_unref(&vm->root.base.bo); 2776 vm->root.base.bo = NULL; 2777 2778 error_free_sched_entity: 2779 drm_sched_entity_destroy(&vm->entity); 2780 2781 return r; 2782 } 2783 2784 /** 2785 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2786 * 2787 * @adev: amdgpu_device pointer 2788 * @vm: requested vm 2789 * 2790 * This only works on GFX VMs that don't have any BOs added and no 2791 * page tables allocated yet. 2792 * 2793 * Changes the following VM parameters: 2794 * - use_cpu_for_update 2795 * - pte_supports_ats 2796 * - pasid (old PASID is released, because compute manages its own PASIDs) 2797 * 2798 * Reinitializes the page directory to reflect the changed ATS 2799 * setting. 2800 * 2801 * Returns: 2802 * 0 for success, -errno for errors. 2803 */ 2804 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2805 { 2806 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2807 int r; 2808 2809 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2810 if (r) 2811 return r; 2812 2813 /* Sanity checks */ 2814 #ifdef __linux__ 2815 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 2816 #else 2817 if (!RB_EMPTY_ROOT(&vm->va) || vm->root.entries) { 2818 #endif 2819 r = -EINVAL; 2820 goto error; 2821 } 2822 2823 /* Check if PD needs to be reinitialized and do it before 2824 * changing any other state, in case it fails. 2825 */ 2826 if (pte_support_ats != vm->pte_support_ats) { 2827 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 2828 adev->vm_manager.root_level, 2829 pte_support_ats); 2830 if (r) 2831 goto error; 2832 } 2833 2834 /* Update VM state */ 2835 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2836 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2837 vm->pte_support_ats = pte_support_ats; 2838 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2839 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2840 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2841 "CPU update of VM recommended only for large BAR system\n"); 2842 2843 if (vm->pasid) { 2844 unsigned long flags; 2845 2846 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2847 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2848 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2849 2850 vm->pasid = 0; 2851 } 2852 2853 /* Free the shadow bo for compute VM */ 2854 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2855 2856 error: 2857 amdgpu_bo_unreserve(vm->root.base.bo); 2858 return r; 2859 } 2860 2861 /** 2862 * amdgpu_vm_free_levels - free PD/PT levels 2863 * 2864 * @adev: amdgpu device structure 2865 * @parent: PD/PT starting level to free 2866 * @level: level of parent structure 2867 * 2868 * Free the page directory or page table level and all sub levels. 2869 */ 2870 static void amdgpu_vm_free_levels(struct amdgpu_device *adev, 2871 struct amdgpu_vm_pt *parent, 2872 unsigned level) 2873 { 2874 unsigned i, num_entries = amdgpu_vm_num_entries(adev, level); 2875 2876 if (parent->base.bo) { 2877 list_del(&parent->base.bo_list); 2878 list_del(&parent->base.vm_status); 2879 amdgpu_bo_unref(&parent->base.bo->shadow); 2880 amdgpu_bo_unref(&parent->base.bo); 2881 } 2882 2883 if (parent->entries) 2884 for (i = 0; i < num_entries; i++) 2885 amdgpu_vm_free_levels(adev, &parent->entries[i], 2886 level + 1); 2887 2888 kvfree(parent->entries); 2889 } 2890 2891 /** 2892 * amdgpu_vm_fini - tear down a vm instance 2893 * 2894 * @adev: amdgpu_device pointer 2895 * @vm: requested vm 2896 * 2897 * Tear down @vm. 2898 * Unbind the VM and remove all bos from the vm bo list 2899 */ 2900 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2901 { 2902 struct amdgpu_bo_va_mapping *mapping, *tmp; 2903 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2904 struct amdgpu_bo *root; 2905 u64 fault; 2906 int i, r; 2907 struct amdgpu_vm_fault *vmf; 2908 2909 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2910 2911 /* Clear pending page faults from IH when the VM is destroyed */ 2912 #ifdef __linux__ 2913 while (kfifo_get(&vm->faults, &fault)) 2914 amdgpu_ih_clear_fault(adev, fault); 2915 #else 2916 while (!SIMPLEQ_EMPTY(&vm->faults)) { 2917 vmf = SIMPLEQ_FIRST(&vm->faults); 2918 fault = vmf->val; 2919 SIMPLEQ_REMOVE_HEAD(&vm->faults, vm_fault_entry); 2920 free(vmf, M_DRM, sizeof(*vmf)); 2921 amdgpu_ih_clear_fault(adev, fault); 2922 } 2923 #endif 2924 2925 if (vm->pasid) { 2926 unsigned long flags; 2927 2928 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2929 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2930 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2931 } 2932 2933 drm_sched_entity_destroy(&vm->entity); 2934 2935 #ifdef __linux__ 2936 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2937 dev_err(adev->dev, "still active bo inside vm\n"); 2938 } 2939 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2940 &vm->va.rb_root, rb) { 2941 list_del(&mapping->list); 2942 amdgpu_vm_it_remove(mapping, &vm->va); 2943 kfree(mapping); 2944 } 2945 #else 2946 if (!RB_EMPTY_ROOT(&vm->va)) { 2947 dev_err(adev->dev, "still active bo inside vm\n"); 2948 } 2949 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2950 &vm->va, rb) { 2951 list_del(&mapping->list); 2952 amdgpu_vm_it_remove(mapping, &vm->va); 2953 kfree(mapping); 2954 } 2955 #endif 2956 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2957 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2958 amdgpu_vm_prt_fini(adev, vm); 2959 prt_fini_needed = false; 2960 } 2961 2962 list_del(&mapping->list); 2963 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2964 } 2965 2966 root = amdgpu_bo_ref(vm->root.base.bo); 2967 r = amdgpu_bo_reserve(root, true); 2968 if (r) { 2969 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 2970 } else { 2971 amdgpu_vm_free_levels(adev, &vm->root, 2972 adev->vm_manager.root_level); 2973 amdgpu_bo_unreserve(root); 2974 } 2975 amdgpu_bo_unref(&root); 2976 dma_fence_put(vm->last_update); 2977 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2978 amdgpu_vmid_free_reserved(adev, vm, i); 2979 } 2980 2981 /** 2982 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 2983 * 2984 * @adev: amdgpu_device pointer 2985 * @pasid: PASID do identify the VM 2986 * 2987 * This function is expected to be called in interrupt context. 2988 * 2989 * Returns: 2990 * True if there was fault credit, false otherwise 2991 */ 2992 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 2993 unsigned int pasid) 2994 { 2995 struct amdgpu_vm *vm; 2996 2997 spin_lock(&adev->vm_manager.pasid_lock); 2998 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 2999 if (!vm) { 3000 /* VM not found, can't track fault credit */ 3001 spin_unlock(&adev->vm_manager.pasid_lock); 3002 return true; 3003 } 3004 3005 /* No lock needed. only accessed by IRQ handler */ 3006 if (!vm->fault_credit) { 3007 /* Too many faults in this VM */ 3008 spin_unlock(&adev->vm_manager.pasid_lock); 3009 return false; 3010 } 3011 3012 vm->fault_credit--; 3013 spin_unlock(&adev->vm_manager.pasid_lock); 3014 return true; 3015 } 3016 3017 /** 3018 * amdgpu_vm_manager_init - init the VM manager 3019 * 3020 * @adev: amdgpu_device pointer 3021 * 3022 * Initialize the VM manager structures 3023 */ 3024 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3025 { 3026 unsigned i; 3027 3028 amdgpu_vmid_mgr_init(adev); 3029 3030 adev->vm_manager.fence_context = 3031 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3032 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3033 adev->vm_manager.seqno[i] = 0; 3034 3035 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 3036 mtx_init(&adev->vm_manager.prt_lock, IPL_TTY); 3037 atomic_set(&adev->vm_manager.num_prt_users, 0); 3038 3039 /* If not overridden by the user, by default, only in large BAR systems 3040 * Compute VM tables will be updated by CPU 3041 */ 3042 #ifdef CONFIG_X86_64 3043 if (amdgpu_vm_update_mode == -1) { 3044 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3045 adev->vm_manager.vm_update_mode = 3046 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3047 else 3048 adev->vm_manager.vm_update_mode = 0; 3049 } else 3050 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3051 #else 3052 adev->vm_manager.vm_update_mode = 0; 3053 #endif 3054 3055 idr_init(&adev->vm_manager.pasid_idr); 3056 mtx_init(&adev->vm_manager.pasid_lock, IPL_TTY); 3057 } 3058 3059 /** 3060 * amdgpu_vm_manager_fini - cleanup VM manager 3061 * 3062 * @adev: amdgpu_device pointer 3063 * 3064 * Cleanup the VM manager and free resources. 3065 */ 3066 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3067 { 3068 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3069 idr_destroy(&adev->vm_manager.pasid_idr); 3070 3071 amdgpu_vmid_mgr_fini(adev); 3072 } 3073 3074 /** 3075 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3076 * 3077 * @dev: drm device pointer 3078 * @data: drm_amdgpu_vm 3079 * @filp: drm file pointer 3080 * 3081 * Returns: 3082 * 0 for success, -errno for errors. 3083 */ 3084 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3085 { 3086 union drm_amdgpu_vm *args = data; 3087 struct amdgpu_device *adev = dev->dev_private; 3088 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3089 int r; 3090 3091 switch (args->in.op) { 3092 case AMDGPU_VM_OP_RESERVE_VMID: 3093 /* current, we only have requirement to reserve vmid from gfxhub */ 3094 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3095 if (r) 3096 return r; 3097 break; 3098 case AMDGPU_VM_OP_UNRESERVE_VMID: 3099 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3100 break; 3101 default: 3102 return -EINVAL; 3103 } 3104 3105 return 0; 3106 } 3107 3108 /** 3109 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3110 * 3111 * @dev: drm device pointer 3112 * @pasid: PASID identifier for VM 3113 * @task_info: task_info to fill. 3114 */ 3115 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3116 struct amdgpu_task_info *task_info) 3117 { 3118 struct amdgpu_vm *vm; 3119 unsigned long flags; 3120 3121 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3122 3123 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3124 if (vm) 3125 *task_info = vm->task_info; 3126 3127 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3128 } 3129 3130 /** 3131 * amdgpu_vm_set_task_info - Sets VMs task info. 3132 * 3133 * @vm: vm for which to set the info 3134 */ 3135 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3136 { 3137 if (!vm->task_info.pid) { 3138 #ifdef __linux__ 3139 vm->task_info.pid = current->pid; 3140 get_task_comm(vm->task_info.task_name, current); 3141 3142 if (current->group_leader->mm == current->mm) { 3143 vm->task_info.tgid = current->group_leader->pid; 3144 get_task_comm(vm->task_info.process_name, current->group_leader); 3145 } 3146 #else 3147 vm->task_info.pid = curproc->p_p->ps_pid; 3148 strlcpy(vm->task_info.task_name, curproc->p_p->ps_comm, 3149 sizeof(vm->task_info.task_name)); 3150 #endif 3151 } 3152 } 3153