1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 #ifdef __linux__ 63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 64 START, LAST, static, amdgpu_vm_it) 65 #else 66 static struct amdgpu_bo_va_mapping * 67 amdgpu_vm_it_iter_first(struct rb_root_cached *root, uint64_t start, 68 uint64_t last) 69 { 70 struct amdgpu_bo_va_mapping *node; 71 struct rb_node *rb; 72 73 for (rb = rb_first(root); rb; rb = rb_next(rb)) { 74 node = rb_entry(rb, typeof(*node), rb); 75 if (LAST(node) >= start && START(node) <= last) 76 return node; 77 } 78 return NULL; 79 } 80 81 static struct amdgpu_bo_va_mapping * 82 amdgpu_vm_it_iter_next(struct amdgpu_bo_va_mapping *node, uint64_t start, 83 uint64_t last) 84 { 85 STUB(); 86 struct rb_node *rb = &node->rb; 87 88 for (rb = rb_next(rb); rb; rb = rb_next(rb)) { 89 node = rb_entry(rb, typeof(*node), rb); 90 if (LAST(node) >= start && START(node) <= last) 91 return node; 92 } 93 return NULL; 94 } 95 96 static void 97 amdgpu_vm_it_remove(struct amdgpu_bo_va_mapping *node, 98 struct rb_root_cached *root) 99 { 100 rb_erase(&node->rb, root); 101 } 102 103 static void 104 amdgpu_vm_it_insert(struct amdgpu_bo_va_mapping *node, 105 struct rb_root_cached *root) 106 { 107 struct rb_node **iter = &root->rb_node; 108 struct rb_node *parent = NULL; 109 struct amdgpu_bo_va_mapping *iter_node; 110 111 while (*iter) { 112 parent = *iter; 113 iter_node = rb_entry(*iter, struct amdgpu_bo_va_mapping, rb); 114 115 if (node->start < iter_node->start) 116 iter = &(*iter)->rb_left; 117 else 118 iter = &(*iter)->rb_right; 119 } 120 121 rb_link_node(&node->rb, parent, iter); 122 rb_insert_color(&node->rb, root); 123 } 124 #endif 125 126 #undef START 127 #undef LAST 128 129 /** 130 * struct amdgpu_pte_update_params - Local structure 131 * 132 * Encapsulate some VM table update parameters to reduce 133 * the number of function parameters 134 * 135 */ 136 struct amdgpu_pte_update_params { 137 138 /** 139 * @adev: amdgpu device we do this update for 140 */ 141 struct amdgpu_device *adev; 142 143 /** 144 * @vm: optional amdgpu_vm we do this update for 145 */ 146 struct amdgpu_vm *vm; 147 148 /** 149 * @src: address where to copy page table entries from 150 */ 151 uint64_t src; 152 153 /** 154 * @ib: indirect buffer to fill with commands 155 */ 156 struct amdgpu_ib *ib; 157 158 /** 159 * @func: Function which actually does the update 160 */ 161 void (*func)(struct amdgpu_pte_update_params *params, 162 struct amdgpu_bo *bo, uint64_t pe, 163 uint64_t addr, unsigned count, uint32_t incr, 164 uint64_t flags); 165 /** 166 * @pages_addr: 167 * 168 * DMA addresses to use for mapping, used during VM update by CPU 169 */ 170 dma_addr_t *pages_addr; 171 172 /** 173 * @kptr: 174 * 175 * Kernel pointer of PD/PT BO that needs to be updated, 176 * used during VM update by CPU 177 */ 178 void *kptr; 179 }; 180 181 /** 182 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 183 */ 184 struct amdgpu_prt_cb { 185 186 /** 187 * @adev: amdgpu device 188 */ 189 struct amdgpu_device *adev; 190 191 /** 192 * @cb: callback 193 */ 194 struct dma_fence_cb cb; 195 }; 196 197 /** 198 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 199 * 200 * @base: base structure for tracking BO usage in a VM 201 * @vm: vm to which bo is to be added 202 * @bo: amdgpu buffer object 203 * 204 * Initialize a bo_va_base structure and add it to the appropriate lists 205 * 206 */ 207 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 208 struct amdgpu_vm *vm, 209 struct amdgpu_bo *bo) 210 { 211 base->vm = vm; 212 base->bo = bo; 213 INIT_LIST_HEAD(&base->bo_list); 214 INIT_LIST_HEAD(&base->vm_status); 215 216 if (!bo) 217 return; 218 list_add_tail(&base->bo_list, &bo->va); 219 220 if (bo->tbo.type == ttm_bo_type_kernel) 221 list_move(&base->vm_status, &vm->relocated); 222 223 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 224 return; 225 226 if (bo->preferred_domains & 227 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 228 return; 229 230 /* 231 * we checked all the prerequisites, but it looks like this per vm bo 232 * is currently evicted. add the bo to the evicted list to make sure it 233 * is validated on next vm use to avoid fault. 234 * */ 235 list_move_tail(&base->vm_status, &vm->evicted); 236 base->moved = true; 237 } 238 239 /** 240 * amdgpu_vm_level_shift - return the addr shift for each level 241 * 242 * @adev: amdgpu_device pointer 243 * @level: VMPT level 244 * 245 * Returns: 246 * The number of bits the pfn needs to be right shifted for a level. 247 */ 248 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 249 unsigned level) 250 { 251 unsigned shift = 0xff; 252 253 switch (level) { 254 case AMDGPU_VM_PDB2: 255 case AMDGPU_VM_PDB1: 256 case AMDGPU_VM_PDB0: 257 shift = 9 * (AMDGPU_VM_PDB0 - level) + 258 adev->vm_manager.block_size; 259 break; 260 case AMDGPU_VM_PTB: 261 shift = 0; 262 break; 263 default: 264 dev_err(adev->dev, "the level%d isn't supported.\n", level); 265 } 266 267 return shift; 268 } 269 270 /** 271 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 272 * 273 * @adev: amdgpu_device pointer 274 * @level: VMPT level 275 * 276 * Returns: 277 * The number of entries in a page directory or page table. 278 */ 279 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 280 unsigned level) 281 { 282 unsigned shift = amdgpu_vm_level_shift(adev, 283 adev->vm_manager.root_level); 284 285 if (level == adev->vm_manager.root_level) 286 /* For the root directory */ 287 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift; 288 else if (level != AMDGPU_VM_PTB) 289 /* Everything in between */ 290 return 512; 291 else 292 /* For the page tables on the leaves */ 293 return AMDGPU_VM_PTE_COUNT(adev); 294 } 295 296 /** 297 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 298 * 299 * @adev: amdgpu_device pointer 300 * @level: VMPT level 301 * 302 * Returns: 303 * The size of the BO for a page directory or page table in bytes. 304 */ 305 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 306 { 307 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 308 } 309 310 /** 311 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 312 * 313 * @vm: vm providing the BOs 314 * @validated: head of validation list 315 * @entry: entry to add 316 * 317 * Add the page directory to the list of BOs to 318 * validate for command submission. 319 */ 320 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 321 struct list_head *validated, 322 struct amdgpu_bo_list_entry *entry) 323 { 324 entry->robj = vm->root.base.bo; 325 entry->priority = 0; 326 entry->tv.bo = &entry->robj->tbo; 327 entry->tv.shared = true; 328 entry->user_pages = NULL; 329 list_add(&entry->tv.head, validated); 330 } 331 332 /** 333 * amdgpu_vm_validate_pt_bos - validate the page table BOs 334 * 335 * @adev: amdgpu device pointer 336 * @vm: vm providing the BOs 337 * @validate: callback to do the validation 338 * @param: parameter for the validation callback 339 * 340 * Validate the page table BOs on command submission if neccessary. 341 * 342 * Returns: 343 * Validation result. 344 */ 345 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 346 int (*validate)(void *p, struct amdgpu_bo *bo), 347 void *param) 348 { 349 struct ttm_bo_global *glob = adev->mman.bdev.glob; 350 struct amdgpu_vm_bo_base *bo_base, *tmp; 351 int r = 0; 352 353 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 354 struct amdgpu_bo *bo = bo_base->bo; 355 356 if (bo->parent) { 357 r = validate(param, bo); 358 if (r) 359 break; 360 361 spin_lock(&glob->lru_lock); 362 ttm_bo_move_to_lru_tail(&bo->tbo); 363 if (bo->shadow) 364 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 365 spin_unlock(&glob->lru_lock); 366 } 367 368 if (bo->tbo.type != ttm_bo_type_kernel) { 369 spin_lock(&vm->moved_lock); 370 list_move(&bo_base->vm_status, &vm->moved); 371 spin_unlock(&vm->moved_lock); 372 } else { 373 list_move(&bo_base->vm_status, &vm->relocated); 374 } 375 } 376 377 spin_lock(&glob->lru_lock); 378 list_for_each_entry(bo_base, &vm->idle, vm_status) { 379 struct amdgpu_bo *bo = bo_base->bo; 380 381 if (!bo->parent) 382 continue; 383 384 ttm_bo_move_to_lru_tail(&bo->tbo); 385 if (bo->shadow) 386 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 387 } 388 spin_unlock(&glob->lru_lock); 389 390 return r; 391 } 392 393 /** 394 * amdgpu_vm_ready - check VM is ready for updates 395 * 396 * @vm: VM to check 397 * 398 * Check if all VM PDs/PTs are ready for updates 399 * 400 * Returns: 401 * True if eviction list is empty. 402 */ 403 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 404 { 405 return list_empty(&vm->evicted); 406 } 407 408 /** 409 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 410 * 411 * @adev: amdgpu_device pointer 412 * @vm: VM to clear BO from 413 * @bo: BO to clear 414 * @level: level this BO is at 415 * @pte_support_ats: indicate ATS support from PTE 416 * 417 * Root PD needs to be reserved when calling this. 418 * 419 * Returns: 420 * 0 on success, errno otherwise. 421 */ 422 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 423 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 424 unsigned level, bool pte_support_ats) 425 { 426 struct ttm_operation_ctx ctx = { true, false }; 427 struct dma_fence *fence = NULL; 428 unsigned entries, ats_entries; 429 struct amdgpu_ring *ring; 430 struct amdgpu_job *job; 431 uint64_t addr; 432 int r; 433 434 entries = amdgpu_bo_size(bo) / 8; 435 436 if (pte_support_ats) { 437 if (level == adev->vm_manager.root_level) { 438 ats_entries = amdgpu_vm_level_shift(adev, level); 439 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 440 ats_entries = AMDGPU_VA_HOLE_START >> ats_entries; 441 ats_entries = min(ats_entries, entries); 442 entries -= ats_entries; 443 } else { 444 ats_entries = entries; 445 entries = 0; 446 } 447 } else { 448 ats_entries = 0; 449 } 450 451 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 452 453 r = reservation_object_reserve_shared(bo->tbo.resv); 454 if (r) 455 return r; 456 457 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 458 if (r) 459 goto error; 460 461 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 462 if (r) 463 goto error; 464 465 addr = amdgpu_bo_gpu_offset(bo); 466 if (ats_entries) { 467 uint64_t ats_value; 468 469 ats_value = AMDGPU_PTE_DEFAULT_ATC; 470 if (level != AMDGPU_VM_PTB) 471 ats_value |= AMDGPU_PDE_PTE; 472 473 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 474 ats_entries, 0, ats_value); 475 addr += ats_entries * 8; 476 } 477 478 if (entries) 479 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 480 entries, 0, 0); 481 482 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 483 484 WARN_ON(job->ibs[0].length_dw > 64); 485 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 486 AMDGPU_FENCE_OWNER_UNDEFINED, false); 487 if (r) 488 goto error_free; 489 490 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 491 &fence); 492 if (r) 493 goto error_free; 494 495 amdgpu_bo_fence(bo, fence, true); 496 dma_fence_put(fence); 497 498 if (bo->shadow) 499 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 500 level, pte_support_ats); 501 502 return 0; 503 504 error_free: 505 amdgpu_job_free(job); 506 507 error: 508 return r; 509 } 510 511 /** 512 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 513 * 514 * @adev: amdgpu_device pointer 515 * @vm: requested vm 516 * @parent: parent PT 517 * @saddr: start of the address range 518 * @eaddr: end of the address range 519 * @level: VMPT level 520 * @ats: indicate ATS support from PTE 521 * 522 * Make sure the page directories and page tables are allocated 523 * 524 * Returns: 525 * 0 on success, errno otherwise. 526 */ 527 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 528 struct amdgpu_vm *vm, 529 struct amdgpu_vm_pt *parent, 530 uint64_t saddr, uint64_t eaddr, 531 unsigned level, bool ats) 532 { 533 unsigned shift = amdgpu_vm_level_shift(adev, level); 534 unsigned pt_idx, from, to; 535 u64 flags; 536 int r; 537 538 if (!parent->entries) { 539 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 540 541 parent->entries = kvmalloc_array(num_entries, 542 sizeof(struct amdgpu_vm_pt), 543 GFP_KERNEL | __GFP_ZERO); 544 if (!parent->entries) 545 return -ENOMEM; 546 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 547 } 548 549 from = saddr >> shift; 550 to = eaddr >> shift; 551 if (from >= amdgpu_vm_num_entries(adev, level) || 552 to >= amdgpu_vm_num_entries(adev, level)) 553 return -EINVAL; 554 555 ++level; 556 saddr = saddr & ((1 << shift) - 1); 557 eaddr = eaddr & ((1 << shift) - 1); 558 559 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 560 if (vm->root.base.bo->shadow) 561 flags |= AMDGPU_GEM_CREATE_SHADOW; 562 if (vm->use_cpu_for_update) 563 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 564 else 565 flags |= AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 566 567 /* walk over the address space and allocate the page tables */ 568 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 569 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 570 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 571 struct amdgpu_bo *pt; 572 573 if (!entry->base.bo) { 574 struct amdgpu_bo_param bp; 575 576 memset(&bp, 0, sizeof(bp)); 577 bp.size = amdgpu_vm_bo_size(adev, level); 578 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 579 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 580 bp.flags = flags; 581 bp.type = ttm_bo_type_kernel; 582 bp.resv = resv; 583 r = amdgpu_bo_create(adev, &bp, &pt); 584 if (r) 585 return r; 586 587 r = amdgpu_vm_clear_bo(adev, vm, pt, level, ats); 588 if (r) { 589 amdgpu_bo_unref(&pt->shadow); 590 amdgpu_bo_unref(&pt); 591 return r; 592 } 593 594 if (vm->use_cpu_for_update) { 595 r = amdgpu_bo_kmap(pt, NULL); 596 if (r) { 597 amdgpu_bo_unref(&pt->shadow); 598 amdgpu_bo_unref(&pt); 599 return r; 600 } 601 } 602 603 /* Keep a reference to the root directory to avoid 604 * freeing them up in the wrong order. 605 */ 606 pt->parent = amdgpu_bo_ref(parent->base.bo); 607 608 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 609 } 610 611 if (level < AMDGPU_VM_PTB) { 612 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 613 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 614 ((1 << shift) - 1); 615 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 616 sub_eaddr, level, ats); 617 if (r) 618 return r; 619 } 620 } 621 622 return 0; 623 } 624 625 /** 626 * amdgpu_vm_alloc_pts - Allocate page tables. 627 * 628 * @adev: amdgpu_device pointer 629 * @vm: VM to allocate page tables for 630 * @saddr: Start address which needs to be allocated 631 * @size: Size from start address we need. 632 * 633 * Make sure the page tables are allocated. 634 * 635 * Returns: 636 * 0 on success, errno otherwise. 637 */ 638 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 639 struct amdgpu_vm *vm, 640 uint64_t saddr, uint64_t size) 641 { 642 uint64_t eaddr; 643 bool ats = false; 644 645 /* validate the parameters */ 646 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 647 return -EINVAL; 648 649 eaddr = saddr + size - 1; 650 651 if (vm->pte_support_ats) 652 ats = saddr < AMDGPU_VA_HOLE_START; 653 654 saddr /= AMDGPU_GPU_PAGE_SIZE; 655 eaddr /= AMDGPU_GPU_PAGE_SIZE; 656 657 if (eaddr >= adev->vm_manager.max_pfn) { 658 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 659 eaddr, adev->vm_manager.max_pfn); 660 return -EINVAL; 661 } 662 663 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 664 adev->vm_manager.root_level, ats); 665 } 666 667 /** 668 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 669 * 670 * @adev: amdgpu_device pointer 671 */ 672 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 673 { 674 const struct amdgpu_ip_block *ip_block; 675 bool has_compute_vm_bug; 676 struct amdgpu_ring *ring; 677 int i; 678 679 has_compute_vm_bug = false; 680 681 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 682 if (ip_block) { 683 /* Compute has a VM bug for GFX version < 7. 684 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 685 if (ip_block->version->major <= 7) 686 has_compute_vm_bug = true; 687 else if (ip_block->version->major == 8) 688 if (adev->gfx.mec_fw_version < 673) 689 has_compute_vm_bug = true; 690 } 691 692 for (i = 0; i < adev->num_rings; i++) { 693 ring = adev->rings[i]; 694 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 695 /* only compute rings */ 696 ring->has_compute_vm_bug = has_compute_vm_bug; 697 else 698 ring->has_compute_vm_bug = false; 699 } 700 } 701 702 /** 703 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 704 * 705 * @ring: ring on which the job will be submitted 706 * @job: job to submit 707 * 708 * Returns: 709 * True if sync is needed. 710 */ 711 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 712 struct amdgpu_job *job) 713 { 714 struct amdgpu_device *adev = ring->adev; 715 unsigned vmhub = ring->funcs->vmhub; 716 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 717 struct amdgpu_vmid *id; 718 bool gds_switch_needed; 719 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 720 721 if (job->vmid == 0) 722 return false; 723 id = &id_mgr->ids[job->vmid]; 724 gds_switch_needed = ring->funcs->emit_gds_switch && ( 725 id->gds_base != job->gds_base || 726 id->gds_size != job->gds_size || 727 id->gws_base != job->gws_base || 728 id->gws_size != job->gws_size || 729 id->oa_base != job->oa_base || 730 id->oa_size != job->oa_size); 731 732 if (amdgpu_vmid_had_gpu_reset(adev, id)) 733 return true; 734 735 return vm_flush_needed || gds_switch_needed; 736 } 737 738 /** 739 * amdgpu_vm_flush - hardware flush the vm 740 * 741 * @ring: ring to use for flush 742 * @job: related job 743 * @need_pipe_sync: is pipe sync needed 744 * 745 * Emit a VM flush when it is necessary. 746 * 747 * Returns: 748 * 0 on success, errno otherwise. 749 */ 750 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 751 { 752 struct amdgpu_device *adev = ring->adev; 753 unsigned vmhub = ring->funcs->vmhub; 754 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 755 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 756 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 757 id->gds_base != job->gds_base || 758 id->gds_size != job->gds_size || 759 id->gws_base != job->gws_base || 760 id->gws_size != job->gws_size || 761 id->oa_base != job->oa_base || 762 id->oa_size != job->oa_size); 763 bool vm_flush_needed = job->vm_needs_flush; 764 bool pasid_mapping_needed = id->pasid != job->pasid || 765 !id->pasid_mapping || 766 !dma_fence_is_signaled(id->pasid_mapping); 767 struct dma_fence *fence = NULL; 768 unsigned patch_offset = 0; 769 int r; 770 771 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 772 gds_switch_needed = true; 773 vm_flush_needed = true; 774 pasid_mapping_needed = true; 775 } 776 777 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 778 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 779 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 780 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 781 ring->funcs->emit_wreg; 782 783 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 784 return 0; 785 786 if (ring->funcs->init_cond_exec) 787 patch_offset = amdgpu_ring_init_cond_exec(ring); 788 789 if (need_pipe_sync) 790 amdgpu_ring_emit_pipeline_sync(ring); 791 792 if (vm_flush_needed) { 793 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 794 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 795 } 796 797 if (pasid_mapping_needed) 798 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 799 800 if (vm_flush_needed || pasid_mapping_needed) { 801 r = amdgpu_fence_emit(ring, &fence, 0); 802 if (r) 803 return r; 804 } 805 806 if (vm_flush_needed) { 807 mutex_lock(&id_mgr->lock); 808 dma_fence_put(id->last_flush); 809 id->last_flush = dma_fence_get(fence); 810 id->current_gpu_reset_count = 811 atomic_read(&adev->gpu_reset_counter); 812 mutex_unlock(&id_mgr->lock); 813 } 814 815 if (pasid_mapping_needed) { 816 id->pasid = job->pasid; 817 dma_fence_put(id->pasid_mapping); 818 id->pasid_mapping = dma_fence_get(fence); 819 } 820 dma_fence_put(fence); 821 822 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 823 id->gds_base = job->gds_base; 824 id->gds_size = job->gds_size; 825 id->gws_base = job->gws_base; 826 id->gws_size = job->gws_size; 827 id->oa_base = job->oa_base; 828 id->oa_size = job->oa_size; 829 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 830 job->gds_size, job->gws_base, 831 job->gws_size, job->oa_base, 832 job->oa_size); 833 } 834 835 if (ring->funcs->patch_cond_exec) 836 amdgpu_ring_patch_cond_exec(ring, patch_offset); 837 838 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 839 if (ring->funcs->emit_switch_buffer) { 840 amdgpu_ring_emit_switch_buffer(ring); 841 amdgpu_ring_emit_switch_buffer(ring); 842 } 843 return 0; 844 } 845 846 /** 847 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 848 * 849 * @vm: requested vm 850 * @bo: requested buffer object 851 * 852 * Find @bo inside the requested vm. 853 * Search inside the @bos vm list for the requested vm 854 * Returns the found bo_va or NULL if none is found 855 * 856 * Object has to be reserved! 857 * 858 * Returns: 859 * Found bo_va or NULL. 860 */ 861 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 862 struct amdgpu_bo *bo) 863 { 864 struct amdgpu_bo_va *bo_va; 865 866 list_for_each_entry(bo_va, &bo->va, base.bo_list) { 867 if (bo_va->base.vm == vm) { 868 return bo_va; 869 } 870 } 871 return NULL; 872 } 873 874 /** 875 * amdgpu_vm_do_set_ptes - helper to call the right asic function 876 * 877 * @params: see amdgpu_pte_update_params definition 878 * @bo: PD/PT to update 879 * @pe: addr of the page entry 880 * @addr: dst addr to write into pe 881 * @count: number of page entries to update 882 * @incr: increase next addr by incr bytes 883 * @flags: hw access flags 884 * 885 * Traces the parameters and calls the right asic functions 886 * to setup the page table using the DMA. 887 */ 888 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 889 struct amdgpu_bo *bo, 890 uint64_t pe, uint64_t addr, 891 unsigned count, uint32_t incr, 892 uint64_t flags) 893 { 894 pe += amdgpu_bo_gpu_offset(bo); 895 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 896 897 if (count < 3) { 898 amdgpu_vm_write_pte(params->adev, params->ib, pe, 899 addr | flags, count, incr); 900 901 } else { 902 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 903 count, incr, flags); 904 } 905 } 906 907 /** 908 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 909 * 910 * @params: see amdgpu_pte_update_params definition 911 * @bo: PD/PT to update 912 * @pe: addr of the page entry 913 * @addr: dst addr to write into pe 914 * @count: number of page entries to update 915 * @incr: increase next addr by incr bytes 916 * @flags: hw access flags 917 * 918 * Traces the parameters and calls the DMA function to copy the PTEs. 919 */ 920 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 921 struct amdgpu_bo *bo, 922 uint64_t pe, uint64_t addr, 923 unsigned count, uint32_t incr, 924 uint64_t flags) 925 { 926 uint64_t src = (params->src + (addr >> 12) * 8); 927 928 pe += amdgpu_bo_gpu_offset(bo); 929 trace_amdgpu_vm_copy_ptes(pe, src, count); 930 931 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 932 } 933 934 /** 935 * amdgpu_vm_map_gart - Resolve gart mapping of addr 936 * 937 * @pages_addr: optional DMA address to use for lookup 938 * @addr: the unmapped addr 939 * 940 * Look up the physical address of the page that the pte resolves 941 * to. 942 * 943 * Returns: 944 * The pointer for the page table entry. 945 */ 946 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 947 { 948 uint64_t result; 949 950 /* page table offset */ 951 result = pages_addr[addr >> PAGE_SHIFT]; 952 953 /* in case cpu page size != gpu page size*/ 954 result |= addr & (PAGE_MASK); 955 956 result &= 0xFFFFFFFFFFFFF000ULL; 957 958 return result; 959 } 960 961 /** 962 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 963 * 964 * @params: see amdgpu_pte_update_params definition 965 * @bo: PD/PT to update 966 * @pe: kmap addr of the page entry 967 * @addr: dst addr to write into pe 968 * @count: number of page entries to update 969 * @incr: increase next addr by incr bytes 970 * @flags: hw access flags 971 * 972 * Write count number of PT/PD entries directly. 973 */ 974 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 975 struct amdgpu_bo *bo, 976 uint64_t pe, uint64_t addr, 977 unsigned count, uint32_t incr, 978 uint64_t flags) 979 { 980 unsigned int i; 981 uint64_t value; 982 983 pe += (unsigned long)amdgpu_bo_kptr(bo); 984 985 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 986 987 for (i = 0; i < count; i++) { 988 value = params->pages_addr ? 989 amdgpu_vm_map_gart(params->pages_addr, addr) : 990 addr; 991 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 992 i, value, flags); 993 addr += incr; 994 } 995 } 996 997 998 /** 999 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 1000 * 1001 * @adev: amdgpu_device pointer 1002 * @vm: related vm 1003 * @owner: fence owner 1004 * 1005 * Returns: 1006 * 0 on success, errno otherwise. 1007 */ 1008 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1009 void *owner) 1010 { 1011 struct amdgpu_sync sync; 1012 int r; 1013 1014 amdgpu_sync_create(&sync); 1015 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 1016 r = amdgpu_sync_wait(&sync, true); 1017 amdgpu_sync_free(&sync); 1018 1019 return r; 1020 } 1021 1022 /* 1023 * amdgpu_vm_update_pde - update a single level in the hierarchy 1024 * 1025 * @param: parameters for the update 1026 * @vm: requested vm 1027 * @parent: parent directory 1028 * @entry: entry to update 1029 * 1030 * Makes sure the requested entry in parent is up to date. 1031 */ 1032 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1033 struct amdgpu_vm *vm, 1034 struct amdgpu_vm_pt *parent, 1035 struct amdgpu_vm_pt *entry) 1036 { 1037 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1038 uint64_t pde, pt, flags; 1039 unsigned level; 1040 1041 /* Don't update huge pages here */ 1042 if (entry->huge) 1043 return; 1044 1045 for (level = 0, pbo = bo->parent; pbo; ++level) 1046 pbo = pbo->parent; 1047 1048 level += params->adev->vm_manager.root_level; 1049 pt = amdgpu_bo_gpu_offset(entry->base.bo); 1050 flags = AMDGPU_PTE_VALID; 1051 amdgpu_gmc_get_vm_pde(params->adev, level, &pt, &flags); 1052 pde = (entry - parent->entries) * 8; 1053 if (bo->shadow) 1054 params->func(params, bo->shadow, pde, pt, 1, 0, flags); 1055 params->func(params, bo, pde, pt, 1, 0, flags); 1056 } 1057 1058 /* 1059 * amdgpu_vm_invalidate_level - mark all PD levels as invalid 1060 * 1061 * @adev: amdgpu_device pointer 1062 * @vm: related vm 1063 * @parent: parent PD 1064 * @level: VMPT level 1065 * 1066 * Mark all PD level as invalid after an error. 1067 */ 1068 static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev, 1069 struct amdgpu_vm *vm, 1070 struct amdgpu_vm_pt *parent, 1071 unsigned level) 1072 { 1073 unsigned pt_idx, num_entries; 1074 1075 /* 1076 * Recurse into the subdirectories. This recursion is harmless because 1077 * we only have a maximum of 5 layers. 1078 */ 1079 num_entries = amdgpu_vm_num_entries(adev, level); 1080 for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) { 1081 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 1082 1083 if (!entry->base.bo) 1084 continue; 1085 1086 if (!entry->base.moved) 1087 list_move(&entry->base.vm_status, &vm->relocated); 1088 amdgpu_vm_invalidate_level(adev, vm, entry, level + 1); 1089 } 1090 } 1091 1092 /* 1093 * amdgpu_vm_update_directories - make sure that all directories are valid 1094 * 1095 * @adev: amdgpu_device pointer 1096 * @vm: requested vm 1097 * 1098 * Makes sure all directories are up to date. 1099 * 1100 * Returns: 1101 * 0 for success, error for failure. 1102 */ 1103 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1104 struct amdgpu_vm *vm) 1105 { 1106 struct amdgpu_pte_update_params params; 1107 struct amdgpu_job *job; 1108 unsigned ndw = 0; 1109 int r = 0; 1110 1111 if (list_empty(&vm->relocated)) 1112 return 0; 1113 1114 restart: 1115 memset(¶ms, 0, sizeof(params)); 1116 params.adev = adev; 1117 1118 if (vm->use_cpu_for_update) { 1119 struct amdgpu_vm_bo_base *bo_base; 1120 1121 list_for_each_entry(bo_base, &vm->relocated, vm_status) { 1122 r = amdgpu_bo_kmap(bo_base->bo, NULL); 1123 if (unlikely(r)) 1124 return r; 1125 } 1126 1127 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1128 if (unlikely(r)) 1129 return r; 1130 1131 params.func = amdgpu_vm_cpu_set_ptes; 1132 } else { 1133 ndw = 512 * 8; 1134 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1135 if (r) 1136 return r; 1137 1138 params.ib = &job->ibs[0]; 1139 params.func = amdgpu_vm_do_set_ptes; 1140 } 1141 1142 while (!list_empty(&vm->relocated)) { 1143 struct amdgpu_vm_bo_base *bo_base, *parent; 1144 struct amdgpu_vm_pt *pt, *entry; 1145 struct amdgpu_bo *bo; 1146 1147 bo_base = list_first_entry(&vm->relocated, 1148 struct amdgpu_vm_bo_base, 1149 vm_status); 1150 bo_base->moved = false; 1151 list_del_init(&bo_base->vm_status); 1152 1153 bo = bo_base->bo->parent; 1154 if (!bo) 1155 continue; 1156 1157 parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base, 1158 bo_list); 1159 pt = container_of(parent, struct amdgpu_vm_pt, base); 1160 entry = container_of(bo_base, struct amdgpu_vm_pt, base); 1161 1162 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1163 1164 if (!vm->use_cpu_for_update && 1165 (ndw - params.ib->length_dw) < 32) 1166 break; 1167 } 1168 1169 if (vm->use_cpu_for_update) { 1170 /* Flush HDP */ 1171 mb(); 1172 amdgpu_asic_flush_hdp(adev, NULL); 1173 } else if (params.ib->length_dw == 0) { 1174 amdgpu_job_free(job); 1175 } else { 1176 struct amdgpu_bo *root = vm->root.base.bo; 1177 struct amdgpu_ring *ring; 1178 struct dma_fence *fence; 1179 1180 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1181 sched); 1182 1183 amdgpu_ring_pad_ib(ring, params.ib); 1184 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1185 AMDGPU_FENCE_OWNER_VM, false); 1186 WARN_ON(params.ib->length_dw > ndw); 1187 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1188 &fence); 1189 if (r) 1190 goto error; 1191 1192 amdgpu_bo_fence(root, fence, true); 1193 dma_fence_put(vm->last_update); 1194 vm->last_update = fence; 1195 } 1196 1197 if (!list_empty(&vm->relocated)) 1198 goto restart; 1199 1200 return 0; 1201 1202 error: 1203 amdgpu_vm_invalidate_level(adev, vm, &vm->root, 1204 adev->vm_manager.root_level); 1205 amdgpu_job_free(job); 1206 return r; 1207 } 1208 1209 /** 1210 * amdgpu_vm_find_entry - find the entry for an address 1211 * 1212 * @p: see amdgpu_pte_update_params definition 1213 * @addr: virtual address in question 1214 * @entry: resulting entry or NULL 1215 * @parent: parent entry 1216 * 1217 * Find the vm_pt entry and it's parent for the given address. 1218 */ 1219 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr, 1220 struct amdgpu_vm_pt **entry, 1221 struct amdgpu_vm_pt **parent) 1222 { 1223 unsigned level = p->adev->vm_manager.root_level; 1224 1225 *parent = NULL; 1226 *entry = &p->vm->root; 1227 while ((*entry)->entries) { 1228 unsigned shift = amdgpu_vm_level_shift(p->adev, level++); 1229 1230 *parent = *entry; 1231 *entry = &(*entry)->entries[addr >> shift]; 1232 addr &= (1ULL << shift) - 1; 1233 } 1234 1235 if (level != AMDGPU_VM_PTB) 1236 *entry = NULL; 1237 } 1238 1239 /** 1240 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages 1241 * 1242 * @p: see amdgpu_pte_update_params definition 1243 * @entry: vm_pt entry to check 1244 * @parent: parent entry 1245 * @nptes: number of PTEs updated with this operation 1246 * @dst: destination address where the PTEs should point to 1247 * @flags: access flags fro the PTEs 1248 * 1249 * Check if we can update the PD with a huge page. 1250 */ 1251 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p, 1252 struct amdgpu_vm_pt *entry, 1253 struct amdgpu_vm_pt *parent, 1254 unsigned nptes, uint64_t dst, 1255 uint64_t flags) 1256 { 1257 uint64_t pde; 1258 1259 /* In the case of a mixed PT the PDE must point to it*/ 1260 if (p->adev->asic_type >= CHIP_VEGA10 && !p->src && 1261 nptes == AMDGPU_VM_PTE_COUNT(p->adev)) { 1262 /* Set the huge page flag to stop scanning at this PDE */ 1263 flags |= AMDGPU_PDE_PTE; 1264 } 1265 1266 if (!(flags & AMDGPU_PDE_PTE)) { 1267 if (entry->huge) { 1268 /* Add the entry to the relocated list to update it. */ 1269 entry->huge = false; 1270 list_move(&entry->base.vm_status, &p->vm->relocated); 1271 } 1272 return; 1273 } 1274 1275 entry->huge = true; 1276 amdgpu_gmc_get_vm_pde(p->adev, AMDGPU_VM_PDB0, &dst, &flags); 1277 1278 pde = (entry - parent->entries) * 8; 1279 if (parent->base.bo->shadow) 1280 p->func(p, parent->base.bo->shadow, pde, dst, 1, 0, flags); 1281 p->func(p, parent->base.bo, pde, dst, 1, 0, flags); 1282 } 1283 1284 /** 1285 * amdgpu_vm_update_ptes - make sure that page tables are valid 1286 * 1287 * @params: see amdgpu_pte_update_params definition 1288 * @start: start of GPU address range 1289 * @end: end of GPU address range 1290 * @dst: destination address to map to, the next dst inside the function 1291 * @flags: mapping flags 1292 * 1293 * Update the page tables in the range @start - @end. 1294 * 1295 * Returns: 1296 * 0 for success, -EINVAL for failure. 1297 */ 1298 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1299 uint64_t start, uint64_t end, 1300 uint64_t dst, uint64_t flags) 1301 { 1302 struct amdgpu_device *adev = params->adev; 1303 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1304 1305 uint64_t addr, pe_start; 1306 struct amdgpu_bo *pt; 1307 unsigned nptes; 1308 1309 /* walk over the address space and update the page tables */ 1310 for (addr = start; addr < end; addr += nptes, 1311 dst += nptes * AMDGPU_GPU_PAGE_SIZE) { 1312 struct amdgpu_vm_pt *entry, *parent; 1313 1314 amdgpu_vm_get_entry(params, addr, &entry, &parent); 1315 if (!entry) 1316 return -ENOENT; 1317 1318 if ((addr & ~mask) == (end & ~mask)) 1319 nptes = end - addr; 1320 else 1321 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1322 1323 amdgpu_vm_handle_huge_pages(params, entry, parent, 1324 nptes, dst, flags); 1325 /* We don't need to update PTEs for huge pages */ 1326 if (entry->huge) 1327 continue; 1328 1329 pt = entry->base.bo; 1330 pe_start = (addr & mask) * 8; 1331 if (pt->shadow) 1332 params->func(params, pt->shadow, pe_start, dst, nptes, 1333 AMDGPU_GPU_PAGE_SIZE, flags); 1334 params->func(params, pt, pe_start, dst, nptes, 1335 AMDGPU_GPU_PAGE_SIZE, flags); 1336 } 1337 1338 return 0; 1339 } 1340 1341 /* 1342 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1343 * 1344 * @params: see amdgpu_pte_update_params definition 1345 * @vm: requested vm 1346 * @start: first PTE to handle 1347 * @end: last PTE to handle 1348 * @dst: addr those PTEs should point to 1349 * @flags: hw mapping flags 1350 * 1351 * Returns: 1352 * 0 for success, -EINVAL for failure. 1353 */ 1354 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1355 uint64_t start, uint64_t end, 1356 uint64_t dst, uint64_t flags) 1357 { 1358 /** 1359 * The MC L1 TLB supports variable sized pages, based on a fragment 1360 * field in the PTE. When this field is set to a non-zero value, page 1361 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1362 * flags are considered valid for all PTEs within the fragment range 1363 * and corresponding mappings are assumed to be physically contiguous. 1364 * 1365 * The L1 TLB can store a single PTE for the whole fragment, 1366 * significantly increasing the space available for translation 1367 * caching. This leads to large improvements in throughput when the 1368 * TLB is under pressure. 1369 * 1370 * The L2 TLB distributes small and large fragments into two 1371 * asymmetric partitions. The large fragment cache is significantly 1372 * larger. Thus, we try to use large fragments wherever possible. 1373 * Userspace can support this by aligning virtual base address and 1374 * allocation size to the fragment size. 1375 */ 1376 unsigned max_frag = params->adev->vm_manager.fragment_size; 1377 int r; 1378 1379 /* system pages are non continuously */ 1380 if (params->src || !(flags & AMDGPU_PTE_VALID)) 1381 return amdgpu_vm_update_ptes(params, start, end, dst, flags); 1382 1383 while (start != end) { 1384 uint64_t frag_flags, frag_end; 1385 unsigned frag; 1386 1387 /* This intentionally wraps around if no bit is set */ 1388 frag = min((unsigned)ffs(start) - 1, 1389 (unsigned)fls64(end - start) - 1); 1390 if (frag >= max_frag) { 1391 frag_flags = AMDGPU_PTE_FRAG(max_frag); 1392 frag_end = end & ~((1ULL << max_frag) - 1); 1393 } else { 1394 frag_flags = AMDGPU_PTE_FRAG(frag); 1395 frag_end = start + (1 << frag); 1396 } 1397 1398 r = amdgpu_vm_update_ptes(params, start, frag_end, dst, 1399 flags | frag_flags); 1400 if (r) 1401 return r; 1402 1403 dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE; 1404 start = frag_end; 1405 } 1406 1407 return 0; 1408 } 1409 1410 /** 1411 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1412 * 1413 * @adev: amdgpu_device pointer 1414 * @exclusive: fence we need to sync to 1415 * @pages_addr: DMA addresses to use for mapping 1416 * @vm: requested vm 1417 * @start: start of mapped range 1418 * @last: last mapped entry 1419 * @flags: flags for the entries 1420 * @addr: addr to set the area to 1421 * @fence: optional resulting fence 1422 * 1423 * Fill in the page table entries between @start and @last. 1424 * 1425 * Returns: 1426 * 0 for success, -EINVAL for failure. 1427 */ 1428 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1429 struct dma_fence *exclusive, 1430 dma_addr_t *pages_addr, 1431 struct amdgpu_vm *vm, 1432 uint64_t start, uint64_t last, 1433 uint64_t flags, uint64_t addr, 1434 struct dma_fence **fence) 1435 { 1436 struct amdgpu_ring *ring; 1437 void *owner = AMDGPU_FENCE_OWNER_VM; 1438 unsigned nptes, ncmds, ndw; 1439 struct amdgpu_job *job; 1440 struct amdgpu_pte_update_params params; 1441 struct dma_fence *f = NULL; 1442 int r; 1443 1444 memset(¶ms, 0, sizeof(params)); 1445 params.adev = adev; 1446 params.vm = vm; 1447 1448 /* sync to everything on unmapping */ 1449 if (!(flags & AMDGPU_PTE_VALID)) 1450 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1451 1452 if (vm->use_cpu_for_update) { 1453 /* params.src is used as flag to indicate system Memory */ 1454 if (pages_addr) 1455 params.src = ~0; 1456 1457 /* Wait for PT BOs to be free. PTs share the same resv. object 1458 * as the root PD BO 1459 */ 1460 r = amdgpu_vm_wait_pd(adev, vm, owner); 1461 if (unlikely(r)) 1462 return r; 1463 1464 params.func = amdgpu_vm_cpu_set_ptes; 1465 params.pages_addr = pages_addr; 1466 return amdgpu_vm_frag_ptes(¶ms, start, last + 1, 1467 addr, flags); 1468 } 1469 1470 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1471 1472 nptes = last - start + 1; 1473 1474 /* 1475 * reserve space for two commands every (1 << BLOCK_SIZE) 1476 * entries or 2k dwords (whatever is smaller) 1477 * 1478 * The second command is for the shadow pagetables. 1479 */ 1480 if (vm->root.base.bo->shadow) 1481 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1482 else 1483 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1484 1485 /* padding, etc. */ 1486 ndw = 64; 1487 1488 if (pages_addr) { 1489 /* copy commands needed */ 1490 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1491 1492 /* and also PTEs */ 1493 ndw += nptes * 2; 1494 1495 params.func = amdgpu_vm_do_copy_ptes; 1496 1497 } else { 1498 /* set page commands needed */ 1499 ndw += ncmds * 10; 1500 1501 /* extra commands for begin/end fragments */ 1502 if (vm->root.base.bo->shadow) 1503 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1504 else 1505 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1506 1507 params.func = amdgpu_vm_do_set_ptes; 1508 } 1509 1510 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1511 if (r) 1512 return r; 1513 1514 params.ib = &job->ibs[0]; 1515 1516 if (pages_addr) { 1517 uint64_t *pte; 1518 unsigned i; 1519 1520 /* Put the PTEs at the end of the IB. */ 1521 i = ndw - nptes * 2; 1522 pte= (uint64_t *)&(job->ibs->ptr[i]); 1523 params.src = job->ibs->gpu_addr + i * 4; 1524 1525 for (i = 0; i < nptes; ++i) { 1526 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1527 AMDGPU_GPU_PAGE_SIZE); 1528 pte[i] |= flags; 1529 } 1530 addr = 0; 1531 } 1532 1533 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1534 if (r) 1535 goto error_free; 1536 1537 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1538 owner, false); 1539 if (r) 1540 goto error_free; 1541 1542 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1543 if (r) 1544 goto error_free; 1545 1546 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1547 if (r) 1548 goto error_free; 1549 1550 amdgpu_ring_pad_ib(ring, params.ib); 1551 WARN_ON(params.ib->length_dw > ndw); 1552 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1553 if (r) 1554 goto error_free; 1555 1556 amdgpu_bo_fence(vm->root.base.bo, f, true); 1557 dma_fence_put(*fence); 1558 *fence = f; 1559 return 0; 1560 1561 error_free: 1562 amdgpu_job_free(job); 1563 return r; 1564 } 1565 1566 /** 1567 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1568 * 1569 * @adev: amdgpu_device pointer 1570 * @exclusive: fence we need to sync to 1571 * @pages_addr: DMA addresses to use for mapping 1572 * @vm: requested vm 1573 * @mapping: mapped range and flags to use for the update 1574 * @flags: HW flags for the mapping 1575 * @nodes: array of drm_mm_nodes with the MC addresses 1576 * @fence: optional resulting fence 1577 * 1578 * Split the mapping into smaller chunks so that each update fits 1579 * into a SDMA IB. 1580 * 1581 * Returns: 1582 * 0 for success, -EINVAL for failure. 1583 */ 1584 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1585 struct dma_fence *exclusive, 1586 dma_addr_t *pages_addr, 1587 struct amdgpu_vm *vm, 1588 struct amdgpu_bo_va_mapping *mapping, 1589 uint64_t flags, 1590 struct drm_mm_node *nodes, 1591 struct dma_fence **fence) 1592 { 1593 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1594 uint64_t pfn, start = mapping->start; 1595 int r; 1596 1597 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1598 * but in case of something, we filter the flags in first place 1599 */ 1600 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1601 flags &= ~AMDGPU_PTE_READABLE; 1602 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1603 flags &= ~AMDGPU_PTE_WRITEABLE; 1604 1605 flags &= ~AMDGPU_PTE_EXECUTABLE; 1606 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1607 1608 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1609 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1610 1611 if ((mapping->flags & AMDGPU_PTE_PRT) && 1612 (adev->asic_type >= CHIP_VEGA10)) { 1613 flags |= AMDGPU_PTE_PRT; 1614 flags &= ~AMDGPU_PTE_VALID; 1615 } 1616 1617 trace_amdgpu_vm_bo_update(mapping); 1618 1619 pfn = mapping->offset >> PAGE_SHIFT; 1620 if (nodes) { 1621 while (pfn >= nodes->size) { 1622 pfn -= nodes->size; 1623 ++nodes; 1624 } 1625 } 1626 1627 do { 1628 dma_addr_t *dma_addr = NULL; 1629 uint64_t max_entries; 1630 uint64_t addr, last; 1631 1632 if (nodes) { 1633 addr = nodes->start << PAGE_SHIFT; 1634 max_entries = (nodes->size - pfn) * 1635 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1636 } else { 1637 addr = 0; 1638 max_entries = S64_MAX; 1639 } 1640 1641 if (pages_addr) { 1642 uint64_t count; 1643 1644 max_entries = min(max_entries, 16ull * 1024ull); 1645 for (count = 1; 1646 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1647 ++count) { 1648 uint64_t idx = pfn + count; 1649 1650 if (pages_addr[idx] != 1651 (pages_addr[idx - 1] + PAGE_SIZE)) 1652 break; 1653 } 1654 1655 if (count < min_linear_pages) { 1656 addr = pfn << PAGE_SHIFT; 1657 dma_addr = pages_addr; 1658 } else { 1659 addr = pages_addr[pfn]; 1660 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1661 } 1662 1663 } else if (flags & AMDGPU_PTE_VALID) { 1664 addr += adev->vm_manager.vram_base_offset; 1665 addr += pfn << PAGE_SHIFT; 1666 } 1667 1668 last = min((uint64_t)mapping->last, start + max_entries - 1); 1669 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1670 start, last, flags, addr, 1671 fence); 1672 if (r) 1673 return r; 1674 1675 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1676 if (nodes && nodes->size == pfn) { 1677 pfn = 0; 1678 ++nodes; 1679 } 1680 start = last + 1; 1681 1682 } while (unlikely(start != mapping->last + 1)); 1683 1684 return 0; 1685 } 1686 1687 /** 1688 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1689 * 1690 * @adev: amdgpu_device pointer 1691 * @bo_va: requested BO and VM object 1692 * @clear: if true clear the entries 1693 * 1694 * Fill in the page table entries for @bo_va. 1695 * 1696 * Returns: 1697 * 0 for success, -EINVAL for failure. 1698 */ 1699 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1700 struct amdgpu_bo_va *bo_va, 1701 bool clear) 1702 { 1703 struct amdgpu_bo *bo = bo_va->base.bo; 1704 struct amdgpu_vm *vm = bo_va->base.vm; 1705 struct amdgpu_bo_va_mapping *mapping; 1706 dma_addr_t *pages_addr = NULL; 1707 struct ttm_mem_reg *mem; 1708 struct drm_mm_node *nodes; 1709 struct dma_fence *exclusive, **last_update; 1710 uint64_t flags; 1711 int r; 1712 1713 if (clear || !bo) { 1714 mem = NULL; 1715 nodes = NULL; 1716 exclusive = NULL; 1717 } else { 1718 struct ttm_dma_tt *ttm; 1719 1720 mem = &bo->tbo.mem; 1721 nodes = mem->mm_node; 1722 if (mem->mem_type == TTM_PL_TT) { 1723 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1724 pages_addr = ttm->dma_address; 1725 } 1726 exclusive = reservation_object_get_excl(bo->tbo.resv); 1727 } 1728 1729 if (bo) 1730 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1731 else 1732 flags = 0x0; 1733 1734 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 1735 last_update = &vm->last_update; 1736 else 1737 last_update = &bo_va->last_pt_update; 1738 1739 if (!clear && bo_va->base.moved) { 1740 bo_va->base.moved = false; 1741 list_splice_init(&bo_va->valids, &bo_va->invalids); 1742 1743 } else if (bo_va->cleared != clear) { 1744 list_splice_init(&bo_va->valids, &bo_va->invalids); 1745 } 1746 1747 list_for_each_entry(mapping, &bo_va->invalids, list) { 1748 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1749 mapping, flags, nodes, 1750 last_update); 1751 if (r) 1752 return r; 1753 } 1754 1755 if (vm->use_cpu_for_update) { 1756 /* Flush HDP */ 1757 mb(); 1758 amdgpu_asic_flush_hdp(adev, NULL); 1759 } 1760 1761 spin_lock(&vm->moved_lock); 1762 list_del_init(&bo_va->base.vm_status); 1763 spin_unlock(&vm->moved_lock); 1764 1765 /* If the BO is not in its preferred location add it back to 1766 * the evicted list so that it gets validated again on the 1767 * next command submission. 1768 */ 1769 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 1770 uint32_t mem_type = bo->tbo.mem.mem_type; 1771 1772 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 1773 list_add_tail(&bo_va->base.vm_status, &vm->evicted); 1774 else 1775 list_add(&bo_va->base.vm_status, &vm->idle); 1776 } 1777 1778 list_splice_init(&bo_va->invalids, &bo_va->valids); 1779 bo_va->cleared = clear; 1780 1781 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1782 list_for_each_entry(mapping, &bo_va->valids, list) 1783 trace_amdgpu_vm_bo_mapping(mapping); 1784 } 1785 1786 return 0; 1787 } 1788 1789 /** 1790 * amdgpu_vm_update_prt_state - update the global PRT state 1791 * 1792 * @adev: amdgpu_device pointer 1793 */ 1794 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1795 { 1796 unsigned long flags; 1797 bool enable; 1798 1799 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1800 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1801 adev->gmc.gmc_funcs->set_prt(adev, enable); 1802 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1803 } 1804 1805 /** 1806 * amdgpu_vm_prt_get - add a PRT user 1807 * 1808 * @adev: amdgpu_device pointer 1809 */ 1810 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1811 { 1812 if (!adev->gmc.gmc_funcs->set_prt) 1813 return; 1814 1815 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1816 amdgpu_vm_update_prt_state(adev); 1817 } 1818 1819 /** 1820 * amdgpu_vm_prt_put - drop a PRT user 1821 * 1822 * @adev: amdgpu_device pointer 1823 */ 1824 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1825 { 1826 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1827 amdgpu_vm_update_prt_state(adev); 1828 } 1829 1830 /** 1831 * amdgpu_vm_prt_cb - callback for updating the PRT status 1832 * 1833 * @fence: fence for the callback 1834 * @_cb: the callback function 1835 */ 1836 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1837 { 1838 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1839 1840 amdgpu_vm_prt_put(cb->adev); 1841 kfree(cb); 1842 } 1843 1844 /** 1845 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1846 * 1847 * @adev: amdgpu_device pointer 1848 * @fence: fence for the callback 1849 */ 1850 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1851 struct dma_fence *fence) 1852 { 1853 struct amdgpu_prt_cb *cb; 1854 1855 if (!adev->gmc.gmc_funcs->set_prt) 1856 return; 1857 1858 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1859 if (!cb) { 1860 /* Last resort when we are OOM */ 1861 if (fence) 1862 dma_fence_wait(fence, false); 1863 1864 amdgpu_vm_prt_put(adev); 1865 } else { 1866 cb->adev = adev; 1867 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1868 amdgpu_vm_prt_cb)) 1869 amdgpu_vm_prt_cb(fence, &cb->cb); 1870 } 1871 } 1872 1873 /** 1874 * amdgpu_vm_free_mapping - free a mapping 1875 * 1876 * @adev: amdgpu_device pointer 1877 * @vm: requested vm 1878 * @mapping: mapping to be freed 1879 * @fence: fence of the unmap operation 1880 * 1881 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1882 */ 1883 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1884 struct amdgpu_vm *vm, 1885 struct amdgpu_bo_va_mapping *mapping, 1886 struct dma_fence *fence) 1887 { 1888 if (mapping->flags & AMDGPU_PTE_PRT) 1889 amdgpu_vm_add_prt_cb(adev, fence); 1890 kfree(mapping); 1891 } 1892 1893 /** 1894 * amdgpu_vm_prt_fini - finish all prt mappings 1895 * 1896 * @adev: amdgpu_device pointer 1897 * @vm: requested vm 1898 * 1899 * Register a cleanup callback to disable PRT support after VM dies. 1900 */ 1901 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1902 { 1903 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 1904 struct dma_fence *excl, **shared; 1905 unsigned i, shared_count; 1906 int r; 1907 1908 r = reservation_object_get_fences_rcu(resv, &excl, 1909 &shared_count, &shared); 1910 if (r) { 1911 /* Not enough memory to grab the fence list, as last resort 1912 * block for all the fences to complete. 1913 */ 1914 reservation_object_wait_timeout_rcu(resv, true, false, 1915 MAX_SCHEDULE_TIMEOUT); 1916 return; 1917 } 1918 1919 /* Add a callback for each fence in the reservation object */ 1920 amdgpu_vm_prt_get(adev); 1921 amdgpu_vm_add_prt_cb(adev, excl); 1922 1923 for (i = 0; i < shared_count; ++i) { 1924 amdgpu_vm_prt_get(adev); 1925 amdgpu_vm_add_prt_cb(adev, shared[i]); 1926 } 1927 1928 kfree(shared); 1929 } 1930 1931 /** 1932 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1933 * 1934 * @adev: amdgpu_device pointer 1935 * @vm: requested vm 1936 * @fence: optional resulting fence (unchanged if no work needed to be done 1937 * or if an error occurred) 1938 * 1939 * Make sure all freed BOs are cleared in the PT. 1940 * PTs have to be reserved and mutex must be locked! 1941 * 1942 * Returns: 1943 * 0 for success. 1944 * 1945 */ 1946 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1947 struct amdgpu_vm *vm, 1948 struct dma_fence **fence) 1949 { 1950 struct amdgpu_bo_va_mapping *mapping; 1951 uint64_t init_pte_value = 0; 1952 struct dma_fence *f = NULL; 1953 int r; 1954 1955 while (!list_empty(&vm->freed)) { 1956 mapping = list_first_entry(&vm->freed, 1957 struct amdgpu_bo_va_mapping, list); 1958 list_del(&mapping->list); 1959 1960 if (vm->pte_support_ats && mapping->start < AMDGPU_VA_HOLE_START) 1961 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1962 1963 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 1964 mapping->start, mapping->last, 1965 init_pte_value, 0, &f); 1966 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1967 if (r) { 1968 dma_fence_put(f); 1969 return r; 1970 } 1971 } 1972 1973 if (fence && f) { 1974 dma_fence_put(*fence); 1975 *fence = f; 1976 } else { 1977 dma_fence_put(f); 1978 } 1979 1980 return 0; 1981 1982 } 1983 1984 /** 1985 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1986 * 1987 * @adev: amdgpu_device pointer 1988 * @vm: requested vm 1989 * 1990 * Make sure all BOs which are moved are updated in the PTs. 1991 * 1992 * Returns: 1993 * 0 for success. 1994 * 1995 * PTs have to be reserved! 1996 */ 1997 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1998 struct amdgpu_vm *vm) 1999 { 2000 struct amdgpu_bo_va *bo_va, *tmp; 2001 struct list_head moved; 2002 bool clear; 2003 int r; 2004 2005 INIT_LIST_HEAD(&moved); 2006 spin_lock(&vm->moved_lock); 2007 list_splice_init(&vm->moved, &moved); 2008 spin_unlock(&vm->moved_lock); 2009 2010 list_for_each_entry_safe(bo_va, tmp, &moved, base.vm_status) { 2011 struct reservation_object *resv = bo_va->base.bo->tbo.resv; 2012 2013 /* Per VM BOs never need to bo cleared in the page tables */ 2014 if (resv == vm->root.base.bo->tbo.resv) 2015 clear = false; 2016 /* Try to reserve the BO to avoid clearing its ptes */ 2017 else if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2018 clear = false; 2019 /* Somebody else is using the BO right now */ 2020 else 2021 clear = true; 2022 2023 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2024 if (r) { 2025 spin_lock(&vm->moved_lock); 2026 list_splice(&moved, &vm->moved); 2027 spin_unlock(&vm->moved_lock); 2028 return r; 2029 } 2030 2031 if (!clear && resv != vm->root.base.bo->tbo.resv) 2032 reservation_object_unlock(resv); 2033 2034 } 2035 2036 return 0; 2037 } 2038 2039 /** 2040 * amdgpu_vm_bo_add - add a bo to a specific vm 2041 * 2042 * @adev: amdgpu_device pointer 2043 * @vm: requested vm 2044 * @bo: amdgpu buffer object 2045 * 2046 * Add @bo into the requested vm. 2047 * Add @bo to the list of bos associated with the vm 2048 * 2049 * Returns: 2050 * Newly added bo_va or NULL for failure 2051 * 2052 * Object has to be reserved! 2053 */ 2054 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2055 struct amdgpu_vm *vm, 2056 struct amdgpu_bo *bo) 2057 { 2058 struct amdgpu_bo_va *bo_va; 2059 2060 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2061 if (bo_va == NULL) { 2062 return NULL; 2063 } 2064 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2065 2066 bo_va->ref_count = 1; 2067 INIT_LIST_HEAD(&bo_va->valids); 2068 INIT_LIST_HEAD(&bo_va->invalids); 2069 2070 return bo_va; 2071 } 2072 2073 2074 /** 2075 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2076 * 2077 * @adev: amdgpu_device pointer 2078 * @bo_va: bo_va to store the address 2079 * @mapping: the mapping to insert 2080 * 2081 * Insert a new mapping into all structures. 2082 */ 2083 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2084 struct amdgpu_bo_va *bo_va, 2085 struct amdgpu_bo_va_mapping *mapping) 2086 { 2087 struct amdgpu_vm *vm = bo_va->base.vm; 2088 struct amdgpu_bo *bo = bo_va->base.bo; 2089 2090 mapping->bo_va = bo_va; 2091 list_add(&mapping->list, &bo_va->invalids); 2092 amdgpu_vm_it_insert(mapping, &vm->va); 2093 2094 if (mapping->flags & AMDGPU_PTE_PRT) 2095 amdgpu_vm_prt_get(adev); 2096 2097 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2098 !bo_va->base.moved) { 2099 spin_lock(&vm->moved_lock); 2100 list_move(&bo_va->base.vm_status, &vm->moved); 2101 spin_unlock(&vm->moved_lock); 2102 } 2103 trace_amdgpu_vm_bo_map(bo_va, mapping); 2104 } 2105 2106 /** 2107 * amdgpu_vm_bo_map - map bo inside a vm 2108 * 2109 * @adev: amdgpu_device pointer 2110 * @bo_va: bo_va to store the address 2111 * @saddr: where to map the BO 2112 * @offset: requested offset in the BO 2113 * @size: BO size in bytes 2114 * @flags: attributes of pages (read/write/valid/etc.) 2115 * 2116 * Add a mapping of the BO at the specefied addr into the VM. 2117 * 2118 * Returns: 2119 * 0 for success, error for failure. 2120 * 2121 * Object has to be reserved and unreserved outside! 2122 */ 2123 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2124 struct amdgpu_bo_va *bo_va, 2125 uint64_t saddr, uint64_t offset, 2126 uint64_t size, uint64_t flags) 2127 { 2128 struct amdgpu_bo_va_mapping *mapping, *tmp; 2129 struct amdgpu_bo *bo = bo_va->base.bo; 2130 struct amdgpu_vm *vm = bo_va->base.vm; 2131 uint64_t eaddr; 2132 2133 /* validate the parameters */ 2134 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2135 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2136 return -EINVAL; 2137 2138 /* make sure object fit at this offset */ 2139 eaddr = saddr + size - 1; 2140 if (saddr >= eaddr || 2141 (bo && offset + size > amdgpu_bo_size(bo))) 2142 return -EINVAL; 2143 2144 saddr /= AMDGPU_GPU_PAGE_SIZE; 2145 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2146 2147 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2148 if (tmp) { 2149 /* bo and tmp overlap, invalid addr */ 2150 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2151 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2152 tmp->start, tmp->last + 1); 2153 return -EINVAL; 2154 } 2155 2156 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2157 if (!mapping) 2158 return -ENOMEM; 2159 2160 mapping->start = saddr; 2161 mapping->last = eaddr; 2162 mapping->offset = offset; 2163 mapping->flags = flags; 2164 2165 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2166 2167 return 0; 2168 } 2169 2170 /** 2171 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2172 * 2173 * @adev: amdgpu_device pointer 2174 * @bo_va: bo_va to store the address 2175 * @saddr: where to map the BO 2176 * @offset: requested offset in the BO 2177 * @size: BO size in bytes 2178 * @flags: attributes of pages (read/write/valid/etc.) 2179 * 2180 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2181 * mappings as we do so. 2182 * 2183 * Returns: 2184 * 0 for success, error for failure. 2185 * 2186 * Object has to be reserved and unreserved outside! 2187 */ 2188 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2189 struct amdgpu_bo_va *bo_va, 2190 uint64_t saddr, uint64_t offset, 2191 uint64_t size, uint64_t flags) 2192 { 2193 struct amdgpu_bo_va_mapping *mapping; 2194 struct amdgpu_bo *bo = bo_va->base.bo; 2195 uint64_t eaddr; 2196 int r; 2197 2198 /* validate the parameters */ 2199 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2200 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2201 return -EINVAL; 2202 2203 /* make sure object fit at this offset */ 2204 eaddr = saddr + size - 1; 2205 if (saddr >= eaddr || 2206 (bo && offset + size > amdgpu_bo_size(bo))) 2207 return -EINVAL; 2208 2209 /* Allocate all the needed memory */ 2210 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2211 if (!mapping) 2212 return -ENOMEM; 2213 2214 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2215 if (r) { 2216 kfree(mapping); 2217 return r; 2218 } 2219 2220 saddr /= AMDGPU_GPU_PAGE_SIZE; 2221 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2222 2223 mapping->start = saddr; 2224 mapping->last = eaddr; 2225 mapping->offset = offset; 2226 mapping->flags = flags; 2227 2228 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2229 2230 return 0; 2231 } 2232 2233 /** 2234 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2235 * 2236 * @adev: amdgpu_device pointer 2237 * @bo_va: bo_va to remove the address from 2238 * @saddr: where to the BO is mapped 2239 * 2240 * Remove a mapping of the BO at the specefied addr from the VM. 2241 * 2242 * Returns: 2243 * 0 for success, error for failure. 2244 * 2245 * Object has to be reserved and unreserved outside! 2246 */ 2247 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2248 struct amdgpu_bo_va *bo_va, 2249 uint64_t saddr) 2250 { 2251 struct amdgpu_bo_va_mapping *mapping; 2252 struct amdgpu_vm *vm = bo_va->base.vm; 2253 bool valid = true; 2254 2255 saddr /= AMDGPU_GPU_PAGE_SIZE; 2256 2257 list_for_each_entry(mapping, &bo_va->valids, list) { 2258 if (mapping->start == saddr) 2259 break; 2260 } 2261 2262 if (&mapping->list == &bo_va->valids) { 2263 valid = false; 2264 2265 list_for_each_entry(mapping, &bo_va->invalids, list) { 2266 if (mapping->start == saddr) 2267 break; 2268 } 2269 2270 if (&mapping->list == &bo_va->invalids) 2271 return -ENOENT; 2272 } 2273 2274 list_del(&mapping->list); 2275 amdgpu_vm_it_remove(mapping, &vm->va); 2276 mapping->bo_va = NULL; 2277 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2278 2279 if (valid) 2280 list_add(&mapping->list, &vm->freed); 2281 else 2282 amdgpu_vm_free_mapping(adev, vm, mapping, 2283 bo_va->last_pt_update); 2284 2285 return 0; 2286 } 2287 2288 /** 2289 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2290 * 2291 * @adev: amdgpu_device pointer 2292 * @vm: VM structure to use 2293 * @saddr: start of the range 2294 * @size: size of the range 2295 * 2296 * Remove all mappings in a range, split them as appropriate. 2297 * 2298 * Returns: 2299 * 0 for success, error for failure. 2300 */ 2301 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2302 struct amdgpu_vm *vm, 2303 uint64_t saddr, uint64_t size) 2304 { 2305 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2306 DRM_LIST_HEAD(removed); 2307 uint64_t eaddr; 2308 2309 eaddr = saddr + size - 1; 2310 saddr /= AMDGPU_GPU_PAGE_SIZE; 2311 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2312 2313 /* Allocate all the needed memory */ 2314 before = kzalloc(sizeof(*before), GFP_KERNEL); 2315 if (!before) 2316 return -ENOMEM; 2317 INIT_LIST_HEAD(&before->list); 2318 2319 after = kzalloc(sizeof(*after), GFP_KERNEL); 2320 if (!after) { 2321 kfree(before); 2322 return -ENOMEM; 2323 } 2324 INIT_LIST_HEAD(&after->list); 2325 2326 /* Now gather all removed mappings */ 2327 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2328 while (tmp) { 2329 /* Remember mapping split at the start */ 2330 if (tmp->start < saddr) { 2331 before->start = tmp->start; 2332 before->last = saddr - 1; 2333 before->offset = tmp->offset; 2334 before->flags = tmp->flags; 2335 before->bo_va = tmp->bo_va; 2336 list_add(&before->list, &tmp->bo_va->invalids); 2337 } 2338 2339 /* Remember mapping split at the end */ 2340 if (tmp->last > eaddr) { 2341 after->start = eaddr + 1; 2342 after->last = tmp->last; 2343 after->offset = tmp->offset; 2344 after->offset += after->start - tmp->start; 2345 after->flags = tmp->flags; 2346 after->bo_va = tmp->bo_va; 2347 list_add(&after->list, &tmp->bo_va->invalids); 2348 } 2349 2350 list_del(&tmp->list); 2351 list_add(&tmp->list, &removed); 2352 2353 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2354 } 2355 2356 /* And free them up */ 2357 list_for_each_entry_safe(tmp, next, &removed, list) { 2358 amdgpu_vm_it_remove(tmp, &vm->va); 2359 list_del(&tmp->list); 2360 2361 if (tmp->start < saddr) 2362 tmp->start = saddr; 2363 if (tmp->last > eaddr) 2364 tmp->last = eaddr; 2365 2366 tmp->bo_va = NULL; 2367 list_add(&tmp->list, &vm->freed); 2368 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2369 } 2370 2371 /* Insert partial mapping before the range */ 2372 if (!list_empty(&before->list)) { 2373 amdgpu_vm_it_insert(before, &vm->va); 2374 if (before->flags & AMDGPU_PTE_PRT) 2375 amdgpu_vm_prt_get(adev); 2376 } else { 2377 kfree(before); 2378 } 2379 2380 /* Insert partial mapping after the range */ 2381 if (!list_empty(&after->list)) { 2382 amdgpu_vm_it_insert(after, &vm->va); 2383 if (after->flags & AMDGPU_PTE_PRT) 2384 amdgpu_vm_prt_get(adev); 2385 } else { 2386 kfree(after); 2387 } 2388 2389 return 0; 2390 } 2391 2392 /** 2393 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2394 * 2395 * @vm: the requested VM 2396 * @addr: the address 2397 * 2398 * Find a mapping by it's address. 2399 * 2400 * Returns: 2401 * The amdgpu_bo_va_mapping matching for addr or NULL 2402 * 2403 */ 2404 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2405 uint64_t addr) 2406 { 2407 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2408 } 2409 2410 /** 2411 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2412 * 2413 * @vm: the requested vm 2414 * @ticket: CS ticket 2415 * 2416 * Trace all mappings of BOs reserved during a command submission. 2417 */ 2418 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2419 { 2420 struct amdgpu_bo_va_mapping *mapping; 2421 2422 if (!trace_amdgpu_vm_bo_cs_enabled()) 2423 return; 2424 2425 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2426 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2427 if (mapping->bo_va && mapping->bo_va->base.bo) { 2428 struct amdgpu_bo *bo; 2429 2430 bo = mapping->bo_va->base.bo; 2431 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2432 continue; 2433 } 2434 2435 trace_amdgpu_vm_bo_cs(mapping); 2436 } 2437 } 2438 2439 /** 2440 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2441 * 2442 * @adev: amdgpu_device pointer 2443 * @bo_va: requested bo_va 2444 * 2445 * Remove @bo_va->bo from the requested vm. 2446 * 2447 * Object have to be reserved! 2448 */ 2449 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2450 struct amdgpu_bo_va *bo_va) 2451 { 2452 struct amdgpu_bo_va_mapping *mapping, *next; 2453 struct amdgpu_vm *vm = bo_va->base.vm; 2454 2455 list_del(&bo_va->base.bo_list); 2456 2457 spin_lock(&vm->moved_lock); 2458 list_del(&bo_va->base.vm_status); 2459 spin_unlock(&vm->moved_lock); 2460 2461 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2462 list_del(&mapping->list); 2463 amdgpu_vm_it_remove(mapping, &vm->va); 2464 mapping->bo_va = NULL; 2465 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2466 list_add(&mapping->list, &vm->freed); 2467 } 2468 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2469 list_del(&mapping->list); 2470 amdgpu_vm_it_remove(mapping, &vm->va); 2471 amdgpu_vm_free_mapping(adev, vm, mapping, 2472 bo_va->last_pt_update); 2473 } 2474 2475 dma_fence_put(bo_va->last_pt_update); 2476 kfree(bo_va); 2477 } 2478 2479 /** 2480 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2481 * 2482 * @adev: amdgpu_device pointer 2483 * @bo: amdgpu buffer object 2484 * @evicted: is the BO evicted 2485 * 2486 * Mark @bo as invalid. 2487 */ 2488 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2489 struct amdgpu_bo *bo, bool evicted) 2490 { 2491 struct amdgpu_vm_bo_base *bo_base; 2492 2493 /* shadow bo doesn't have bo base, its validation needs its parent */ 2494 if (bo->parent && bo->parent->shadow == bo) 2495 bo = bo->parent; 2496 2497 list_for_each_entry(bo_base, &bo->va, bo_list) { 2498 struct amdgpu_vm *vm = bo_base->vm; 2499 bool was_moved = bo_base->moved; 2500 2501 bo_base->moved = true; 2502 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2503 if (bo->tbo.type == ttm_bo_type_kernel) 2504 list_move(&bo_base->vm_status, &vm->evicted); 2505 else 2506 list_move_tail(&bo_base->vm_status, 2507 &vm->evicted); 2508 continue; 2509 } 2510 2511 if (was_moved) 2512 continue; 2513 2514 if (bo->tbo.type == ttm_bo_type_kernel) { 2515 list_move(&bo_base->vm_status, &vm->relocated); 2516 } else { 2517 spin_lock(&bo_base->vm->moved_lock); 2518 list_move(&bo_base->vm_status, &vm->moved); 2519 spin_unlock(&bo_base->vm->moved_lock); 2520 } 2521 } 2522 } 2523 2524 /** 2525 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2526 * 2527 * @vm_size: VM size 2528 * 2529 * Returns: 2530 * VM page table as power of two 2531 */ 2532 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2533 { 2534 /* Total bits covered by PD + PTs */ 2535 unsigned bits = ilog2(vm_size) + 18; 2536 2537 /* Make sure the PD is 4K in size up to 8GB address space. 2538 Above that split equal between PD and PTs */ 2539 if (vm_size <= 8) 2540 return (bits - 9); 2541 else 2542 return ((bits + 3) / 2); 2543 } 2544 2545 /** 2546 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2547 * 2548 * @adev: amdgpu_device pointer 2549 * @min_vm_size: the minimum vm size in GB if it's set auto 2550 * @fragment_size_default: Default PTE fragment size 2551 * @max_level: max VMPT level 2552 * @max_bits: max address space size in bits 2553 * 2554 */ 2555 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2556 uint32_t fragment_size_default, unsigned max_level, 2557 unsigned max_bits) 2558 { 2559 unsigned int max_size = 1 << (max_bits - 30); 2560 unsigned int vm_size; 2561 uint64_t tmp; 2562 2563 /* adjust vm size first */ 2564 if (amdgpu_vm_size != -1) { 2565 vm_size = amdgpu_vm_size; 2566 if (vm_size > max_size) { 2567 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2568 amdgpu_vm_size, max_size); 2569 vm_size = max_size; 2570 } 2571 } else { 2572 #ifdef __linux__ 2573 struct sysinfo si; 2574 #endif 2575 unsigned int phys_ram_gb; 2576 2577 /* Optimal VM size depends on the amount of physical 2578 * RAM available. Underlying requirements and 2579 * assumptions: 2580 * 2581 * - Need to map system memory and VRAM from all GPUs 2582 * - VRAM from other GPUs not known here 2583 * - Assume VRAM <= system memory 2584 * - On GFX8 and older, VM space can be segmented for 2585 * different MTYPEs 2586 * - Need to allow room for fragmentation, guard pages etc. 2587 * 2588 * This adds up to a rough guess of system memory x3. 2589 * Round up to power of two to maximize the available 2590 * VM size with the given page table size. 2591 */ 2592 #ifdef __linux__ 2593 si_meminfo(&si); 2594 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2595 (1 << 30) - 1) >> 30; 2596 #else 2597 phys_ram_gb = ((uint64_t)ptoa(physmem) + 2598 (1 << 30) - 1) >> 30; 2599 #endif 2600 vm_size = roundup_pow_of_two( 2601 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2602 } 2603 2604 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2605 2606 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2607 if (amdgpu_vm_block_size != -1) 2608 tmp >>= amdgpu_vm_block_size - 9; 2609 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2610 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2611 switch (adev->vm_manager.num_level) { 2612 case 3: 2613 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2614 break; 2615 case 2: 2616 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2617 break; 2618 case 1: 2619 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2620 break; 2621 default: 2622 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2623 } 2624 /* block size depends on vm size and hw setup*/ 2625 if (amdgpu_vm_block_size != -1) 2626 adev->vm_manager.block_size = 2627 min((unsigned)amdgpu_vm_block_size, max_bits 2628 - AMDGPU_GPU_PAGE_SHIFT 2629 - 9 * adev->vm_manager.num_level); 2630 else if (adev->vm_manager.num_level > 1) 2631 adev->vm_manager.block_size = 9; 2632 else 2633 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2634 2635 if (amdgpu_vm_fragment_size == -1) 2636 adev->vm_manager.fragment_size = fragment_size_default; 2637 else 2638 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2639 2640 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2641 vm_size, adev->vm_manager.num_level + 1, 2642 adev->vm_manager.block_size, 2643 adev->vm_manager.fragment_size); 2644 } 2645 2646 /** 2647 * amdgpu_vm_init - initialize a vm instance 2648 * 2649 * @adev: amdgpu_device pointer 2650 * @vm: requested vm 2651 * @vm_context: Indicates if it GFX or Compute context 2652 * @pasid: Process address space identifier 2653 * 2654 * Init @vm fields. 2655 * 2656 * Returns: 2657 * 0 for success, error for failure. 2658 */ 2659 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2660 int vm_context, unsigned int pasid) 2661 { 2662 struct amdgpu_bo_param bp; 2663 struct amdgpu_bo *root; 2664 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2665 AMDGPU_VM_PTE_COUNT(adev) * 8); 2666 unsigned ring_instance; 2667 struct amdgpu_ring *ring; 2668 struct drm_sched_rq *rq; 2669 unsigned long size; 2670 uint64_t flags; 2671 int r, i; 2672 2673 vm->va = RB_ROOT_CACHED; 2674 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2675 vm->reserved_vmid[i] = NULL; 2676 INIT_LIST_HEAD(&vm->evicted); 2677 INIT_LIST_HEAD(&vm->relocated); 2678 mtx_init(&vm->moved_lock, IPL_TTY); 2679 INIT_LIST_HEAD(&vm->moved); 2680 INIT_LIST_HEAD(&vm->idle); 2681 INIT_LIST_HEAD(&vm->freed); 2682 2683 /* create scheduler entity for page table updates */ 2684 2685 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2686 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2687 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2688 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 2689 r = drm_sched_entity_init(&vm->entity, &rq, 1, NULL); 2690 if (r) 2691 return r; 2692 2693 vm->pte_support_ats = false; 2694 2695 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2696 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2697 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2698 2699 if (adev->asic_type == CHIP_RAVEN) 2700 vm->pte_support_ats = true; 2701 } else { 2702 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2703 AMDGPU_VM_USE_CPU_FOR_GFX); 2704 } 2705 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2706 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2707 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2708 "CPU update of VM recommended only for large BAR system\n"); 2709 vm->last_update = NULL; 2710 2711 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 2712 if (vm->use_cpu_for_update) 2713 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 2714 else if (vm_context != AMDGPU_VM_CONTEXT_COMPUTE) 2715 flags |= AMDGPU_GEM_CREATE_SHADOW; 2716 2717 size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level); 2718 memset(&bp, 0, sizeof(bp)); 2719 bp.size = size; 2720 bp.byte_align = align; 2721 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 2722 bp.flags = flags; 2723 bp.type = ttm_bo_type_kernel; 2724 bp.resv = NULL; 2725 r = amdgpu_bo_create(adev, &bp, &root); 2726 if (r) 2727 goto error_free_sched_entity; 2728 2729 r = amdgpu_bo_reserve(root, true); 2730 if (r) 2731 goto error_free_root; 2732 2733 r = amdgpu_vm_clear_bo(adev, vm, root, 2734 adev->vm_manager.root_level, 2735 vm->pte_support_ats); 2736 if (r) 2737 goto error_unreserve; 2738 2739 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2740 amdgpu_bo_unreserve(vm->root.base.bo); 2741 2742 if (pasid) { 2743 unsigned long flags; 2744 2745 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2746 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2747 GFP_ATOMIC); 2748 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2749 if (r < 0) 2750 goto error_free_root; 2751 2752 vm->pasid = pasid; 2753 } 2754 2755 #ifdef __linux__ 2756 INIT_KFIFO(vm->faults); 2757 #else 2758 SIMPLEQ_INIT(&vm->faults); 2759 #endif 2760 vm->fault_credit = 16; 2761 2762 return 0; 2763 2764 error_unreserve: 2765 amdgpu_bo_unreserve(vm->root.base.bo); 2766 2767 error_free_root: 2768 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2769 amdgpu_bo_unref(&vm->root.base.bo); 2770 vm->root.base.bo = NULL; 2771 2772 error_free_sched_entity: 2773 drm_sched_entity_destroy(&vm->entity); 2774 2775 return r; 2776 } 2777 2778 /** 2779 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2780 * 2781 * @adev: amdgpu_device pointer 2782 * @vm: requested vm 2783 * 2784 * This only works on GFX VMs that don't have any BOs added and no 2785 * page tables allocated yet. 2786 * 2787 * Changes the following VM parameters: 2788 * - use_cpu_for_update 2789 * - pte_supports_ats 2790 * - pasid (old PASID is released, because compute manages its own PASIDs) 2791 * 2792 * Reinitializes the page directory to reflect the changed ATS 2793 * setting. 2794 * 2795 * Returns: 2796 * 0 for success, -errno for errors. 2797 */ 2798 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2799 { 2800 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2801 int r; 2802 2803 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2804 if (r) 2805 return r; 2806 2807 /* Sanity checks */ 2808 #ifdef __linux__ 2809 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 2810 #else 2811 if (!RB_EMPTY_ROOT(&vm->va) || vm->root.entries) { 2812 #endif 2813 r = -EINVAL; 2814 goto error; 2815 } 2816 2817 /* Check if PD needs to be reinitialized and do it before 2818 * changing any other state, in case it fails. 2819 */ 2820 if (pte_support_ats != vm->pte_support_ats) { 2821 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 2822 adev->vm_manager.root_level, 2823 pte_support_ats); 2824 if (r) 2825 goto error; 2826 } 2827 2828 /* Update VM state */ 2829 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2830 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2831 vm->pte_support_ats = pte_support_ats; 2832 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2833 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2834 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2835 "CPU update of VM recommended only for large BAR system\n"); 2836 2837 if (vm->pasid) { 2838 unsigned long flags; 2839 2840 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2841 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2842 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2843 2844 vm->pasid = 0; 2845 } 2846 2847 /* Free the shadow bo for compute VM */ 2848 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2849 2850 error: 2851 amdgpu_bo_unreserve(vm->root.base.bo); 2852 return r; 2853 } 2854 2855 /** 2856 * amdgpu_vm_free_levels - free PD/PT levels 2857 * 2858 * @adev: amdgpu device structure 2859 * @parent: PD/PT starting level to free 2860 * @level: level of parent structure 2861 * 2862 * Free the page directory or page table level and all sub levels. 2863 */ 2864 static void amdgpu_vm_free_levels(struct amdgpu_device *adev, 2865 struct amdgpu_vm_pt *parent, 2866 unsigned level) 2867 { 2868 unsigned i, num_entries = amdgpu_vm_num_entries(adev, level); 2869 2870 if (parent->base.bo) { 2871 list_del(&parent->base.bo_list); 2872 list_del(&parent->base.vm_status); 2873 amdgpu_bo_unref(&parent->base.bo->shadow); 2874 amdgpu_bo_unref(&parent->base.bo); 2875 } 2876 2877 if (parent->entries) 2878 for (i = 0; i < num_entries; i++) 2879 amdgpu_vm_free_levels(adev, &parent->entries[i], 2880 level + 1); 2881 2882 kvfree(parent->entries); 2883 } 2884 2885 /** 2886 * amdgpu_vm_fini - tear down a vm instance 2887 * 2888 * @adev: amdgpu_device pointer 2889 * @vm: requested vm 2890 * 2891 * Tear down @vm. 2892 * Unbind the VM and remove all bos from the vm bo list 2893 */ 2894 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2895 { 2896 struct amdgpu_bo_va_mapping *mapping, *tmp; 2897 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2898 struct amdgpu_bo *root; 2899 u64 fault; 2900 int i, r; 2901 struct amdgpu_vm_fault *vmf; 2902 2903 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2904 2905 /* Clear pending page faults from IH when the VM is destroyed */ 2906 #ifdef __linux__ 2907 while (kfifo_get(&vm->faults, &fault)) 2908 amdgpu_ih_clear_fault(adev, fault); 2909 #else 2910 while (!SIMPLEQ_EMPTY(&vm->faults)) { 2911 vmf = SIMPLEQ_FIRST(&vm->faults); 2912 fault = vmf->val; 2913 SIMPLEQ_REMOVE_HEAD(&vm->faults, vm_fault_entry); 2914 free(vmf, M_DRM, sizeof(*vmf)); 2915 amdgpu_ih_clear_fault(adev, fault); 2916 } 2917 #endif 2918 2919 if (vm->pasid) { 2920 unsigned long flags; 2921 2922 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2923 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2924 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2925 } 2926 2927 drm_sched_entity_destroy(&vm->entity); 2928 2929 #ifdef __linux__ 2930 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2931 dev_err(adev->dev, "still active bo inside vm\n"); 2932 } 2933 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2934 &vm->va.rb_root, rb) { 2935 list_del(&mapping->list); 2936 amdgpu_vm_it_remove(mapping, &vm->va); 2937 kfree(mapping); 2938 } 2939 #else 2940 if (!RB_EMPTY_ROOT(&vm->va)) { 2941 dev_err(adev->dev, "still active bo inside vm\n"); 2942 } 2943 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2944 &vm->va, rb) { 2945 list_del(&mapping->list); 2946 amdgpu_vm_it_remove(mapping, &vm->va); 2947 kfree(mapping); 2948 } 2949 #endif 2950 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2951 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2952 amdgpu_vm_prt_fini(adev, vm); 2953 prt_fini_needed = false; 2954 } 2955 2956 list_del(&mapping->list); 2957 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2958 } 2959 2960 root = amdgpu_bo_ref(vm->root.base.bo); 2961 r = amdgpu_bo_reserve(root, true); 2962 if (r) { 2963 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 2964 } else { 2965 amdgpu_vm_free_levels(adev, &vm->root, 2966 adev->vm_manager.root_level); 2967 amdgpu_bo_unreserve(root); 2968 } 2969 amdgpu_bo_unref(&root); 2970 dma_fence_put(vm->last_update); 2971 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2972 amdgpu_vmid_free_reserved(adev, vm, i); 2973 } 2974 2975 /** 2976 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 2977 * 2978 * @adev: amdgpu_device pointer 2979 * @pasid: PASID do identify the VM 2980 * 2981 * This function is expected to be called in interrupt context. 2982 * 2983 * Returns: 2984 * True if there was fault credit, false otherwise 2985 */ 2986 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 2987 unsigned int pasid) 2988 { 2989 struct amdgpu_vm *vm; 2990 2991 spin_lock(&adev->vm_manager.pasid_lock); 2992 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 2993 if (!vm) { 2994 /* VM not found, can't track fault credit */ 2995 spin_unlock(&adev->vm_manager.pasid_lock); 2996 return true; 2997 } 2998 2999 /* No lock needed. only accessed by IRQ handler */ 3000 if (!vm->fault_credit) { 3001 /* Too many faults in this VM */ 3002 spin_unlock(&adev->vm_manager.pasid_lock); 3003 return false; 3004 } 3005 3006 vm->fault_credit--; 3007 spin_unlock(&adev->vm_manager.pasid_lock); 3008 return true; 3009 } 3010 3011 /** 3012 * amdgpu_vm_manager_init - init the VM manager 3013 * 3014 * @adev: amdgpu_device pointer 3015 * 3016 * Initialize the VM manager structures 3017 */ 3018 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3019 { 3020 unsigned i; 3021 3022 amdgpu_vmid_mgr_init(adev); 3023 3024 adev->vm_manager.fence_context = 3025 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3026 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3027 adev->vm_manager.seqno[i] = 0; 3028 3029 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 3030 mtx_init(&adev->vm_manager.prt_lock, IPL_TTY); 3031 atomic_set(&adev->vm_manager.num_prt_users, 0); 3032 3033 /* If not overridden by the user, by default, only in large BAR systems 3034 * Compute VM tables will be updated by CPU 3035 */ 3036 #ifdef __amd64__ 3037 if (amdgpu_vm_update_mode == -1) { 3038 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3039 adev->vm_manager.vm_update_mode = 3040 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3041 else 3042 adev->vm_manager.vm_update_mode = 0; 3043 } else 3044 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3045 #else 3046 adev->vm_manager.vm_update_mode = 0; 3047 #endif 3048 3049 idr_init(&adev->vm_manager.pasid_idr); 3050 mtx_init(&adev->vm_manager.pasid_lock, IPL_TTY); 3051 } 3052 3053 /** 3054 * amdgpu_vm_manager_fini - cleanup VM manager 3055 * 3056 * @adev: amdgpu_device pointer 3057 * 3058 * Cleanup the VM manager and free resources. 3059 */ 3060 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3061 { 3062 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3063 idr_destroy(&adev->vm_manager.pasid_idr); 3064 3065 amdgpu_vmid_mgr_fini(adev); 3066 } 3067 3068 /** 3069 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3070 * 3071 * @dev: drm device pointer 3072 * @data: drm_amdgpu_vm 3073 * @filp: drm file pointer 3074 * 3075 * Returns: 3076 * 0 for success, -errno for errors. 3077 */ 3078 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3079 { 3080 union drm_amdgpu_vm *args = data; 3081 struct amdgpu_device *adev = dev->dev_private; 3082 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3083 int r; 3084 3085 switch (args->in.op) { 3086 case AMDGPU_VM_OP_RESERVE_VMID: 3087 /* current, we only have requirement to reserve vmid from gfxhub */ 3088 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3089 if (r) 3090 return r; 3091 break; 3092 case AMDGPU_VM_OP_UNRESERVE_VMID: 3093 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3094 break; 3095 default: 3096 return -EINVAL; 3097 } 3098 3099 return 0; 3100 } 3101 3102 /** 3103 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3104 * 3105 * @dev: drm device pointer 3106 * @pasid: PASID identifier for VM 3107 * @task_info: task_info to fill. 3108 */ 3109 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3110 struct amdgpu_task_info *task_info) 3111 { 3112 struct amdgpu_vm *vm; 3113 unsigned long flags; 3114 3115 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3116 3117 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3118 if (vm) 3119 *task_info = vm->task_info; 3120 3121 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3122 } 3123 3124 /** 3125 * amdgpu_vm_set_task_info - Sets VMs task info. 3126 * 3127 * @vm: vm for which to set the info 3128 */ 3129 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3130 { 3131 if (!vm->task_info.pid) { 3132 #ifdef __linux__ 3133 vm->task_info.pid = current->pid; 3134 get_task_comm(vm->task_info.task_name, current); 3135 3136 if (current->group_leader->mm == current->mm) { 3137 vm->task_info.tgid = current->group_leader->pid; 3138 get_task_comm(vm->task_info.process_name, current->group_leader); 3139 } 3140 #else 3141 vm->task_info.pid = curproc->p_p->ps_pid; 3142 strlcpy(vm->task_info.task_name, curproc->p_p->ps_comm, 3143 sizeof(vm->task_info.task_name)); 3144 #endif 3145 } 3146 } 3147