1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include "amdgpu.h" 35 #include "amdgpu_trace.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_gmc.h" 38 #include "amdgpu_xgmi.h" 39 #include "amdgpu_dma_buf.h" 40 41 /** 42 * DOC: GPUVM 43 * 44 * GPUVM is similar to the legacy gart on older asics, however 45 * rather than there being a single global gart table 46 * for the entire GPU, there are multiple VM page tables active 47 * at any given time. The VM page tables can contain a mix 48 * vram pages and system memory pages and system memory pages 49 * can be mapped as snooped (cached system pages) or unsnooped 50 * (uncached system pages). 51 * Each VM has an ID associated with it and there is a page table 52 * associated with each VMID. When execting a command buffer, 53 * the kernel tells the the ring what VMID to use for that command 54 * buffer. VMIDs are allocated dynamically as commands are submitted. 55 * The userspace drivers maintain their own address space and the kernel 56 * sets up their pages tables accordingly when they submit their 57 * command buffers and a VMID is assigned. 58 * Cayman/Trinity support up to 8 active VMs at any given time; 59 * SI supports 16. 60 */ 61 62 #define START(node) ((node)->start) 63 #define LAST(node) ((node)->last) 64 65 #ifdef __linux__ 66 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 67 START, LAST, static, amdgpu_vm_it) 68 #else 69 static struct amdgpu_bo_va_mapping * 70 amdgpu_vm_it_iter_first(struct rb_root_cached *root, uint64_t start, 71 uint64_t last) 72 { 73 struct amdgpu_bo_va_mapping *node; 74 struct rb_node *rb; 75 76 for (rb = rb_first_cached(root); rb; rb = rb_next(rb)) { 77 node = rb_entry(rb, typeof(*node), rb); 78 if (LAST(node) >= start && START(node) <= last) 79 return node; 80 } 81 return NULL; 82 } 83 84 static struct amdgpu_bo_va_mapping * 85 amdgpu_vm_it_iter_next(struct amdgpu_bo_va_mapping *node, uint64_t start, 86 uint64_t last) 87 { 88 STUB(); 89 struct rb_node *rb = &node->rb; 90 91 for (rb = rb_next(rb); rb; rb = rb_next(rb)) { 92 node = rb_entry(rb, typeof(*node), rb); 93 if (LAST(node) >= start && START(node) <= last) 94 return node; 95 } 96 return NULL; 97 } 98 99 static void 100 amdgpu_vm_it_remove(struct amdgpu_bo_va_mapping *node, 101 struct rb_root_cached *root) 102 { 103 rb_erase_cached(&node->rb, root); 104 } 105 106 static void 107 amdgpu_vm_it_insert(struct amdgpu_bo_va_mapping *node, 108 struct rb_root_cached *root) 109 { 110 struct rb_node **iter = &root->rb_root.rb_node; 111 struct rb_node *parent = NULL; 112 struct amdgpu_bo_va_mapping *iter_node; 113 114 while (*iter) { 115 parent = *iter; 116 iter_node = rb_entry(*iter, struct amdgpu_bo_va_mapping, rb); 117 118 if (node->start < iter_node->start) 119 iter = &(*iter)->rb_left; 120 else 121 iter = &(*iter)->rb_right; 122 } 123 124 rb_link_node(&node->rb, parent, iter); 125 rb_insert_color_cached(&node->rb, root, false); 126 } 127 #endif 128 129 #undef START 130 #undef LAST 131 132 /** 133 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 134 */ 135 struct amdgpu_prt_cb { 136 137 /** 138 * @adev: amdgpu device 139 */ 140 struct amdgpu_device *adev; 141 142 /** 143 * @cb: callback 144 */ 145 struct dma_fence_cb cb; 146 }; 147 148 /* 149 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 150 * happens while holding this lock anywhere to prevent deadlocks when 151 * an MMU notifier runs in reclaim-FS context. 152 */ 153 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 154 { 155 mutex_lock(&vm->eviction_lock); 156 #ifdef notyet 157 vm->saved_flags = memalloc_nofs_save(); 158 #endif 159 } 160 161 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 162 { 163 if (mutex_trylock(&vm->eviction_lock)) { 164 #ifdef notyet 165 vm->saved_flags = memalloc_nofs_save(); 166 #endif 167 return 1; 168 } 169 return 0; 170 } 171 172 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 173 { 174 #ifdef notyet 175 memalloc_nofs_restore(vm->saved_flags); 176 #endif 177 mutex_unlock(&vm->eviction_lock); 178 } 179 180 /** 181 * amdgpu_vm_level_shift - return the addr shift for each level 182 * 183 * @adev: amdgpu_device pointer 184 * @level: VMPT level 185 * 186 * Returns: 187 * The number of bits the pfn needs to be right shifted for a level. 188 */ 189 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 190 unsigned level) 191 { 192 switch (level) { 193 case AMDGPU_VM_PDB2: 194 case AMDGPU_VM_PDB1: 195 case AMDGPU_VM_PDB0: 196 return 9 * (AMDGPU_VM_PDB0 - level) + 197 adev->vm_manager.block_size; 198 case AMDGPU_VM_PTB: 199 return 0; 200 default: 201 return ~0; 202 } 203 } 204 205 /** 206 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 207 * 208 * @adev: amdgpu_device pointer 209 * @level: VMPT level 210 * 211 * Returns: 212 * The number of entries in a page directory or page table. 213 */ 214 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 215 unsigned level) 216 { 217 unsigned shift = amdgpu_vm_level_shift(adev, 218 adev->vm_manager.root_level); 219 220 if (level == adev->vm_manager.root_level) 221 /* For the root directory */ 222 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 223 >> shift; 224 else if (level != AMDGPU_VM_PTB) 225 /* Everything in between */ 226 return 512; 227 else 228 /* For the page tables on the leaves */ 229 return AMDGPU_VM_PTE_COUNT(adev); 230 } 231 232 /** 233 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 234 * 235 * @adev: amdgpu_device pointer 236 * 237 * Returns: 238 * The number of entries in the root page directory which needs the ATS setting. 239 */ 240 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 241 { 242 unsigned shift; 243 244 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 245 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 246 } 247 248 /** 249 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 250 * 251 * @adev: amdgpu_device pointer 252 * @level: VMPT level 253 * 254 * Returns: 255 * The mask to extract the entry number of a PD/PT from an address. 256 */ 257 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 258 unsigned int level) 259 { 260 if (level <= adev->vm_manager.root_level) 261 return 0xffffffff; 262 else if (level != AMDGPU_VM_PTB) 263 return 0x1ff; 264 else 265 return AMDGPU_VM_PTE_COUNT(adev) - 1; 266 } 267 268 /** 269 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 270 * 271 * @adev: amdgpu_device pointer 272 * @level: VMPT level 273 * 274 * Returns: 275 * The size of the BO for a page directory or page table in bytes. 276 */ 277 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 278 { 279 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 280 } 281 282 /** 283 * amdgpu_vm_bo_evicted - vm_bo is evicted 284 * 285 * @vm_bo: vm_bo which is evicted 286 * 287 * State for PDs/PTs and per VM BOs which are not at the location they should 288 * be. 289 */ 290 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 291 { 292 struct amdgpu_vm *vm = vm_bo->vm; 293 struct amdgpu_bo *bo = vm_bo->bo; 294 295 vm_bo->moved = true; 296 if (bo->tbo.type == ttm_bo_type_kernel) 297 list_move(&vm_bo->vm_status, &vm->evicted); 298 else 299 list_move_tail(&vm_bo->vm_status, &vm->evicted); 300 } 301 /** 302 * amdgpu_vm_bo_moved - vm_bo is moved 303 * 304 * @vm_bo: vm_bo which is moved 305 * 306 * State for per VM BOs which are moved, but that change is not yet reflected 307 * in the page tables. 308 */ 309 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 310 { 311 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 312 } 313 314 /** 315 * amdgpu_vm_bo_idle - vm_bo is idle 316 * 317 * @vm_bo: vm_bo which is now idle 318 * 319 * State for PDs/PTs and per VM BOs which have gone through the state machine 320 * and are now idle. 321 */ 322 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 323 { 324 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 325 vm_bo->moved = false; 326 } 327 328 /** 329 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 330 * 331 * @vm_bo: vm_bo which is now invalidated 332 * 333 * State for normal BOs which are invalidated and that change not yet reflected 334 * in the PTs. 335 */ 336 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 337 { 338 spin_lock(&vm_bo->vm->invalidated_lock); 339 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 340 spin_unlock(&vm_bo->vm->invalidated_lock); 341 } 342 343 /** 344 * amdgpu_vm_bo_relocated - vm_bo is reloacted 345 * 346 * @vm_bo: vm_bo which is relocated 347 * 348 * State for PDs/PTs which needs to update their parent PD. 349 * For the root PD, just move to idle state. 350 */ 351 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 352 { 353 if (vm_bo->bo->parent) 354 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 355 else 356 amdgpu_vm_bo_idle(vm_bo); 357 } 358 359 /** 360 * amdgpu_vm_bo_done - vm_bo is done 361 * 362 * @vm_bo: vm_bo which is now done 363 * 364 * State for normal BOs which are invalidated and that change has been updated 365 * in the PTs. 366 */ 367 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 368 { 369 spin_lock(&vm_bo->vm->invalidated_lock); 370 list_del_init(&vm_bo->vm_status); 371 spin_unlock(&vm_bo->vm->invalidated_lock); 372 } 373 374 /** 375 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 376 * 377 * @base: base structure for tracking BO usage in a VM 378 * @vm: vm to which bo is to be added 379 * @bo: amdgpu buffer object 380 * 381 * Initialize a bo_va_base structure and add it to the appropriate lists 382 * 383 */ 384 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 385 struct amdgpu_vm *vm, 386 struct amdgpu_bo *bo) 387 { 388 base->vm = vm; 389 base->bo = bo; 390 base->next = NULL; 391 INIT_LIST_HEAD(&base->vm_status); 392 393 if (!bo) 394 return; 395 base->next = bo->vm_bo; 396 bo->vm_bo = base; 397 398 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 399 return; 400 401 vm->bulk_moveable = false; 402 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 403 amdgpu_vm_bo_relocated(base); 404 else 405 amdgpu_vm_bo_idle(base); 406 407 if (bo->preferred_domains & 408 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 409 return; 410 411 /* 412 * we checked all the prerequisites, but it looks like this per vm bo 413 * is currently evicted. add the bo to the evicted list to make sure it 414 * is validated on next vm use to avoid fault. 415 * */ 416 amdgpu_vm_bo_evicted(base); 417 } 418 419 /** 420 * amdgpu_vm_pt_parent - get the parent page directory 421 * 422 * @pt: child page table 423 * 424 * Helper to get the parent entry for the child page table. NULL if we are at 425 * the root page directory. 426 */ 427 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 428 { 429 struct amdgpu_bo *parent = pt->base.bo->parent; 430 431 if (!parent) 432 return NULL; 433 434 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 435 } 436 437 /* 438 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 439 */ 440 struct amdgpu_vm_pt_cursor { 441 uint64_t pfn; 442 struct amdgpu_vm_pt *parent; 443 struct amdgpu_vm_pt *entry; 444 unsigned level; 445 }; 446 447 /** 448 * amdgpu_vm_pt_start - start PD/PT walk 449 * 450 * @adev: amdgpu_device pointer 451 * @vm: amdgpu_vm structure 452 * @start: start address of the walk 453 * @cursor: state to initialize 454 * 455 * Initialize a amdgpu_vm_pt_cursor to start a walk. 456 */ 457 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 458 struct amdgpu_vm *vm, uint64_t start, 459 struct amdgpu_vm_pt_cursor *cursor) 460 { 461 cursor->pfn = start; 462 cursor->parent = NULL; 463 cursor->entry = &vm->root; 464 cursor->level = adev->vm_manager.root_level; 465 } 466 467 /** 468 * amdgpu_vm_pt_descendant - go to child node 469 * 470 * @adev: amdgpu_device pointer 471 * @cursor: current state 472 * 473 * Walk to the child node of the current node. 474 * Returns: 475 * True if the walk was possible, false otherwise. 476 */ 477 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 478 struct amdgpu_vm_pt_cursor *cursor) 479 { 480 unsigned mask, shift, idx; 481 482 if (!cursor->entry->entries) 483 return false; 484 485 BUG_ON(!cursor->entry->base.bo); 486 mask = amdgpu_vm_entries_mask(adev, cursor->level); 487 shift = amdgpu_vm_level_shift(adev, cursor->level); 488 489 ++cursor->level; 490 idx = (cursor->pfn >> shift) & mask; 491 cursor->parent = cursor->entry; 492 cursor->entry = &cursor->entry->entries[idx]; 493 return true; 494 } 495 496 /** 497 * amdgpu_vm_pt_sibling - go to sibling node 498 * 499 * @adev: amdgpu_device pointer 500 * @cursor: current state 501 * 502 * Walk to the sibling node of the current node. 503 * Returns: 504 * True if the walk was possible, false otherwise. 505 */ 506 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 507 struct amdgpu_vm_pt_cursor *cursor) 508 { 509 unsigned shift, num_entries; 510 511 /* Root doesn't have a sibling */ 512 if (!cursor->parent) 513 return false; 514 515 /* Go to our parents and see if we got a sibling */ 516 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 517 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 518 519 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 520 return false; 521 522 cursor->pfn += 1ULL << shift; 523 cursor->pfn &= ~((1ULL << shift) - 1); 524 ++cursor->entry; 525 return true; 526 } 527 528 /** 529 * amdgpu_vm_pt_ancestor - go to parent node 530 * 531 * @cursor: current state 532 * 533 * Walk to the parent node of the current node. 534 * Returns: 535 * True if the walk was possible, false otherwise. 536 */ 537 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 538 { 539 if (!cursor->parent) 540 return false; 541 542 --cursor->level; 543 cursor->entry = cursor->parent; 544 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 545 return true; 546 } 547 548 /** 549 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 550 * 551 * @adev: amdgpu_device pointer 552 * @cursor: current state 553 * 554 * Walk the PD/PT tree to the next node. 555 */ 556 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 557 struct amdgpu_vm_pt_cursor *cursor) 558 { 559 /* First try a newborn child */ 560 if (amdgpu_vm_pt_descendant(adev, cursor)) 561 return; 562 563 /* If that didn't worked try to find a sibling */ 564 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 565 /* No sibling, go to our parents and grandparents */ 566 if (!amdgpu_vm_pt_ancestor(cursor)) { 567 cursor->pfn = ~0ll; 568 return; 569 } 570 } 571 } 572 573 /** 574 * amdgpu_vm_pt_first_dfs - start a deep first search 575 * 576 * @adev: amdgpu_device structure 577 * @vm: amdgpu_vm structure 578 * @start: optional cursor to start with 579 * @cursor: state to initialize 580 * 581 * Starts a deep first traversal of the PD/PT tree. 582 */ 583 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 584 struct amdgpu_vm *vm, 585 struct amdgpu_vm_pt_cursor *start, 586 struct amdgpu_vm_pt_cursor *cursor) 587 { 588 if (start) 589 *cursor = *start; 590 else 591 amdgpu_vm_pt_start(adev, vm, 0, cursor); 592 while (amdgpu_vm_pt_descendant(adev, cursor)); 593 } 594 595 /** 596 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 597 * 598 * @start: starting point for the search 599 * @entry: current entry 600 * 601 * Returns: 602 * True when the search should continue, false otherwise. 603 */ 604 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 605 struct amdgpu_vm_pt *entry) 606 { 607 return entry && (!start || entry != start->entry); 608 } 609 610 /** 611 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 612 * 613 * @adev: amdgpu_device structure 614 * @cursor: current state 615 * 616 * Move the cursor to the next node in a deep first search. 617 */ 618 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 619 struct amdgpu_vm_pt_cursor *cursor) 620 { 621 if (!cursor->entry) 622 return; 623 624 if (!cursor->parent) 625 cursor->entry = NULL; 626 else if (amdgpu_vm_pt_sibling(adev, cursor)) 627 while (amdgpu_vm_pt_descendant(adev, cursor)); 628 else 629 amdgpu_vm_pt_ancestor(cursor); 630 } 631 632 /* 633 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 634 */ 635 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 636 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 637 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 638 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 639 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 640 641 /** 642 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 643 * 644 * @vm: vm providing the BOs 645 * @validated: head of validation list 646 * @entry: entry to add 647 * 648 * Add the page directory to the list of BOs to 649 * validate for command submission. 650 */ 651 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 652 struct list_head *validated, 653 struct amdgpu_bo_list_entry *entry) 654 { 655 entry->priority = 0; 656 entry->tv.bo = &vm->root.base.bo->tbo; 657 /* Two for VM updates, one for TTM and one for the CS job */ 658 entry->tv.num_shared = 4; 659 entry->user_pages = NULL; 660 list_add(&entry->tv.head, validated); 661 } 662 663 /** 664 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 665 * 666 * @bo: BO which was removed from the LRU 667 * 668 * Make sure the bulk_moveable flag is updated when a BO is removed from the 669 * LRU. 670 */ 671 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 672 { 673 struct amdgpu_bo *abo; 674 struct amdgpu_vm_bo_base *bo_base; 675 676 if (!amdgpu_bo_is_amdgpu_bo(bo)) 677 return; 678 679 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 680 return; 681 682 abo = ttm_to_amdgpu_bo(bo); 683 if (!abo->parent) 684 return; 685 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 686 struct amdgpu_vm *vm = bo_base->vm; 687 688 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 689 vm->bulk_moveable = false; 690 } 691 692 } 693 /** 694 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 695 * 696 * @adev: amdgpu device pointer 697 * @vm: vm providing the BOs 698 * 699 * Move all BOs to the end of LRU and remember their positions to put them 700 * together. 701 */ 702 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 703 struct amdgpu_vm *vm) 704 { 705 struct amdgpu_vm_bo_base *bo_base; 706 707 if (vm->bulk_moveable) { 708 spin_lock(&ttm_bo_glob.lru_lock); 709 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 710 spin_unlock(&ttm_bo_glob.lru_lock); 711 return; 712 } 713 714 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 715 716 spin_lock(&ttm_bo_glob.lru_lock); 717 list_for_each_entry(bo_base, &vm->idle, vm_status) { 718 struct amdgpu_bo *bo = bo_base->bo; 719 720 if (!bo->parent) 721 continue; 722 723 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 724 if (bo->shadow) 725 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 726 &vm->lru_bulk_move); 727 } 728 spin_unlock(&ttm_bo_glob.lru_lock); 729 730 vm->bulk_moveable = true; 731 } 732 733 /** 734 * amdgpu_vm_validate_pt_bos - validate the page table BOs 735 * 736 * @adev: amdgpu device pointer 737 * @vm: vm providing the BOs 738 * @validate: callback to do the validation 739 * @param: parameter for the validation callback 740 * 741 * Validate the page table BOs on command submission if neccessary. 742 * 743 * Returns: 744 * Validation result. 745 */ 746 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 747 int (*validate)(void *p, struct amdgpu_bo *bo), 748 void *param) 749 { 750 struct amdgpu_vm_bo_base *bo_base, *tmp; 751 int r; 752 753 vm->bulk_moveable &= list_empty(&vm->evicted); 754 755 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 756 struct amdgpu_bo *bo = bo_base->bo; 757 758 r = validate(param, bo); 759 if (r) 760 return r; 761 762 if (bo->tbo.type != ttm_bo_type_kernel) { 763 amdgpu_vm_bo_moved(bo_base); 764 } else { 765 vm->update_funcs->map_table(bo); 766 amdgpu_vm_bo_relocated(bo_base); 767 } 768 } 769 770 amdgpu_vm_eviction_lock(vm); 771 vm->evicting = false; 772 amdgpu_vm_eviction_unlock(vm); 773 774 return 0; 775 } 776 777 /** 778 * amdgpu_vm_ready - check VM is ready for updates 779 * 780 * @vm: VM to check 781 * 782 * Check if all VM PDs/PTs are ready for updates 783 * 784 * Returns: 785 * True if eviction list is empty. 786 */ 787 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 788 { 789 return list_empty(&vm->evicted); 790 } 791 792 /** 793 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 794 * 795 * @adev: amdgpu_device pointer 796 * @vm: VM to clear BO from 797 * @bo: BO to clear 798 * @immediate: use an immediate update 799 * 800 * Root PD needs to be reserved when calling this. 801 * 802 * Returns: 803 * 0 on success, errno otherwise. 804 */ 805 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 806 struct amdgpu_vm *vm, 807 struct amdgpu_bo *bo, 808 bool immediate) 809 { 810 struct ttm_operation_ctx ctx = { true, false }; 811 unsigned level = adev->vm_manager.root_level; 812 struct amdgpu_vm_update_params params; 813 struct amdgpu_bo *ancestor = bo; 814 unsigned entries, ats_entries; 815 uint64_t addr; 816 int r; 817 818 /* Figure out our place in the hierarchy */ 819 if (ancestor->parent) { 820 ++level; 821 while (ancestor->parent->parent) { 822 ++level; 823 ancestor = ancestor->parent; 824 } 825 } 826 827 entries = amdgpu_bo_size(bo) / 8; 828 if (!vm->pte_support_ats) { 829 ats_entries = 0; 830 831 } else if (!bo->parent) { 832 ats_entries = amdgpu_vm_num_ats_entries(adev); 833 ats_entries = min(ats_entries, entries); 834 entries -= ats_entries; 835 836 } else { 837 struct amdgpu_vm_pt *pt; 838 839 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 840 ats_entries = amdgpu_vm_num_ats_entries(adev); 841 if ((pt - vm->root.entries) >= ats_entries) { 842 ats_entries = 0; 843 } else { 844 ats_entries = entries; 845 entries = 0; 846 } 847 } 848 849 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 850 if (r) 851 return r; 852 853 if (bo->shadow) { 854 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 855 &ctx); 856 if (r) 857 return r; 858 } 859 860 r = vm->update_funcs->map_table(bo); 861 if (r) 862 return r; 863 864 memset(¶ms, 0, sizeof(params)); 865 params.adev = adev; 866 params.vm = vm; 867 params.immediate = immediate; 868 869 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 870 if (r) 871 return r; 872 873 addr = 0; 874 if (ats_entries) { 875 uint64_t value = 0, flags; 876 877 flags = AMDGPU_PTE_DEFAULT_ATC; 878 if (level != AMDGPU_VM_PTB) { 879 /* Handle leaf PDEs as PTEs */ 880 flags |= AMDGPU_PDE_PTE; 881 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 882 } 883 884 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 885 value, flags); 886 if (r) 887 return r; 888 889 addr += ats_entries * 8; 890 } 891 892 if (entries) { 893 uint64_t value = 0, flags = 0; 894 895 if (adev->asic_type >= CHIP_VEGA10) { 896 if (level != AMDGPU_VM_PTB) { 897 /* Handle leaf PDEs as PTEs */ 898 flags |= AMDGPU_PDE_PTE; 899 amdgpu_gmc_get_vm_pde(adev, level, 900 &value, &flags); 901 } else { 902 /* Workaround for fault priority problem on GMC9 */ 903 flags = AMDGPU_PTE_EXECUTABLE; 904 } 905 } 906 907 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 908 value, flags); 909 if (r) 910 return r; 911 } 912 913 return vm->update_funcs->commit(¶ms, NULL); 914 } 915 916 /** 917 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 918 * 919 * @adev: amdgpu_device pointer 920 * @vm: requesting vm 921 * @level: the page table level 922 * @immediate: use a immediate update 923 * @bp: resulting BO allocation parameters 924 */ 925 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 926 int level, bool immediate, 927 struct amdgpu_bo_param *bp) 928 { 929 memset(bp, 0, sizeof(*bp)); 930 931 bp->size = amdgpu_vm_bo_size(adev, level); 932 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 933 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 934 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 935 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 936 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 937 if (vm->use_cpu_for_update) 938 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 939 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 940 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 941 bp->type = ttm_bo_type_kernel; 942 bp->no_wait_gpu = immediate; 943 if (vm->root.base.bo) 944 bp->resv = vm->root.base.bo->tbo.base.resv; 945 } 946 947 /** 948 * amdgpu_vm_alloc_pts - Allocate a specific page table 949 * 950 * @adev: amdgpu_device pointer 951 * @vm: VM to allocate page tables for 952 * @cursor: Which page table to allocate 953 * @immediate: use an immediate update 954 * 955 * Make sure a specific page table or directory is allocated. 956 * 957 * Returns: 958 * 1 if page table needed to be allocated, 0 if page table was already 959 * allocated, negative errno if an error occurred. 960 */ 961 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 962 struct amdgpu_vm *vm, 963 struct amdgpu_vm_pt_cursor *cursor, 964 bool immediate) 965 { 966 struct amdgpu_vm_pt *entry = cursor->entry; 967 struct amdgpu_bo_param bp; 968 struct amdgpu_bo *pt; 969 int r; 970 971 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 972 unsigned num_entries; 973 974 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 975 entry->entries = kvmalloc_array(num_entries, 976 sizeof(*entry->entries), 977 GFP_KERNEL | __GFP_ZERO); 978 if (!entry->entries) 979 return -ENOMEM; 980 } 981 982 if (entry->base.bo) 983 return 0; 984 985 amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp); 986 987 r = amdgpu_bo_create(adev, &bp, &pt); 988 if (r) 989 return r; 990 991 /* Keep a reference to the root directory to avoid 992 * freeing them up in the wrong order. 993 */ 994 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 995 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 996 997 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 998 if (r) 999 goto error_free_pt; 1000 1001 return 0; 1002 1003 error_free_pt: 1004 amdgpu_bo_unref(&pt->shadow); 1005 amdgpu_bo_unref(&pt); 1006 return r; 1007 } 1008 1009 /** 1010 * amdgpu_vm_free_table - fre one PD/PT 1011 * 1012 * @entry: PDE to free 1013 */ 1014 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 1015 { 1016 if (entry->base.bo) { 1017 entry->base.bo->vm_bo = NULL; 1018 list_del(&entry->base.vm_status); 1019 amdgpu_bo_unref(&entry->base.bo->shadow); 1020 amdgpu_bo_unref(&entry->base.bo); 1021 } 1022 kvfree(entry->entries); 1023 entry->entries = NULL; 1024 } 1025 1026 /** 1027 * amdgpu_vm_free_pts - free PD/PT levels 1028 * 1029 * @adev: amdgpu device structure 1030 * @vm: amdgpu vm structure 1031 * @start: optional cursor where to start freeing PDs/PTs 1032 * 1033 * Free the page directory or page table level and all sub levels. 1034 */ 1035 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1036 struct amdgpu_vm *vm, 1037 struct amdgpu_vm_pt_cursor *start) 1038 { 1039 struct amdgpu_vm_pt_cursor cursor; 1040 struct amdgpu_vm_pt *entry; 1041 1042 vm->bulk_moveable = false; 1043 1044 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1045 amdgpu_vm_free_table(entry); 1046 1047 if (start) 1048 amdgpu_vm_free_table(start->entry); 1049 } 1050 1051 /** 1052 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1053 * 1054 * @adev: amdgpu_device pointer 1055 */ 1056 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1057 { 1058 const struct amdgpu_ip_block *ip_block; 1059 bool has_compute_vm_bug; 1060 struct amdgpu_ring *ring; 1061 int i; 1062 1063 has_compute_vm_bug = false; 1064 1065 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1066 if (ip_block) { 1067 /* Compute has a VM bug for GFX version < 7. 1068 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1069 if (ip_block->version->major <= 7) 1070 has_compute_vm_bug = true; 1071 else if (ip_block->version->major == 8) 1072 if (adev->gfx.mec_fw_version < 673) 1073 has_compute_vm_bug = true; 1074 } 1075 1076 for (i = 0; i < adev->num_rings; i++) { 1077 ring = adev->rings[i]; 1078 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1079 /* only compute rings */ 1080 ring->has_compute_vm_bug = has_compute_vm_bug; 1081 else 1082 ring->has_compute_vm_bug = false; 1083 } 1084 } 1085 1086 /** 1087 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1088 * 1089 * @ring: ring on which the job will be submitted 1090 * @job: job to submit 1091 * 1092 * Returns: 1093 * True if sync is needed. 1094 */ 1095 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1096 struct amdgpu_job *job) 1097 { 1098 struct amdgpu_device *adev = ring->adev; 1099 unsigned vmhub = ring->funcs->vmhub; 1100 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1101 struct amdgpu_vmid *id; 1102 bool gds_switch_needed; 1103 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1104 1105 if (job->vmid == 0) 1106 return false; 1107 id = &id_mgr->ids[job->vmid]; 1108 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1109 id->gds_base != job->gds_base || 1110 id->gds_size != job->gds_size || 1111 id->gws_base != job->gws_base || 1112 id->gws_size != job->gws_size || 1113 id->oa_base != job->oa_base || 1114 id->oa_size != job->oa_size); 1115 1116 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1117 return true; 1118 1119 return vm_flush_needed || gds_switch_needed; 1120 } 1121 1122 /** 1123 * amdgpu_vm_flush - hardware flush the vm 1124 * 1125 * @ring: ring to use for flush 1126 * @job: related job 1127 * @need_pipe_sync: is pipe sync needed 1128 * 1129 * Emit a VM flush when it is necessary. 1130 * 1131 * Returns: 1132 * 0 on success, errno otherwise. 1133 */ 1134 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1135 bool need_pipe_sync) 1136 { 1137 struct amdgpu_device *adev = ring->adev; 1138 unsigned vmhub = ring->funcs->vmhub; 1139 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1140 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1141 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1142 id->gds_base != job->gds_base || 1143 id->gds_size != job->gds_size || 1144 id->gws_base != job->gws_base || 1145 id->gws_size != job->gws_size || 1146 id->oa_base != job->oa_base || 1147 id->oa_size != job->oa_size); 1148 bool vm_flush_needed = job->vm_needs_flush; 1149 struct dma_fence *fence = NULL; 1150 bool pasid_mapping_needed = false; 1151 unsigned patch_offset = 0; 1152 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1153 int r; 1154 1155 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1156 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1157 1158 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1159 gds_switch_needed = true; 1160 vm_flush_needed = true; 1161 pasid_mapping_needed = true; 1162 } 1163 1164 mutex_lock(&id_mgr->lock); 1165 if (id->pasid != job->pasid || !id->pasid_mapping || 1166 !dma_fence_is_signaled(id->pasid_mapping)) 1167 pasid_mapping_needed = true; 1168 mutex_unlock(&id_mgr->lock); 1169 1170 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1171 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1172 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1173 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1174 ring->funcs->emit_wreg; 1175 1176 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1177 return 0; 1178 1179 if (ring->funcs->init_cond_exec) 1180 patch_offset = amdgpu_ring_init_cond_exec(ring); 1181 1182 if (need_pipe_sync) 1183 amdgpu_ring_emit_pipeline_sync(ring); 1184 1185 if (vm_flush_needed) { 1186 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1187 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1188 } 1189 1190 if (pasid_mapping_needed) 1191 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1192 1193 if (vm_flush_needed || pasid_mapping_needed) { 1194 r = amdgpu_fence_emit(ring, &fence, 0); 1195 if (r) 1196 return r; 1197 } 1198 1199 if (vm_flush_needed) { 1200 mutex_lock(&id_mgr->lock); 1201 dma_fence_put(id->last_flush); 1202 id->last_flush = dma_fence_get(fence); 1203 id->current_gpu_reset_count = 1204 atomic_read(&adev->gpu_reset_counter); 1205 mutex_unlock(&id_mgr->lock); 1206 } 1207 1208 if (pasid_mapping_needed) { 1209 mutex_lock(&id_mgr->lock); 1210 id->pasid = job->pasid; 1211 dma_fence_put(id->pasid_mapping); 1212 id->pasid_mapping = dma_fence_get(fence); 1213 mutex_unlock(&id_mgr->lock); 1214 } 1215 dma_fence_put(fence); 1216 1217 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1218 id->gds_base = job->gds_base; 1219 id->gds_size = job->gds_size; 1220 id->gws_base = job->gws_base; 1221 id->gws_size = job->gws_size; 1222 id->oa_base = job->oa_base; 1223 id->oa_size = job->oa_size; 1224 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1225 job->gds_size, job->gws_base, 1226 job->gws_size, job->oa_base, 1227 job->oa_size); 1228 } 1229 1230 if (ring->funcs->patch_cond_exec) 1231 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1232 1233 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1234 if (ring->funcs->emit_switch_buffer) { 1235 amdgpu_ring_emit_switch_buffer(ring); 1236 amdgpu_ring_emit_switch_buffer(ring); 1237 } 1238 return 0; 1239 } 1240 1241 /** 1242 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1243 * 1244 * @vm: requested vm 1245 * @bo: requested buffer object 1246 * 1247 * Find @bo inside the requested vm. 1248 * Search inside the @bos vm list for the requested vm 1249 * Returns the found bo_va or NULL if none is found 1250 * 1251 * Object has to be reserved! 1252 * 1253 * Returns: 1254 * Found bo_va or NULL. 1255 */ 1256 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1257 struct amdgpu_bo *bo) 1258 { 1259 struct amdgpu_vm_bo_base *base; 1260 1261 for (base = bo->vm_bo; base; base = base->next) { 1262 if (base->vm != vm) 1263 continue; 1264 1265 return container_of(base, struct amdgpu_bo_va, base); 1266 } 1267 return NULL; 1268 } 1269 1270 /** 1271 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1272 * 1273 * @pages_addr: optional DMA address to use for lookup 1274 * @addr: the unmapped addr 1275 * 1276 * Look up the physical address of the page that the pte resolves 1277 * to. 1278 * 1279 * Returns: 1280 * The pointer for the page table entry. 1281 */ 1282 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1283 { 1284 uint64_t result; 1285 1286 /* page table offset */ 1287 result = pages_addr[addr >> PAGE_SHIFT]; 1288 1289 /* in case cpu page size != gpu page size*/ 1290 result |= addr & (~LINUX_PAGE_MASK); 1291 1292 result &= 0xFFFFFFFFFFFFF000ULL; 1293 1294 return result; 1295 } 1296 1297 /** 1298 * amdgpu_vm_update_pde - update a single level in the hierarchy 1299 * 1300 * @params: parameters for the update 1301 * @vm: requested vm 1302 * @entry: entry to update 1303 * 1304 * Makes sure the requested entry in parent is up to date. 1305 */ 1306 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1307 struct amdgpu_vm *vm, 1308 struct amdgpu_vm_pt *entry) 1309 { 1310 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1311 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1312 uint64_t pde, pt, flags; 1313 unsigned level; 1314 1315 for (level = 0, pbo = bo->parent; pbo; ++level) 1316 pbo = pbo->parent; 1317 1318 level += params->adev->vm_manager.root_level; 1319 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1320 pde = (entry - parent->entries) * 8; 1321 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1322 } 1323 1324 /** 1325 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1326 * 1327 * @adev: amdgpu_device pointer 1328 * @vm: related vm 1329 * 1330 * Mark all PD level as invalid after an error. 1331 */ 1332 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1333 struct amdgpu_vm *vm) 1334 { 1335 struct amdgpu_vm_pt_cursor cursor; 1336 struct amdgpu_vm_pt *entry; 1337 1338 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1339 if (entry->base.bo && !entry->base.moved) 1340 amdgpu_vm_bo_relocated(&entry->base); 1341 } 1342 1343 /** 1344 * amdgpu_vm_update_pdes - make sure that all directories are valid 1345 * 1346 * @adev: amdgpu_device pointer 1347 * @vm: requested vm 1348 * @immediate: submit immediately to the paging queue 1349 * 1350 * Makes sure all directories are up to date. 1351 * 1352 * Returns: 1353 * 0 for success, error for failure. 1354 */ 1355 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1356 struct amdgpu_vm *vm, bool immediate) 1357 { 1358 struct amdgpu_vm_update_params params; 1359 int r; 1360 1361 if (list_empty(&vm->relocated)) 1362 return 0; 1363 1364 memset(¶ms, 0, sizeof(params)); 1365 params.adev = adev; 1366 params.vm = vm; 1367 params.immediate = immediate; 1368 1369 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1370 if (r) 1371 return r; 1372 1373 while (!list_empty(&vm->relocated)) { 1374 struct amdgpu_vm_pt *entry; 1375 1376 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1377 base.vm_status); 1378 amdgpu_vm_bo_idle(&entry->base); 1379 1380 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1381 if (r) 1382 goto error; 1383 } 1384 1385 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1386 if (r) 1387 goto error; 1388 return 0; 1389 1390 error: 1391 amdgpu_vm_invalidate_pds(adev, vm); 1392 return r; 1393 } 1394 1395 /* 1396 * amdgpu_vm_update_flags - figure out flags for PTE updates 1397 * 1398 * Make sure to set the right flags for the PTEs at the desired level. 1399 */ 1400 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1401 struct amdgpu_bo *bo, unsigned level, 1402 uint64_t pe, uint64_t addr, 1403 unsigned count, uint32_t incr, 1404 uint64_t flags) 1405 1406 { 1407 if (level != AMDGPU_VM_PTB) { 1408 flags |= AMDGPU_PDE_PTE; 1409 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1410 1411 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1412 !(flags & AMDGPU_PTE_VALID) && 1413 !(flags & AMDGPU_PTE_PRT)) { 1414 1415 /* Workaround for fault priority problem on GMC9 */ 1416 flags |= AMDGPU_PTE_EXECUTABLE; 1417 } 1418 1419 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1420 flags); 1421 } 1422 1423 /** 1424 * amdgpu_vm_fragment - get fragment for PTEs 1425 * 1426 * @params: see amdgpu_vm_update_params definition 1427 * @start: first PTE to handle 1428 * @end: last PTE to handle 1429 * @flags: hw mapping flags 1430 * @frag: resulting fragment size 1431 * @frag_end: end of this fragment 1432 * 1433 * Returns the first possible fragment for the start and end address. 1434 */ 1435 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1436 uint64_t start, uint64_t end, uint64_t flags, 1437 unsigned int *frag, uint64_t *frag_end) 1438 { 1439 /** 1440 * The MC L1 TLB supports variable sized pages, based on a fragment 1441 * field in the PTE. When this field is set to a non-zero value, page 1442 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1443 * flags are considered valid for all PTEs within the fragment range 1444 * and corresponding mappings are assumed to be physically contiguous. 1445 * 1446 * The L1 TLB can store a single PTE for the whole fragment, 1447 * significantly increasing the space available for translation 1448 * caching. This leads to large improvements in throughput when the 1449 * TLB is under pressure. 1450 * 1451 * The L2 TLB distributes small and large fragments into two 1452 * asymmetric partitions. The large fragment cache is significantly 1453 * larger. Thus, we try to use large fragments wherever possible. 1454 * Userspace can support this by aligning virtual base address and 1455 * allocation size to the fragment size. 1456 * 1457 * Starting with Vega10 the fragment size only controls the L1. The L2 1458 * is now directly feed with small/huge/giant pages from the walker. 1459 */ 1460 unsigned max_frag; 1461 1462 if (params->adev->asic_type < CHIP_VEGA10) 1463 max_frag = params->adev->vm_manager.fragment_size; 1464 else 1465 max_frag = 31; 1466 1467 /* system pages are non continuously */ 1468 if (params->pages_addr) { 1469 *frag = 0; 1470 *frag_end = end; 1471 return; 1472 } 1473 1474 /* This intentionally wraps around if no bit is set */ 1475 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1476 if (*frag >= max_frag) { 1477 *frag = max_frag; 1478 *frag_end = end & ~((1ULL << max_frag) - 1); 1479 } else { 1480 *frag_end = start + (1 << *frag); 1481 } 1482 } 1483 1484 /** 1485 * amdgpu_vm_update_ptes - make sure that page tables are valid 1486 * 1487 * @params: see amdgpu_vm_update_params definition 1488 * @start: start of GPU address range 1489 * @end: end of GPU address range 1490 * @dst: destination address to map to, the next dst inside the function 1491 * @flags: mapping flags 1492 * 1493 * Update the page tables in the range @start - @end. 1494 * 1495 * Returns: 1496 * 0 for success, -EINVAL for failure. 1497 */ 1498 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1499 uint64_t start, uint64_t end, 1500 uint64_t dst, uint64_t flags) 1501 { 1502 struct amdgpu_device *adev = params->adev; 1503 struct amdgpu_vm_pt_cursor cursor; 1504 uint64_t frag_start = start, frag_end; 1505 unsigned int frag; 1506 int r; 1507 1508 /* figure out the initial fragment */ 1509 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1510 1511 /* walk over the address space and update the PTs */ 1512 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1513 while (cursor.pfn < end) { 1514 unsigned shift, parent_shift, mask; 1515 uint64_t incr, entry_end, pe_start; 1516 struct amdgpu_bo *pt; 1517 1518 if (!params->unlocked) { 1519 /* make sure that the page tables covering the 1520 * address range are actually allocated 1521 */ 1522 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1523 &cursor, params->immediate); 1524 if (r) 1525 return r; 1526 } 1527 1528 shift = amdgpu_vm_level_shift(adev, cursor.level); 1529 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1530 if (params->unlocked) { 1531 /* Unlocked updates are only allowed on the leaves */ 1532 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1533 continue; 1534 } else if (adev->asic_type < CHIP_VEGA10 && 1535 (flags & AMDGPU_PTE_VALID)) { 1536 /* No huge page support before GMC v9 */ 1537 if (cursor.level != AMDGPU_VM_PTB) { 1538 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1539 return -ENOENT; 1540 continue; 1541 } 1542 } else if (frag < shift) { 1543 /* We can't use this level when the fragment size is 1544 * smaller than the address shift. Go to the next 1545 * child entry and try again. 1546 */ 1547 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1548 continue; 1549 } else if (frag >= parent_shift) { 1550 /* If the fragment size is even larger than the parent 1551 * shift we should go up one level and check it again. 1552 */ 1553 if (!amdgpu_vm_pt_ancestor(&cursor)) 1554 return -EINVAL; 1555 continue; 1556 } 1557 1558 pt = cursor.entry->base.bo; 1559 if (!pt) { 1560 /* We need all PDs and PTs for mapping something, */ 1561 if (flags & AMDGPU_PTE_VALID) 1562 return -ENOENT; 1563 1564 /* but unmapping something can happen at a higher 1565 * level. 1566 */ 1567 if (!amdgpu_vm_pt_ancestor(&cursor)) 1568 return -EINVAL; 1569 1570 pt = cursor.entry->base.bo; 1571 shift = parent_shift; 1572 frag_end = max(frag_end, roundup2(frag_start + 1, 1573 1ULL << shift)); 1574 } 1575 1576 /* Looks good so far, calculate parameters for the update */ 1577 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1578 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1579 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1580 entry_end = ((uint64_t)mask + 1) << shift; 1581 entry_end += cursor.pfn & ~(entry_end - 1); 1582 entry_end = min(entry_end, end); 1583 1584 do { 1585 struct amdgpu_vm *vm = params->vm; 1586 uint64_t upd_end = min(entry_end, frag_end); 1587 unsigned nptes = (upd_end - frag_start) >> shift; 1588 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1589 1590 /* This can happen when we set higher level PDs to 1591 * silent to stop fault floods. 1592 */ 1593 nptes = max(nptes, 1u); 1594 1595 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1596 nptes, dst, incr, upd_flags, 1597 vm->task_info.pid, 1598 vm->immediate.fence_context); 1599 amdgpu_vm_update_flags(params, pt, cursor.level, 1600 pe_start, dst, nptes, incr, 1601 upd_flags); 1602 1603 pe_start += nptes * 8; 1604 dst += nptes * incr; 1605 1606 frag_start = upd_end; 1607 if (frag_start >= frag_end) { 1608 /* figure out the next fragment */ 1609 amdgpu_vm_fragment(params, frag_start, end, 1610 flags, &frag, &frag_end); 1611 if (frag < shift) 1612 break; 1613 } 1614 } while (frag_start < entry_end); 1615 1616 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1617 /* Free all child entries. 1618 * Update the tables with the flags and addresses and free up subsequent 1619 * tables in the case of huge pages or freed up areas. 1620 * This is the maximum you can free, because all other page tables are not 1621 * completely covered by the range and so potentially still in use. 1622 */ 1623 while (cursor.pfn < frag_start) { 1624 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1625 amdgpu_vm_pt_next(adev, &cursor); 1626 } 1627 1628 } else if (frag >= shift) { 1629 /* or just move on to the next on the same level. */ 1630 amdgpu_vm_pt_next(adev, &cursor); 1631 } 1632 } 1633 1634 return 0; 1635 } 1636 1637 /** 1638 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1639 * 1640 * @adev: amdgpu_device pointer 1641 * @vm: requested vm 1642 * @immediate: immediate submission in a page fault 1643 * @unlocked: unlocked invalidation during MM callback 1644 * @resv: fences we need to sync to 1645 * @start: start of mapped range 1646 * @last: last mapped entry 1647 * @flags: flags for the entries 1648 * @addr: addr to set the area to 1649 * @pages_addr: DMA addresses to use for mapping 1650 * @fence: optional resulting fence 1651 * 1652 * Fill in the page table entries between @start and @last. 1653 * 1654 * Returns: 1655 * 0 for success, -EINVAL for failure. 1656 */ 1657 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1658 struct amdgpu_vm *vm, bool immediate, 1659 bool unlocked, struct dma_resv *resv, 1660 uint64_t start, uint64_t last, 1661 uint64_t flags, uint64_t addr, 1662 dma_addr_t *pages_addr, 1663 struct dma_fence **fence) 1664 { 1665 struct amdgpu_vm_update_params params; 1666 enum amdgpu_sync_mode sync_mode; 1667 int r; 1668 1669 memset(¶ms, 0, sizeof(params)); 1670 params.adev = adev; 1671 params.vm = vm; 1672 params.immediate = immediate; 1673 params.pages_addr = pages_addr; 1674 params.unlocked = unlocked; 1675 1676 /* Implicitly sync to command submissions in the same VM before 1677 * unmapping. Sync to moving fences before mapping. 1678 */ 1679 if (!(flags & AMDGPU_PTE_VALID)) 1680 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1681 else 1682 sync_mode = AMDGPU_SYNC_EXPLICIT; 1683 1684 amdgpu_vm_eviction_lock(vm); 1685 if (vm->evicting) { 1686 r = -EBUSY; 1687 goto error_unlock; 1688 } 1689 1690 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1691 struct dma_fence *tmp = dma_fence_get_stub(); 1692 1693 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true); 1694 swap(vm->last_unlocked, tmp); 1695 dma_fence_put(tmp); 1696 } 1697 1698 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1699 if (r) 1700 goto error_unlock; 1701 1702 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1703 if (r) 1704 goto error_unlock; 1705 1706 r = vm->update_funcs->commit(¶ms, fence); 1707 1708 error_unlock: 1709 amdgpu_vm_eviction_unlock(vm); 1710 return r; 1711 } 1712 1713 /** 1714 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1715 * 1716 * @adev: amdgpu_device pointer 1717 * @resv: fences we need to sync to 1718 * @pages_addr: DMA addresses to use for mapping 1719 * @vm: requested vm 1720 * @mapping: mapped range and flags to use for the update 1721 * @flags: HW flags for the mapping 1722 * @bo_adev: amdgpu_device pointer that bo actually been allocated 1723 * @nodes: array of drm_mm_nodes with the MC addresses 1724 * @fence: optional resulting fence 1725 * 1726 * Split the mapping into smaller chunks so that each update fits 1727 * into a SDMA IB. 1728 * 1729 * Returns: 1730 * 0 for success, -EINVAL for failure. 1731 */ 1732 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1733 struct dma_resv *resv, 1734 dma_addr_t *pages_addr, 1735 struct amdgpu_vm *vm, 1736 struct amdgpu_bo_va_mapping *mapping, 1737 uint64_t flags, 1738 struct amdgpu_device *bo_adev, 1739 struct drm_mm_node *nodes, 1740 struct dma_fence **fence) 1741 { 1742 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1743 uint64_t pfn, start = mapping->start; 1744 int r; 1745 1746 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1747 * but in case of something, we filter the flags in first place 1748 */ 1749 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1750 flags &= ~AMDGPU_PTE_READABLE; 1751 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1752 flags &= ~AMDGPU_PTE_WRITEABLE; 1753 1754 /* Apply ASIC specific mapping flags */ 1755 amdgpu_gmc_get_vm_pte(adev, mapping, &flags); 1756 1757 trace_amdgpu_vm_bo_update(mapping); 1758 1759 pfn = mapping->offset >> PAGE_SHIFT; 1760 if (nodes) { 1761 while (pfn >= nodes->size) { 1762 pfn -= nodes->size; 1763 ++nodes; 1764 } 1765 } 1766 1767 do { 1768 dma_addr_t *dma_addr = NULL; 1769 uint64_t max_entries; 1770 uint64_t addr, last; 1771 1772 max_entries = mapping->last - start + 1; 1773 if (nodes) { 1774 addr = nodes->start << PAGE_SHIFT; 1775 max_entries = min((nodes->size - pfn) * 1776 AMDGPU_GPU_PAGES_IN_CPU_PAGE, max_entries); 1777 } else { 1778 addr = 0; 1779 } 1780 1781 if (pages_addr) { 1782 uint64_t count; 1783 1784 for (count = 1; 1785 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1786 ++count) { 1787 uint64_t idx = pfn + count; 1788 1789 if (pages_addr[idx] != 1790 (pages_addr[idx - 1] + PAGE_SIZE)) 1791 break; 1792 } 1793 1794 if (count < min_linear_pages) { 1795 addr = pfn << PAGE_SHIFT; 1796 dma_addr = pages_addr; 1797 } else { 1798 addr = pages_addr[pfn]; 1799 max_entries = count * 1800 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1801 } 1802 1803 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1804 addr += bo_adev->vm_manager.vram_base_offset; 1805 addr += pfn << PAGE_SHIFT; 1806 } 1807 1808 last = start + max_entries - 1; 1809 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv, 1810 start, last, flags, addr, 1811 dma_addr, fence); 1812 if (r) 1813 return r; 1814 1815 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1816 if (nodes && nodes->size == pfn) { 1817 pfn = 0; 1818 ++nodes; 1819 } 1820 start = last + 1; 1821 1822 } while (unlikely(start != mapping->last + 1)); 1823 1824 return 0; 1825 } 1826 1827 /** 1828 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1829 * 1830 * @adev: amdgpu_device pointer 1831 * @bo_va: requested BO and VM object 1832 * @clear: if true clear the entries 1833 * 1834 * Fill in the page table entries for @bo_va. 1835 * 1836 * Returns: 1837 * 0 for success, -EINVAL for failure. 1838 */ 1839 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1840 bool clear) 1841 { 1842 struct amdgpu_bo *bo = bo_va->base.bo; 1843 struct amdgpu_vm *vm = bo_va->base.vm; 1844 struct amdgpu_bo_va_mapping *mapping; 1845 dma_addr_t *pages_addr = NULL; 1846 struct ttm_resource *mem; 1847 struct drm_mm_node *nodes; 1848 struct dma_fence **last_update; 1849 struct dma_resv *resv; 1850 uint64_t flags; 1851 struct amdgpu_device *bo_adev = adev; 1852 int r; 1853 1854 if (clear || !bo) { 1855 mem = NULL; 1856 nodes = NULL; 1857 resv = vm->root.base.bo->tbo.base.resv; 1858 } else { 1859 struct drm_gem_object *obj = &bo->tbo.base; 1860 struct ttm_dma_tt *ttm; 1861 1862 resv = bo->tbo.base.resv; 1863 #ifdef notyet 1864 if (obj->import_attach && bo_va->is_xgmi) { 1865 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1866 struct drm_gem_object *gobj = dma_buf->priv; 1867 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1868 1869 if (abo->tbo.mem.mem_type == TTM_PL_VRAM) 1870 bo = gem_to_amdgpu_bo(gobj); 1871 } 1872 #endif 1873 mem = &bo->tbo.mem; 1874 nodes = mem->mm_node; 1875 if (mem->mem_type == TTM_PL_TT) { 1876 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1877 pages_addr = ttm->dma_address; 1878 } 1879 } 1880 1881 if (bo) { 1882 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1883 1884 if (amdgpu_bo_encrypted(bo)) 1885 flags |= AMDGPU_PTE_TMZ; 1886 1887 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1888 } else { 1889 flags = 0x0; 1890 } 1891 1892 if (clear || (bo && bo->tbo.base.resv == 1893 vm->root.base.bo->tbo.base.resv)) 1894 last_update = &vm->last_update; 1895 else 1896 last_update = &bo_va->last_pt_update; 1897 1898 if (!clear && bo_va->base.moved) { 1899 bo_va->base.moved = false; 1900 list_splice_init(&bo_va->valids, &bo_va->invalids); 1901 1902 } else if (bo_va->cleared != clear) { 1903 list_splice_init(&bo_va->valids, &bo_va->invalids); 1904 } 1905 1906 list_for_each_entry(mapping, &bo_va->invalids, list) { 1907 r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm, 1908 mapping, flags, bo_adev, nodes, 1909 last_update); 1910 if (r) 1911 return r; 1912 } 1913 1914 /* If the BO is not in its preferred location add it back to 1915 * the evicted list so that it gets validated again on the 1916 * next command submission. 1917 */ 1918 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1919 uint32_t mem_type = bo->tbo.mem.mem_type; 1920 1921 if (!(bo->preferred_domains & 1922 amdgpu_mem_type_to_domain(mem_type))) 1923 amdgpu_vm_bo_evicted(&bo_va->base); 1924 else 1925 amdgpu_vm_bo_idle(&bo_va->base); 1926 } else { 1927 amdgpu_vm_bo_done(&bo_va->base); 1928 } 1929 1930 list_splice_init(&bo_va->invalids, &bo_va->valids); 1931 bo_va->cleared = clear; 1932 1933 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1934 list_for_each_entry(mapping, &bo_va->valids, list) 1935 trace_amdgpu_vm_bo_mapping(mapping); 1936 } 1937 1938 return 0; 1939 } 1940 1941 /** 1942 * amdgpu_vm_update_prt_state - update the global PRT state 1943 * 1944 * @adev: amdgpu_device pointer 1945 */ 1946 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1947 { 1948 unsigned long flags; 1949 bool enable; 1950 1951 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1952 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1953 adev->gmc.gmc_funcs->set_prt(adev, enable); 1954 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1955 } 1956 1957 /** 1958 * amdgpu_vm_prt_get - add a PRT user 1959 * 1960 * @adev: amdgpu_device pointer 1961 */ 1962 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1963 { 1964 if (!adev->gmc.gmc_funcs->set_prt) 1965 return; 1966 1967 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1968 amdgpu_vm_update_prt_state(adev); 1969 } 1970 1971 /** 1972 * amdgpu_vm_prt_put - drop a PRT user 1973 * 1974 * @adev: amdgpu_device pointer 1975 */ 1976 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1977 { 1978 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1979 amdgpu_vm_update_prt_state(adev); 1980 } 1981 1982 /** 1983 * amdgpu_vm_prt_cb - callback for updating the PRT status 1984 * 1985 * @fence: fence for the callback 1986 * @_cb: the callback function 1987 */ 1988 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1989 { 1990 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1991 1992 amdgpu_vm_prt_put(cb->adev); 1993 kfree(cb); 1994 } 1995 1996 /** 1997 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1998 * 1999 * @adev: amdgpu_device pointer 2000 * @fence: fence for the callback 2001 */ 2002 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2003 struct dma_fence *fence) 2004 { 2005 struct amdgpu_prt_cb *cb; 2006 2007 if (!adev->gmc.gmc_funcs->set_prt) 2008 return; 2009 2010 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2011 if (!cb) { 2012 /* Last resort when we are OOM */ 2013 if (fence) 2014 dma_fence_wait(fence, false); 2015 2016 amdgpu_vm_prt_put(adev); 2017 } else { 2018 cb->adev = adev; 2019 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2020 amdgpu_vm_prt_cb)) 2021 amdgpu_vm_prt_cb(fence, &cb->cb); 2022 } 2023 } 2024 2025 /** 2026 * amdgpu_vm_free_mapping - free a mapping 2027 * 2028 * @adev: amdgpu_device pointer 2029 * @vm: requested vm 2030 * @mapping: mapping to be freed 2031 * @fence: fence of the unmap operation 2032 * 2033 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2034 */ 2035 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2036 struct amdgpu_vm *vm, 2037 struct amdgpu_bo_va_mapping *mapping, 2038 struct dma_fence *fence) 2039 { 2040 if (mapping->flags & AMDGPU_PTE_PRT) 2041 amdgpu_vm_add_prt_cb(adev, fence); 2042 kfree(mapping); 2043 } 2044 2045 /** 2046 * amdgpu_vm_prt_fini - finish all prt mappings 2047 * 2048 * @adev: amdgpu_device pointer 2049 * @vm: requested vm 2050 * 2051 * Register a cleanup callback to disable PRT support after VM dies. 2052 */ 2053 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2054 { 2055 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2056 struct dma_fence *excl, **shared; 2057 unsigned i, shared_count; 2058 int r; 2059 2060 r = dma_resv_get_fences_rcu(resv, &excl, 2061 &shared_count, &shared); 2062 if (r) { 2063 /* Not enough memory to grab the fence list, as last resort 2064 * block for all the fences to complete. 2065 */ 2066 dma_resv_wait_timeout_rcu(resv, true, false, 2067 MAX_SCHEDULE_TIMEOUT); 2068 return; 2069 } 2070 2071 /* Add a callback for each fence in the reservation object */ 2072 amdgpu_vm_prt_get(adev); 2073 amdgpu_vm_add_prt_cb(adev, excl); 2074 2075 for (i = 0; i < shared_count; ++i) { 2076 amdgpu_vm_prt_get(adev); 2077 amdgpu_vm_add_prt_cb(adev, shared[i]); 2078 } 2079 2080 kfree(shared); 2081 } 2082 2083 /** 2084 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2085 * 2086 * @adev: amdgpu_device pointer 2087 * @vm: requested vm 2088 * @fence: optional resulting fence (unchanged if no work needed to be done 2089 * or if an error occurred) 2090 * 2091 * Make sure all freed BOs are cleared in the PT. 2092 * PTs have to be reserved and mutex must be locked! 2093 * 2094 * Returns: 2095 * 0 for success. 2096 * 2097 */ 2098 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2099 struct amdgpu_vm *vm, 2100 struct dma_fence **fence) 2101 { 2102 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2103 struct amdgpu_bo_va_mapping *mapping; 2104 uint64_t init_pte_value = 0; 2105 struct dma_fence *f = NULL; 2106 int r; 2107 2108 while (!list_empty(&vm->freed)) { 2109 mapping = list_first_entry(&vm->freed, 2110 struct amdgpu_bo_va_mapping, list); 2111 list_del(&mapping->list); 2112 2113 if (vm->pte_support_ats && 2114 mapping->start < AMDGPU_GMC_HOLE_START) 2115 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2116 2117 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv, 2118 mapping->start, mapping->last, 2119 init_pte_value, 0, NULL, &f); 2120 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2121 if (r) { 2122 dma_fence_put(f); 2123 return r; 2124 } 2125 } 2126 2127 if (fence && f) { 2128 dma_fence_put(*fence); 2129 *fence = f; 2130 } else { 2131 dma_fence_put(f); 2132 } 2133 2134 return 0; 2135 2136 } 2137 2138 /** 2139 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2140 * 2141 * @adev: amdgpu_device pointer 2142 * @vm: requested vm 2143 * 2144 * Make sure all BOs which are moved are updated in the PTs. 2145 * 2146 * Returns: 2147 * 0 for success. 2148 * 2149 * PTs have to be reserved! 2150 */ 2151 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2152 struct amdgpu_vm *vm) 2153 { 2154 struct amdgpu_bo_va *bo_va, *tmp; 2155 struct dma_resv *resv; 2156 bool clear; 2157 int r; 2158 2159 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2160 /* Per VM BOs never need to bo cleared in the page tables */ 2161 r = amdgpu_vm_bo_update(adev, bo_va, false); 2162 if (r) 2163 return r; 2164 } 2165 2166 spin_lock(&vm->invalidated_lock); 2167 while (!list_empty(&vm->invalidated)) { 2168 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2169 base.vm_status); 2170 resv = bo_va->base.bo->tbo.base.resv; 2171 spin_unlock(&vm->invalidated_lock); 2172 2173 /* Try to reserve the BO to avoid clearing its ptes */ 2174 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2175 clear = false; 2176 /* Somebody else is using the BO right now */ 2177 else 2178 clear = true; 2179 2180 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2181 if (r) 2182 return r; 2183 2184 if (!clear) 2185 dma_resv_unlock(resv); 2186 spin_lock(&vm->invalidated_lock); 2187 } 2188 spin_unlock(&vm->invalidated_lock); 2189 2190 return 0; 2191 } 2192 2193 /** 2194 * amdgpu_vm_bo_add - add a bo to a specific vm 2195 * 2196 * @adev: amdgpu_device pointer 2197 * @vm: requested vm 2198 * @bo: amdgpu buffer object 2199 * 2200 * Add @bo into the requested vm. 2201 * Add @bo to the list of bos associated with the vm 2202 * 2203 * Returns: 2204 * Newly added bo_va or NULL for failure 2205 * 2206 * Object has to be reserved! 2207 */ 2208 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2209 struct amdgpu_vm *vm, 2210 struct amdgpu_bo *bo) 2211 { 2212 struct amdgpu_bo_va *bo_va; 2213 2214 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2215 if (bo_va == NULL) { 2216 return NULL; 2217 } 2218 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2219 2220 bo_va->ref_count = 1; 2221 INIT_LIST_HEAD(&bo_va->valids); 2222 INIT_LIST_HEAD(&bo_va->invalids); 2223 2224 if (!bo) 2225 return bo_va; 2226 2227 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2228 bo_va->is_xgmi = true; 2229 /* Power up XGMI if it can be potentially used */ 2230 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2231 } 2232 2233 return bo_va; 2234 } 2235 2236 2237 /** 2238 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2239 * 2240 * @adev: amdgpu_device pointer 2241 * @bo_va: bo_va to store the address 2242 * @mapping: the mapping to insert 2243 * 2244 * Insert a new mapping into all structures. 2245 */ 2246 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2247 struct amdgpu_bo_va *bo_va, 2248 struct amdgpu_bo_va_mapping *mapping) 2249 { 2250 struct amdgpu_vm *vm = bo_va->base.vm; 2251 struct amdgpu_bo *bo = bo_va->base.bo; 2252 2253 mapping->bo_va = bo_va; 2254 list_add(&mapping->list, &bo_va->invalids); 2255 amdgpu_vm_it_insert(mapping, &vm->va); 2256 2257 if (mapping->flags & AMDGPU_PTE_PRT) 2258 amdgpu_vm_prt_get(adev); 2259 2260 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2261 !bo_va->base.moved) { 2262 list_move(&bo_va->base.vm_status, &vm->moved); 2263 } 2264 trace_amdgpu_vm_bo_map(bo_va, mapping); 2265 } 2266 2267 /** 2268 * amdgpu_vm_bo_map - map bo inside a vm 2269 * 2270 * @adev: amdgpu_device pointer 2271 * @bo_va: bo_va to store the address 2272 * @saddr: where to map the BO 2273 * @offset: requested offset in the BO 2274 * @size: BO size in bytes 2275 * @flags: attributes of pages (read/write/valid/etc.) 2276 * 2277 * Add a mapping of the BO at the specefied addr into the VM. 2278 * 2279 * Returns: 2280 * 0 for success, error for failure. 2281 * 2282 * Object has to be reserved and unreserved outside! 2283 */ 2284 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2285 struct amdgpu_bo_va *bo_va, 2286 uint64_t saddr, uint64_t offset, 2287 uint64_t size, uint64_t flags) 2288 { 2289 struct amdgpu_bo_va_mapping *mapping, *tmp; 2290 struct amdgpu_bo *bo = bo_va->base.bo; 2291 struct amdgpu_vm *vm = bo_va->base.vm; 2292 uint64_t eaddr; 2293 2294 /* validate the parameters */ 2295 if (saddr & ~LINUX_PAGE_MASK || offset & ~LINUX_PAGE_MASK || 2296 size == 0 || size & ~LINUX_PAGE_MASK) 2297 return -EINVAL; 2298 2299 /* make sure object fit at this offset */ 2300 eaddr = saddr + size - 1; 2301 if (saddr >= eaddr || 2302 (bo && offset + size > amdgpu_bo_size(bo)) || 2303 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2304 return -EINVAL; 2305 2306 saddr /= AMDGPU_GPU_PAGE_SIZE; 2307 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2308 2309 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2310 if (tmp) { 2311 /* bo and tmp overlap, invalid addr */ 2312 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2313 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2314 tmp->start, tmp->last + 1); 2315 return -EINVAL; 2316 } 2317 2318 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2319 if (!mapping) 2320 return -ENOMEM; 2321 2322 mapping->start = saddr; 2323 mapping->last = eaddr; 2324 mapping->offset = offset; 2325 mapping->flags = flags; 2326 2327 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2328 2329 return 0; 2330 } 2331 2332 /** 2333 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2334 * 2335 * @adev: amdgpu_device pointer 2336 * @bo_va: bo_va to store the address 2337 * @saddr: where to map the BO 2338 * @offset: requested offset in the BO 2339 * @size: BO size in bytes 2340 * @flags: attributes of pages (read/write/valid/etc.) 2341 * 2342 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2343 * mappings as we do so. 2344 * 2345 * Returns: 2346 * 0 for success, error for failure. 2347 * 2348 * Object has to be reserved and unreserved outside! 2349 */ 2350 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2351 struct amdgpu_bo_va *bo_va, 2352 uint64_t saddr, uint64_t offset, 2353 uint64_t size, uint64_t flags) 2354 { 2355 struct amdgpu_bo_va_mapping *mapping; 2356 struct amdgpu_bo *bo = bo_va->base.bo; 2357 uint64_t eaddr; 2358 int r; 2359 2360 /* validate the parameters */ 2361 if (saddr & ~LINUX_PAGE_MASK || offset & ~LINUX_PAGE_MASK || 2362 size == 0 || size & ~LINUX_PAGE_MASK) 2363 return -EINVAL; 2364 2365 /* make sure object fit at this offset */ 2366 eaddr = saddr + size - 1; 2367 if (saddr >= eaddr || 2368 (bo && offset + size > amdgpu_bo_size(bo)) || 2369 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2370 return -EINVAL; 2371 2372 /* Allocate all the needed memory */ 2373 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2374 if (!mapping) 2375 return -ENOMEM; 2376 2377 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2378 if (r) { 2379 kfree(mapping); 2380 return r; 2381 } 2382 2383 saddr /= AMDGPU_GPU_PAGE_SIZE; 2384 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2385 2386 mapping->start = saddr; 2387 mapping->last = eaddr; 2388 mapping->offset = offset; 2389 mapping->flags = flags; 2390 2391 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2392 2393 return 0; 2394 } 2395 2396 /** 2397 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2398 * 2399 * @adev: amdgpu_device pointer 2400 * @bo_va: bo_va to remove the address from 2401 * @saddr: where to the BO is mapped 2402 * 2403 * Remove a mapping of the BO at the specefied addr from the VM. 2404 * 2405 * Returns: 2406 * 0 for success, error for failure. 2407 * 2408 * Object has to be reserved and unreserved outside! 2409 */ 2410 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2411 struct amdgpu_bo_va *bo_va, 2412 uint64_t saddr) 2413 { 2414 struct amdgpu_bo_va_mapping *mapping; 2415 struct amdgpu_vm *vm = bo_va->base.vm; 2416 bool valid = true; 2417 2418 saddr /= AMDGPU_GPU_PAGE_SIZE; 2419 2420 list_for_each_entry(mapping, &bo_va->valids, list) { 2421 if (mapping->start == saddr) 2422 break; 2423 } 2424 2425 if (&mapping->list == &bo_va->valids) { 2426 valid = false; 2427 2428 list_for_each_entry(mapping, &bo_va->invalids, list) { 2429 if (mapping->start == saddr) 2430 break; 2431 } 2432 2433 if (&mapping->list == &bo_va->invalids) 2434 return -ENOENT; 2435 } 2436 2437 list_del(&mapping->list); 2438 amdgpu_vm_it_remove(mapping, &vm->va); 2439 mapping->bo_va = NULL; 2440 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2441 2442 if (valid) 2443 list_add(&mapping->list, &vm->freed); 2444 else 2445 amdgpu_vm_free_mapping(adev, vm, mapping, 2446 bo_va->last_pt_update); 2447 2448 return 0; 2449 } 2450 2451 /** 2452 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2453 * 2454 * @adev: amdgpu_device pointer 2455 * @vm: VM structure to use 2456 * @saddr: start of the range 2457 * @size: size of the range 2458 * 2459 * Remove all mappings in a range, split them as appropriate. 2460 * 2461 * Returns: 2462 * 0 for success, error for failure. 2463 */ 2464 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2465 struct amdgpu_vm *vm, 2466 uint64_t saddr, uint64_t size) 2467 { 2468 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2469 DRM_LIST_HEAD(removed); 2470 uint64_t eaddr; 2471 2472 eaddr = saddr + size - 1; 2473 saddr /= AMDGPU_GPU_PAGE_SIZE; 2474 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2475 2476 /* Allocate all the needed memory */ 2477 before = kzalloc(sizeof(*before), GFP_KERNEL); 2478 if (!before) 2479 return -ENOMEM; 2480 INIT_LIST_HEAD(&before->list); 2481 2482 after = kzalloc(sizeof(*after), GFP_KERNEL); 2483 if (!after) { 2484 kfree(before); 2485 return -ENOMEM; 2486 } 2487 INIT_LIST_HEAD(&after->list); 2488 2489 /* Now gather all removed mappings */ 2490 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2491 while (tmp) { 2492 /* Remember mapping split at the start */ 2493 if (tmp->start < saddr) { 2494 before->start = tmp->start; 2495 before->last = saddr - 1; 2496 before->offset = tmp->offset; 2497 before->flags = tmp->flags; 2498 before->bo_va = tmp->bo_va; 2499 list_add(&before->list, &tmp->bo_va->invalids); 2500 } 2501 2502 /* Remember mapping split at the end */ 2503 if (tmp->last > eaddr) { 2504 after->start = eaddr + 1; 2505 after->last = tmp->last; 2506 after->offset = tmp->offset; 2507 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2508 after->flags = tmp->flags; 2509 after->bo_va = tmp->bo_va; 2510 list_add(&after->list, &tmp->bo_va->invalids); 2511 } 2512 2513 list_del(&tmp->list); 2514 list_add(&tmp->list, &removed); 2515 2516 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2517 } 2518 2519 /* And free them up */ 2520 list_for_each_entry_safe(tmp, next, &removed, list) { 2521 amdgpu_vm_it_remove(tmp, &vm->va); 2522 list_del(&tmp->list); 2523 2524 if (tmp->start < saddr) 2525 tmp->start = saddr; 2526 if (tmp->last > eaddr) 2527 tmp->last = eaddr; 2528 2529 tmp->bo_va = NULL; 2530 list_add(&tmp->list, &vm->freed); 2531 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2532 } 2533 2534 /* Insert partial mapping before the range */ 2535 if (!list_empty(&before->list)) { 2536 amdgpu_vm_it_insert(before, &vm->va); 2537 if (before->flags & AMDGPU_PTE_PRT) 2538 amdgpu_vm_prt_get(adev); 2539 } else { 2540 kfree(before); 2541 } 2542 2543 /* Insert partial mapping after the range */ 2544 if (!list_empty(&after->list)) { 2545 amdgpu_vm_it_insert(after, &vm->va); 2546 if (after->flags & AMDGPU_PTE_PRT) 2547 amdgpu_vm_prt_get(adev); 2548 } else { 2549 kfree(after); 2550 } 2551 2552 return 0; 2553 } 2554 2555 /** 2556 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2557 * 2558 * @vm: the requested VM 2559 * @addr: the address 2560 * 2561 * Find a mapping by it's address. 2562 * 2563 * Returns: 2564 * The amdgpu_bo_va_mapping matching for addr or NULL 2565 * 2566 */ 2567 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2568 uint64_t addr) 2569 { 2570 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2571 } 2572 2573 /** 2574 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2575 * 2576 * @vm: the requested vm 2577 * @ticket: CS ticket 2578 * 2579 * Trace all mappings of BOs reserved during a command submission. 2580 */ 2581 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2582 { 2583 struct amdgpu_bo_va_mapping *mapping; 2584 2585 if (!trace_amdgpu_vm_bo_cs_enabled()) 2586 return; 2587 2588 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2589 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2590 if (mapping->bo_va && mapping->bo_va->base.bo) { 2591 struct amdgpu_bo *bo; 2592 2593 bo = mapping->bo_va->base.bo; 2594 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2595 ticket) 2596 continue; 2597 } 2598 2599 trace_amdgpu_vm_bo_cs(mapping); 2600 } 2601 } 2602 2603 /** 2604 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2605 * 2606 * @adev: amdgpu_device pointer 2607 * @bo_va: requested bo_va 2608 * 2609 * Remove @bo_va->bo from the requested vm. 2610 * 2611 * Object have to be reserved! 2612 */ 2613 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2614 struct amdgpu_bo_va *bo_va) 2615 { 2616 struct amdgpu_bo_va_mapping *mapping, *next; 2617 struct amdgpu_bo *bo = bo_va->base.bo; 2618 struct amdgpu_vm *vm = bo_va->base.vm; 2619 struct amdgpu_vm_bo_base **base; 2620 2621 if (bo) { 2622 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2623 vm->bulk_moveable = false; 2624 2625 for (base = &bo_va->base.bo->vm_bo; *base; 2626 base = &(*base)->next) { 2627 if (*base != &bo_va->base) 2628 continue; 2629 2630 *base = bo_va->base.next; 2631 break; 2632 } 2633 } 2634 2635 spin_lock(&vm->invalidated_lock); 2636 list_del(&bo_va->base.vm_status); 2637 spin_unlock(&vm->invalidated_lock); 2638 2639 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2640 list_del(&mapping->list); 2641 amdgpu_vm_it_remove(mapping, &vm->va); 2642 mapping->bo_va = NULL; 2643 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2644 list_add(&mapping->list, &vm->freed); 2645 } 2646 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2647 list_del(&mapping->list); 2648 amdgpu_vm_it_remove(mapping, &vm->va); 2649 amdgpu_vm_free_mapping(adev, vm, mapping, 2650 bo_va->last_pt_update); 2651 } 2652 2653 dma_fence_put(bo_va->last_pt_update); 2654 2655 if (bo && bo_va->is_xgmi) 2656 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2657 2658 kfree(bo_va); 2659 } 2660 2661 /** 2662 * amdgpu_vm_evictable - check if we can evict a VM 2663 * 2664 * @bo: A page table of the VM. 2665 * 2666 * Check if it is possible to evict a VM. 2667 */ 2668 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2669 { 2670 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2671 2672 /* Page tables of a destroyed VM can go away immediately */ 2673 if (!bo_base || !bo_base->vm) 2674 return true; 2675 2676 /* Don't evict VM page tables while they are busy */ 2677 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true)) 2678 return false; 2679 2680 /* Try to block ongoing updates */ 2681 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2682 return false; 2683 2684 /* Don't evict VM page tables while they are updated */ 2685 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2686 amdgpu_vm_eviction_unlock(bo_base->vm); 2687 return false; 2688 } 2689 2690 bo_base->vm->evicting = true; 2691 amdgpu_vm_eviction_unlock(bo_base->vm); 2692 return true; 2693 } 2694 2695 /** 2696 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2697 * 2698 * @adev: amdgpu_device pointer 2699 * @bo: amdgpu buffer object 2700 * @evicted: is the BO evicted 2701 * 2702 * Mark @bo as invalid. 2703 */ 2704 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2705 struct amdgpu_bo *bo, bool evicted) 2706 { 2707 struct amdgpu_vm_bo_base *bo_base; 2708 2709 /* shadow bo doesn't have bo base, its validation needs its parent */ 2710 if (bo->parent && bo->parent->shadow == bo) 2711 bo = bo->parent; 2712 2713 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2714 struct amdgpu_vm *vm = bo_base->vm; 2715 2716 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2717 amdgpu_vm_bo_evicted(bo_base); 2718 continue; 2719 } 2720 2721 if (bo_base->moved) 2722 continue; 2723 bo_base->moved = true; 2724 2725 if (bo->tbo.type == ttm_bo_type_kernel) 2726 amdgpu_vm_bo_relocated(bo_base); 2727 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2728 amdgpu_vm_bo_moved(bo_base); 2729 else 2730 amdgpu_vm_bo_invalidated(bo_base); 2731 } 2732 } 2733 2734 /** 2735 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2736 * 2737 * @vm_size: VM size 2738 * 2739 * Returns: 2740 * VM page table as power of two 2741 */ 2742 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2743 { 2744 /* Total bits covered by PD + PTs */ 2745 unsigned bits = ilog2(vm_size) + 18; 2746 2747 /* Make sure the PD is 4K in size up to 8GB address space. 2748 Above that split equal between PD and PTs */ 2749 if (vm_size <= 8) 2750 return (bits - 9); 2751 else 2752 return ((bits + 3) / 2); 2753 } 2754 2755 /** 2756 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2757 * 2758 * @adev: amdgpu_device pointer 2759 * @min_vm_size: the minimum vm size in GB if it's set auto 2760 * @fragment_size_default: Default PTE fragment size 2761 * @max_level: max VMPT level 2762 * @max_bits: max address space size in bits 2763 * 2764 */ 2765 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2766 uint32_t fragment_size_default, unsigned max_level, 2767 unsigned max_bits) 2768 { 2769 unsigned int max_size = 1 << (max_bits - 30); 2770 unsigned int vm_size; 2771 uint64_t tmp; 2772 2773 /* adjust vm size first */ 2774 if (amdgpu_vm_size != -1) { 2775 vm_size = amdgpu_vm_size; 2776 if (vm_size > max_size) { 2777 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2778 amdgpu_vm_size, max_size); 2779 vm_size = max_size; 2780 } 2781 } else { 2782 #ifdef __linux__ 2783 struct sysinfo si; 2784 #endif 2785 unsigned int phys_ram_gb; 2786 2787 /* Optimal VM size depends on the amount of physical 2788 * RAM available. Underlying requirements and 2789 * assumptions: 2790 * 2791 * - Need to map system memory and VRAM from all GPUs 2792 * - VRAM from other GPUs not known here 2793 * - Assume VRAM <= system memory 2794 * - On GFX8 and older, VM space can be segmented for 2795 * different MTYPEs 2796 * - Need to allow room for fragmentation, guard pages etc. 2797 * 2798 * This adds up to a rough guess of system memory x3. 2799 * Round up to power of two to maximize the available 2800 * VM size with the given page table size. 2801 */ 2802 #ifdef __linux__ 2803 si_meminfo(&si); 2804 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2805 (1 << 30) - 1) >> 30; 2806 #else 2807 phys_ram_gb = ((uint64_t)ptoa(physmem) + 2808 (1 << 30) - 1) >> 30; 2809 #endif 2810 vm_size = roundup_pow_of_two( 2811 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2812 } 2813 2814 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2815 2816 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2817 if (amdgpu_vm_block_size != -1) 2818 tmp >>= amdgpu_vm_block_size - 9; 2819 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2820 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2821 switch (adev->vm_manager.num_level) { 2822 case 3: 2823 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2824 break; 2825 case 2: 2826 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2827 break; 2828 case 1: 2829 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2830 break; 2831 default: 2832 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2833 } 2834 /* block size depends on vm size and hw setup*/ 2835 if (amdgpu_vm_block_size != -1) 2836 adev->vm_manager.block_size = 2837 min((unsigned)amdgpu_vm_block_size, max_bits 2838 - AMDGPU_GPU_PAGE_SHIFT 2839 - 9 * adev->vm_manager.num_level); 2840 else if (adev->vm_manager.num_level > 1) 2841 adev->vm_manager.block_size = 9; 2842 else 2843 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2844 2845 if (amdgpu_vm_fragment_size == -1) 2846 adev->vm_manager.fragment_size = fragment_size_default; 2847 else 2848 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2849 2850 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2851 vm_size, adev->vm_manager.num_level + 1, 2852 adev->vm_manager.block_size, 2853 adev->vm_manager.fragment_size); 2854 } 2855 2856 /** 2857 * amdgpu_vm_wait_idle - wait for the VM to become idle 2858 * 2859 * @vm: VM object to wait for 2860 * @timeout: timeout to wait for VM to become idle 2861 */ 2862 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2863 { 2864 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2865 true, true, timeout); 2866 if (timeout <= 0) 2867 return timeout; 2868 2869 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2870 } 2871 2872 /** 2873 * amdgpu_vm_init - initialize a vm instance 2874 * 2875 * @adev: amdgpu_device pointer 2876 * @vm: requested vm 2877 * @vm_context: Indicates if it GFX or Compute context 2878 * @pasid: Process address space identifier 2879 * 2880 * Init @vm fields. 2881 * 2882 * Returns: 2883 * 0 for success, error for failure. 2884 */ 2885 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2886 int vm_context, u32 pasid) 2887 { 2888 struct amdgpu_bo_param bp; 2889 struct amdgpu_bo *root; 2890 int r, i; 2891 2892 vm->va = RB_ROOT_CACHED; 2893 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2894 vm->reserved_vmid[i] = NULL; 2895 INIT_LIST_HEAD(&vm->evicted); 2896 INIT_LIST_HEAD(&vm->relocated); 2897 INIT_LIST_HEAD(&vm->moved); 2898 INIT_LIST_HEAD(&vm->idle); 2899 INIT_LIST_HEAD(&vm->invalidated); 2900 mtx_init(&vm->invalidated_lock, IPL_NONE); 2901 INIT_LIST_HEAD(&vm->freed); 2902 2903 2904 /* create scheduler entities for page table updates */ 2905 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2906 adev->vm_manager.vm_pte_scheds, 2907 adev->vm_manager.vm_pte_num_scheds, NULL); 2908 if (r) 2909 return r; 2910 2911 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2912 adev->vm_manager.vm_pte_scheds, 2913 adev->vm_manager.vm_pte_num_scheds, NULL); 2914 if (r) 2915 goto error_free_immediate; 2916 2917 vm->pte_support_ats = false; 2918 vm->is_compute_context = false; 2919 2920 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2921 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2922 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2923 2924 if (adev->asic_type == CHIP_RAVEN) 2925 vm->pte_support_ats = true; 2926 } else { 2927 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2928 AMDGPU_VM_USE_CPU_FOR_GFX); 2929 } 2930 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2931 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2932 WARN_ONCE((vm->use_cpu_for_update && 2933 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2934 "CPU update of VM recommended only for large BAR system\n"); 2935 2936 if (vm->use_cpu_for_update) 2937 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2938 else 2939 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2940 vm->last_update = NULL; 2941 vm->last_unlocked = dma_fence_get_stub(); 2942 2943 rw_init(&vm->eviction_lock, "avmev"); 2944 vm->evicting = false; 2945 2946 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp); 2947 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2948 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 2949 r = amdgpu_bo_create(adev, &bp, &root); 2950 if (r) 2951 goto error_free_delayed; 2952 2953 r = amdgpu_bo_reserve(root, true); 2954 if (r) 2955 goto error_free_root; 2956 2957 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2958 if (r) 2959 goto error_unreserve; 2960 2961 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2962 2963 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2964 if (r) 2965 goto error_unreserve; 2966 2967 amdgpu_bo_unreserve(vm->root.base.bo); 2968 2969 if (pasid) { 2970 unsigned long flags; 2971 2972 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2973 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2974 GFP_ATOMIC); 2975 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2976 if (r < 0) 2977 goto error_free_root; 2978 2979 vm->pasid = pasid; 2980 } 2981 2982 #ifdef __linux__ 2983 INIT_KFIFO(vm->faults); 2984 #else 2985 SIMPLEQ_INIT(&vm->faults); 2986 #endif 2987 2988 return 0; 2989 2990 error_unreserve: 2991 amdgpu_bo_unreserve(vm->root.base.bo); 2992 2993 error_free_root: 2994 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2995 amdgpu_bo_unref(&vm->root.base.bo); 2996 vm->root.base.bo = NULL; 2997 2998 error_free_delayed: 2999 dma_fence_put(vm->last_unlocked); 3000 drm_sched_entity_destroy(&vm->delayed); 3001 3002 error_free_immediate: 3003 drm_sched_entity_destroy(&vm->immediate); 3004 3005 return r; 3006 } 3007 3008 /** 3009 * amdgpu_vm_check_clean_reserved - check if a VM is clean 3010 * 3011 * @adev: amdgpu_device pointer 3012 * @vm: the VM to check 3013 * 3014 * check all entries of the root PD, if any subsequent PDs are allocated, 3015 * it means there are page table creating and filling, and is no a clean 3016 * VM 3017 * 3018 * Returns: 3019 * 0 if this VM is clean 3020 */ 3021 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 3022 struct amdgpu_vm *vm) 3023 { 3024 enum amdgpu_vm_level root = adev->vm_manager.root_level; 3025 unsigned int entries = amdgpu_vm_num_entries(adev, root); 3026 unsigned int i = 0; 3027 3028 if (!(vm->root.entries)) 3029 return 0; 3030 3031 for (i = 0; i < entries; i++) { 3032 if (vm->root.entries[i].base.bo) 3033 return -EINVAL; 3034 } 3035 3036 return 0; 3037 } 3038 3039 /** 3040 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3041 * 3042 * @adev: amdgpu_device pointer 3043 * @vm: requested vm 3044 * @pasid: pasid to use 3045 * 3046 * This only works on GFX VMs that don't have any BOs added and no 3047 * page tables allocated yet. 3048 * 3049 * Changes the following VM parameters: 3050 * - use_cpu_for_update 3051 * - pte_supports_ats 3052 * - pasid (old PASID is released, because compute manages its own PASIDs) 3053 * 3054 * Reinitializes the page directory to reflect the changed ATS 3055 * setting. 3056 * 3057 * Returns: 3058 * 0 for success, -errno for errors. 3059 */ 3060 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 3061 u32 pasid) 3062 { 3063 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3064 int r; 3065 3066 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3067 if (r) 3068 return r; 3069 3070 /* Sanity checks */ 3071 r = amdgpu_vm_check_clean_reserved(adev, vm); 3072 if (r) 3073 goto unreserve_bo; 3074 3075 if (pasid) { 3076 unsigned long flags; 3077 3078 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3079 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3080 GFP_ATOMIC); 3081 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3082 3083 if (r == -ENOSPC) 3084 goto unreserve_bo; 3085 r = 0; 3086 } 3087 3088 /* Check if PD needs to be reinitialized and do it before 3089 * changing any other state, in case it fails. 3090 */ 3091 if (pte_support_ats != vm->pte_support_ats) { 3092 vm->pte_support_ats = pte_support_ats; 3093 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false); 3094 if (r) 3095 goto free_idr; 3096 } 3097 3098 /* Update VM state */ 3099 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3100 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3101 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3102 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3103 WARN_ONCE((vm->use_cpu_for_update && 3104 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3105 "CPU update of VM recommended only for large BAR system\n"); 3106 3107 if (vm->use_cpu_for_update) { 3108 /* Sync with last SDMA update/clear before switching to CPU */ 3109 r = amdgpu_bo_sync_wait(vm->root.base.bo, 3110 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3111 if (r) 3112 goto free_idr; 3113 3114 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3115 } else { 3116 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3117 } 3118 dma_fence_put(vm->last_update); 3119 vm->last_update = NULL; 3120 vm->is_compute_context = true; 3121 3122 if (vm->pasid) { 3123 unsigned long flags; 3124 3125 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3126 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3127 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3128 3129 /* Free the original amdgpu allocated pasid 3130 * Will be replaced with kfd allocated pasid 3131 */ 3132 amdgpu_pasid_free(vm->pasid); 3133 vm->pasid = 0; 3134 } 3135 3136 /* Free the shadow bo for compute VM */ 3137 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3138 3139 if (pasid) 3140 vm->pasid = pasid; 3141 3142 goto unreserve_bo; 3143 3144 free_idr: 3145 if (pasid) { 3146 unsigned long flags; 3147 3148 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3149 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3150 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3151 } 3152 unreserve_bo: 3153 amdgpu_bo_unreserve(vm->root.base.bo); 3154 return r; 3155 } 3156 3157 /** 3158 * amdgpu_vm_release_compute - release a compute vm 3159 * @adev: amdgpu_device pointer 3160 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3161 * 3162 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3163 * pasid from vm. Compute should stop use of vm after this call. 3164 */ 3165 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3166 { 3167 if (vm->pasid) { 3168 unsigned long flags; 3169 3170 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3171 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3172 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3173 } 3174 vm->pasid = 0; 3175 vm->is_compute_context = false; 3176 } 3177 3178 /** 3179 * amdgpu_vm_fini - tear down a vm instance 3180 * 3181 * @adev: amdgpu_device pointer 3182 * @vm: requested vm 3183 * 3184 * Tear down @vm. 3185 * Unbind the VM and remove all bos from the vm bo list 3186 */ 3187 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3188 { 3189 struct amdgpu_bo_va_mapping *mapping, *tmp; 3190 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3191 struct amdgpu_bo *root; 3192 int i; 3193 3194 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3195 3196 root = amdgpu_bo_ref(vm->root.base.bo); 3197 amdgpu_bo_reserve(root, true); 3198 if (vm->pasid) { 3199 unsigned long flags; 3200 3201 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3202 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3203 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3204 vm->pasid = 0; 3205 } 3206 3207 dma_fence_wait(vm->last_unlocked, false); 3208 dma_fence_put(vm->last_unlocked); 3209 3210 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3211 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3212 amdgpu_vm_prt_fini(adev, vm); 3213 prt_fini_needed = false; 3214 } 3215 3216 list_del(&mapping->list); 3217 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3218 } 3219 3220 amdgpu_vm_free_pts(adev, vm, NULL); 3221 amdgpu_bo_unreserve(root); 3222 amdgpu_bo_unref(&root); 3223 WARN_ON(vm->root.base.bo); 3224 3225 drm_sched_entity_destroy(&vm->immediate); 3226 drm_sched_entity_destroy(&vm->delayed); 3227 3228 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3229 dev_err(adev->dev, "still active bo inside vm\n"); 3230 } 3231 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3232 &vm->va.rb_root, rb) { 3233 /* Don't remove the mapping here, we don't want to trigger a 3234 * rebalance and the tree is about to be destroyed anyway. 3235 */ 3236 list_del(&mapping->list); 3237 kfree(mapping); 3238 } 3239 3240 dma_fence_put(vm->last_update); 3241 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3242 amdgpu_vmid_free_reserved(adev, vm, i); 3243 } 3244 3245 /** 3246 * amdgpu_vm_manager_init - init the VM manager 3247 * 3248 * @adev: amdgpu_device pointer 3249 * 3250 * Initialize the VM manager structures 3251 */ 3252 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3253 { 3254 unsigned i; 3255 3256 /* Concurrent flushes are only possible starting with Vega10 and 3257 * are broken on Navi10 and Navi14. 3258 */ 3259 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3260 adev->asic_type == CHIP_NAVI10 || 3261 adev->asic_type == CHIP_NAVI14); 3262 amdgpu_vmid_mgr_init(adev); 3263 3264 adev->vm_manager.fence_context = 3265 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3266 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3267 adev->vm_manager.seqno[i] = 0; 3268 3269 mtx_init(&adev->vm_manager.prt_lock, IPL_TTY); 3270 atomic_set(&adev->vm_manager.num_prt_users, 0); 3271 3272 /* If not overridden by the user, by default, only in large BAR systems 3273 * Compute VM tables will be updated by CPU 3274 */ 3275 #ifdef CONFIG_X86_64 3276 if (amdgpu_vm_update_mode == -1) { 3277 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3278 adev->vm_manager.vm_update_mode = 3279 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3280 else 3281 adev->vm_manager.vm_update_mode = 0; 3282 } else 3283 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3284 #else 3285 adev->vm_manager.vm_update_mode = 0; 3286 #endif 3287 3288 idr_init(&adev->vm_manager.pasid_idr); 3289 mtx_init(&adev->vm_manager.pasid_lock, IPL_TTY); 3290 } 3291 3292 /** 3293 * amdgpu_vm_manager_fini - cleanup VM manager 3294 * 3295 * @adev: amdgpu_device pointer 3296 * 3297 * Cleanup the VM manager and free resources. 3298 */ 3299 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3300 { 3301 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3302 idr_destroy(&adev->vm_manager.pasid_idr); 3303 3304 amdgpu_vmid_mgr_fini(adev); 3305 } 3306 3307 /** 3308 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3309 * 3310 * @dev: drm device pointer 3311 * @data: drm_amdgpu_vm 3312 * @filp: drm file pointer 3313 * 3314 * Returns: 3315 * 0 for success, -errno for errors. 3316 */ 3317 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3318 { 3319 union drm_amdgpu_vm *args = data; 3320 struct amdgpu_device *adev = drm_to_adev(dev); 3321 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3322 long timeout = msecs_to_jiffies(2000); 3323 int r; 3324 3325 switch (args->in.op) { 3326 case AMDGPU_VM_OP_RESERVE_VMID: 3327 /* We only have requirement to reserve vmid from gfxhub */ 3328 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3329 AMDGPU_GFXHUB_0); 3330 if (r) 3331 return r; 3332 break; 3333 case AMDGPU_VM_OP_UNRESERVE_VMID: 3334 if (amdgpu_sriov_runtime(adev)) 3335 timeout = 8 * timeout; 3336 3337 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3338 * not referenced anymore. 3339 */ 3340 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true); 3341 if (r) 3342 return r; 3343 3344 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3345 if (r < 0) 3346 return r; 3347 3348 amdgpu_bo_unreserve(fpriv->vm.root.base.bo); 3349 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3350 break; 3351 default: 3352 return -EINVAL; 3353 } 3354 3355 return 0; 3356 } 3357 3358 /** 3359 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3360 * 3361 * @adev: drm device pointer 3362 * @pasid: PASID identifier for VM 3363 * @task_info: task_info to fill. 3364 */ 3365 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3366 struct amdgpu_task_info *task_info) 3367 { 3368 struct amdgpu_vm *vm; 3369 unsigned long flags; 3370 3371 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3372 3373 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3374 if (vm) 3375 *task_info = vm->task_info; 3376 3377 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3378 } 3379 3380 /** 3381 * amdgpu_vm_set_task_info - Sets VMs task info. 3382 * 3383 * @vm: vm for which to set the info 3384 */ 3385 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3386 { 3387 if (vm->task_info.pid) 3388 return; 3389 3390 #ifdef __linux__ 3391 vm->task_info.pid = current->pid; 3392 get_task_comm(vm->task_info.task_name, current); 3393 3394 if (current->group_leader->mm != current->mm) 3395 return; 3396 3397 vm->task_info.tgid = current->group_leader->pid; 3398 get_task_comm(vm->task_info.process_name, current->group_leader); 3399 #else 3400 vm->task_info.pid = curproc->p_p->ps_pid; 3401 strlcpy(vm->task_info.task_name, curproc->p_p->ps_comm, 3402 sizeof(vm->task_info.task_name)); 3403 #endif 3404 } 3405 3406 /** 3407 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3408 * @adev: amdgpu device pointer 3409 * @pasid: PASID of the VM 3410 * @addr: Address of the fault 3411 * 3412 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3413 * shouldn't be reported any more. 3414 */ 3415 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3416 uint64_t addr) 3417 { 3418 struct amdgpu_bo *root; 3419 uint64_t value, flags; 3420 struct amdgpu_vm *vm; 3421 long r; 3422 3423 spin_lock(&adev->vm_manager.pasid_lock); 3424 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3425 if (vm) 3426 root = amdgpu_bo_ref(vm->root.base.bo); 3427 else 3428 root = NULL; 3429 spin_unlock(&adev->vm_manager.pasid_lock); 3430 3431 if (!root) 3432 return false; 3433 3434 r = amdgpu_bo_reserve(root, true); 3435 if (r) 3436 goto error_unref; 3437 3438 /* Double check that the VM still exists */ 3439 spin_lock(&adev->vm_manager.pasid_lock); 3440 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3441 if (vm && vm->root.base.bo != root) 3442 vm = NULL; 3443 spin_unlock(&adev->vm_manager.pasid_lock); 3444 if (!vm) 3445 goto error_unlock; 3446 3447 addr /= AMDGPU_GPU_PAGE_SIZE; 3448 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3449 AMDGPU_PTE_SYSTEM; 3450 3451 if (vm->is_compute_context) { 3452 /* Intentionally setting invalid PTE flag 3453 * combination to force a no-retry-fault 3454 */ 3455 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3456 AMDGPU_PTE_TF; 3457 value = 0; 3458 3459 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3460 /* Redirect the access to the dummy page */ 3461 value = adev->dummy_page_addr; 3462 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3463 AMDGPU_PTE_WRITEABLE; 3464 3465 } else { 3466 /* Let the hw retry silently on the PTE */ 3467 value = 0; 3468 } 3469 3470 r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr, 3471 addr + 1, flags, value, NULL, NULL); 3472 if (r) 3473 goto error_unlock; 3474 3475 r = amdgpu_vm_update_pdes(adev, vm, true); 3476 3477 error_unlock: 3478 amdgpu_bo_unreserve(root); 3479 if (r < 0) 3480 DRM_ERROR("Can't handle page fault (%ld)\n", r); 3481 3482 error_unref: 3483 amdgpu_bo_unref(&root); 3484 3485 return false; 3486 } 3487