xref: /openbsd-src/sys/dev/pci/drm/amd/amdgpu/amdgpu_ttm.c (revision f84b1df5a16cdd762c93854218de246e79975d3b)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "amdgpu_res_cursor.h"
60 #include "bif/bif_4_1_d.h"
61 
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
63 
64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
65 				   struct ttm_tt *ttm,
66 				   struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
68 				      struct ttm_tt *ttm);
69 
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
71 				    unsigned int type,
72 				    uint64_t size_in_page)
73 {
74 	return ttm_range_man_init(&adev->mman.bdev, type,
75 				  false, size_in_page);
76 }
77 
78 /**
79  * amdgpu_evict_flags - Compute placement flags
80  *
81  * @bo: The buffer object to evict
82  * @placement: Possible destination(s) for evicted BO
83  *
84  * Fill in placement data when ttm_bo_evict() is called
85  */
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87 				struct ttm_placement *placement)
88 {
89 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90 	struct amdgpu_bo *abo;
91 	static const struct ttm_place placements = {
92 		.fpfn = 0,
93 		.lpfn = 0,
94 		.mem_type = TTM_PL_SYSTEM,
95 		.flags = 0
96 	};
97 
98 	/* Don't handle scatter gather BOs */
99 	if (bo->type == ttm_bo_type_sg) {
100 		placement->num_placement = 0;
101 		placement->num_busy_placement = 0;
102 		return;
103 	}
104 
105 	/* Object isn't an AMDGPU object so ignore */
106 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107 		placement->placement = &placements;
108 		placement->busy_placement = &placements;
109 		placement->num_placement = 1;
110 		placement->num_busy_placement = 1;
111 		return;
112 	}
113 
114 	abo = ttm_to_amdgpu_bo(bo);
115 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
116 		struct dma_fence *fence;
117 		struct dma_resv *resv = &bo->base._resv;
118 
119 		rcu_read_lock();
120 		fence = rcu_dereference(resv->fence_excl);
121 		if (fence && !fence->ops->signaled)
122 			dma_fence_enable_sw_signaling(fence);
123 
124 		placement->num_placement = 0;
125 		placement->num_busy_placement = 0;
126 		rcu_read_unlock();
127 		return;
128 	}
129 
130 	switch (bo->resource->mem_type) {
131 	case AMDGPU_PL_GDS:
132 	case AMDGPU_PL_GWS:
133 	case AMDGPU_PL_OA:
134 		placement->num_placement = 0;
135 		placement->num_busy_placement = 0;
136 		return;
137 
138 	case TTM_PL_VRAM:
139 		if (!adev->mman.buffer_funcs_enabled) {
140 			/* Move to system memory */
141 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
142 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
143 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
144 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
145 
146 			/* Try evicting to the CPU inaccessible part of VRAM
147 			 * first, but only set GTT as busy placement, so this
148 			 * BO will be evicted to GTT rather than causing other
149 			 * BOs to be evicted from VRAM
150 			 */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
152 							AMDGPU_GEM_DOMAIN_GTT |
153 							AMDGPU_GEM_DOMAIN_CPU);
154 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
155 			abo->placements[0].lpfn = 0;
156 			abo->placement.busy_placement = &abo->placements[1];
157 			abo->placement.num_busy_placement = 1;
158 		} else {
159 			/* Move to GTT memory */
160 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
161 							AMDGPU_GEM_DOMAIN_CPU);
162 		}
163 		break;
164 	case TTM_PL_TT:
165 	case AMDGPU_PL_PREEMPT:
166 	default:
167 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
168 		break;
169 	}
170 	*placement = abo->placement;
171 }
172 
173 /**
174  * amdgpu_ttm_map_buffer - Map memory into the GART windows
175  * @bo: buffer object to map
176  * @mem: memory object to map
177  * @mm_cur: range to map
178  * @num_pages: number of pages to map
179  * @window: which GART window to use
180  * @ring: DMA ring to use for the copy
181  * @tmz: if we should setup a TMZ enabled mapping
182  * @addr: resulting address inside the MC address space
183  *
184  * Setup one of the GART windows to access a specific piece of memory or return
185  * the physical address for local memory.
186  */
187 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
188 				 struct ttm_resource *mem,
189 				 struct amdgpu_res_cursor *mm_cur,
190 				 unsigned num_pages, unsigned window,
191 				 struct amdgpu_ring *ring, bool tmz,
192 				 uint64_t *addr)
193 {
194 	struct amdgpu_device *adev = ring->adev;
195 	struct amdgpu_job *job;
196 	unsigned num_dw, num_bytes;
197 	struct dma_fence *fence;
198 	uint64_t src_addr, dst_addr;
199 	void *cpu_addr;
200 	uint64_t flags;
201 	unsigned int i;
202 	int r;
203 
204 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
205 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
206 	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
207 
208 	/* Map only what can't be accessed directly */
209 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
210 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
211 			mm_cur->start;
212 		return 0;
213 	}
214 
215 	*addr = adev->gmc.gart_start;
216 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
217 		AMDGPU_GPU_PAGE_SIZE;
218 	*addr += mm_cur->start & ~LINUX_PAGE_MASK;
219 
220 	num_dw = roundup2(adev->mman.buffer_funcs->copy_num_dw, 8);
221 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
222 
223 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
224 				     AMDGPU_IB_POOL_DELAYED, &job);
225 	if (r)
226 		return r;
227 
228 	src_addr = num_dw * 4;
229 	src_addr += job->ibs[0].gpu_addr;
230 
231 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
232 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
233 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
234 				dst_addr, num_bytes, false);
235 
236 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
237 	WARN_ON(job->ibs[0].length_dw > num_dw);
238 
239 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
240 	if (tmz)
241 		flags |= AMDGPU_PTE_TMZ;
242 
243 	cpu_addr = &job->ibs[0].ptr[num_dw];
244 
245 	if (mem->mem_type == TTM_PL_TT) {
246 		dma_addr_t *dma_addr;
247 
248 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
249 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
250 				    cpu_addr);
251 		if (r)
252 			goto error_free;
253 	} else {
254 		dma_addr_t dma_address;
255 
256 		dma_address = mm_cur->start;
257 		dma_address += adev->vm_manager.vram_base_offset;
258 
259 		for (i = 0; i < num_pages; ++i) {
260 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
261 					    &dma_address, flags, cpu_addr);
262 			if (r)
263 				goto error_free;
264 
265 			dma_address += PAGE_SIZE;
266 		}
267 	}
268 
269 	r = amdgpu_job_submit(job, &adev->mman.entity,
270 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
271 	if (r)
272 		goto error_free;
273 
274 	dma_fence_put(fence);
275 
276 	return r;
277 
278 error_free:
279 	amdgpu_job_free(job);
280 	return r;
281 }
282 
283 /**
284  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
285  * @adev: amdgpu device
286  * @src: buffer/address where to read from
287  * @dst: buffer/address where to write to
288  * @size: number of bytes to copy
289  * @tmz: if a secure copy should be used
290  * @resv: resv object to sync to
291  * @f: Returns the last fence if multiple jobs are submitted.
292  *
293  * The function copies @size bytes from {src->mem + src->offset} to
294  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
295  * move and different for a BO to BO copy.
296  *
297  */
298 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
299 			       const struct amdgpu_copy_mem *src,
300 			       const struct amdgpu_copy_mem *dst,
301 			       uint64_t size, bool tmz,
302 			       struct dma_resv *resv,
303 			       struct dma_fence **f)
304 {
305 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
306 					AMDGPU_GPU_PAGE_SIZE);
307 
308 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 	struct amdgpu_res_cursor src_mm, dst_mm;
310 	struct dma_fence *fence = NULL;
311 	int r = 0;
312 
313 	if (!adev->mman.buffer_funcs_enabled) {
314 		DRM_ERROR("Trying to move memory with ring turned off.\n");
315 		return -EINVAL;
316 	}
317 
318 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320 
321 	mutex_lock(&adev->mman.gtt_window_lock);
322 	while (src_mm.remaining) {
323 		uint32_t src_page_offset = src_mm.start & ~LINUX_PAGE_MASK;
324 		uint32_t dst_page_offset = dst_mm.start & ~LINUX_PAGE_MASK;
325 		struct dma_fence *next;
326 		uint32_t cur_size;
327 		uint64_t from, to;
328 
329 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
330 		 * begins at an offset, then adjust the size accordingly
331 		 */
332 		cur_size = max(src_page_offset, dst_page_offset);
333 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
334 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
335 
336 		/* Map src to window 0 and dst to window 1. */
337 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
338 					  PFN_UP(cur_size + src_page_offset),
339 					  0, ring, tmz, &from);
340 		if (r)
341 			goto error;
342 
343 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
344 					  PFN_UP(cur_size + dst_page_offset),
345 					  1, ring, tmz, &to);
346 		if (r)
347 			goto error;
348 
349 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
350 				       resv, &next, false, true, tmz);
351 		if (r)
352 			goto error;
353 
354 		dma_fence_put(fence);
355 		fence = next;
356 
357 		amdgpu_res_next(&src_mm, cur_size);
358 		amdgpu_res_next(&dst_mm, cur_size);
359 	}
360 error:
361 	mutex_unlock(&adev->mman.gtt_window_lock);
362 	if (f)
363 		*f = dma_fence_get(fence);
364 	dma_fence_put(fence);
365 	return r;
366 }
367 
368 /*
369  * amdgpu_move_blit - Copy an entire buffer to another buffer
370  *
371  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
372  * help move buffers to and from VRAM.
373  */
374 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
375 			    bool evict,
376 			    struct ttm_resource *new_mem,
377 			    struct ttm_resource *old_mem)
378 {
379 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
380 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
381 	struct amdgpu_copy_mem src, dst;
382 	struct dma_fence *fence = NULL;
383 	int r;
384 
385 	src.bo = bo;
386 	dst.bo = bo;
387 	src.mem = old_mem;
388 	dst.mem = new_mem;
389 	src.offset = 0;
390 	dst.offset = 0;
391 
392 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
393 				       new_mem->num_pages << PAGE_SHIFT,
394 				       amdgpu_bo_encrypted(abo),
395 				       bo->base.resv, &fence);
396 	if (r)
397 		goto error;
398 
399 	/* clear the space being freed */
400 	if (old_mem->mem_type == TTM_PL_VRAM &&
401 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
402 		struct dma_fence *wipe_fence = NULL;
403 
404 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
405 				       NULL, &wipe_fence);
406 		if (r) {
407 			goto error;
408 		} else if (wipe_fence) {
409 			dma_fence_put(fence);
410 			fence = wipe_fence;
411 		}
412 	}
413 
414 	/* Always block for VM page tables before committing the new location */
415 	if (bo->type == ttm_bo_type_kernel)
416 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
417 	else
418 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
419 	dma_fence_put(fence);
420 	return r;
421 
422 error:
423 	if (fence)
424 		dma_fence_wait(fence, false);
425 	dma_fence_put(fence);
426 	return r;
427 }
428 
429 /*
430  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
431  *
432  * Called by amdgpu_bo_move()
433  */
434 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
435 			       struct ttm_resource *mem)
436 {
437 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
438 	struct amdgpu_res_cursor cursor;
439 
440 	if (mem->mem_type == TTM_PL_SYSTEM ||
441 	    mem->mem_type == TTM_PL_TT)
442 		return true;
443 	if (mem->mem_type != TTM_PL_VRAM)
444 		return false;
445 
446 	amdgpu_res_first(mem, 0, mem_size, &cursor);
447 
448 	/* ttm_resource_ioremap only supports contiguous memory */
449 	if (cursor.size != mem_size)
450 		return false;
451 
452 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
453 }
454 
455 /*
456  * amdgpu_bo_move - Move a buffer object to a new memory location
457  *
458  * Called by ttm_bo_handle_move_mem()
459  */
460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
461 			  struct ttm_operation_ctx *ctx,
462 			  struct ttm_resource *new_mem,
463 			  struct ttm_place *hop)
464 {
465 	struct amdgpu_device *adev;
466 	struct amdgpu_bo *abo;
467 	struct ttm_resource *old_mem = bo->resource;
468 	int r;
469 
470 	if (new_mem->mem_type == TTM_PL_TT ||
471 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
472 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
473 		if (r)
474 			return r;
475 	}
476 
477 	/* Can't move a pinned BO */
478 	abo = ttm_to_amdgpu_bo(bo);
479 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
480 		return -EINVAL;
481 
482 	adev = amdgpu_ttm_adev(bo->bdev);
483 
484 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
485 		ttm_bo_move_null(bo, new_mem);
486 		goto out;
487 	}
488 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
489 	    (new_mem->mem_type == TTM_PL_TT ||
490 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491 		ttm_bo_move_null(bo, new_mem);
492 		goto out;
493 	}
494 	if ((old_mem->mem_type == TTM_PL_TT ||
495 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
496 	    new_mem->mem_type == TTM_PL_SYSTEM) {
497 		r = ttm_bo_wait_ctx(bo, ctx);
498 		if (r)
499 			return r;
500 
501 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
502 		ttm_resource_free(bo, &bo->resource);
503 		ttm_bo_assign_mem(bo, new_mem);
504 		goto out;
505 	}
506 
507 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
508 	    old_mem->mem_type == AMDGPU_PL_GWS ||
509 	    old_mem->mem_type == AMDGPU_PL_OA ||
510 	    new_mem->mem_type == AMDGPU_PL_GDS ||
511 	    new_mem->mem_type == AMDGPU_PL_GWS ||
512 	    new_mem->mem_type == AMDGPU_PL_OA) {
513 		/* Nothing to save here */
514 		ttm_bo_move_null(bo, new_mem);
515 		goto out;
516 	}
517 
518 	if (bo->type == ttm_bo_type_device &&
519 	    new_mem->mem_type == TTM_PL_VRAM &&
520 	    old_mem->mem_type != TTM_PL_VRAM) {
521 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
522 		 * accesses the BO after it's moved.
523 		 */
524 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
525 	}
526 
527 	if (adev->mman.buffer_funcs_enabled) {
528 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
529 		      new_mem->mem_type == TTM_PL_VRAM) ||
530 		     (old_mem->mem_type == TTM_PL_VRAM &&
531 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
532 			hop->fpfn = 0;
533 			hop->lpfn = 0;
534 			hop->mem_type = TTM_PL_TT;
535 			hop->flags = TTM_PL_FLAG_TEMPORARY;
536 			return -EMULTIHOP;
537 		}
538 
539 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
540 	} else {
541 		r = -ENODEV;
542 	}
543 
544 	if (r) {
545 		/* Check that all memory is CPU accessible */
546 		if (!amdgpu_mem_visible(adev, old_mem) ||
547 		    !amdgpu_mem_visible(adev, new_mem)) {
548 			pr_err("Move buffer fallback to memcpy unavailable\n");
549 			return r;
550 		}
551 
552 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
553 		if (r)
554 			return r;
555 	}
556 
557 out:
558 	/* update statistics */
559 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
560 	amdgpu_bo_move_notify(bo, evict, new_mem);
561 	return 0;
562 }
563 
564 /*
565  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
566  *
567  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
568  */
569 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
570 				     struct ttm_resource *mem)
571 {
572 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
573 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
574 
575 	switch (mem->mem_type) {
576 	case TTM_PL_SYSTEM:
577 		/* system memory */
578 		return 0;
579 	case TTM_PL_TT:
580 	case AMDGPU_PL_PREEMPT:
581 		break;
582 	case TTM_PL_VRAM:
583 		mem->bus.offset = mem->start << PAGE_SHIFT;
584 		/* check if it's visible */
585 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
586 			return -EINVAL;
587 
588 		if (adev->mman.aper_base_kaddr &&
589 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
590 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
591 					mem->bus.offset;
592 
593 		mem->bus.offset += adev->gmc.aper_base;
594 		mem->bus.is_iomem = true;
595 		break;
596 	default:
597 		return -EINVAL;
598 	}
599 	return 0;
600 }
601 
602 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
603 					   unsigned long page_offset)
604 {
605 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
606 	struct amdgpu_res_cursor cursor;
607 
608 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
609 			 &cursor);
610 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
611 }
612 
613 /**
614  * amdgpu_ttm_domain_start - Returns GPU start address
615  * @adev: amdgpu device object
616  * @type: type of the memory
617  *
618  * Returns:
619  * GPU start address of a memory domain
620  */
621 
622 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
623 {
624 	switch (type) {
625 	case TTM_PL_TT:
626 		return adev->gmc.gart_start;
627 	case TTM_PL_VRAM:
628 		return adev->gmc.vram_start;
629 	}
630 
631 	return 0;
632 }
633 
634 /*
635  * TTM backend functions.
636  */
637 struct amdgpu_ttm_tt {
638 	struct ttm_tt	ttm;
639 	struct drm_gem_object	*gobj;
640 	u64			offset;
641 	uint64_t		userptr;
642 	struct task_struct	*usertask;
643 	uint32_t		userflags;
644 	bool			bound;
645 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
646 	struct hmm_range	*range;
647 #endif
648 };
649 
650 #ifdef CONFIG_DRM_AMDGPU_USERPTR
651 /*
652  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
653  * memory and start HMM tracking CPU page table update
654  *
655  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
656  * once afterwards to stop HMM tracking
657  */
658 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages)
659 {
660 	struct ttm_tt *ttm = bo->tbo.ttm;
661 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
662 	unsigned long start = gtt->userptr;
663 	struct vm_area_struct *vma;
664 	struct mm_struct *mm;
665 	bool readonly;
666 	int r = 0;
667 
668 	mm = bo->notifier.mm;
669 	if (unlikely(!mm)) {
670 		DRM_DEBUG_DRIVER("BO is not registered?\n");
671 		return -EFAULT;
672 	}
673 
674 	/* Another get_user_pages is running at the same time?? */
675 	if (WARN_ON(gtt->range))
676 		return -EFAULT;
677 
678 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
679 		return -ESRCH;
680 
681 	mmap_read_lock(mm);
682 	vma = vma_lookup(mm, start);
683 	if (unlikely(!vma)) {
684 		r = -EFAULT;
685 		goto out_unlock;
686 	}
687 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
688 		vma->vm_file)) {
689 		r = -EPERM;
690 		goto out_unlock;
691 	}
692 
693 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
694 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
695 				       ttm->num_pages, &gtt->range, readonly,
696 				       true, NULL);
697 out_unlock:
698 	mmap_read_unlock(mm);
699 	mmput(mm);
700 
701 	return r;
702 }
703 
704 /*
705  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
706  * Check if the pages backing this ttm range have been invalidated
707  *
708  * Returns: true if pages are still valid
709  */
710 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
711 {
712 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
713 	bool r = false;
714 
715 	if (!gtt || !gtt->userptr)
716 		return false;
717 
718 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
719 		gtt->userptr, ttm->num_pages);
720 
721 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
722 		"No user pages to check\n");
723 
724 	if (gtt->range) {
725 		/*
726 		 * FIXME: Must always hold notifier_lock for this, and must
727 		 * not ignore the return code.
728 		 */
729 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
730 		gtt->range = NULL;
731 	}
732 
733 	return !r;
734 }
735 #endif
736 
737 /*
738  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
739  *
740  * Called by amdgpu_cs_list_validate(). This creates the page list
741  * that backs user memory and will ultimately be mapped into the device
742  * address space.
743  */
744 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
745 {
746 	unsigned long i;
747 
748 	for (i = 0; i < ttm->num_pages; ++i)
749 		ttm->pages[i] = pages ? pages[i] : NULL;
750 }
751 
752 /*
753  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
754  *
755  * Called by amdgpu_ttm_backend_bind()
756  **/
757 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
758 				     struct ttm_tt *ttm)
759 {
760 	STUB();
761 	return -ENOSYS;
762 #ifdef notyet
763 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
764 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
765 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
766 	enum dma_data_direction direction = write ?
767 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
768 	int r;
769 
770 	/* Allocate an SG array and squash pages into it */
771 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
772 				      (u64)ttm->num_pages << PAGE_SHIFT,
773 				      GFP_KERNEL);
774 	if (r)
775 		goto release_sg;
776 
777 	/* Map SG to device */
778 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
779 	if (r)
780 		goto release_sg;
781 
782 	/* convert SG to linear array of pages and dma addresses */
783 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
784 				       ttm->num_pages);
785 
786 	return 0;
787 
788 release_sg:
789 	kfree(ttm->sg);
790 	ttm->sg = NULL;
791 	return r;
792 #endif
793 }
794 
795 /*
796  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
797  */
798 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
799 					struct ttm_tt *ttm)
800 {
801 	STUB();
802 #ifdef notyet
803 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
804 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
805 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
806 	enum dma_data_direction direction = write ?
807 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
808 
809 	/* double check that we don't free the table twice */
810 	if (!ttm->sg || !ttm->sg->sgl)
811 		return;
812 
813 	/* unmap the pages mapped to the device */
814 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
815 	sg_free_table(ttm->sg);
816 
817 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
818 	if (gtt->range) {
819 		unsigned long i;
820 
821 		for (i = 0; i < ttm->num_pages; i++) {
822 			if (ttm->pages[i] !=
823 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
824 				break;
825 		}
826 
827 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
828 	}
829 #endif
830 #endif
831 }
832 
833 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
834 				struct ttm_buffer_object *tbo,
835 				uint64_t flags)
836 {
837 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
838 	struct ttm_tt *ttm = tbo->ttm;
839 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
840 	int r;
841 
842 	if (amdgpu_bo_encrypted(abo))
843 		flags |= AMDGPU_PTE_TMZ;
844 
845 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
846 		uint64_t page_idx = 1;
847 
848 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
849 				gtt->ttm.dma_address, flags);
850 		if (r)
851 			goto gart_bind_fail;
852 
853 		/* The memory type of the first page defaults to UC. Now
854 		 * modify the memory type to NC from the second page of
855 		 * the BO onward.
856 		 */
857 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
858 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
859 
860 		r = amdgpu_gart_bind(adev,
861 				gtt->offset + (page_idx << PAGE_SHIFT),
862 				ttm->num_pages - page_idx,
863 				&(gtt->ttm.dma_address[page_idx]), flags);
864 	} else {
865 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
866 				     gtt->ttm.dma_address, flags);
867 	}
868 
869 gart_bind_fail:
870 	if (r)
871 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
872 			  ttm->num_pages, gtt->offset);
873 
874 	return r;
875 }
876 
877 /*
878  * amdgpu_ttm_backend_bind - Bind GTT memory
879  *
880  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
881  * This handles binding GTT memory to the device address space.
882  */
883 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
884 				   struct ttm_tt *ttm,
885 				   struct ttm_resource *bo_mem)
886 {
887 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
888 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
889 	uint64_t flags;
890 	int r = 0;
891 
892 	if (!bo_mem)
893 		return -EINVAL;
894 
895 	if (gtt->bound)
896 		return 0;
897 
898 	if (gtt->userptr) {
899 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
900 		if (r) {
901 			DRM_ERROR("failed to pin userptr\n");
902 			return r;
903 		}
904 	} else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
905 		if (!ttm->sg) {
906 			struct dma_buf_attachment *attach;
907 			struct sg_table *sgt;
908 
909 			attach = gtt->gobj->import_attach;
910 #ifdef notyet
911 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
912 			if (IS_ERR(sgt))
913 				return PTR_ERR(sgt);
914 #else
915 			STUB();
916 			return -ENOSYS;
917 #endif
918 
919 			ttm->sg = sgt;
920 		}
921 
922 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
923 					       ttm->num_pages);
924 	}
925 
926 	if (!ttm->num_pages) {
927 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
928 		     ttm->num_pages, bo_mem, ttm);
929 	}
930 
931 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
932 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
933 	    bo_mem->mem_type == AMDGPU_PL_OA)
934 		return -EINVAL;
935 
936 	if (bo_mem->mem_type != TTM_PL_TT ||
937 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
938 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
939 		return 0;
940 	}
941 
942 	/* compute PTE flags relevant to this BO memory */
943 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
944 
945 	/* bind pages into GART page tables */
946 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
947 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
948 		gtt->ttm.dma_address, flags);
949 
950 	if (r)
951 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
952 			  ttm->num_pages, gtt->offset);
953 	gtt->bound = true;
954 	return r;
955 }
956 
957 /*
958  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
959  * through AGP or GART aperture.
960  *
961  * If bo is accessible through AGP aperture, then use AGP aperture
962  * to access bo; otherwise allocate logical space in GART aperture
963  * and map bo to GART aperture.
964  */
965 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
966 {
967 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
968 	struct ttm_operation_ctx ctx = { false, false };
969 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
970 	struct ttm_placement placement;
971 	struct ttm_place placements;
972 	struct ttm_resource *tmp;
973 	uint64_t addr, flags;
974 	int r;
975 
976 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
977 		return 0;
978 
979 	addr = amdgpu_gmc_agp_addr(bo);
980 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
981 		bo->resource->start = addr >> PAGE_SHIFT;
982 		return 0;
983 	}
984 
985 	/* allocate GART space */
986 	placement.num_placement = 1;
987 	placement.placement = &placements;
988 	placement.num_busy_placement = 1;
989 	placement.busy_placement = &placements;
990 	placements.fpfn = 0;
991 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
992 	placements.mem_type = TTM_PL_TT;
993 	placements.flags = bo->resource->placement;
994 
995 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
996 	if (unlikely(r))
997 		return r;
998 
999 	/* compute PTE flags for this buffer object */
1000 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1001 
1002 	/* Bind pages */
1003 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1004 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
1005 	if (unlikely(r)) {
1006 		ttm_resource_free(bo, &tmp);
1007 		return r;
1008 	}
1009 
1010 	amdgpu_gart_invalidate_tlb(adev);
1011 	ttm_resource_free(bo, &bo->resource);
1012 	ttm_bo_assign_mem(bo, tmp);
1013 
1014 	return 0;
1015 }
1016 
1017 /*
1018  * amdgpu_ttm_recover_gart - Rebind GTT pages
1019  *
1020  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1021  * rebind GTT pages during a GPU reset.
1022  */
1023 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1024 {
1025 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1026 	uint64_t flags;
1027 	int r;
1028 
1029 	if (!tbo->ttm)
1030 		return 0;
1031 
1032 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1033 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1034 
1035 	return r;
1036 }
1037 
1038 /*
1039  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1040  *
1041  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1042  * ttm_tt_destroy().
1043  */
1044 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1045 				      struct ttm_tt *ttm)
1046 {
1047 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1048 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1049 	int r;
1050 
1051 	/* if the pages have userptr pinning then clear that first */
1052 	if (gtt->userptr) {
1053 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1054 	} else if (ttm->sg && gtt->gobj->import_attach) {
1055 		struct dma_buf_attachment *attach;
1056 
1057 		attach = gtt->gobj->import_attach;
1058 #ifdef notyet
1059 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1060 #else
1061 		STUB();
1062 #endif
1063 		ttm->sg = NULL;
1064 	}
1065 
1066 	if (!gtt->bound)
1067 		return;
1068 
1069 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1070 		return;
1071 
1072 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1073 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1074 	if (r)
1075 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1076 			  gtt->ttm.num_pages, gtt->offset);
1077 	gtt->bound = false;
1078 }
1079 
1080 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1081 				       struct ttm_tt *ttm)
1082 {
1083 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1084 
1085 	amdgpu_ttm_backend_unbind(bdev, ttm);
1086 	ttm_tt_destroy_common(bdev, ttm);
1087 #ifdef notyet
1088 	if (gtt->usertask)
1089 		put_task_struct(gtt->usertask);
1090 #endif
1091 
1092 	ttm_tt_fini(&gtt->ttm);
1093 	kfree(gtt);
1094 }
1095 
1096 /**
1097  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1098  *
1099  * @bo: The buffer object to create a GTT ttm_tt object around
1100  * @page_flags: Page flags to be added to the ttm_tt object
1101  *
1102  * Called by ttm_tt_create().
1103  */
1104 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1105 					   uint32_t page_flags)
1106 {
1107 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1108 	struct amdgpu_ttm_tt *gtt;
1109 	enum ttm_caching caching;
1110 
1111 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1112 	if (gtt == NULL) {
1113 		return NULL;
1114 	}
1115 	gtt->gobj = &bo->base;
1116 
1117 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1118 		caching = ttm_write_combined;
1119 	else
1120 		caching = ttm_cached;
1121 
1122 	/* allocate space for the uninitialized page entries */
1123 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1124 		kfree(gtt);
1125 		return NULL;
1126 	}
1127 	return &gtt->ttm;
1128 }
1129 
1130 /*
1131  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1132  *
1133  * Map the pages of a ttm_tt object to an address space visible
1134  * to the underlying device.
1135  */
1136 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1137 				  struct ttm_tt *ttm,
1138 				  struct ttm_operation_ctx *ctx)
1139 {
1140 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1141 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1142 
1143 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1144 	if (gtt->userptr) {
1145 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1146 		if (!ttm->sg)
1147 			return -ENOMEM;
1148 		return 0;
1149 	}
1150 
1151 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1152 		return 0;
1153 
1154 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1155 }
1156 
1157 /*
1158  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1159  *
1160  * Unmaps pages of a ttm_tt object from the device address space and
1161  * unpopulates the page array backing it.
1162  */
1163 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1164 				     struct ttm_tt *ttm)
1165 {
1166 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1167 	struct amdgpu_device *adev;
1168 
1169 	if (gtt->userptr) {
1170 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1171 		kfree(ttm->sg);
1172 		ttm->sg = NULL;
1173 		return;
1174 	}
1175 
1176 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1177 		return;
1178 
1179 	adev = amdgpu_ttm_adev(bdev);
1180 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1181 }
1182 
1183 /**
1184  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1185  * task
1186  *
1187  * @bo: The ttm_buffer_object to bind this userptr to
1188  * @addr:  The address in the current tasks VM space to use
1189  * @flags: Requirements of userptr object.
1190  *
1191  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1192  * to current task
1193  */
1194 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1195 			      uint64_t addr, uint32_t flags)
1196 {
1197 	struct amdgpu_ttm_tt *gtt;
1198 
1199 	if (!bo->ttm) {
1200 		/* TODO: We want a separate TTM object type for userptrs */
1201 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1202 		if (bo->ttm == NULL)
1203 			return -ENOMEM;
1204 	}
1205 
1206 	/* Set TTM_PAGE_FLAG_SG before populate but after create. */
1207 	bo->ttm->page_flags |= TTM_PAGE_FLAG_SG;
1208 
1209 	gtt = (void *)bo->ttm;
1210 	gtt->userptr = addr;
1211 	gtt->userflags = flags;
1212 
1213 #ifdef notyet
1214 	if (gtt->usertask)
1215 		put_task_struct(gtt->usertask);
1216 	gtt->usertask = current->group_leader;
1217 	get_task_struct(gtt->usertask);
1218 #endif
1219 
1220 	return 0;
1221 }
1222 
1223 /*
1224  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1225  */
1226 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1227 {
1228 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1229 
1230 	if (gtt == NULL)
1231 		return NULL;
1232 
1233 	if (gtt->usertask == NULL)
1234 		return NULL;
1235 
1236 #ifdef notyet
1237 	return gtt->usertask->mm;
1238 #else
1239 	STUB();
1240 	return NULL;
1241 #endif
1242 }
1243 
1244 /*
1245  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1246  * address range for the current task.
1247  *
1248  */
1249 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1250 				  unsigned long end)
1251 {
1252 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1253 	unsigned long size;
1254 
1255 	if (gtt == NULL || !gtt->userptr)
1256 		return false;
1257 
1258 	/* Return false if no part of the ttm_tt object lies within
1259 	 * the range
1260 	 */
1261 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1262 	if (gtt->userptr > end || gtt->userptr + size <= start)
1263 		return false;
1264 
1265 	return true;
1266 }
1267 
1268 /*
1269  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1270  */
1271 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1272 {
1273 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1274 
1275 	if (gtt == NULL || !gtt->userptr)
1276 		return false;
1277 
1278 	return true;
1279 }
1280 
1281 /*
1282  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1283  */
1284 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1285 {
1286 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1287 
1288 	if (gtt == NULL)
1289 		return false;
1290 
1291 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1292 }
1293 
1294 /**
1295  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1296  *
1297  * @ttm: The ttm_tt object to compute the flags for
1298  * @mem: The memory registry backing this ttm_tt object
1299  *
1300  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1301  */
1302 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1303 {
1304 	uint64_t flags = 0;
1305 
1306 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1307 		flags |= AMDGPU_PTE_VALID;
1308 
1309 	if (mem && (mem->mem_type == TTM_PL_TT ||
1310 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1311 		flags |= AMDGPU_PTE_SYSTEM;
1312 
1313 		if (ttm->caching == ttm_cached)
1314 			flags |= AMDGPU_PTE_SNOOPED;
1315 	}
1316 
1317 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1318 			mem->bus.caching == ttm_cached)
1319 		flags |= AMDGPU_PTE_SNOOPED;
1320 
1321 	return flags;
1322 }
1323 
1324 /**
1325  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1326  *
1327  * @adev: amdgpu_device pointer
1328  * @ttm: The ttm_tt object to compute the flags for
1329  * @mem: The memory registry backing this ttm_tt object
1330  *
1331  * Figure out the flags to use for a VM PTE (Page Table Entry).
1332  */
1333 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1334 				 struct ttm_resource *mem)
1335 {
1336 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1337 
1338 	flags |= adev->gart.gart_pte_flags;
1339 	flags |= AMDGPU_PTE_READABLE;
1340 
1341 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1342 		flags |= AMDGPU_PTE_WRITEABLE;
1343 
1344 	return flags;
1345 }
1346 
1347 /*
1348  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1349  * object.
1350  *
1351  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1352  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1353  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1354  * used to clean out a memory space.
1355  */
1356 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1357 					    const struct ttm_place *place)
1358 {
1359 	unsigned long num_pages = bo->resource->num_pages;
1360 	struct amdgpu_res_cursor cursor;
1361 	struct dma_resv_list *flist;
1362 	struct dma_fence *f;
1363 	int i;
1364 
1365 	/* Swapout? */
1366 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1367 		return true;
1368 
1369 	if (bo->type == ttm_bo_type_kernel &&
1370 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1371 		return false;
1372 
1373 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1374 	 * If true, then return false as any KFD process needs all its BOs to
1375 	 * be resident to run successfully
1376 	 */
1377 	flist = dma_resv_shared_list(bo->base.resv);
1378 	if (flist) {
1379 		for (i = 0; i < flist->shared_count; ++i) {
1380 			f = rcu_dereference_protected(flist->shared[i],
1381 				dma_resv_held(bo->base.resv));
1382 #ifdef notyet
1383 			if (amdkfd_fence_check_mm(f, current->mm))
1384 				return false;
1385 #endif
1386 		}
1387 	}
1388 
1389 	switch (bo->resource->mem_type) {
1390 	case AMDGPU_PL_PREEMPT:
1391 		/* Preemptible BOs don't own system resources managed by the
1392 		 * driver (pages, VRAM, GART space). They point to resources
1393 		 * owned by someone else (e.g. pageable memory in user mode
1394 		 * or a DMABuf). They are used in a preemptible context so we
1395 		 * can guarantee no deadlocks and good QoS in case of MMU
1396 		 * notifiers or DMABuf move notifiers from the resource owner.
1397 		 */
1398 		return false;
1399 	case TTM_PL_TT:
1400 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1401 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1402 			return false;
1403 		return true;
1404 
1405 	case TTM_PL_VRAM:
1406 		/* Check each drm MM node individually */
1407 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1408 				 &cursor);
1409 		while (cursor.remaining) {
1410 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1411 			    && !(place->lpfn &&
1412 				 place->lpfn <= PFN_DOWN(cursor.start)))
1413 				return true;
1414 
1415 			amdgpu_res_next(&cursor, cursor.size);
1416 		}
1417 		return false;
1418 
1419 	default:
1420 		break;
1421 	}
1422 
1423 	return ttm_bo_eviction_valuable(bo, place);
1424 }
1425 
1426 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1427 				      void *buf, size_t size, bool write)
1428 {
1429 	STUB();
1430 #ifdef notyet
1431 	while (size) {
1432 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1433 		uint64_t bytes = 4 - (pos & 0x3);
1434 		uint32_t shift = (pos & 0x3) * 8;
1435 		uint32_t mask = 0xffffffff << shift;
1436 		uint32_t value = 0;
1437 
1438 		if (size < bytes) {
1439 			mask &= 0xffffffff >> (bytes - size) * 8;
1440 			bytes = size;
1441 		}
1442 
1443 		if (mask != 0xffffffff) {
1444 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1445 			if (write) {
1446 				value &= ~mask;
1447 				value |= (*(uint32_t *)buf << shift) & mask;
1448 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1449 			} else {
1450 				value = (value & mask) >> shift;
1451 				memcpy(buf, &value, bytes);
1452 			}
1453 		} else {
1454 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1455 		}
1456 
1457 		pos += bytes;
1458 		buf += bytes;
1459 		size -= bytes;
1460 	}
1461 #endif
1462 }
1463 
1464 /**
1465  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1466  *
1467  * @bo:  The buffer object to read/write
1468  * @offset:  Offset into buffer object
1469  * @buf:  Secondary buffer to write/read from
1470  * @len: Length in bytes of access
1471  * @write:  true if writing
1472  *
1473  * This is used to access VRAM that backs a buffer object via MMIO
1474  * access for debugging purposes.
1475  */
1476 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1477 				    unsigned long offset, void *buf, int len,
1478 				    int write)
1479 {
1480 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1481 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1482 	struct amdgpu_res_cursor cursor;
1483 	int ret = 0;
1484 
1485 	if (bo->resource->mem_type != TTM_PL_VRAM)
1486 		return -EIO;
1487 
1488 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1489 	while (cursor.remaining) {
1490 		size_t count, size = cursor.size;
1491 		loff_t pos = cursor.start;
1492 
1493 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1494 		size -= count;
1495 		if (size) {
1496 			/* using MM to access rest vram and handle un-aligned address */
1497 			pos += count;
1498 			buf += count;
1499 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1500 		}
1501 
1502 		ret += cursor.size;
1503 		buf += cursor.size;
1504 		amdgpu_res_next(&cursor, cursor.size);
1505 	}
1506 
1507 	return ret;
1508 }
1509 
1510 static void
1511 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1512 {
1513 	amdgpu_bo_move_notify(bo, false, NULL);
1514 }
1515 
1516 static struct ttm_device_funcs amdgpu_bo_driver = {
1517 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1518 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1519 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1520 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1521 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1522 	.evict_flags = &amdgpu_evict_flags,
1523 	.move = &amdgpu_bo_move,
1524 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1525 	.release_notify = &amdgpu_bo_release_notify,
1526 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1527 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1528 	.access_memory = &amdgpu_ttm_access_memory,
1529 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1530 };
1531 
1532 /*
1533  * Firmware Reservation functions
1534  */
1535 /**
1536  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1537  *
1538  * @adev: amdgpu_device pointer
1539  *
1540  * free fw reserved vram if it has been reserved.
1541  */
1542 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1543 {
1544 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1545 		NULL, &adev->mman.fw_vram_usage_va);
1546 }
1547 
1548 /**
1549  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1550  *
1551  * @adev: amdgpu_device pointer
1552  *
1553  * create bo vram reservation from fw.
1554  */
1555 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1556 {
1557 	uint64_t vram_size = adev->gmc.visible_vram_size;
1558 
1559 	adev->mman.fw_vram_usage_va = NULL;
1560 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1561 
1562 	if (adev->mman.fw_vram_usage_size == 0 ||
1563 	    adev->mman.fw_vram_usage_size > vram_size)
1564 		return 0;
1565 
1566 	return amdgpu_bo_create_kernel_at(adev,
1567 					  adev->mman.fw_vram_usage_start_offset,
1568 					  adev->mman.fw_vram_usage_size,
1569 					  AMDGPU_GEM_DOMAIN_VRAM,
1570 					  &adev->mman.fw_vram_usage_reserved_bo,
1571 					  &adev->mman.fw_vram_usage_va);
1572 }
1573 
1574 /*
1575  * Memoy training reservation functions
1576  */
1577 
1578 /**
1579  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1580  *
1581  * @adev: amdgpu_device pointer
1582  *
1583  * free memory training reserved vram if it has been reserved.
1584  */
1585 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1586 {
1587 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1588 
1589 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1590 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1591 	ctx->c2p_bo = NULL;
1592 
1593 	return 0;
1594 }
1595 
1596 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1597 {
1598 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1599 
1600 	memset(ctx, 0, sizeof(*ctx));
1601 
1602 	ctx->c2p_train_data_offset =
1603 		roundup2((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1604 	ctx->p2c_train_data_offset =
1605 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1606 	ctx->train_data_size =
1607 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1608 
1609 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1610 			ctx->train_data_size,
1611 			ctx->p2c_train_data_offset,
1612 			ctx->c2p_train_data_offset);
1613 }
1614 
1615 /*
1616  * reserve TMR memory at the top of VRAM which holds
1617  * IP Discovery data and is protected by PSP.
1618  */
1619 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1620 {
1621 	int ret;
1622 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1623 	bool mem_train_support = false;
1624 
1625 	if (!amdgpu_sriov_vf(adev)) {
1626 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1627 			mem_train_support = true;
1628 		else
1629 			DRM_DEBUG("memory training does not support!\n");
1630 	}
1631 
1632 	/*
1633 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1634 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1635 	 *
1636 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1637 	 * discovery data and G6 memory training data respectively
1638 	 */
1639 	adev->mman.discovery_tmr_size =
1640 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1641 	if (!adev->mman.discovery_tmr_size)
1642 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1643 
1644 	if (mem_train_support) {
1645 		/* reserve vram for mem train according to TMR location */
1646 		amdgpu_ttm_training_data_block_init(adev);
1647 		ret = amdgpu_bo_create_kernel_at(adev,
1648 					 ctx->c2p_train_data_offset,
1649 					 ctx->train_data_size,
1650 					 AMDGPU_GEM_DOMAIN_VRAM,
1651 					 &ctx->c2p_bo,
1652 					 NULL);
1653 		if (ret) {
1654 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1655 			amdgpu_ttm_training_reserve_vram_fini(adev);
1656 			return ret;
1657 		}
1658 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1659 	}
1660 
1661 	ret = amdgpu_bo_create_kernel_at(adev,
1662 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1663 				adev->mman.discovery_tmr_size,
1664 				AMDGPU_GEM_DOMAIN_VRAM,
1665 				&adev->mman.discovery_memory,
1666 				NULL);
1667 	if (ret) {
1668 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1669 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1670 		return ret;
1671 	}
1672 
1673 	return 0;
1674 }
1675 
1676 /*
1677  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1678  * gtt/vram related fields.
1679  *
1680  * This initializes all of the memory space pools that the TTM layer
1681  * will need such as the GTT space (system memory mapped to the device),
1682  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1683  * can be mapped per VMID.
1684  */
1685 int amdgpu_ttm_init(struct amdgpu_device *adev)
1686 {
1687 	uint64_t gtt_size;
1688 	int r;
1689 	u64 vis_vram_limit;
1690 
1691 	rw_init(&adev->mman.gtt_window_lock, "gttwin");
1692 
1693 	/* No others user of address space so set it to 0 */
1694 #ifdef notyet
1695 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1696 			       adev_to_drm(adev)->anon_inode->i_mapping,
1697 			       adev_to_drm(adev)->vma_offset_manager,
1698 			       adev->need_swiotlb,
1699 			       dma_addressing_limited(adev->dev));
1700 #else
1701 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1702 			       /*adev_to_drm(adev)->anon_inode->i_mapping*/NULL,
1703 			       adev_to_drm(adev)->vma_offset_manager,
1704 			       adev->need_swiotlb,
1705 			       dma_addressing_limited(adev->dev));
1706 #endif
1707 	if (r) {
1708 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1709 		return r;
1710 	}
1711 	adev->mman.bdev.iot = adev->iot;
1712 	adev->mman.bdev.memt = adev->memt;
1713 	adev->mman.bdev.dmat = adev->dmat;
1714 	adev->mman.initialized = true;
1715 
1716 	/* Initialize VRAM pool with all of VRAM divided into pages */
1717 	r = amdgpu_vram_mgr_init(adev);
1718 	if (r) {
1719 		DRM_ERROR("Failed initializing VRAM heap.\n");
1720 		return r;
1721 	}
1722 
1723 	/* Reduce size of CPU-visible VRAM if requested */
1724 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1725 	if (amdgpu_vis_vram_limit > 0 &&
1726 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1727 		adev->gmc.visible_vram_size = vis_vram_limit;
1728 
1729 	/* Change the size here instead of the init above so only lpfn is affected */
1730 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1731 #if defined(CONFIG_64BIT) && defined(__linux__)
1732 #ifdef CONFIG_X86
1733 	if (adev->gmc.xgmi.connected_to_cpu)
1734 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1735 				adev->gmc.visible_vram_size);
1736 
1737 	else
1738 #endif
1739 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1740 				adev->gmc.visible_vram_size);
1741 #else
1742 	if (bus_space_map(adev->memt, adev->gmc.aper_base,
1743 	    adev->gmc.visible_vram_size,
1744 	    BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE,
1745 	    &adev->mman.aper_bsh)) {
1746 		adev->mman.aper_base_kaddr = NULL;
1747 	} else {
1748 		adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt,
1749 		    adev->mman.aper_bsh);
1750 	}
1751 #endif
1752 
1753 	/*
1754 	 *The reserved vram for firmware must be pinned to the specified
1755 	 *place on the VRAM, so reserve it early.
1756 	 */
1757 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1758 	if (r) {
1759 		return r;
1760 	}
1761 
1762 	/*
1763 	 * only NAVI10 and onwards ASIC support for IP discovery.
1764 	 * If IP discovery enabled, a block of memory should be
1765 	 * reserved for IP discovey.
1766 	 */
1767 	if (adev->mman.discovery_bin) {
1768 		r = amdgpu_ttm_reserve_tmr(adev);
1769 		if (r)
1770 			return r;
1771 	}
1772 
1773 	/* allocate memory as required for VGA
1774 	 * This is used for VGA emulation and pre-OS scanout buffers to
1775 	 * avoid display artifacts while transitioning between pre-OS
1776 	 * and driver.  */
1777 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1778 				       AMDGPU_GEM_DOMAIN_VRAM,
1779 				       &adev->mman.stolen_vga_memory,
1780 				       NULL);
1781 	if (r)
1782 		return r;
1783 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1784 				       adev->mman.stolen_extended_size,
1785 				       AMDGPU_GEM_DOMAIN_VRAM,
1786 				       &adev->mman.stolen_extended_memory,
1787 				       NULL);
1788 	if (r)
1789 		return r;
1790 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1791 				       adev->mman.stolen_reserved_size,
1792 				       AMDGPU_GEM_DOMAIN_VRAM,
1793 				       &adev->mman.stolen_reserved_memory,
1794 				       NULL);
1795 	if (r)
1796 		return r;
1797 
1798 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1799 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1800 
1801 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1802 	 * or whatever the user passed on module init */
1803 	if (amdgpu_gtt_size == -1) {
1804 #ifdef __linux__
1805 		struct sysinfo si;
1806 
1807 		si_meminfo(&si);
1808 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1809 			       adev->gmc.mc_vram_size),
1810 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1811 #else
1812 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1813 			       adev->gmc.mc_vram_size),
1814 			       ((uint64_t)ptoa(physmem) * 3/4));
1815 #endif
1816 	}
1817 	else
1818 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1819 
1820 	/* Initialize GTT memory pool */
1821 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1822 	if (r) {
1823 		DRM_ERROR("Failed initializing GTT heap.\n");
1824 		return r;
1825 	}
1826 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1827 		 (unsigned)(gtt_size / (1024 * 1024)));
1828 
1829 	/* Initialize preemptible memory pool */
1830 	r = amdgpu_preempt_mgr_init(adev);
1831 	if (r) {
1832 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1833 		return r;
1834 	}
1835 
1836 	/* Initialize various on-chip memory pools */
1837 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1838 	if (r) {
1839 		DRM_ERROR("Failed initializing GDS heap.\n");
1840 		return r;
1841 	}
1842 
1843 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1844 	if (r) {
1845 		DRM_ERROR("Failed initializing gws heap.\n");
1846 		return r;
1847 	}
1848 
1849 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1850 	if (r) {
1851 		DRM_ERROR("Failed initializing oa heap.\n");
1852 		return r;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 /*
1859  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1860  */
1861 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1862 {
1863 	if (!adev->mman.initialized)
1864 		return;
1865 
1866 	amdgpu_ttm_training_reserve_vram_fini(adev);
1867 	/* return the stolen vga memory back to VRAM */
1868 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1869 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1870 	/* return the IP Discovery TMR memory back to VRAM */
1871 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1872 	if (adev->mman.stolen_reserved_size)
1873 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1874 				      NULL, NULL);
1875 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1876 
1877 	amdgpu_vram_mgr_fini(adev);
1878 	amdgpu_gtt_mgr_fini(adev);
1879 	amdgpu_preempt_mgr_fini(adev);
1880 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1881 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1882 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1883 	ttm_device_fini(&adev->mman.bdev);
1884 	adev->mman.initialized = false;
1885 	DRM_INFO("amdgpu: ttm finalized\n");
1886 }
1887 
1888 /**
1889  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1890  *
1891  * @adev: amdgpu_device pointer
1892  * @enable: true when we can use buffer functions.
1893  *
1894  * Enable/disable use of buffer functions during suspend/resume. This should
1895  * only be called at bootup or when userspace isn't running.
1896  */
1897 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1898 {
1899 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1900 	uint64_t size;
1901 	int r;
1902 
1903 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1904 	    adev->mman.buffer_funcs_enabled == enable)
1905 		return;
1906 
1907 	if (enable) {
1908 		struct amdgpu_ring *ring;
1909 		struct drm_gpu_scheduler *sched;
1910 
1911 		ring = adev->mman.buffer_funcs_ring;
1912 		sched = &ring->sched;
1913 		r = drm_sched_entity_init(&adev->mman.entity,
1914 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1915 					  1, NULL);
1916 		if (r) {
1917 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1918 				  r);
1919 			return;
1920 		}
1921 	} else {
1922 		drm_sched_entity_destroy(&adev->mman.entity);
1923 		dma_fence_put(man->move);
1924 		man->move = NULL;
1925 	}
1926 
1927 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1928 	if (enable)
1929 		size = adev->gmc.real_vram_size;
1930 	else
1931 		size = adev->gmc.visible_vram_size;
1932 	man->size = size >> PAGE_SHIFT;
1933 	adev->mman.buffer_funcs_enabled = enable;
1934 }
1935 
1936 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1937 		       uint64_t dst_offset, uint32_t byte_count,
1938 		       struct dma_resv *resv,
1939 		       struct dma_fence **fence, bool direct_submit,
1940 		       bool vm_needs_flush, bool tmz)
1941 {
1942 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1943 		AMDGPU_IB_POOL_DELAYED;
1944 	struct amdgpu_device *adev = ring->adev;
1945 	struct amdgpu_job *job;
1946 
1947 	uint32_t max_bytes;
1948 	unsigned num_loops, num_dw;
1949 	unsigned i;
1950 	int r;
1951 
1952 	if (!direct_submit && !ring->sched.ready) {
1953 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1954 		return -EINVAL;
1955 	}
1956 
1957 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1958 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1959 	num_dw = roundup2(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1960 
1961 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1962 	if (r)
1963 		return r;
1964 
1965 	if (vm_needs_flush) {
1966 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1967 					adev->gmc.pdb0_bo : adev->gart.bo);
1968 		job->vm_needs_flush = true;
1969 	}
1970 	if (resv) {
1971 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1972 				     AMDGPU_SYNC_ALWAYS,
1973 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1974 		if (r) {
1975 			DRM_ERROR("sync failed (%d).\n", r);
1976 			goto error_free;
1977 		}
1978 	}
1979 
1980 	for (i = 0; i < num_loops; i++) {
1981 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1982 
1983 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1984 					dst_offset, cur_size_in_bytes, tmz);
1985 
1986 		src_offset += cur_size_in_bytes;
1987 		dst_offset += cur_size_in_bytes;
1988 		byte_count -= cur_size_in_bytes;
1989 	}
1990 
1991 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1992 	WARN_ON(job->ibs[0].length_dw > num_dw);
1993 	if (direct_submit)
1994 		r = amdgpu_job_submit_direct(job, ring, fence);
1995 	else
1996 		r = amdgpu_job_submit(job, &adev->mman.entity,
1997 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1998 	if (r)
1999 		goto error_free;
2000 
2001 	return r;
2002 
2003 error_free:
2004 	amdgpu_job_free(job);
2005 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2006 	return r;
2007 }
2008 
2009 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2010 		       uint32_t src_data,
2011 		       struct dma_resv *resv,
2012 		       struct dma_fence **fence)
2013 {
2014 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2015 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2016 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2017 
2018 	struct amdgpu_res_cursor cursor;
2019 	unsigned int num_loops, num_dw;
2020 	uint64_t num_bytes;
2021 
2022 	struct amdgpu_job *job;
2023 	int r;
2024 
2025 	if (!adev->mman.buffer_funcs_enabled) {
2026 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2027 		return -EINVAL;
2028 	}
2029 
2030 	if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
2031 		DRM_ERROR("Trying to clear preemptible memory.\n");
2032 		return -EINVAL;
2033 	}
2034 
2035 	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
2036 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2037 		if (r)
2038 			return r;
2039 	}
2040 
2041 	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
2042 	num_loops = 0;
2043 
2044 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2045 	while (cursor.remaining) {
2046 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
2047 		amdgpu_res_next(&cursor, cursor.size);
2048 	}
2049 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2050 
2051 	/* for IB padding */
2052 	num_dw += 64;
2053 
2054 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2055 				     &job);
2056 	if (r)
2057 		return r;
2058 
2059 	if (resv) {
2060 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2061 				     AMDGPU_SYNC_ALWAYS,
2062 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2063 		if (r) {
2064 			DRM_ERROR("sync failed (%d).\n", r);
2065 			goto error_free;
2066 		}
2067 	}
2068 
2069 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2070 	while (cursor.remaining) {
2071 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2072 		uint64_t dst_addr = cursor.start;
2073 
2074 		dst_addr += amdgpu_ttm_domain_start(adev,
2075 						    bo->tbo.resource->mem_type);
2076 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2077 					cur_size);
2078 
2079 		amdgpu_res_next(&cursor, cur_size);
2080 	}
2081 
2082 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2083 	WARN_ON(job->ibs[0].length_dw > num_dw);
2084 	r = amdgpu_job_submit(job, &adev->mman.entity,
2085 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2086 	if (r)
2087 		goto error_free;
2088 
2089 	return 0;
2090 
2091 error_free:
2092 	amdgpu_job_free(job);
2093 	return r;
2094 }
2095 
2096 #if defined(CONFIG_DEBUG_FS)
2097 
2098 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2099 {
2100 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2101 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2102 							    TTM_PL_VRAM);
2103 	struct drm_printer p = drm_seq_file_printer(m);
2104 
2105 	man->func->debug(man, &p);
2106 	return 0;
2107 }
2108 
2109 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2110 {
2111 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2112 
2113 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2114 }
2115 
2116 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2117 {
2118 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2119 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2120 							    TTM_PL_TT);
2121 	struct drm_printer p = drm_seq_file_printer(m);
2122 
2123 	man->func->debug(man, &p);
2124 	return 0;
2125 }
2126 
2127 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2128 {
2129 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2130 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2131 							    AMDGPU_PL_GDS);
2132 	struct drm_printer p = drm_seq_file_printer(m);
2133 
2134 	man->func->debug(man, &p);
2135 	return 0;
2136 }
2137 
2138 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2139 {
2140 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2141 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2142 							    AMDGPU_PL_GWS);
2143 	struct drm_printer p = drm_seq_file_printer(m);
2144 
2145 	man->func->debug(man, &p);
2146 	return 0;
2147 }
2148 
2149 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2150 {
2151 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2152 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2153 							    AMDGPU_PL_OA);
2154 	struct drm_printer p = drm_seq_file_printer(m);
2155 
2156 	man->func->debug(man, &p);
2157 	return 0;
2158 }
2159 
2160 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2161 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2162 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2163 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2164 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2165 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2166 
2167 /*
2168  * amdgpu_ttm_vram_read - Linear read access to VRAM
2169  *
2170  * Accesses VRAM via MMIO for debugging purposes.
2171  */
2172 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2173 				    size_t size, loff_t *pos)
2174 {
2175 	struct amdgpu_device *adev = file_inode(f)->i_private;
2176 	ssize_t result = 0;
2177 
2178 	if (size & 0x3 || *pos & 0x3)
2179 		return -EINVAL;
2180 
2181 	if (*pos >= adev->gmc.mc_vram_size)
2182 		return -ENXIO;
2183 
2184 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2185 	while (size) {
2186 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2187 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2188 
2189 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2190 		if (copy_to_user(buf, value, bytes))
2191 			return -EFAULT;
2192 
2193 		result += bytes;
2194 		buf += bytes;
2195 		*pos += bytes;
2196 		size -= bytes;
2197 	}
2198 
2199 	return result;
2200 }
2201 
2202 /*
2203  * amdgpu_ttm_vram_write - Linear write access to VRAM
2204  *
2205  * Accesses VRAM via MMIO for debugging purposes.
2206  */
2207 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2208 				    size_t size, loff_t *pos)
2209 {
2210 	struct amdgpu_device *adev = file_inode(f)->i_private;
2211 	ssize_t result = 0;
2212 	int r;
2213 
2214 	if (size & 0x3 || *pos & 0x3)
2215 		return -EINVAL;
2216 
2217 	if (*pos >= adev->gmc.mc_vram_size)
2218 		return -ENXIO;
2219 
2220 	while (size) {
2221 		uint32_t value;
2222 
2223 		if (*pos >= adev->gmc.mc_vram_size)
2224 			return result;
2225 
2226 		r = get_user(value, (uint32_t *)buf);
2227 		if (r)
2228 			return r;
2229 
2230 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2231 
2232 		result += 4;
2233 		buf += 4;
2234 		*pos += 4;
2235 		size -= 4;
2236 	}
2237 
2238 	return result;
2239 }
2240 
2241 static const struct file_operations amdgpu_ttm_vram_fops = {
2242 	.owner = THIS_MODULE,
2243 	.read = amdgpu_ttm_vram_read,
2244 	.write = amdgpu_ttm_vram_write,
2245 	.llseek = default_llseek,
2246 };
2247 
2248 /*
2249  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2250  *
2251  * This function is used to read memory that has been mapped to the
2252  * GPU and the known addresses are not physical addresses but instead
2253  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2254  */
2255 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2256 				 size_t size, loff_t *pos)
2257 {
2258 	struct amdgpu_device *adev = file_inode(f)->i_private;
2259 	struct iommu_domain *dom;
2260 	ssize_t result = 0;
2261 	int r;
2262 
2263 	/* retrieve the IOMMU domain if any for this device */
2264 	dom = iommu_get_domain_for_dev(adev->dev);
2265 
2266 	while (size) {
2267 		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2268 		loff_t off = *pos & ~LINUX_PAGE_MASK;
2269 		size_t bytes = PAGE_SIZE - off;
2270 		unsigned long pfn;
2271 		struct vm_page *p;
2272 		void *ptr;
2273 
2274 		bytes = bytes < size ? bytes : size;
2275 
2276 		/* Translate the bus address to a physical address.  If
2277 		 * the domain is NULL it means there is no IOMMU active
2278 		 * and the address translation is the identity
2279 		 */
2280 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2281 
2282 		pfn = addr >> PAGE_SHIFT;
2283 		if (!pfn_valid(pfn))
2284 			return -EPERM;
2285 
2286 		p = pfn_to_page(pfn);
2287 		if (p->mapping != adev->mman.bdev.dev_mapping)
2288 			return -EPERM;
2289 
2290 		ptr = kmap(p);
2291 		r = copy_to_user(buf, ptr + off, bytes);
2292 		kunmap(p);
2293 		if (r)
2294 			return -EFAULT;
2295 
2296 		size -= bytes;
2297 		*pos += bytes;
2298 		result += bytes;
2299 	}
2300 
2301 	return result;
2302 }
2303 
2304 /*
2305  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2306  *
2307  * This function is used to write memory that has been mapped to the
2308  * GPU and the known addresses are not physical addresses but instead
2309  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2310  */
2311 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2312 				 size_t size, loff_t *pos)
2313 {
2314 	struct amdgpu_device *adev = file_inode(f)->i_private;
2315 	struct iommu_domain *dom;
2316 	ssize_t result = 0;
2317 	int r;
2318 
2319 	dom = iommu_get_domain_for_dev(adev->dev);
2320 
2321 	while (size) {
2322 		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2323 		loff_t off = *pos & ~LINUX_PAGE_MASK;
2324 		size_t bytes = PAGE_SIZE - off;
2325 		unsigned long pfn;
2326 		struct vm_page *p;
2327 		void *ptr;
2328 
2329 		bytes = bytes < size ? bytes : size;
2330 
2331 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2332 
2333 		pfn = addr >> PAGE_SHIFT;
2334 		if (!pfn_valid(pfn))
2335 			return -EPERM;
2336 
2337 		p = pfn_to_page(pfn);
2338 		if (p->mapping != adev->mman.bdev.dev_mapping)
2339 			return -EPERM;
2340 
2341 		ptr = kmap(p);
2342 		r = copy_from_user(ptr + off, buf, bytes);
2343 		kunmap(p);
2344 		if (r)
2345 			return -EFAULT;
2346 
2347 		size -= bytes;
2348 		*pos += bytes;
2349 		result += bytes;
2350 	}
2351 
2352 	return result;
2353 }
2354 
2355 static const struct file_operations amdgpu_ttm_iomem_fops = {
2356 	.owner = THIS_MODULE,
2357 	.read = amdgpu_iomem_read,
2358 	.write = amdgpu_iomem_write,
2359 	.llseek = default_llseek
2360 };
2361 
2362 #endif
2363 
2364 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2365 {
2366 #if defined(CONFIG_DEBUG_FS)
2367 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2368 	struct dentry *root = minor->debugfs_root;
2369 
2370 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2371 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2372 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2373 			    &amdgpu_ttm_iomem_fops);
2374 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2375 			    &amdgpu_mm_vram_table_fops);
2376 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2377 			    &amdgpu_mm_tt_table_fops);
2378 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2379 			    &amdgpu_mm_gds_table_fops);
2380 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2381 			    &amdgpu_mm_gws_table_fops);
2382 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2383 			    &amdgpu_mm_oa_table_fops);
2384 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2385 			    &amdgpu_ttm_page_pool_fops);
2386 #endif
2387 }
2388