xref: /openbsd-src/sys/dev/pci/drm/amd/amdgpu/amdgpu_ttm.c (revision f6aab3d83b51b91c24247ad2c2573574de475a82)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51 
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64 
65 MODULE_IMPORT_NS(DMA_BUF);
66 
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
68 
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 				   struct ttm_tt *ttm,
71 				   struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73 				      struct ttm_tt *ttm);
74 
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 				    unsigned int type,
77 				    uint64_t size_in_page)
78 {
79 	return ttm_range_man_init(&adev->mman.bdev, type,
80 				  false, size_in_page);
81 }
82 
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92 				struct ttm_placement *placement)
93 {
94 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95 	struct amdgpu_bo *abo;
96 	static const struct ttm_place placements = {
97 		.fpfn = 0,
98 		.lpfn = 0,
99 		.mem_type = TTM_PL_SYSTEM,
100 		.flags = 0
101 	};
102 
103 	/* Don't handle scatter gather BOs */
104 	if (bo->type == ttm_bo_type_sg) {
105 		placement->num_placement = 0;
106 		placement->num_busy_placement = 0;
107 		return;
108 	}
109 
110 	/* Object isn't an AMDGPU object so ignore */
111 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112 		placement->placement = &placements;
113 		placement->busy_placement = &placements;
114 		placement->num_placement = 1;
115 		placement->num_busy_placement = 1;
116 		return;
117 	}
118 
119 	abo = ttm_to_amdgpu_bo(bo);
120 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121 		placement->num_placement = 0;
122 		placement->num_busy_placement = 0;
123 		return;
124 	}
125 
126 	switch (bo->resource->mem_type) {
127 	case AMDGPU_PL_GDS:
128 	case AMDGPU_PL_GWS:
129 	case AMDGPU_PL_OA:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct dma_fence *fence;
193 	struct amdgpu_job *job;
194 	void *cpu_addr;
195 	uint64_t flags;
196 	unsigned int i;
197 	int r;
198 
199 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201 
202 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 		return -EINVAL;
204 
205 	/* Map only what can't be accessed directly */
206 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 			mm_cur->start;
209 		return 0;
210 	}
211 
212 
213 	/*
214 	 * If start begins at an offset inside the page, then adjust the size
215 	 * and addr accordingly
216 	 */
217 	offset = mm_cur->start & ~LINUX_PAGE_MASK;
218 
219 	num_pages = PFN_UP(*size + offset);
220 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221 
222 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223 
224 	*addr = adev->gmc.gart_start;
225 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 		AMDGPU_GPU_PAGE_SIZE;
227 	*addr += offset;
228 
229 	num_dw = roundup2(adev->mman.buffer_funcs->copy_num_dw, 8);
230 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231 
232 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233 				     AMDGPU_IB_POOL_DELAYED, &job);
234 	if (r)
235 		return r;
236 
237 	src_addr = num_dw * 4;
238 	src_addr += job->ibs[0].gpu_addr;
239 
240 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243 				dst_addr, num_bytes, false);
244 
245 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246 	WARN_ON(job->ibs[0].length_dw > num_dw);
247 
248 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249 	if (tmz)
250 		flags |= AMDGPU_PTE_TMZ;
251 
252 	cpu_addr = &job->ibs[0].ptr[num_dw];
253 
254 	if (mem->mem_type == TTM_PL_TT) {
255 		dma_addr_t *dma_addr;
256 
257 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259 	} else {
260 		dma_addr_t dma_address;
261 
262 		dma_address = mm_cur->start;
263 		dma_address += adev->vm_manager.vram_base_offset;
264 
265 		for (i = 0; i < num_pages; ++i) {
266 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267 					flags, cpu_addr);
268 			dma_address += PAGE_SIZE;
269 		}
270 	}
271 
272 	r = amdgpu_job_submit(job, &adev->mman.entity,
273 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274 	if (r)
275 		goto error_free;
276 
277 	dma_fence_put(fence);
278 
279 	return r;
280 
281 error_free:
282 	amdgpu_job_free(job);
283 	return r;
284 }
285 
286 /**
287  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288  * @adev: amdgpu device
289  * @src: buffer/address where to read from
290  * @dst: buffer/address where to write to
291  * @size: number of bytes to copy
292  * @tmz: if a secure copy should be used
293  * @resv: resv object to sync to
294  * @f: Returns the last fence if multiple jobs are submitted.
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  */
301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302 			       const struct amdgpu_copy_mem *src,
303 			       const struct amdgpu_copy_mem *dst,
304 			       uint64_t size, bool tmz,
305 			       struct dma_resv *resv,
306 			       struct dma_fence **f)
307 {
308 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 	struct amdgpu_res_cursor src_mm, dst_mm;
310 	struct dma_fence *fence = NULL;
311 	int r = 0;
312 
313 	if (!adev->mman.buffer_funcs_enabled) {
314 		DRM_ERROR("Trying to move memory with ring turned off.\n");
315 		return -EINVAL;
316 	}
317 
318 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320 
321 	mutex_lock(&adev->mman.gtt_window_lock);
322 	while (src_mm.remaining) {
323 		uint64_t from, to, cur_size;
324 		struct dma_fence *next;
325 
326 		/* Never copy more than 256MiB at once to avoid a timeout */
327 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328 
329 		/* Map src to window 0 and dst to window 1. */
330 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331 					  0, ring, tmz, &cur_size, &from);
332 		if (r)
333 			goto error;
334 
335 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336 					  1, ring, tmz, &cur_size, &to);
337 		if (r)
338 			goto error;
339 
340 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
341 				       resv, &next, false, true, tmz);
342 		if (r)
343 			goto error;
344 
345 		dma_fence_put(fence);
346 		fence = next;
347 
348 		amdgpu_res_next(&src_mm, cur_size);
349 		amdgpu_res_next(&dst_mm, cur_size);
350 	}
351 error:
352 	mutex_unlock(&adev->mman.gtt_window_lock);
353 	if (f)
354 		*f = dma_fence_get(fence);
355 	dma_fence_put(fence);
356 	return r;
357 }
358 
359 /*
360  * amdgpu_move_blit - Copy an entire buffer to another buffer
361  *
362  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363  * help move buffers to and from VRAM.
364  */
365 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366 			    bool evict,
367 			    struct ttm_resource *new_mem,
368 			    struct ttm_resource *old_mem)
369 {
370 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372 	struct amdgpu_copy_mem src, dst;
373 	struct dma_fence *fence = NULL;
374 	int r;
375 
376 	src.bo = bo;
377 	dst.bo = bo;
378 	src.mem = old_mem;
379 	dst.mem = new_mem;
380 	src.offset = 0;
381 	dst.offset = 0;
382 
383 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384 				       new_mem->num_pages << PAGE_SHIFT,
385 				       amdgpu_bo_encrypted(abo),
386 				       bo->base.resv, &fence);
387 	if (r)
388 		goto error;
389 
390 	/* clear the space being freed */
391 	if (old_mem->mem_type == TTM_PL_VRAM &&
392 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393 		struct dma_fence *wipe_fence = NULL;
394 
395 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396 		if (r) {
397 			goto error;
398 		} else if (wipe_fence) {
399 			dma_fence_put(fence);
400 			fence = wipe_fence;
401 		}
402 	}
403 
404 	/* Always block for VM page tables before committing the new location */
405 	if (bo->type == ttm_bo_type_kernel)
406 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407 	else
408 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409 	dma_fence_put(fence);
410 	return r;
411 
412 error:
413 	if (fence)
414 		dma_fence_wait(fence, false);
415 	dma_fence_put(fence);
416 	return r;
417 }
418 
419 /*
420  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421  *
422  * Called by amdgpu_bo_move()
423  */
424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425 			       struct ttm_resource *mem)
426 {
427 	u64 mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428 	struct amdgpu_res_cursor cursor;
429 	u64 end;
430 
431 	if (mem->mem_type == TTM_PL_SYSTEM ||
432 	    mem->mem_type == TTM_PL_TT)
433 		return true;
434 	if (mem->mem_type != TTM_PL_VRAM)
435 		return false;
436 
437 	amdgpu_res_first(mem, 0, mem_size, &cursor);
438 	end = cursor.start + cursor.size;
439 	while (cursor.remaining) {
440 		amdgpu_res_next(&cursor, cursor.size);
441 
442 		if (!cursor.remaining)
443 			break;
444 
445 		/* ttm_resource_ioremap only supports contiguous memory */
446 		if (end != cursor.start)
447 			return false;
448 
449 		end = cursor.start + cursor.size;
450 	}
451 
452 	return end <= adev->gmc.visible_vram_size;
453 }
454 
455 /*
456  * amdgpu_bo_move - Move a buffer object to a new memory location
457  *
458  * Called by ttm_bo_handle_move_mem()
459  */
460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
461 			  struct ttm_operation_ctx *ctx,
462 			  struct ttm_resource *new_mem,
463 			  struct ttm_place *hop)
464 {
465 	struct amdgpu_device *adev;
466 	struct amdgpu_bo *abo;
467 	struct ttm_resource *old_mem = bo->resource;
468 	int r;
469 
470 	if (new_mem->mem_type == TTM_PL_TT ||
471 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
472 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
473 		if (r)
474 			return r;
475 	}
476 
477 	/* Can't move a pinned BO */
478 	abo = ttm_to_amdgpu_bo(bo);
479 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
480 		return -EINVAL;
481 
482 	adev = amdgpu_ttm_adev(bo->bdev);
483 
484 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
485 			 bo->ttm == NULL)) {
486 		ttm_bo_move_null(bo, new_mem);
487 		goto out;
488 	}
489 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
490 	    (new_mem->mem_type == TTM_PL_TT ||
491 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
492 		ttm_bo_move_null(bo, new_mem);
493 		goto out;
494 	}
495 	if ((old_mem->mem_type == TTM_PL_TT ||
496 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
497 	    new_mem->mem_type == TTM_PL_SYSTEM) {
498 		r = ttm_bo_wait_ctx(bo, ctx);
499 		if (r)
500 			return r;
501 
502 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
503 		ttm_resource_free(bo, &bo->resource);
504 		ttm_bo_assign_mem(bo, new_mem);
505 		goto out;
506 	}
507 
508 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
509 	    old_mem->mem_type == AMDGPU_PL_GWS ||
510 	    old_mem->mem_type == AMDGPU_PL_OA ||
511 	    new_mem->mem_type == AMDGPU_PL_GDS ||
512 	    new_mem->mem_type == AMDGPU_PL_GWS ||
513 	    new_mem->mem_type == AMDGPU_PL_OA) {
514 		/* Nothing to save here */
515 		ttm_bo_move_null(bo, new_mem);
516 		goto out;
517 	}
518 
519 	if (bo->type == ttm_bo_type_device &&
520 	    new_mem->mem_type == TTM_PL_VRAM &&
521 	    old_mem->mem_type != TTM_PL_VRAM) {
522 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
523 		 * accesses the BO after it's moved.
524 		 */
525 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
526 	}
527 
528 	if (adev->mman.buffer_funcs_enabled) {
529 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
530 		      new_mem->mem_type == TTM_PL_VRAM) ||
531 		     (old_mem->mem_type == TTM_PL_VRAM &&
532 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
533 			hop->fpfn = 0;
534 			hop->lpfn = 0;
535 			hop->mem_type = TTM_PL_TT;
536 			hop->flags = TTM_PL_FLAG_TEMPORARY;
537 			return -EMULTIHOP;
538 		}
539 
540 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
541 	} else {
542 		r = -ENODEV;
543 	}
544 
545 	if (r) {
546 		/* Check that all memory is CPU accessible */
547 		if (!amdgpu_mem_visible(adev, old_mem) ||
548 		    !amdgpu_mem_visible(adev, new_mem)) {
549 			pr_err("Move buffer fallback to memcpy unavailable\n");
550 			return r;
551 		}
552 
553 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
554 		if (r)
555 			return r;
556 	}
557 
558 out:
559 	/* update statistics */
560 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
561 	amdgpu_bo_move_notify(bo, evict, new_mem);
562 	return 0;
563 }
564 
565 /*
566  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
567  *
568  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
569  */
570 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
571 				     struct ttm_resource *mem)
572 {
573 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
574 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
575 
576 	switch (mem->mem_type) {
577 	case TTM_PL_SYSTEM:
578 		/* system memory */
579 		return 0;
580 	case TTM_PL_TT:
581 	case AMDGPU_PL_PREEMPT:
582 		break;
583 	case TTM_PL_VRAM:
584 		mem->bus.offset = mem->start << PAGE_SHIFT;
585 		/* check if it's visible */
586 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
587 			return -EINVAL;
588 
589 		if (adev->mman.aper_base_kaddr &&
590 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
591 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
592 					mem->bus.offset;
593 
594 		mem->bus.offset += adev->gmc.aper_base;
595 		mem->bus.is_iomem = true;
596 		break;
597 	default:
598 		return -EINVAL;
599 	}
600 	return 0;
601 }
602 
603 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
604 					   unsigned long page_offset)
605 {
606 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
607 	struct amdgpu_res_cursor cursor;
608 
609 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
610 			 &cursor);
611 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
612 }
613 
614 /**
615  * amdgpu_ttm_domain_start - Returns GPU start address
616  * @adev: amdgpu device object
617  * @type: type of the memory
618  *
619  * Returns:
620  * GPU start address of a memory domain
621  */
622 
623 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
624 {
625 	switch (type) {
626 	case TTM_PL_TT:
627 		return adev->gmc.gart_start;
628 	case TTM_PL_VRAM:
629 		return adev->gmc.vram_start;
630 	}
631 
632 	return 0;
633 }
634 
635 /*
636  * TTM backend functions.
637  */
638 struct amdgpu_ttm_tt {
639 	struct ttm_tt	ttm;
640 	struct drm_gem_object	*gobj;
641 	u64			offset;
642 	uint64_t		userptr;
643 	struct task_struct	*usertask;
644 	uint32_t		userflags;
645 	bool			bound;
646 };
647 
648 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
649 
650 #ifdef CONFIG_DRM_AMDGPU_USERPTR
651 /*
652  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
653  * memory and start HMM tracking CPU page table update
654  *
655  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
656  * once afterwards to stop HMM tracking
657  */
658 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages,
659 				 struct hmm_range **range)
660 {
661 	struct ttm_tt *ttm = bo->tbo.ttm;
662 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
663 	unsigned long start = gtt->userptr;
664 	struct vm_area_struct *vma;
665 	struct mm_struct *mm;
666 	bool readonly;
667 	int r = 0;
668 
669 	/* Make sure get_user_pages_done() can cleanup gracefully */
670 	*range = NULL;
671 
672 	mm = bo->notifier.mm;
673 	if (unlikely(!mm)) {
674 		DRM_DEBUG_DRIVER("BO is not registered?\n");
675 		return -EFAULT;
676 	}
677 
678 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
679 		return -ESRCH;
680 
681 	mmap_read_lock(mm);
682 	vma = vma_lookup(mm, start);
683 	if (unlikely(!vma)) {
684 		r = -EFAULT;
685 		goto out_unlock;
686 	}
687 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
688 		vma->vm_file)) {
689 		r = -EPERM;
690 		goto out_unlock;
691 	}
692 
693 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
694 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
695 				       ttm->num_pages, range, readonly,
696 				       true, NULL);
697 out_unlock:
698 	mmap_read_unlock(mm);
699 	if (r)
700 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
701 
702 	mmput(mm);
703 
704 	return r;
705 }
706 
707 /*
708  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
709  * Check if the pages backing this ttm range have been invalidated
710  *
711  * Returns: true if pages are still valid
712  */
713 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
714 				       struct hmm_range *range)
715 {
716 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
717 
718 	if (!gtt || !gtt->userptr || !range)
719 		return false;
720 
721 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
722 		gtt->userptr, ttm->num_pages);
723 
724 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
725 
726 	/*
727 	 * FIXME: Must always hold notifier_lock for this, and must
728 	 * not ignore the return code.
729 	 */
730 	return !amdgpu_hmm_range_get_pages_done(range);
731 }
732 #endif
733 
734 /*
735  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
736  *
737  * Called by amdgpu_cs_list_validate(). This creates the page list
738  * that backs user memory and will ultimately be mapped into the device
739  * address space.
740  */
741 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
742 {
743 	unsigned long i;
744 
745 	for (i = 0; i < ttm->num_pages; ++i)
746 		ttm->pages[i] = pages ? pages[i] : NULL;
747 }
748 
749 /*
750  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
751  *
752  * Called by amdgpu_ttm_backend_bind()
753  **/
754 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
755 				     struct ttm_tt *ttm)
756 {
757 	STUB();
758 	return -ENOSYS;
759 #ifdef notyet
760 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
761 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
762 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
763 	enum dma_data_direction direction = write ?
764 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
765 	int r;
766 
767 	/* Allocate an SG array and squash pages into it */
768 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
769 				      (u64)ttm->num_pages << PAGE_SHIFT,
770 				      GFP_KERNEL);
771 	if (r)
772 		goto release_sg;
773 
774 	/* Map SG to device */
775 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
776 	if (r)
777 		goto release_sg;
778 
779 	/* convert SG to linear array of pages and dma addresses */
780 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
781 				       ttm->num_pages);
782 
783 	return 0;
784 
785 release_sg:
786 	kfree(ttm->sg);
787 	ttm->sg = NULL;
788 	return r;
789 #endif
790 }
791 
792 /*
793  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
794  */
795 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
796 					struct ttm_tt *ttm)
797 {
798 	STUB();
799 #ifdef notyet
800 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
801 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
802 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
803 	enum dma_data_direction direction = write ?
804 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
805 
806 	/* double check that we don't free the table twice */
807 	if (!ttm->sg || !ttm->sg->sgl)
808 		return;
809 
810 	/* unmap the pages mapped to the device */
811 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
812 	sg_free_table(ttm->sg);
813 #endif
814 }
815 
816 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
817 				 struct ttm_buffer_object *tbo,
818 				 uint64_t flags)
819 {
820 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
821 	struct ttm_tt *ttm = tbo->ttm;
822 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
823 
824 	if (amdgpu_bo_encrypted(abo))
825 		flags |= AMDGPU_PTE_TMZ;
826 
827 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
828 		uint64_t page_idx = 1;
829 
830 		amdgpu_gart_bind(adev, gtt->offset, page_idx,
831 				 gtt->ttm.dma_address, flags);
832 
833 		/* The memory type of the first page defaults to UC. Now
834 		 * modify the memory type to NC from the second page of
835 		 * the BO onward.
836 		 */
837 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
838 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
839 
840 		amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
841 				 ttm->num_pages - page_idx,
842 				 &(gtt->ttm.dma_address[page_idx]), flags);
843 	} else {
844 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
845 				 gtt->ttm.dma_address, flags);
846 	}
847 }
848 
849 /*
850  * amdgpu_ttm_backend_bind - Bind GTT memory
851  *
852  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
853  * This handles binding GTT memory to the device address space.
854  */
855 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
856 				   struct ttm_tt *ttm,
857 				   struct ttm_resource *bo_mem)
858 {
859 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
860 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
861 	uint64_t flags;
862 	int r;
863 
864 	if (!bo_mem)
865 		return -EINVAL;
866 
867 	if (gtt->bound)
868 		return 0;
869 
870 	if (gtt->userptr) {
871 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
872 		if (r) {
873 			DRM_ERROR("failed to pin userptr\n");
874 			return r;
875 		}
876 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
877 		if (!ttm->sg) {
878 			struct dma_buf_attachment *attach;
879 			struct sg_table *sgt;
880 
881 			attach = gtt->gobj->import_attach;
882 #ifdef notyet
883 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
884 			if (IS_ERR(sgt))
885 				return PTR_ERR(sgt);
886 #else
887 			STUB();
888 			return -ENOSYS;
889 #endif
890 
891 			ttm->sg = sgt;
892 		}
893 
894 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
895 					       ttm->num_pages);
896 	}
897 
898 	if (!ttm->num_pages) {
899 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
900 		     ttm->num_pages, bo_mem, ttm);
901 	}
902 
903 	if (bo_mem->mem_type != TTM_PL_TT ||
904 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
905 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
906 		return 0;
907 	}
908 
909 	/* compute PTE flags relevant to this BO memory */
910 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
911 
912 	/* bind pages into GART page tables */
913 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
914 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
915 			 gtt->ttm.dma_address, flags);
916 	gtt->bound = true;
917 	return 0;
918 }
919 
920 /*
921  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
922  * through AGP or GART aperture.
923  *
924  * If bo is accessible through AGP aperture, then use AGP aperture
925  * to access bo; otherwise allocate logical space in GART aperture
926  * and map bo to GART aperture.
927  */
928 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
929 {
930 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
931 	struct ttm_operation_ctx ctx = { false, false };
932 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
933 	struct ttm_placement placement;
934 	struct ttm_place placements;
935 	struct ttm_resource *tmp;
936 	uint64_t addr, flags;
937 	int r;
938 
939 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
940 		return 0;
941 
942 	addr = amdgpu_gmc_agp_addr(bo);
943 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
944 		bo->resource->start = addr >> PAGE_SHIFT;
945 		return 0;
946 	}
947 
948 	/* allocate GART space */
949 	placement.num_placement = 1;
950 	placement.placement = &placements;
951 	placement.num_busy_placement = 1;
952 	placement.busy_placement = &placements;
953 	placements.fpfn = 0;
954 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
955 	placements.mem_type = TTM_PL_TT;
956 	placements.flags = bo->resource->placement;
957 
958 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
959 	if (unlikely(r))
960 		return r;
961 
962 	/* compute PTE flags for this buffer object */
963 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
964 
965 	/* Bind pages */
966 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
967 	amdgpu_ttm_gart_bind(adev, bo, flags);
968 	amdgpu_gart_invalidate_tlb(adev);
969 	ttm_resource_free(bo, &bo->resource);
970 	ttm_bo_assign_mem(bo, tmp);
971 
972 	return 0;
973 }
974 
975 /*
976  * amdgpu_ttm_recover_gart - Rebind GTT pages
977  *
978  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
979  * rebind GTT pages during a GPU reset.
980  */
981 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
982 {
983 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
984 	uint64_t flags;
985 
986 	if (!tbo->ttm)
987 		return;
988 
989 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
990 	amdgpu_ttm_gart_bind(adev, tbo, flags);
991 }
992 
993 /*
994  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
995  *
996  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
997  * ttm_tt_destroy().
998  */
999 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1000 				      struct ttm_tt *ttm)
1001 {
1002 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1003 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1004 
1005 	/* if the pages have userptr pinning then clear that first */
1006 	if (gtt->userptr) {
1007 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1008 	} else if (ttm->sg && gtt->gobj->import_attach) {
1009 		struct dma_buf_attachment *attach;
1010 
1011 		attach = gtt->gobj->import_attach;
1012 #ifdef notyet
1013 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1014 #else
1015 		STUB();
1016 #endif
1017 		ttm->sg = NULL;
1018 	}
1019 
1020 	if (!gtt->bound)
1021 		return;
1022 
1023 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1024 		return;
1025 
1026 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1027 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1028 	gtt->bound = false;
1029 }
1030 
1031 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1032 				       struct ttm_tt *ttm)
1033 {
1034 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1035 
1036 #ifdef notyet
1037 	if (gtt->usertask)
1038 		put_task_struct(gtt->usertask);
1039 #endif
1040 
1041 	ttm_tt_fini(&gtt->ttm);
1042 	kfree(gtt);
1043 }
1044 
1045 /**
1046  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1047  *
1048  * @bo: The buffer object to create a GTT ttm_tt object around
1049  * @page_flags: Page flags to be added to the ttm_tt object
1050  *
1051  * Called by ttm_tt_create().
1052  */
1053 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1054 					   uint32_t page_flags)
1055 {
1056 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1057 	struct amdgpu_ttm_tt *gtt;
1058 	enum ttm_caching caching;
1059 
1060 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1061 	if (gtt == NULL) {
1062 		return NULL;
1063 	}
1064 	gtt->gobj = &bo->base;
1065 
1066 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1067 		caching = ttm_write_combined;
1068 	else
1069 		caching = ttm_cached;
1070 
1071 	/* allocate space for the uninitialized page entries */
1072 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1073 		kfree(gtt);
1074 		return NULL;
1075 	}
1076 	return &gtt->ttm;
1077 }
1078 
1079 /*
1080  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1081  *
1082  * Map the pages of a ttm_tt object to an address space visible
1083  * to the underlying device.
1084  */
1085 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1086 				  struct ttm_tt *ttm,
1087 				  struct ttm_operation_ctx *ctx)
1088 {
1089 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1090 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1091 	pgoff_t i;
1092 	int ret;
1093 
1094 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1095 	if (gtt->userptr) {
1096 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1097 		if (!ttm->sg)
1098 			return -ENOMEM;
1099 		return 0;
1100 	}
1101 
1102 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1103 		return 0;
1104 
1105 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1106 	if (ret)
1107 		return ret;
1108 
1109 #ifdef notyet
1110 	for (i = 0; i < ttm->num_pages; ++i)
1111 		ttm->pages[i]->mapping = bdev->dev_mapping;
1112 #endif
1113 
1114 	return 0;
1115 }
1116 
1117 /*
1118  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1119  *
1120  * Unmaps pages of a ttm_tt object from the device address space and
1121  * unpopulates the page array backing it.
1122  */
1123 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1124 				     struct ttm_tt *ttm)
1125 {
1126 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1127 	struct amdgpu_device *adev;
1128 	pgoff_t i;
1129 	struct vm_page *page;
1130 
1131 	amdgpu_ttm_backend_unbind(bdev, ttm);
1132 
1133 	if (gtt->userptr) {
1134 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1135 		kfree(ttm->sg);
1136 		ttm->sg = NULL;
1137 		return;
1138 	}
1139 
1140 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1141 		return;
1142 
1143 	for (i = 0; i < ttm->num_pages; ++i) {
1144 		page = ttm->pages[i];
1145 		if (unlikely(page == NULL))
1146 			continue;
1147 		pmap_page_protect(page, PROT_NONE);
1148 	}
1149 
1150 	adev = amdgpu_ttm_adev(bdev);
1151 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1152 }
1153 
1154 /**
1155  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1156  * task
1157  *
1158  * @tbo: The ttm_buffer_object that contains the userptr
1159  * @user_addr:  The returned value
1160  */
1161 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1162 			      uint64_t *user_addr)
1163 {
1164 	struct amdgpu_ttm_tt *gtt;
1165 
1166 	if (!tbo->ttm)
1167 		return -EINVAL;
1168 
1169 	gtt = (void *)tbo->ttm;
1170 	*user_addr = gtt->userptr;
1171 	return 0;
1172 }
1173 
1174 /**
1175  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1176  * task
1177  *
1178  * @bo: The ttm_buffer_object to bind this userptr to
1179  * @addr:  The address in the current tasks VM space to use
1180  * @flags: Requirements of userptr object.
1181  *
1182  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1183  * to current task
1184  */
1185 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1186 			      uint64_t addr, uint32_t flags)
1187 {
1188 	struct amdgpu_ttm_tt *gtt;
1189 
1190 	if (!bo->ttm) {
1191 		/* TODO: We want a separate TTM object type for userptrs */
1192 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1193 		if (bo->ttm == NULL)
1194 			return -ENOMEM;
1195 	}
1196 
1197 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1198 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1199 
1200 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1201 	gtt->userptr = addr;
1202 	gtt->userflags = flags;
1203 
1204 #ifdef notyet
1205 	if (gtt->usertask)
1206 		put_task_struct(gtt->usertask);
1207 	gtt->usertask = current->group_leader;
1208 	get_task_struct(gtt->usertask);
1209 #endif
1210 
1211 	return 0;
1212 }
1213 
1214 /*
1215  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1216  */
1217 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1218 {
1219 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1220 
1221 	if (gtt == NULL)
1222 		return NULL;
1223 
1224 	if (gtt->usertask == NULL)
1225 		return NULL;
1226 
1227 #ifdef notyet
1228 	return gtt->usertask->mm;
1229 #else
1230 	STUB();
1231 	return NULL;
1232 #endif
1233 }
1234 
1235 /*
1236  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1237  * address range for the current task.
1238  *
1239  */
1240 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1241 				  unsigned long end, unsigned long *userptr)
1242 {
1243 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1244 	unsigned long size;
1245 
1246 	if (gtt == NULL || !gtt->userptr)
1247 		return false;
1248 
1249 	/* Return false if no part of the ttm_tt object lies within
1250 	 * the range
1251 	 */
1252 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1253 	if (gtt->userptr > end || gtt->userptr + size <= start)
1254 		return false;
1255 
1256 	if (userptr)
1257 		*userptr = gtt->userptr;
1258 	return true;
1259 }
1260 
1261 /*
1262  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1263  */
1264 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1265 {
1266 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1267 
1268 	if (gtt == NULL || !gtt->userptr)
1269 		return false;
1270 
1271 	return true;
1272 }
1273 
1274 /*
1275  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1276  */
1277 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1278 {
1279 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1280 
1281 	if (gtt == NULL)
1282 		return false;
1283 
1284 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1285 }
1286 
1287 /**
1288  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1289  *
1290  * @ttm: The ttm_tt object to compute the flags for
1291  * @mem: The memory registry backing this ttm_tt object
1292  *
1293  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1294  */
1295 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1296 {
1297 	uint64_t flags = 0;
1298 
1299 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1300 		flags |= AMDGPU_PTE_VALID;
1301 
1302 	if (mem && (mem->mem_type == TTM_PL_TT ||
1303 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1304 		flags |= AMDGPU_PTE_SYSTEM;
1305 
1306 		if (ttm->caching == ttm_cached)
1307 			flags |= AMDGPU_PTE_SNOOPED;
1308 	}
1309 
1310 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1311 			mem->bus.caching == ttm_cached)
1312 		flags |= AMDGPU_PTE_SNOOPED;
1313 
1314 	return flags;
1315 }
1316 
1317 /**
1318  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1319  *
1320  * @adev: amdgpu_device pointer
1321  * @ttm: The ttm_tt object to compute the flags for
1322  * @mem: The memory registry backing this ttm_tt object
1323  *
1324  * Figure out the flags to use for a VM PTE (Page Table Entry).
1325  */
1326 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1327 				 struct ttm_resource *mem)
1328 {
1329 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1330 
1331 	flags |= adev->gart.gart_pte_flags;
1332 	flags |= AMDGPU_PTE_READABLE;
1333 
1334 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1335 		flags |= AMDGPU_PTE_WRITEABLE;
1336 
1337 	return flags;
1338 }
1339 
1340 /*
1341  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1342  * object.
1343  *
1344  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1345  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1346  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1347  * used to clean out a memory space.
1348  */
1349 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1350 					    const struct ttm_place *place)
1351 {
1352 	struct dma_resv_iter resv_cursor;
1353 	struct dma_fence *f;
1354 
1355 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1356 		return ttm_bo_eviction_valuable(bo, place);
1357 
1358 	/* Swapout? */
1359 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1360 		return true;
1361 
1362 	if (bo->type == ttm_bo_type_kernel &&
1363 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1364 		return false;
1365 
1366 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1367 	 * If true, then return false as any KFD process needs all its BOs to
1368 	 * be resident to run successfully
1369 	 */
1370 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1371 				DMA_RESV_USAGE_BOOKKEEP, f) {
1372 #ifdef notyet
1373 		if (amdkfd_fence_check_mm(f, current->mm))
1374 			return false;
1375 #endif
1376 	}
1377 
1378 	/* Preemptible BOs don't own system resources managed by the
1379 	 * driver (pages, VRAM, GART space). They point to resources
1380 	 * owned by someone else (e.g. pageable memory in user mode
1381 	 * or a DMABuf). They are used in a preemptible context so we
1382 	 * can guarantee no deadlocks and good QoS in case of MMU
1383 	 * notifiers or DMABuf move notifiers from the resource owner.
1384 	 */
1385 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1386 		return false;
1387 
1388 	if (bo->resource->mem_type == TTM_PL_TT &&
1389 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1390 		return false;
1391 
1392 	return ttm_bo_eviction_valuable(bo, place);
1393 }
1394 
1395 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1396 				      void *buf, size_t size, bool write)
1397 {
1398 	STUB();
1399 #ifdef notyet
1400 	while (size) {
1401 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1402 		uint64_t bytes = 4 - (pos & 0x3);
1403 		uint32_t shift = (pos & 0x3) * 8;
1404 		uint32_t mask = 0xffffffff << shift;
1405 		uint32_t value = 0;
1406 
1407 		if (size < bytes) {
1408 			mask &= 0xffffffff >> (bytes - size) * 8;
1409 			bytes = size;
1410 		}
1411 
1412 		if (mask != 0xffffffff) {
1413 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1414 			if (write) {
1415 				value &= ~mask;
1416 				value |= (*(uint32_t *)buf << shift) & mask;
1417 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1418 			} else {
1419 				value = (value & mask) >> shift;
1420 				memcpy(buf, &value, bytes);
1421 			}
1422 		} else {
1423 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1424 		}
1425 
1426 		pos += bytes;
1427 		buf += bytes;
1428 		size -= bytes;
1429 	}
1430 #endif
1431 }
1432 
1433 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1434 					unsigned long offset, void *buf, int len, int write)
1435 {
1436 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1437 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1438 	struct amdgpu_res_cursor src_mm;
1439 	struct amdgpu_job *job;
1440 	struct dma_fence *fence;
1441 	uint64_t src_addr, dst_addr;
1442 	unsigned int num_dw;
1443 	int r, idx;
1444 
1445 	if (len != PAGE_SIZE)
1446 		return -EINVAL;
1447 
1448 	if (!adev->mman.sdma_access_ptr)
1449 		return -EACCES;
1450 
1451 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1452 		return -ENODEV;
1453 
1454 	if (write)
1455 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1456 
1457 	num_dw = roundup2(adev->mman.buffer_funcs->copy_num_dw, 8);
1458 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1459 	if (r)
1460 		goto out;
1461 
1462 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1463 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1464 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1465 	if (write)
1466 		swap(src_addr, dst_addr);
1467 
1468 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1469 
1470 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1471 	WARN_ON(job->ibs[0].length_dw > num_dw);
1472 
1473 	r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1474 	if (r) {
1475 		amdgpu_job_free(job);
1476 		goto out;
1477 	}
1478 
1479 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1480 		r = -ETIMEDOUT;
1481 	dma_fence_put(fence);
1482 
1483 	if (!(r || write))
1484 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1485 out:
1486 	drm_dev_exit(idx);
1487 	return r;
1488 }
1489 
1490 /**
1491  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1492  *
1493  * @bo:  The buffer object to read/write
1494  * @offset:  Offset into buffer object
1495  * @buf:  Secondary buffer to write/read from
1496  * @len: Length in bytes of access
1497  * @write:  true if writing
1498  *
1499  * This is used to access VRAM that backs a buffer object via MMIO
1500  * access for debugging purposes.
1501  */
1502 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1503 				    unsigned long offset, void *buf, int len,
1504 				    int write)
1505 {
1506 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1507 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1508 	struct amdgpu_res_cursor cursor;
1509 	int ret = 0;
1510 
1511 	if (bo->resource->mem_type != TTM_PL_VRAM)
1512 		return -EIO;
1513 
1514 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1515 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1516 		return len;
1517 
1518 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1519 	while (cursor.remaining) {
1520 		size_t count, size = cursor.size;
1521 		loff_t pos = cursor.start;
1522 
1523 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1524 		size -= count;
1525 		if (size) {
1526 			/* using MM to access rest vram and handle un-aligned address */
1527 			pos += count;
1528 			buf += count;
1529 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1530 		}
1531 
1532 		ret += cursor.size;
1533 		buf += cursor.size;
1534 		amdgpu_res_next(&cursor, cursor.size);
1535 	}
1536 
1537 	return ret;
1538 }
1539 
1540 static void
1541 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1542 {
1543 	amdgpu_bo_move_notify(bo, false, NULL);
1544 }
1545 
1546 static struct ttm_device_funcs amdgpu_bo_driver = {
1547 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1548 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1549 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1550 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1551 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1552 	.evict_flags = &amdgpu_evict_flags,
1553 	.move = &amdgpu_bo_move,
1554 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1555 	.release_notify = &amdgpu_bo_release_notify,
1556 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1557 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1558 	.access_memory = &amdgpu_ttm_access_memory,
1559 };
1560 
1561 /*
1562  * Firmware Reservation functions
1563  */
1564 /**
1565  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1566  *
1567  * @adev: amdgpu_device pointer
1568  *
1569  * free fw reserved vram if it has been reserved.
1570  */
1571 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1572 {
1573 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1574 		NULL, &adev->mman.fw_vram_usage_va);
1575 }
1576 
1577 /*
1578  * Driver Reservation functions
1579  */
1580 /**
1581  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1582  *
1583  * @adev: amdgpu_device pointer
1584  *
1585  * free drv reserved vram if it has been reserved.
1586  */
1587 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1588 {
1589 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1590 						  NULL,
1591 						  NULL);
1592 }
1593 
1594 /**
1595  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1596  *
1597  * @adev: amdgpu_device pointer
1598  *
1599  * create bo vram reservation from fw.
1600  */
1601 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1602 {
1603 	uint64_t vram_size = adev->gmc.visible_vram_size;
1604 
1605 	adev->mman.fw_vram_usage_va = NULL;
1606 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1607 
1608 	if (adev->mman.fw_vram_usage_size == 0 ||
1609 	    adev->mman.fw_vram_usage_size > vram_size)
1610 		return 0;
1611 
1612 	return amdgpu_bo_create_kernel_at(adev,
1613 					  adev->mman.fw_vram_usage_start_offset,
1614 					  adev->mman.fw_vram_usage_size,
1615 					  &adev->mman.fw_vram_usage_reserved_bo,
1616 					  &adev->mman.fw_vram_usage_va);
1617 }
1618 
1619 /**
1620  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1621  *
1622  * @adev: amdgpu_device pointer
1623  *
1624  * create bo vram reservation from drv.
1625  */
1626 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1627 {
1628 	uint64_t vram_size = adev->gmc.visible_vram_size;
1629 
1630 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1631 
1632 	if (adev->mman.drv_vram_usage_size == 0 ||
1633 	    adev->mman.drv_vram_usage_size > vram_size)
1634 		return 0;
1635 
1636 	return amdgpu_bo_create_kernel_at(adev,
1637 					  adev->mman.drv_vram_usage_start_offset,
1638 					  adev->mman.drv_vram_usage_size,
1639 					  &adev->mman.drv_vram_usage_reserved_bo,
1640 					  NULL);
1641 }
1642 
1643 /*
1644  * Memoy training reservation functions
1645  */
1646 
1647 /**
1648  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1649  *
1650  * @adev: amdgpu_device pointer
1651  *
1652  * free memory training reserved vram if it has been reserved.
1653  */
1654 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1655 {
1656 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1657 
1658 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1659 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1660 	ctx->c2p_bo = NULL;
1661 
1662 	return 0;
1663 }
1664 
1665 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1666 						uint32_t reserve_size)
1667 {
1668 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1669 
1670 	memset(ctx, 0, sizeof(*ctx));
1671 
1672 	ctx->c2p_train_data_offset =
1673 		roundup2((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1674 	ctx->p2c_train_data_offset =
1675 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1676 	ctx->train_data_size =
1677 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1678 
1679 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1680 			ctx->train_data_size,
1681 			ctx->p2c_train_data_offset,
1682 			ctx->c2p_train_data_offset);
1683 }
1684 
1685 /*
1686  * reserve TMR memory at the top of VRAM which holds
1687  * IP Discovery data and is protected by PSP.
1688  */
1689 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1690 {
1691 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1692 	bool mem_train_support = false;
1693 	uint32_t reserve_size = 0;
1694 	int ret;
1695 
1696 	if (!amdgpu_sriov_vf(adev)) {
1697 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1698 			mem_train_support = true;
1699 		else
1700 			DRM_DEBUG("memory training does not support!\n");
1701 	}
1702 
1703 	/*
1704 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1705 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1706 	 *
1707 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1708 	 * discovery data and G6 memory training data respectively
1709 	 */
1710 	if (adev->bios)
1711 		reserve_size =
1712 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1713 	if (!reserve_size)
1714 		reserve_size = DISCOVERY_TMR_OFFSET;
1715 
1716 	if (mem_train_support) {
1717 		/* reserve vram for mem train according to TMR location */
1718 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1719 		ret = amdgpu_bo_create_kernel_at(adev,
1720 					 ctx->c2p_train_data_offset,
1721 					 ctx->train_data_size,
1722 					 &ctx->c2p_bo,
1723 					 NULL);
1724 		if (ret) {
1725 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1726 			amdgpu_ttm_training_reserve_vram_fini(adev);
1727 			return ret;
1728 		}
1729 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1730 	}
1731 
1732 	ret = amdgpu_bo_create_kernel_at(adev,
1733 				adev->gmc.real_vram_size - reserve_size,
1734 				reserve_size,
1735 				&adev->mman.fw_reserved_memory,
1736 				NULL);
1737 	if (ret) {
1738 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1739 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1740 				      NULL, NULL);
1741 		return ret;
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 /*
1748  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1749  * gtt/vram related fields.
1750  *
1751  * This initializes all of the memory space pools that the TTM layer
1752  * will need such as the GTT space (system memory mapped to the device),
1753  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1754  * can be mapped per VMID.
1755  */
1756 int amdgpu_ttm_init(struct amdgpu_device *adev)
1757 {
1758 	uint64_t gtt_size;
1759 	int r;
1760 	u64 vis_vram_limit;
1761 
1762 	rw_init(&adev->mman.gtt_window_lock, "gttwin");
1763 
1764 	/* No others user of address space so set it to 0 */
1765 #ifdef notyet
1766 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1767 			       adev_to_drm(adev)->anon_inode->i_mapping,
1768 			       adev_to_drm(adev)->vma_offset_manager,
1769 			       adev->need_swiotlb,
1770 			       dma_addressing_limited(adev->dev));
1771 #else
1772 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1773 			       /*adev_to_drm(adev)->anon_inode->i_mapping*/NULL,
1774 			       adev_to_drm(adev)->vma_offset_manager,
1775 			       adev->need_swiotlb,
1776 			       dma_addressing_limited(adev->dev));
1777 #endif
1778 	if (r) {
1779 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1780 		return r;
1781 	}
1782 	adev->mman.bdev.iot = adev->iot;
1783 	adev->mman.bdev.memt = adev->memt;
1784 	adev->mman.bdev.dmat = adev->dmat;
1785 	adev->mman.initialized = true;
1786 
1787 	/* Initialize VRAM pool with all of VRAM divided into pages */
1788 	r = amdgpu_vram_mgr_init(adev);
1789 	if (r) {
1790 		DRM_ERROR("Failed initializing VRAM heap.\n");
1791 		return r;
1792 	}
1793 
1794 	/* Reduce size of CPU-visible VRAM if requested */
1795 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1796 	if (amdgpu_vis_vram_limit > 0 &&
1797 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1798 		adev->gmc.visible_vram_size = vis_vram_limit;
1799 
1800 	/* Change the size here instead of the init above so only lpfn is affected */
1801 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1802 #if defined(CONFIG_64BIT) && defined(__linux__)
1803 #ifdef CONFIG_X86
1804 	if (adev->gmc.xgmi.connected_to_cpu)
1805 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1806 				adev->gmc.visible_vram_size);
1807 
1808 	else
1809 #endif
1810 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1811 				adev->gmc.visible_vram_size);
1812 #else
1813 	if (bus_space_map(adev->memt, adev->gmc.aper_base,
1814 	    adev->gmc.visible_vram_size,
1815 	    BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE,
1816 	    &adev->mman.aper_bsh)) {
1817 		adev->mman.aper_base_kaddr = NULL;
1818 	} else {
1819 		adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt,
1820 		    adev->mman.aper_bsh);
1821 	}
1822 #endif
1823 
1824 	/*
1825 	 *The reserved vram for firmware must be pinned to the specified
1826 	 *place on the VRAM, so reserve it early.
1827 	 */
1828 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1829 	if (r) {
1830 		return r;
1831 	}
1832 
1833 	/*
1834 	 *The reserved vram for driver must be pinned to the specified
1835 	 *place on the VRAM, so reserve it early.
1836 	 */
1837 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1838 	if (r)
1839 		return r;
1840 
1841 	/*
1842 	 * only NAVI10 and onwards ASIC support for IP discovery.
1843 	 * If IP discovery enabled, a block of memory should be
1844 	 * reserved for IP discovey.
1845 	 */
1846 	if (adev->mman.discovery_bin) {
1847 		r = amdgpu_ttm_reserve_tmr(adev);
1848 		if (r)
1849 			return r;
1850 	}
1851 
1852 	/* allocate memory as required for VGA
1853 	 * This is used for VGA emulation and pre-OS scanout buffers to
1854 	 * avoid display artifacts while transitioning between pre-OS
1855 	 * and driver.  */
1856 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1857 				       &adev->mman.stolen_vga_memory,
1858 				       NULL);
1859 	if (r)
1860 		return r;
1861 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1862 				       adev->mman.stolen_extended_size,
1863 				       &adev->mman.stolen_extended_memory,
1864 				       NULL);
1865 	if (r)
1866 		return r;
1867 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1868 				       adev->mman.stolen_reserved_size,
1869 				       &adev->mman.stolen_reserved_memory,
1870 				       NULL);
1871 	if (r)
1872 		return r;
1873 
1874 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1875 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1876 
1877 	/* Compute GTT size, either based on 1/2 the size of RAM size
1878 	 * or whatever the user passed on module init */
1879 	if (amdgpu_gtt_size == -1) {
1880 #ifdef __linux__
1881 		struct sysinfo si;
1882 
1883 		si_meminfo(&si);
1884 		/* Certain GL unit tests for large textures can cause problems
1885 		 * with the OOM killer since there is no way to link this memory
1886 		 * to a process.  This was originally mitigated (but not necessarily
1887 		 * eliminated) by limiting the GTT size.  The problem is this limit
1888 		 * is often too low for many modern games so just make the limit 1/2
1889 		 * of system memory which aligns with TTM. The OOM accounting needs
1890 		 * to be addressed, but we shouldn't prevent common 3D applications
1891 		 * from being usable just to potentially mitigate that corner case.
1892 		 */
1893 		gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1894 			       (u64)si.totalram * si.mem_unit / 2);
1895 #else
1896 		gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1897 			       (u64)ptoa(physmem) / 2);
1898 #endif
1899 	} else {
1900 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1901 	}
1902 
1903 	/* Initialize GTT memory pool */
1904 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1905 	if (r) {
1906 		DRM_ERROR("Failed initializing GTT heap.\n");
1907 		return r;
1908 	}
1909 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1910 		 (unsigned)(gtt_size / (1024 * 1024)));
1911 
1912 	/* Initialize preemptible memory pool */
1913 	r = amdgpu_preempt_mgr_init(adev);
1914 	if (r) {
1915 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1916 		return r;
1917 	}
1918 
1919 	/* Initialize various on-chip memory pools */
1920 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1921 	if (r) {
1922 		DRM_ERROR("Failed initializing GDS heap.\n");
1923 		return r;
1924 	}
1925 
1926 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1927 	if (r) {
1928 		DRM_ERROR("Failed initializing gws heap.\n");
1929 		return r;
1930 	}
1931 
1932 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1933 	if (r) {
1934 		DRM_ERROR("Failed initializing oa heap.\n");
1935 		return r;
1936 	}
1937 
1938 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1939 				AMDGPU_GEM_DOMAIN_GTT,
1940 				&adev->mman.sdma_access_bo, NULL,
1941 				&adev->mman.sdma_access_ptr))
1942 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1943 
1944 	return 0;
1945 }
1946 
1947 /*
1948  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1949  */
1950 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1951 {
1952 	int idx;
1953 	if (!adev->mman.initialized)
1954 		return;
1955 
1956 	amdgpu_ttm_training_reserve_vram_fini(adev);
1957 	/* return the stolen vga memory back to VRAM */
1958 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1959 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1960 	/* return the FW reserved memory back to VRAM */
1961 	amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
1962 			      NULL);
1963 	if (adev->mman.stolen_reserved_size)
1964 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1965 				      NULL, NULL);
1966 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1967 					&adev->mman.sdma_access_ptr);
1968 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1969 	amdgpu_ttm_drv_reserve_vram_fini(adev);
1970 
1971 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1972 
1973 #ifdef __linux__
1974 		if (adev->mman.aper_base_kaddr)
1975 			iounmap(adev->mman.aper_base_kaddr);
1976 #else
1977 		if (adev->mman.aper_base_kaddr)
1978 			bus_space_unmap(adev->memt, adev->mman.aper_bsh,
1979 			    adev->gmc.visible_vram_size);
1980 #endif
1981 		adev->mman.aper_base_kaddr = NULL;
1982 
1983 		drm_dev_exit(idx);
1984 	}
1985 
1986 	amdgpu_vram_mgr_fini(adev);
1987 	amdgpu_gtt_mgr_fini(adev);
1988 	amdgpu_preempt_mgr_fini(adev);
1989 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1990 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1991 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1992 	ttm_device_fini(&adev->mman.bdev);
1993 	adev->mman.initialized = false;
1994 	DRM_INFO("amdgpu: ttm finalized\n");
1995 }
1996 
1997 /**
1998  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1999  *
2000  * @adev: amdgpu_device pointer
2001  * @enable: true when we can use buffer functions.
2002  *
2003  * Enable/disable use of buffer functions during suspend/resume. This should
2004  * only be called at bootup or when userspace isn't running.
2005  */
2006 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2007 {
2008 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2009 	uint64_t size;
2010 	int r;
2011 
2012 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2013 	    adev->mman.buffer_funcs_enabled == enable)
2014 		return;
2015 
2016 	if (enable) {
2017 		struct amdgpu_ring *ring;
2018 		struct drm_gpu_scheduler *sched;
2019 
2020 		ring = adev->mman.buffer_funcs_ring;
2021 		sched = &ring->sched;
2022 		r = drm_sched_entity_init(&adev->mman.entity,
2023 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2024 					  1, NULL);
2025 		if (r) {
2026 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2027 				  r);
2028 			return;
2029 		}
2030 	} else {
2031 		drm_sched_entity_destroy(&adev->mman.entity);
2032 		dma_fence_put(man->move);
2033 		man->move = NULL;
2034 	}
2035 
2036 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2037 	if (enable)
2038 		size = adev->gmc.real_vram_size;
2039 	else
2040 		size = adev->gmc.visible_vram_size;
2041 	man->size = size;
2042 	adev->mman.buffer_funcs_enabled = enable;
2043 }
2044 
2045 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2046 				  bool direct_submit,
2047 				  unsigned int num_dw,
2048 				  struct dma_resv *resv,
2049 				  bool vm_needs_flush,
2050 				  struct amdgpu_job **job)
2051 {
2052 	enum amdgpu_ib_pool_type pool = direct_submit ?
2053 		AMDGPU_IB_POOL_DIRECT :
2054 		AMDGPU_IB_POOL_DELAYED;
2055 	int r;
2056 
2057 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
2058 	if (r)
2059 		return r;
2060 
2061 	if (vm_needs_flush) {
2062 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2063 							adev->gmc.pdb0_bo :
2064 							adev->gart.bo);
2065 		(*job)->vm_needs_flush = true;
2066 	}
2067 	if (resv) {
2068 		r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
2069 				     AMDGPU_SYNC_ALWAYS,
2070 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2071 		if (r) {
2072 			DRM_ERROR("sync failed (%d).\n", r);
2073 			amdgpu_job_free(*job);
2074 			return r;
2075 		}
2076 	}
2077 	return 0;
2078 }
2079 
2080 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2081 		       uint64_t dst_offset, uint32_t byte_count,
2082 		       struct dma_resv *resv,
2083 		       struct dma_fence **fence, bool direct_submit,
2084 		       bool vm_needs_flush, bool tmz)
2085 {
2086 	struct amdgpu_device *adev = ring->adev;
2087 	unsigned num_loops, num_dw;
2088 	struct amdgpu_job *job;
2089 	uint32_t max_bytes;
2090 	unsigned i;
2091 	int r;
2092 
2093 	if (!direct_submit && !ring->sched.ready) {
2094 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2095 		return -EINVAL;
2096 	}
2097 
2098 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2099 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2100 	num_dw = roundup2(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2101 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2102 				   resv, vm_needs_flush, &job);
2103 	if (r)
2104 		return r;
2105 
2106 	for (i = 0; i < num_loops; i++) {
2107 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2108 
2109 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2110 					dst_offset, cur_size_in_bytes, tmz);
2111 
2112 		src_offset += cur_size_in_bytes;
2113 		dst_offset += cur_size_in_bytes;
2114 		byte_count -= cur_size_in_bytes;
2115 	}
2116 
2117 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2118 	WARN_ON(job->ibs[0].length_dw > num_dw);
2119 	if (direct_submit)
2120 		r = amdgpu_job_submit_direct(job, ring, fence);
2121 	else
2122 		r = amdgpu_job_submit(job, &adev->mman.entity,
2123 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2124 	if (r)
2125 		goto error_free;
2126 
2127 	return r;
2128 
2129 error_free:
2130 	amdgpu_job_free(job);
2131 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2132 	return r;
2133 }
2134 
2135 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2136 			       uint64_t dst_addr, uint32_t byte_count,
2137 			       struct dma_resv *resv,
2138 			       struct dma_fence **fence,
2139 			       bool vm_needs_flush)
2140 {
2141 	struct amdgpu_device *adev = ring->adev;
2142 	unsigned int num_loops, num_dw;
2143 	struct amdgpu_job *job;
2144 	uint32_t max_bytes;
2145 	unsigned int i;
2146 	int r;
2147 
2148 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2149 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2150 	num_dw = roundup2(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2151 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2152 				   &job);
2153 	if (r)
2154 		return r;
2155 
2156 	for (i = 0; i < num_loops; i++) {
2157 		uint32_t cur_size = min(byte_count, max_bytes);
2158 
2159 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2160 					cur_size);
2161 
2162 		dst_addr += cur_size;
2163 		byte_count -= cur_size;
2164 	}
2165 
2166 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2167 	WARN_ON(job->ibs[0].length_dw > num_dw);
2168 	r = amdgpu_job_submit(job, &adev->mman.entity,
2169 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2170 	if (r)
2171 		goto error_free;
2172 
2173 	return 0;
2174 
2175 error_free:
2176 	amdgpu_job_free(job);
2177 	return r;
2178 }
2179 
2180 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2181 			uint32_t src_data,
2182 			struct dma_resv *resv,
2183 			struct dma_fence **f)
2184 {
2185 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2186 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2187 	struct dma_fence *fence = NULL;
2188 	struct amdgpu_res_cursor dst;
2189 	int r;
2190 
2191 	if (!adev->mman.buffer_funcs_enabled) {
2192 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2193 		return -EINVAL;
2194 	}
2195 
2196 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2197 
2198 	mutex_lock(&adev->mman.gtt_window_lock);
2199 	while (dst.remaining) {
2200 		struct dma_fence *next;
2201 		uint64_t cur_size, to;
2202 
2203 		/* Never fill more than 256MiB at once to avoid timeouts */
2204 		cur_size = min(dst.size, 256ULL << 20);
2205 
2206 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2207 					  1, ring, false, &cur_size, &to);
2208 		if (r)
2209 			goto error;
2210 
2211 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2212 					&next, true);
2213 		if (r)
2214 			goto error;
2215 
2216 		dma_fence_put(fence);
2217 		fence = next;
2218 
2219 		amdgpu_res_next(&dst, cur_size);
2220 	}
2221 error:
2222 	mutex_unlock(&adev->mman.gtt_window_lock);
2223 	if (f)
2224 		*f = dma_fence_get(fence);
2225 	dma_fence_put(fence);
2226 	return r;
2227 }
2228 
2229 /**
2230  * amdgpu_ttm_evict_resources - evict memory buffers
2231  * @adev: amdgpu device object
2232  * @mem_type: evicted BO's memory type
2233  *
2234  * Evicts all @mem_type buffers on the lru list of the memory type.
2235  *
2236  * Returns:
2237  * 0 for success or a negative error code on failure.
2238  */
2239 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2240 {
2241 	struct ttm_resource_manager *man;
2242 
2243 	switch (mem_type) {
2244 	case TTM_PL_VRAM:
2245 	case TTM_PL_TT:
2246 	case AMDGPU_PL_GWS:
2247 	case AMDGPU_PL_GDS:
2248 	case AMDGPU_PL_OA:
2249 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2250 		break;
2251 	default:
2252 		DRM_ERROR("Trying to evict invalid memory type\n");
2253 		return -EINVAL;
2254 	}
2255 
2256 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2257 }
2258 
2259 #if defined(CONFIG_DEBUG_FS)
2260 
2261 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2262 {
2263 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2264 
2265 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2266 }
2267 
2268 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2269 
2270 /*
2271  * amdgpu_ttm_vram_read - Linear read access to VRAM
2272  *
2273  * Accesses VRAM via MMIO for debugging purposes.
2274  */
2275 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2276 				    size_t size, loff_t *pos)
2277 {
2278 	struct amdgpu_device *adev = file_inode(f)->i_private;
2279 	ssize_t result = 0;
2280 
2281 	if (size & 0x3 || *pos & 0x3)
2282 		return -EINVAL;
2283 
2284 	if (*pos >= adev->gmc.mc_vram_size)
2285 		return -ENXIO;
2286 
2287 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2288 	while (size) {
2289 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2290 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2291 
2292 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2293 		if (copy_to_user(buf, value, bytes))
2294 			return -EFAULT;
2295 
2296 		result += bytes;
2297 		buf += bytes;
2298 		*pos += bytes;
2299 		size -= bytes;
2300 	}
2301 
2302 	return result;
2303 }
2304 
2305 /*
2306  * amdgpu_ttm_vram_write - Linear write access to VRAM
2307  *
2308  * Accesses VRAM via MMIO for debugging purposes.
2309  */
2310 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2311 				    size_t size, loff_t *pos)
2312 {
2313 	struct amdgpu_device *adev = file_inode(f)->i_private;
2314 	ssize_t result = 0;
2315 	int r;
2316 
2317 	if (size & 0x3 || *pos & 0x3)
2318 		return -EINVAL;
2319 
2320 	if (*pos >= adev->gmc.mc_vram_size)
2321 		return -ENXIO;
2322 
2323 	while (size) {
2324 		uint32_t value;
2325 
2326 		if (*pos >= adev->gmc.mc_vram_size)
2327 			return result;
2328 
2329 		r = get_user(value, (uint32_t *)buf);
2330 		if (r)
2331 			return r;
2332 
2333 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2334 
2335 		result += 4;
2336 		buf += 4;
2337 		*pos += 4;
2338 		size -= 4;
2339 	}
2340 
2341 	return result;
2342 }
2343 
2344 static const struct file_operations amdgpu_ttm_vram_fops = {
2345 	.owner = THIS_MODULE,
2346 	.read = amdgpu_ttm_vram_read,
2347 	.write = amdgpu_ttm_vram_write,
2348 	.llseek = default_llseek,
2349 };
2350 
2351 /*
2352  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2353  *
2354  * This function is used to read memory that has been mapped to the
2355  * GPU and the known addresses are not physical addresses but instead
2356  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2357  */
2358 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2359 				 size_t size, loff_t *pos)
2360 {
2361 	struct amdgpu_device *adev = file_inode(f)->i_private;
2362 	struct iommu_domain *dom;
2363 	ssize_t result = 0;
2364 	int r;
2365 
2366 	/* retrieve the IOMMU domain if any for this device */
2367 	dom = iommu_get_domain_for_dev(adev->dev);
2368 
2369 	while (size) {
2370 		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2371 		loff_t off = *pos & ~LINUX_PAGE_MASK;
2372 		size_t bytes = PAGE_SIZE - off;
2373 		unsigned long pfn;
2374 		struct vm_page *p;
2375 		void *ptr;
2376 
2377 		bytes = bytes < size ? bytes : size;
2378 
2379 		/* Translate the bus address to a physical address.  If
2380 		 * the domain is NULL it means there is no IOMMU active
2381 		 * and the address translation is the identity
2382 		 */
2383 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2384 
2385 		pfn = addr >> PAGE_SHIFT;
2386 		if (!pfn_valid(pfn))
2387 			return -EPERM;
2388 
2389 		p = pfn_to_page(pfn);
2390 #ifdef notyet
2391 		if (p->mapping != adev->mman.bdev.dev_mapping)
2392 			return -EPERM;
2393 #else
2394 		STUB();
2395 #endif
2396 
2397 		ptr = kmap(p);
2398 		r = copy_to_user(buf, ptr + off, bytes);
2399 		kunmap(p);
2400 		if (r)
2401 			return -EFAULT;
2402 
2403 		size -= bytes;
2404 		*pos += bytes;
2405 		result += bytes;
2406 	}
2407 
2408 	return result;
2409 }
2410 
2411 /*
2412  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2413  *
2414  * This function is used to write memory that has been mapped to the
2415  * GPU and the known addresses are not physical addresses but instead
2416  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2417  */
2418 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2419 				 size_t size, loff_t *pos)
2420 {
2421 	struct amdgpu_device *adev = file_inode(f)->i_private;
2422 	struct iommu_domain *dom;
2423 	ssize_t result = 0;
2424 	int r;
2425 
2426 	dom = iommu_get_domain_for_dev(adev->dev);
2427 
2428 	while (size) {
2429 		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2430 		loff_t off = *pos & ~LINUX_PAGE_MASK;
2431 		size_t bytes = PAGE_SIZE - off;
2432 		unsigned long pfn;
2433 		struct vm_page *p;
2434 		void *ptr;
2435 
2436 		bytes = bytes < size ? bytes : size;
2437 
2438 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2439 
2440 		pfn = addr >> PAGE_SHIFT;
2441 		if (!pfn_valid(pfn))
2442 			return -EPERM;
2443 
2444 		p = pfn_to_page(pfn);
2445 #ifdef notyet
2446 		if (p->mapping != adev->mman.bdev.dev_mapping)
2447 			return -EPERM;
2448 #else
2449 		STUB();
2450 #endif
2451 
2452 		ptr = kmap(p);
2453 		r = copy_from_user(ptr + off, buf, bytes);
2454 		kunmap(p);
2455 		if (r)
2456 			return -EFAULT;
2457 
2458 		size -= bytes;
2459 		*pos += bytes;
2460 		result += bytes;
2461 	}
2462 
2463 	return result;
2464 }
2465 
2466 static const struct file_operations amdgpu_ttm_iomem_fops = {
2467 	.owner = THIS_MODULE,
2468 	.read = amdgpu_iomem_read,
2469 	.write = amdgpu_iomem_write,
2470 	.llseek = default_llseek
2471 };
2472 
2473 #endif
2474 
2475 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2476 {
2477 #if defined(CONFIG_DEBUG_FS)
2478 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2479 	struct dentry *root = minor->debugfs_root;
2480 
2481 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2482 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2483 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2484 			    &amdgpu_ttm_iomem_fops);
2485 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2486 			    &amdgpu_ttm_page_pool_fops);
2487 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2488 							     TTM_PL_VRAM),
2489 					    root, "amdgpu_vram_mm");
2490 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2491 							     TTM_PL_TT),
2492 					    root, "amdgpu_gtt_mm");
2493 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2494 							     AMDGPU_PL_GDS),
2495 					    root, "amdgpu_gds_mm");
2496 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2497 							     AMDGPU_PL_GWS),
2498 					    root, "amdgpu_gws_mm");
2499 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2500 							     AMDGPU_PL_OA),
2501 					    root, "amdgpu_oa_mm");
2502 
2503 #endif
2504 }
2505