xref: /openbsd-src/sys/dev/pci/drm/amd/amdgpu/amdgpu_ttm.c (revision e603c72f713dd59b67030a9b97ec661800da159e)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "bif/bif_4_1_d.h"
51 
52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
53 
54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
55 			     struct ttm_mem_reg *mem, unsigned num_pages,
56 			     uint64_t offset, unsigned window,
57 			     struct amdgpu_ring *ring,
58 			     uint64_t *addr);
59 
60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
62 
63 /*
64  * Global memory.
65  */
66 
67 /**
68  * amdgpu_ttm_mem_global_init - Initialize and acquire reference to
69  * memory object
70  *
71  * @ref: Object for initialization.
72  *
73  * This is called by drm_global_item_ref() when an object is being
74  * initialized.
75  */
76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
77 {
78 	return ttm_mem_global_init(ref->object);
79 }
80 
81 /**
82  * amdgpu_ttm_mem_global_release - Drop reference to a memory object
83  *
84  * @ref: Object being removed
85  *
86  * This is called by drm_global_item_unref() when an object is being
87  * released.
88  */
89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
90 {
91 	ttm_mem_global_release(ref->object);
92 }
93 
94 /**
95  * amdgpu_ttm_global_init - Initialize global TTM memory reference structures.
96  *
97  * @adev: AMDGPU device for which the global structures need to be registered.
98  *
99  * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init()
100  * during bring up.
101  */
102 static int amdgpu_ttm_global_init(struct amdgpu_device *adev)
103 {
104 	struct drm_global_reference *global_ref;
105 	int r;
106 
107 	/* ensure reference is false in case init fails */
108 	adev->mman.mem_global_referenced = false;
109 
110 	global_ref = &adev->mman.mem_global_ref;
111 	global_ref->global_type = DRM_GLOBAL_TTM_MEM;
112 	global_ref->size = sizeof(struct ttm_mem_global);
113 	global_ref->init = &amdgpu_ttm_mem_global_init;
114 	global_ref->release = &amdgpu_ttm_mem_global_release;
115 	r = drm_global_item_ref(global_ref);
116 	if (r) {
117 		DRM_ERROR("Failed setting up TTM memory accounting "
118 			  "subsystem.\n");
119 		goto error_mem;
120 	}
121 
122 	adev->mman.bo_global_ref.mem_glob =
123 		adev->mman.mem_global_ref.object;
124 	global_ref = &adev->mman.bo_global_ref.ref;
125 	global_ref->global_type = DRM_GLOBAL_TTM_BO;
126 	global_ref->size = sizeof(struct ttm_bo_global);
127 	global_ref->init = &ttm_bo_global_init;
128 	global_ref->release = &ttm_bo_global_release;
129 	r = drm_global_item_ref(global_ref);
130 	if (r) {
131 		DRM_ERROR("Failed setting up TTM BO subsystem.\n");
132 		goto error_bo;
133 	}
134 
135 	rw_init(&adev->mman.gtt_window_lock, "gttwin");
136 
137 	adev->mman.mem_global_referenced = true;
138 
139 	return 0;
140 
141 error_bo:
142 	drm_global_item_unref(&adev->mman.mem_global_ref);
143 error_mem:
144 	return r;
145 }
146 
147 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
148 {
149 	if (adev->mman.mem_global_referenced) {
150 		mutex_destroy(&adev->mman.gtt_window_lock);
151 		drm_global_item_unref(&adev->mman.bo_global_ref.ref);
152 		drm_global_item_unref(&adev->mman.mem_global_ref);
153 		adev->mman.mem_global_referenced = false;
154 	}
155 }
156 
157 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
158 {
159 	return 0;
160 }
161 
162 /**
163  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
164  * memory request.
165  *
166  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
167  * @type: The type of memory requested
168  * @man: The memory type manager for each domain
169  *
170  * This is called by ttm_bo_init_mm() when a buffer object is being
171  * initialized.
172  */
173 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
174 				struct ttm_mem_type_manager *man)
175 {
176 	struct amdgpu_device *adev;
177 
178 	adev = amdgpu_ttm_adev(bdev);
179 
180 	switch (type) {
181 	case TTM_PL_SYSTEM:
182 		/* System memory */
183 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
184 		man->available_caching = TTM_PL_MASK_CACHING;
185 		man->default_caching = TTM_PL_FLAG_CACHED;
186 		break;
187 	case TTM_PL_TT:
188 		/* GTT memory  */
189 		man->func = &amdgpu_gtt_mgr_func;
190 		man->gpu_offset = adev->gmc.gart_start;
191 		man->available_caching = TTM_PL_MASK_CACHING;
192 		man->default_caching = TTM_PL_FLAG_CACHED;
193 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
194 		break;
195 	case TTM_PL_VRAM:
196 		/* "On-card" video ram */
197 		man->func = &amdgpu_vram_mgr_func;
198 		man->gpu_offset = adev->gmc.vram_start;
199 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
200 			     TTM_MEMTYPE_FLAG_MAPPABLE;
201 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
202 		man->default_caching = TTM_PL_FLAG_WC;
203 		break;
204 	case AMDGPU_PL_GDS:
205 	case AMDGPU_PL_GWS:
206 	case AMDGPU_PL_OA:
207 		/* On-chip GDS memory*/
208 		man->func = &ttm_bo_manager_func;
209 		man->gpu_offset = 0;
210 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
211 		man->available_caching = TTM_PL_FLAG_UNCACHED;
212 		man->default_caching = TTM_PL_FLAG_UNCACHED;
213 		break;
214 	default:
215 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
216 		return -EINVAL;
217 	}
218 	return 0;
219 }
220 
221 /**
222  * amdgpu_evict_flags - Compute placement flags
223  *
224  * @bo: The buffer object to evict
225  * @placement: Possible destination(s) for evicted BO
226  *
227  * Fill in placement data when ttm_bo_evict() is called
228  */
229 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
230 				struct ttm_placement *placement)
231 {
232 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
233 	struct amdgpu_bo *abo;
234 	static const struct ttm_place placements = {
235 		.fpfn = 0,
236 		.lpfn = 0,
237 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
238 	};
239 
240 	/* Don't handle scatter gather BOs */
241 	if (bo->type == ttm_bo_type_sg) {
242 		placement->num_placement = 0;
243 		placement->num_busy_placement = 0;
244 		return;
245 	}
246 
247 	/* Object isn't an AMDGPU object so ignore */
248 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
249 		placement->placement = &placements;
250 		placement->busy_placement = &placements;
251 		placement->num_placement = 1;
252 		placement->num_busy_placement = 1;
253 		return;
254 	}
255 
256 	abo = ttm_to_amdgpu_bo(bo);
257 	switch (bo->mem.mem_type) {
258 	case TTM_PL_VRAM:
259 		if (!adev->mman.buffer_funcs_enabled) {
260 			/* Move to system memory */
261 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
262 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
263 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
264 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
265 
266 			/* Try evicting to the CPU inaccessible part of VRAM
267 			 * first, but only set GTT as busy placement, so this
268 			 * BO will be evicted to GTT rather than causing other
269 			 * BOs to be evicted from VRAM
270 			 */
271 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
272 							 AMDGPU_GEM_DOMAIN_GTT);
273 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
274 			abo->placements[0].lpfn = 0;
275 			abo->placement.busy_placement = &abo->placements[1];
276 			abo->placement.num_busy_placement = 1;
277 		} else {
278 			/* Move to GTT memory */
279 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
280 		}
281 		break;
282 	case TTM_PL_TT:
283 	default:
284 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
285 	}
286 	*placement = abo->placement;
287 }
288 
289 /**
290  * amdgpu_verify_access - Verify access for a mmap call
291  *
292  * @bo:	The buffer object to map
293  * @filp: The file pointer from the process performing the mmap
294  *
295  * This is called by ttm_bo_mmap() to verify whether a process
296  * has the right to mmap a BO to their process space.
297  */
298 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
299 {
300 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
301 
302 	/*
303 	 * Don't verify access for KFD BOs. They don't have a GEM
304 	 * object associated with them.
305 	 */
306 	if (abo->kfd_bo)
307 		return 0;
308 
309 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
310 		return -EPERM;
311 	return drm_vma_node_verify_access(&abo->gem_base.vma_node, filp);
312 }
313 
314 /**
315  * amdgpu_move_null - Register memory for a buffer object
316  *
317  * @bo: The bo to assign the memory to
318  * @new_mem: The memory to be assigned.
319  *
320  * Assign the memory from new_mem to the memory of the buffer object bo.
321  */
322 static void amdgpu_move_null(struct ttm_buffer_object *bo,
323 			     struct ttm_mem_reg *new_mem)
324 {
325 	struct ttm_mem_reg *old_mem = &bo->mem;
326 
327 	BUG_ON(old_mem->mm_node != NULL);
328 	*old_mem = *new_mem;
329 	new_mem->mm_node = NULL;
330 }
331 
332 /**
333  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
334  *
335  * @bo: The bo to assign the memory to.
336  * @mm_node: Memory manager node for drm allocator.
337  * @mem: The region where the bo resides.
338  *
339  */
340 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
341 				    struct drm_mm_node *mm_node,
342 				    struct ttm_mem_reg *mem)
343 {
344 	uint64_t addr = 0;
345 
346 	if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) {
347 		addr = mm_node->start << PAGE_SHIFT;
348 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
349 	}
350 	return addr;
351 }
352 
353 /**
354  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
355  * @offset. It also modifies the offset to be within the drm_mm_node returned
356  *
357  * @mem: The region where the bo resides.
358  * @offset: The offset that drm_mm_node is used for finding.
359  *
360  */
361 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
362 					       unsigned long *offset)
363 {
364 	struct drm_mm_node *mm_node = mem->mm_node;
365 
366 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
367 		*offset -= (mm_node->size << PAGE_SHIFT);
368 		++mm_node;
369 	}
370 	return mm_node;
371 }
372 
373 /**
374  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
375  *
376  * The function copies @size bytes from {src->mem + src->offset} to
377  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
378  * move and different for a BO to BO copy.
379  *
380  * @f: Returns the last fence if multiple jobs are submitted.
381  */
382 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
383 			       struct amdgpu_copy_mem *src,
384 			       struct amdgpu_copy_mem *dst,
385 			       uint64_t size,
386 			       struct reservation_object *resv,
387 			       struct dma_fence **f)
388 {
389 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
390 	struct drm_mm_node *src_mm, *dst_mm;
391 	uint64_t src_node_start, dst_node_start, src_node_size,
392 		 dst_node_size, src_page_offset, dst_page_offset;
393 	struct dma_fence *fence = NULL;
394 	int r = 0;
395 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
396 					AMDGPU_GPU_PAGE_SIZE);
397 
398 	if (!adev->mman.buffer_funcs_enabled) {
399 		DRM_ERROR("Trying to move memory with ring turned off.\n");
400 		return -EINVAL;
401 	}
402 
403 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
404 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
405 					     src->offset;
406 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
407 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
408 
409 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
410 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
411 					     dst->offset;
412 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
413 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
414 
415 	mutex_lock(&adev->mman.gtt_window_lock);
416 
417 	while (size) {
418 		unsigned long cur_size;
419 		uint64_t from = src_node_start, to = dst_node_start;
420 		struct dma_fence *next;
421 
422 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
423 		 * begins at an offset, then adjust the size accordingly
424 		 */
425 		cur_size = min3(min(src_node_size, dst_node_size), size,
426 				GTT_MAX_BYTES);
427 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
428 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
429 			cur_size -= max(src_page_offset, dst_page_offset);
430 
431 		/* Map only what needs to be accessed. Map src to window 0 and
432 		 * dst to window 1
433 		 */
434 		if (src->mem->mem_type == TTM_PL_TT &&
435 		    !amdgpu_gtt_mgr_has_gart_addr(src->mem)) {
436 			r = amdgpu_map_buffer(src->bo, src->mem,
437 					PFN_UP(cur_size + src_page_offset),
438 					src_node_start, 0, ring,
439 					&from);
440 			if (r)
441 				goto error;
442 			/* Adjust the offset because amdgpu_map_buffer returns
443 			 * start of mapped page
444 			 */
445 			from += src_page_offset;
446 		}
447 
448 		if (dst->mem->mem_type == TTM_PL_TT &&
449 		    !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) {
450 			r = amdgpu_map_buffer(dst->bo, dst->mem,
451 					PFN_UP(cur_size + dst_page_offset),
452 					dst_node_start, 1, ring,
453 					&to);
454 			if (r)
455 				goto error;
456 			to += dst_page_offset;
457 		}
458 
459 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
460 				       resv, &next, false, true);
461 		if (r)
462 			goto error;
463 
464 		dma_fence_put(fence);
465 		fence = next;
466 
467 		size -= cur_size;
468 		if (!size)
469 			break;
470 
471 		src_node_size -= cur_size;
472 		if (!src_node_size) {
473 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
474 							     src->mem);
475 			src_node_size = (src_mm->size << PAGE_SHIFT);
476 		} else {
477 			src_node_start += cur_size;
478 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
479 		}
480 		dst_node_size -= cur_size;
481 		if (!dst_node_size) {
482 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
483 							     dst->mem);
484 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
485 		} else {
486 			dst_node_start += cur_size;
487 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
488 		}
489 	}
490 error:
491 	mutex_unlock(&adev->mman.gtt_window_lock);
492 	if (f)
493 		*f = dma_fence_get(fence);
494 	dma_fence_put(fence);
495 	return r;
496 }
497 
498 /**
499  * amdgpu_move_blit - Copy an entire buffer to another buffer
500  *
501  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
502  * help move buffers to and from VRAM.
503  */
504 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
505 			    bool evict, bool no_wait_gpu,
506 			    struct ttm_mem_reg *new_mem,
507 			    struct ttm_mem_reg *old_mem)
508 {
509 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
510 	struct amdgpu_copy_mem src, dst;
511 	struct dma_fence *fence = NULL;
512 	int r;
513 
514 	src.bo = bo;
515 	dst.bo = bo;
516 	src.mem = old_mem;
517 	dst.mem = new_mem;
518 	src.offset = 0;
519 	dst.offset = 0;
520 
521 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
522 				       new_mem->num_pages << PAGE_SHIFT,
523 				       bo->resv, &fence);
524 	if (r)
525 		goto error;
526 
527 	r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
528 	dma_fence_put(fence);
529 	return r;
530 
531 error:
532 	if (fence)
533 		dma_fence_wait(fence, false);
534 	dma_fence_put(fence);
535 	return r;
536 }
537 
538 /**
539  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
540  *
541  * Called by amdgpu_bo_move().
542  */
543 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
544 				struct ttm_operation_ctx *ctx,
545 				struct ttm_mem_reg *new_mem)
546 {
547 	struct amdgpu_device *adev;
548 	struct ttm_mem_reg *old_mem = &bo->mem;
549 	struct ttm_mem_reg tmp_mem;
550 	struct ttm_place placements;
551 	struct ttm_placement placement;
552 	int r;
553 
554 	adev = amdgpu_ttm_adev(bo->bdev);
555 
556 	/* create space/pages for new_mem in GTT space */
557 	tmp_mem = *new_mem;
558 	tmp_mem.mm_node = NULL;
559 	placement.num_placement = 1;
560 	placement.placement = &placements;
561 	placement.num_busy_placement = 1;
562 	placement.busy_placement = &placements;
563 	placements.fpfn = 0;
564 	placements.lpfn = 0;
565 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
566 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
567 	if (unlikely(r)) {
568 		return r;
569 	}
570 
571 	/* set caching flags */
572 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
573 	if (unlikely(r)) {
574 		goto out_cleanup;
575 	}
576 
577 	/* Bind the memory to the GTT space */
578 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
579 	if (unlikely(r)) {
580 		goto out_cleanup;
581 	}
582 
583 	/* blit VRAM to GTT */
584 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
585 	if (unlikely(r)) {
586 		goto out_cleanup;
587 	}
588 
589 	/* move BO (in tmp_mem) to new_mem */
590 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
591 out_cleanup:
592 	ttm_bo_mem_put(bo, &tmp_mem);
593 	return r;
594 }
595 
596 /**
597  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
598  *
599  * Called by amdgpu_bo_move().
600  */
601 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
602 				struct ttm_operation_ctx *ctx,
603 				struct ttm_mem_reg *new_mem)
604 {
605 	struct amdgpu_device *adev;
606 	struct ttm_mem_reg *old_mem = &bo->mem;
607 	struct ttm_mem_reg tmp_mem;
608 	struct ttm_placement placement;
609 	struct ttm_place placements;
610 	int r;
611 
612 	adev = amdgpu_ttm_adev(bo->bdev);
613 
614 	/* make space in GTT for old_mem buffer */
615 	tmp_mem = *new_mem;
616 	tmp_mem.mm_node = NULL;
617 	placement.num_placement = 1;
618 	placement.placement = &placements;
619 	placement.num_busy_placement = 1;
620 	placement.busy_placement = &placements;
621 	placements.fpfn = 0;
622 	placements.lpfn = 0;
623 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
624 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
625 	if (unlikely(r)) {
626 		return r;
627 	}
628 
629 	/* move/bind old memory to GTT space */
630 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
631 	if (unlikely(r)) {
632 		goto out_cleanup;
633 	}
634 
635 	/* copy to VRAM */
636 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
637 	if (unlikely(r)) {
638 		goto out_cleanup;
639 	}
640 out_cleanup:
641 	ttm_bo_mem_put(bo, &tmp_mem);
642 	return r;
643 }
644 
645 /**
646  * amdgpu_bo_move - Move a buffer object to a new memory location
647  *
648  * Called by ttm_bo_handle_move_mem()
649  */
650 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
651 			  struct ttm_operation_ctx *ctx,
652 			  struct ttm_mem_reg *new_mem)
653 {
654 	struct amdgpu_device *adev;
655 	struct amdgpu_bo *abo;
656 	struct ttm_mem_reg *old_mem = &bo->mem;
657 	int r;
658 
659 	/* Can't move a pinned BO */
660 	abo = ttm_to_amdgpu_bo(bo);
661 	if (WARN_ON_ONCE(abo->pin_count > 0))
662 		return -EINVAL;
663 
664 	adev = amdgpu_ttm_adev(bo->bdev);
665 
666 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
667 		amdgpu_move_null(bo, new_mem);
668 		return 0;
669 	}
670 	if ((old_mem->mem_type == TTM_PL_TT &&
671 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
672 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
673 	     new_mem->mem_type == TTM_PL_TT)) {
674 		/* bind is enough */
675 		amdgpu_move_null(bo, new_mem);
676 		return 0;
677 	}
678 
679 	if (!adev->mman.buffer_funcs_enabled)
680 		goto memcpy;
681 
682 	if (old_mem->mem_type == TTM_PL_VRAM &&
683 	    new_mem->mem_type == TTM_PL_SYSTEM) {
684 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
685 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
686 		   new_mem->mem_type == TTM_PL_VRAM) {
687 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
688 	} else {
689 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
690 				     new_mem, old_mem);
691 	}
692 
693 	if (r) {
694 memcpy:
695 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
696 		if (r) {
697 			return r;
698 		}
699 	}
700 
701 	if (bo->type == ttm_bo_type_device &&
702 	    new_mem->mem_type == TTM_PL_VRAM &&
703 	    old_mem->mem_type != TTM_PL_VRAM) {
704 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
705 		 * accesses the BO after it's moved.
706 		 */
707 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
708 	}
709 
710 	/* update statistics */
711 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
712 	return 0;
713 }
714 
715 /**
716  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
717  *
718  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
719  */
720 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
721 {
722 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
723 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
724 	struct drm_mm_node *mm_node = mem->mm_node;
725 
726 	mem->bus.addr = NULL;
727 	mem->bus.offset = 0;
728 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
729 	mem->bus.base = 0;
730 	mem->bus.is_iomem = false;
731 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
732 		return -EINVAL;
733 	switch (mem->mem_type) {
734 	case TTM_PL_SYSTEM:
735 		/* system memory */
736 		return 0;
737 	case TTM_PL_TT:
738 		break;
739 	case TTM_PL_VRAM:
740 		mem->bus.offset = mem->start << PAGE_SHIFT;
741 		/* check if it's visible */
742 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
743 			return -EINVAL;
744 		/* Only physically contiguous buffers apply. In a contiguous
745 		 * buffer, size of the first mm_node would match the number of
746 		 * pages in ttm_mem_reg.
747 		 */
748 		if (adev->mman.aper_base_kaddr &&
749 		    (mm_node->size == mem->num_pages))
750 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
751 					mem->bus.offset;
752 
753 		mem->bus.base = adev->gmc.aper_base;
754 		mem->bus.is_iomem = true;
755 		break;
756 	default:
757 		return -EINVAL;
758 	}
759 	return 0;
760 }
761 
762 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
763 {
764 }
765 
766 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
767 					   unsigned long page_offset)
768 {
769 	struct drm_mm_node *mm;
770 	unsigned long offset = (page_offset << PAGE_SHIFT);
771 
772 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
773 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
774 		(offset >> PAGE_SHIFT);
775 }
776 
777 /*
778  * TTM backend functions.
779  */
780 struct amdgpu_ttm_gup_task_list {
781 	struct list_head	list;
782 	struct task_struct	*task;
783 };
784 
785 struct amdgpu_ttm_tt {
786 	struct ttm_dma_tt	ttm;
787 	struct amdgpu_device	*adev;
788 	u64			offset;
789 	uint64_t		userptr;
790 	struct task_struct	*usertask;
791 	uint32_t		userflags;
792 	spinlock_t              guptasklock;
793 	struct list_head        guptasks;
794 	atomic_t		mmu_invalidations;
795 	uint32_t		last_set_pages;
796 
797 	bus_dmamap_t		map;
798 	bus_dma_segment_t	*segs;
799 };
800 
801 /**
802  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
803  * pointer to memory
804  *
805  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
806  * This provides a wrapper around the get_user_pages() call to provide
807  * device accessible pages that back user memory.
808  */
809 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
810 {
811 	STUB();
812 	return -ENOSYS;
813 #if 0
814 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
815 	struct mm_struct *mm = gtt->usertask->mm;
816 	unsigned int flags = 0;
817 	unsigned pinned = 0;
818 	int r;
819 
820 	if (!mm) /* Happens during process shutdown */
821 		return -ESRCH;
822 
823 	if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
824 		flags |= FOLL_WRITE;
825 
826 	down_read(&mm->mmap_sem);
827 
828 	if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
829 		/*
830 		 * check that we only use anonymous memory to prevent problems
831 		 * with writeback
832 		 */
833 		unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
834 		struct vm_area_struct *vma;
835 
836 		vma = find_vma(mm, gtt->userptr);
837 		if (!vma || vma->vm_file || vma->vm_end < end) {
838 			up_read(&mm->mmap_sem);
839 			return -EPERM;
840 		}
841 	}
842 
843 	/* loop enough times using contiguous pages of memory */
844 	do {
845 		unsigned num_pages = ttm->num_pages - pinned;
846 		uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
847 		struct vm_page **p = pages + pinned;
848 		struct amdgpu_ttm_gup_task_list guptask;
849 
850 		guptask.task = current;
851 		spin_lock(&gtt->guptasklock);
852 		list_add(&guptask.list, &gtt->guptasks);
853 		spin_unlock(&gtt->guptasklock);
854 
855 		if (mm == current->mm)
856 			r = get_user_pages(userptr, num_pages, flags, p, NULL);
857 		else
858 			r = get_user_pages_remote(gtt->usertask,
859 					mm, userptr, num_pages,
860 					flags, p, NULL, NULL);
861 
862 		spin_lock(&gtt->guptasklock);
863 		list_del(&guptask.list);
864 		spin_unlock(&gtt->guptasklock);
865 
866 		if (r < 0)
867 			goto release_pages;
868 
869 		pinned += r;
870 
871 	} while (pinned < ttm->num_pages);
872 
873 	up_read(&mm->mmap_sem);
874 	return 0;
875 
876 release_pages:
877 	release_pages(pages, pinned);
878 	up_read(&mm->mmap_sem);
879 	return r;
880 #endif
881 }
882 
883 /**
884  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
885  *
886  * Called by amdgpu_cs_list_validate(). This creates the page list
887  * that backs user memory and will ultimately be mapped into the device
888  * address space.
889  */
890 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
891 {
892 	STUB();
893 #if 0
894 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
895 	unsigned i;
896 
897 	gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
898 	for (i = 0; i < ttm->num_pages; ++i) {
899 		if (ttm->pages[i])
900 			put_page(ttm->pages[i]);
901 
902 		ttm->pages[i] = pages ? pages[i] : NULL;
903 	}
904 #endif
905 }
906 
907 /**
908  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
909  *
910  * Called while unpinning userptr pages
911  */
912 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
913 {
914 	STUB();
915 #if 0
916 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
917 	unsigned i;
918 
919 	for (i = 0; i < ttm->num_pages; ++i) {
920 		struct vm_page *page = ttm->pages[i];
921 
922 		if (!page)
923 			continue;
924 
925 		if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
926 			set_page_dirty(page);
927 
928 		mark_page_accessed(page);
929 	}
930 #endif
931 }
932 
933 /**
934  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
935  *
936  * Called by amdgpu_ttm_backend_bind()
937  **/
938 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
939 {
940 	STUB();
941 	return -ENOSYS;
942 #if 0
943 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
944 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
945 	unsigned nents;
946 	int r;
947 
948 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
949 	enum dma_data_direction direction = write ?
950 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
951 
952 	/* Allocate an SG array and squash pages into it */
953 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
954 				      ttm->num_pages << PAGE_SHIFT,
955 				      GFP_KERNEL);
956 	if (r)
957 		goto release_sg;
958 
959 	/* Map SG to device */
960 	r = -ENOMEM;
961 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
962 	if (nents != ttm->sg->nents)
963 		goto release_sg;
964 
965 	/* convert SG to linear array of pages and dma addresses */
966 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
967 					 gtt->ttm.dma_address, ttm->num_pages);
968 
969 	return 0;
970 
971 release_sg:
972 	kfree(ttm->sg);
973 	return r;
974 #endif
975 }
976 
977 /**
978  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
979  */
980 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
981 {
982 	STUB();
983 #if 0
984 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
985 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
986 
987 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
988 	enum dma_data_direction direction = write ?
989 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
990 
991 	/* double check that we don't free the table twice */
992 	if (!ttm->sg->sgl)
993 		return;
994 
995 	/* unmap the pages mapped to the device */
996 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
997 
998 	/* mark the pages as dirty */
999 	amdgpu_ttm_tt_mark_user_pages(ttm);
1000 
1001 	sg_free_table(ttm->sg);
1002 #endif
1003 }
1004 
1005 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1006 				struct ttm_buffer_object *tbo,
1007 				uint64_t flags)
1008 {
1009 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1010 	struct ttm_tt *ttm = tbo->ttm;
1011 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1012 	int r;
1013 
1014 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1015 		uint64_t page_idx = 1;
1016 
1017 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1018 				ttm->pages, gtt->ttm.dma_address, flags);
1019 		if (r)
1020 			goto gart_bind_fail;
1021 
1022 		/* Patch mtype of the second part BO */
1023 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
1024 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
1025 
1026 		r = amdgpu_gart_bind(adev,
1027 				gtt->offset + (page_idx << PAGE_SHIFT),
1028 				ttm->num_pages - page_idx,
1029 				&ttm->pages[page_idx],
1030 				&(gtt->ttm.dma_address[page_idx]), flags);
1031 	} else {
1032 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1033 				     ttm->pages, gtt->ttm.dma_address, flags);
1034 	}
1035 
1036 gart_bind_fail:
1037 	if (r)
1038 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1039 			  ttm->num_pages, gtt->offset);
1040 
1041 	return r;
1042 }
1043 
1044 /**
1045  * amdgpu_ttm_backend_bind - Bind GTT memory
1046  *
1047  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1048  * This handles binding GTT memory to the device address space.
1049  */
1050 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1051 				   struct ttm_mem_reg *bo_mem)
1052 {
1053 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1054 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1055 	uint64_t flags;
1056 	int r = 0;
1057 
1058 	if (gtt->userptr) {
1059 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1060 		if (r) {
1061 			DRM_ERROR("failed to pin userptr\n");
1062 			return r;
1063 		}
1064 	}
1065 	if (!ttm->num_pages) {
1066 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1067 		     ttm->num_pages, bo_mem, ttm);
1068 	}
1069 
1070 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1071 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1072 	    bo_mem->mem_type == AMDGPU_PL_OA)
1073 		return -EINVAL;
1074 
1075 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1076 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1077 		return 0;
1078 	}
1079 
1080 	/* compute PTE flags relevant to this BO memory */
1081 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1082 
1083 	/* bind pages into GART page tables */
1084 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1085 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1086 		ttm->pages, gtt->ttm.dma_address, flags);
1087 
1088 	if (r)
1089 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1090 			  ttm->num_pages, gtt->offset);
1091 	return r;
1092 }
1093 
1094 /**
1095  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1096  */
1097 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1098 {
1099 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1100 	struct ttm_operation_ctx ctx = { false, false };
1101 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1102 	struct ttm_mem_reg tmp;
1103 	struct ttm_placement placement;
1104 	struct ttm_place placements;
1105 	uint64_t flags;
1106 	int r;
1107 
1108 	if (bo->mem.mem_type != TTM_PL_TT ||
1109 	    amdgpu_gtt_mgr_has_gart_addr(&bo->mem))
1110 		return 0;
1111 
1112 	/* allocate GTT space */
1113 	tmp = bo->mem;
1114 	tmp.mm_node = NULL;
1115 	placement.num_placement = 1;
1116 	placement.placement = &placements;
1117 	placement.num_busy_placement = 1;
1118 	placement.busy_placement = &placements;
1119 	placements.fpfn = 0;
1120 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1121 	placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1122 		TTM_PL_FLAG_TT;
1123 
1124 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1125 	if (unlikely(r))
1126 		return r;
1127 
1128 	/* compute PTE flags for this buffer object */
1129 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1130 
1131 	/* Bind pages */
1132 	gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1133 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
1134 	if (unlikely(r)) {
1135 		ttm_bo_mem_put(bo, &tmp);
1136 		return r;
1137 	}
1138 
1139 	ttm_bo_mem_put(bo, &bo->mem);
1140 	bo->mem = tmp;
1141 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1142 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1143 
1144 	return 0;
1145 }
1146 
1147 /**
1148  * amdgpu_ttm_recover_gart - Rebind GTT pages
1149  *
1150  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1151  * rebind GTT pages during a GPU reset.
1152  */
1153 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1154 {
1155 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1156 	uint64_t flags;
1157 	int r;
1158 
1159 	if (!tbo->ttm)
1160 		return 0;
1161 
1162 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1163 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1164 
1165 	return r;
1166 }
1167 
1168 /**
1169  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1170  *
1171  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1172  * ttm_tt_destroy().
1173  */
1174 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1175 {
1176 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1177 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1178 	int r;
1179 
1180 	/* if the pages have userptr pinning then clear that first */
1181 	if (gtt->userptr)
1182 		amdgpu_ttm_tt_unpin_userptr(ttm);
1183 
1184 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1185 		return 0;
1186 
1187 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1188 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1189 	if (r)
1190 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1191 			  gtt->ttm.ttm.num_pages, gtt->offset);
1192 	return r;
1193 }
1194 
1195 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1196 {
1197 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1198 
1199 #ifdef notyet
1200 	if (gtt->usertask)
1201 		put_task_struct(gtt->usertask);
1202 #endif
1203 
1204 	bus_dmamap_destroy(gtt->adev->dmat, gtt->map);
1205 	free(gtt->segs, M_DRM, 0);
1206 
1207 	ttm_dma_tt_fini(&gtt->ttm);
1208 	kfree(gtt);
1209 }
1210 
1211 static struct ttm_backend_func amdgpu_backend_func = {
1212 	.bind = &amdgpu_ttm_backend_bind,
1213 	.unbind = &amdgpu_ttm_backend_unbind,
1214 	.destroy = &amdgpu_ttm_backend_destroy,
1215 };
1216 
1217 /**
1218  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1219  *
1220  * @bo: The buffer object to create a GTT ttm_tt object around
1221  *
1222  * Called by ttm_tt_create().
1223  */
1224 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1225 					   uint32_t page_flags)
1226 {
1227 	struct amdgpu_device *adev;
1228 	struct amdgpu_ttm_tt *gtt;
1229 	unsigned long size = bo->num_pages << PAGE_SHIFT;
1230 
1231 	adev = amdgpu_ttm_adev(bo->bdev);
1232 
1233 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1234 	if (gtt == NULL) {
1235 		return NULL;
1236 	}
1237 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1238 	gtt->adev = adev;
1239 
1240 	/* allocate space for the uninitialized page entries */
1241 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1242 		kfree(gtt);
1243 		return NULL;
1244 	}
1245 
1246 	gtt->segs = mallocarray(gtt->ttm.ttm.num_pages,
1247 	    sizeof(bus_dma_segment_t), M_DRM, M_WAITOK | M_ZERO);
1248 
1249 	if (bus_dmamap_create(adev->dmat, size, gtt->ttm.ttm.num_pages, size,
1250 	    0, BUS_DMA_WAITOK, &gtt->map)) {
1251 		free(gtt->segs, M_DRM, 0);
1252 		ttm_dma_tt_fini(&gtt->ttm);
1253 		free(gtt, M_DRM, 0);
1254 		return NULL;
1255 	}
1256 
1257 	return &gtt->ttm.ttm;
1258 }
1259 
1260 /**
1261  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1262  *
1263  * Map the pages of a ttm_tt object to an address space visible
1264  * to the underlying device.
1265  */
1266 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1267 			struct ttm_operation_ctx *ctx)
1268 {
1269 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1270 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1271 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1272 
1273 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1274 	if (gtt && gtt->userptr) {
1275 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1276 		if (!ttm->sg)
1277 			return -ENOMEM;
1278 
1279 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1280 		ttm->state = tt_unbound;
1281 		return 0;
1282 	}
1283 
1284 	if (slave && ttm->sg) {
1285 #ifdef notyet
1286 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1287 						 gtt->ttm.dma_address,
1288 						 ttm->num_pages);
1289 #endif
1290 		ttm->state = tt_unbound;
1291 		return 0;
1292 	}
1293 
1294 #ifdef CONFIG_SWIOTLB
1295 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1296 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1297 	}
1298 #endif
1299 
1300 	/* fall back to generic helper to populate the page array
1301 	 * and map them to the device */
1302 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1303 }
1304 
1305 /**
1306  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1307  *
1308  * Unmaps pages of a ttm_tt object from the device address space and
1309  * unpopulates the page array backing it.
1310  */
1311 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1312 {
1313 	struct amdgpu_device *adev;
1314 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1315 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1316 
1317 	if (gtt && gtt->userptr) {
1318 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1319 		kfree(ttm->sg);
1320 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1321 		return;
1322 	}
1323 
1324 	if (slave)
1325 		return;
1326 
1327 	adev = amdgpu_ttm_adev(ttm->bdev);
1328 
1329 #ifdef CONFIG_SWIOTLB
1330 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1331 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1332 		return;
1333 	}
1334 #endif
1335 
1336 	/* fall back to generic helper to unmap and unpopulate array */
1337 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1338 }
1339 
1340 /**
1341  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1342  * task
1343  *
1344  * @ttm: The ttm_tt object to bind this userptr object to
1345  * @addr:  The address in the current tasks VM space to use
1346  * @flags: Requirements of userptr object.
1347  *
1348  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1349  * to current task
1350  */
1351 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1352 			      uint32_t flags)
1353 {
1354 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1355 
1356 	if (gtt == NULL)
1357 		return -EINVAL;
1358 
1359 	gtt->userptr = addr;
1360 	gtt->userflags = flags;
1361 
1362 #ifdef notyet
1363 	if (gtt->usertask)
1364 		put_task_struct(gtt->usertask);
1365 	gtt->usertask = current->group_leader;
1366 	get_task_struct(gtt->usertask);
1367 #endif
1368 
1369 	mtx_init(&gtt->guptasklock, IPL_TTY);
1370 	INIT_LIST_HEAD(&gtt->guptasks);
1371 	atomic_set(&gtt->mmu_invalidations, 0);
1372 	gtt->last_set_pages = 0;
1373 
1374 	return 0;
1375 }
1376 
1377 /**
1378  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1379  */
1380 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1381 {
1382 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1383 
1384 	if (gtt == NULL)
1385 		return NULL;
1386 
1387 	if (gtt->usertask == NULL)
1388 		return NULL;
1389 
1390 #if 0
1391 	return gtt->usertask->mm;
1392 #else
1393 	STUB();
1394 	return NULL;
1395 #endif
1396 }
1397 
1398 /**
1399  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1400  * address range for the current task.
1401  *
1402  */
1403 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1404 				  unsigned long end)
1405 {
1406 	STUB();
1407 	return false;
1408 #if 0
1409 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1410 	struct amdgpu_ttm_gup_task_list *entry;
1411 	unsigned long size;
1412 
1413 	if (gtt == NULL || !gtt->userptr)
1414 		return false;
1415 
1416 	/* Return false if no part of the ttm_tt object lies within
1417 	 * the range
1418 	 */
1419 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1420 	if (gtt->userptr > end || gtt->userptr + size <= start)
1421 		return false;
1422 
1423 	/* Search the lists of tasks that hold this mapping and see
1424 	 * if current is one of them.  If it is return false.
1425 	 */
1426 	spin_lock(&gtt->guptasklock);
1427 	list_for_each_entry(entry, &gtt->guptasks, list) {
1428 		if (entry->task == current) {
1429 			spin_unlock(&gtt->guptasklock);
1430 			return false;
1431 		}
1432 	}
1433 	spin_unlock(&gtt->guptasklock);
1434 
1435 	atomic_inc(&gtt->mmu_invalidations);
1436 
1437 	return true;
1438 #endif
1439 }
1440 
1441 /**
1442  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1443  */
1444 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1445 				       int *last_invalidated)
1446 {
1447 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1448 	int prev_invalidated = *last_invalidated;
1449 
1450 	*last_invalidated = atomic_read(&gtt->mmu_invalidations);
1451 	return prev_invalidated != *last_invalidated;
1452 }
1453 
1454 /**
1455  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1456  * been invalidated since the last time they've been set?
1457  */
1458 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1459 {
1460 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1461 
1462 	if (gtt == NULL || !gtt->userptr)
1463 		return false;
1464 
1465 	return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1466 }
1467 
1468 /**
1469  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1470  */
1471 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1472 {
1473 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1474 
1475 	if (gtt == NULL)
1476 		return false;
1477 
1478 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1479 }
1480 
1481 /**
1482  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1483  *
1484  * @ttm: The ttm_tt object to compute the flags for
1485  * @mem: The memory registry backing this ttm_tt object
1486  */
1487 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1488 				 struct ttm_mem_reg *mem)
1489 {
1490 	uint64_t flags = 0;
1491 
1492 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1493 		flags |= AMDGPU_PTE_VALID;
1494 
1495 	if (mem && mem->mem_type == TTM_PL_TT) {
1496 		flags |= AMDGPU_PTE_SYSTEM;
1497 
1498 		if (ttm->caching_state == tt_cached)
1499 			flags |= AMDGPU_PTE_SNOOPED;
1500 	}
1501 
1502 	flags |= adev->gart.gart_pte_flags;
1503 	flags |= AMDGPU_PTE_READABLE;
1504 
1505 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1506 		flags |= AMDGPU_PTE_WRITEABLE;
1507 
1508 	return flags;
1509 }
1510 
1511 /**
1512  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1513  * object.
1514  *
1515  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1516  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1517  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1518  * used to clean out a memory space.
1519  */
1520 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1521 					    const struct ttm_place *place)
1522 {
1523 	STUB();
1524 	unsigned long num_pages = bo->mem.num_pages;
1525 	struct drm_mm_node *node = bo->mem.mm_node;
1526 	struct reservation_object_list *flist;
1527 	struct dma_fence *f;
1528 	int i;
1529 
1530 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1531 	 * If true, then return false as any KFD process needs all its BOs to
1532 	 * be resident to run successfully
1533 	 */
1534 	flist = reservation_object_get_list(bo->resv);
1535 	if (flist) {
1536 		for (i = 0; i < flist->shared_count; ++i) {
1537 			f = rcu_dereference_protected(flist->shared[i],
1538 				reservation_object_held(bo->resv));
1539 #ifdef notyet
1540 			if (amdkfd_fence_check_mm(f, current->mm))
1541 				return false;
1542 #endif
1543 		}
1544 	}
1545 
1546 	switch (bo->mem.mem_type) {
1547 	case TTM_PL_TT:
1548 		return true;
1549 
1550 	case TTM_PL_VRAM:
1551 		/* Check each drm MM node individually */
1552 		while (num_pages) {
1553 			if (place->fpfn < (node->start + node->size) &&
1554 			    !(place->lpfn && place->lpfn <= node->start))
1555 				return true;
1556 
1557 			num_pages -= node->size;
1558 			++node;
1559 		}
1560 		return false;
1561 
1562 	default:
1563 		break;
1564 	}
1565 
1566 	return ttm_bo_eviction_valuable(bo, place);
1567 }
1568 
1569 /**
1570  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1571  *
1572  * @bo:  The buffer object to read/write
1573  * @offset:  Offset into buffer object
1574  * @buf:  Secondary buffer to write/read from
1575  * @len: Length in bytes of access
1576  * @write:  true if writing
1577  *
1578  * This is used to access VRAM that backs a buffer object via MMIO
1579  * access for debugging purposes.
1580  */
1581 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1582 				    unsigned long offset,
1583 				    void *buf, int len, int write)
1584 {
1585 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1586 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1587 	struct drm_mm_node *nodes;
1588 	uint32_t value = 0;
1589 	int ret = 0;
1590 	uint64_t pos;
1591 	unsigned long flags;
1592 
1593 	if (bo->mem.mem_type != TTM_PL_VRAM)
1594 		return -EIO;
1595 
1596 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1597 	pos = (nodes->start << PAGE_SHIFT) + offset;
1598 
1599 	while (len && pos < adev->gmc.mc_vram_size) {
1600 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1601 		uint32_t bytes = 4 - (pos & 3);
1602 		uint32_t shift = (pos & 3) * 8;
1603 		uint32_t mask = 0xffffffff << shift;
1604 
1605 		if (len < bytes) {
1606 			mask &= 0xffffffff >> (bytes - len) * 8;
1607 			bytes = len;
1608 		}
1609 
1610 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1611 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1612 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1613 		if (!write || mask != 0xffffffff)
1614 			value = RREG32_NO_KIQ(mmMM_DATA);
1615 		if (write) {
1616 			value &= ~mask;
1617 			value |= (*(uint32_t *)buf << shift) & mask;
1618 			WREG32_NO_KIQ(mmMM_DATA, value);
1619 		}
1620 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1621 		if (!write) {
1622 			value = (value & mask) >> shift;
1623 			memcpy(buf, &value, bytes);
1624 		}
1625 
1626 		ret += bytes;
1627 		buf = (uint8_t *)buf + bytes;
1628 		pos += bytes;
1629 		len -= bytes;
1630 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1631 			++nodes;
1632 			pos = (nodes->start << PAGE_SHIFT);
1633 		}
1634 	}
1635 
1636 	return ret;
1637 }
1638 
1639 static struct ttm_bo_driver amdgpu_bo_driver = {
1640 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1641 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1642 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1643 	.invalidate_caches = &amdgpu_invalidate_caches,
1644 	.init_mem_type = &amdgpu_init_mem_type,
1645 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1646 	.evict_flags = &amdgpu_evict_flags,
1647 	.move = &amdgpu_bo_move,
1648 	.verify_access = &amdgpu_verify_access,
1649 	.move_notify = &amdgpu_bo_move_notify,
1650 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1651 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1652 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1653 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1654 	.access_memory = &amdgpu_ttm_access_memory
1655 };
1656 
1657 /*
1658  * Firmware Reservation functions
1659  */
1660 /**
1661  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1662  *
1663  * @adev: amdgpu_device pointer
1664  *
1665  * free fw reserved vram if it has been reserved.
1666  */
1667 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1668 {
1669 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1670 		NULL, &adev->fw_vram_usage.va);
1671 }
1672 
1673 /**
1674  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1675  *
1676  * @adev: amdgpu_device pointer
1677  *
1678  * create bo vram reservation from fw.
1679  */
1680 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1681 {
1682 	struct ttm_operation_ctx ctx = { false, false };
1683 	struct amdgpu_bo_param bp;
1684 	int r = 0;
1685 	int i;
1686 	u64 vram_size = adev->gmc.visible_vram_size;
1687 	u64 offset = adev->fw_vram_usage.start_offset;
1688 	u64 size = adev->fw_vram_usage.size;
1689 	struct amdgpu_bo *bo;
1690 
1691 	memset(&bp, 0, sizeof(bp));
1692 	bp.size = adev->fw_vram_usage.size;
1693 	bp.byte_align = PAGE_SIZE;
1694 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1695 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1696 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1697 	bp.type = ttm_bo_type_kernel;
1698 	bp.resv = NULL;
1699 	adev->fw_vram_usage.va = NULL;
1700 	adev->fw_vram_usage.reserved_bo = NULL;
1701 
1702 	if (adev->fw_vram_usage.size > 0 &&
1703 		adev->fw_vram_usage.size <= vram_size) {
1704 
1705 		r = amdgpu_bo_create(adev, &bp,
1706 				     &adev->fw_vram_usage.reserved_bo);
1707 		if (r)
1708 			goto error_create;
1709 
1710 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1711 		if (r)
1712 			goto error_reserve;
1713 
1714 		/* remove the original mem node and create a new one at the
1715 		 * request position
1716 		 */
1717 		bo = adev->fw_vram_usage.reserved_bo;
1718 		offset = roundup2(offset, PAGE_SIZE);
1719 		for (i = 0; i < bo->placement.num_placement; ++i) {
1720 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1721 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1722 		}
1723 
1724 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1725 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1726 				     &bo->tbo.mem, &ctx);
1727 		if (r)
1728 			goto error_pin;
1729 
1730 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1731 			AMDGPU_GEM_DOMAIN_VRAM,
1732 			adev->fw_vram_usage.start_offset,
1733 			(adev->fw_vram_usage.start_offset +
1734 			adev->fw_vram_usage.size));
1735 		if (r)
1736 			goto error_pin;
1737 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1738 			&adev->fw_vram_usage.va);
1739 		if (r)
1740 			goto error_kmap;
1741 
1742 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1743 	}
1744 	return r;
1745 
1746 error_kmap:
1747 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1748 error_pin:
1749 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1750 error_reserve:
1751 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1752 error_create:
1753 	adev->fw_vram_usage.va = NULL;
1754 	adev->fw_vram_usage.reserved_bo = NULL;
1755 	return r;
1756 }
1757 /**
1758  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1759  * gtt/vram related fields.
1760  *
1761  * This initializes all of the memory space pools that the TTM layer
1762  * will need such as the GTT space (system memory mapped to the device),
1763  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1764  * can be mapped per VMID.
1765  */
1766 int amdgpu_ttm_init(struct amdgpu_device *adev)
1767 {
1768 	uint64_t gtt_size;
1769 	int r;
1770 	u64 vis_vram_limit;
1771 
1772 	/* initialize global references for vram/gtt */
1773 	r = amdgpu_ttm_global_init(adev);
1774 	if (r) {
1775 		return r;
1776 	}
1777 	/* No others user of address space so set it to 0 */
1778 #ifdef notyet
1779 	r = ttm_bo_device_init(&adev->mman.bdev,
1780 			       adev->mman.bo_global_ref.ref.object,
1781 			       &amdgpu_bo_driver,
1782 			       adev->ddev->anon_inode->i_mapping,
1783 			       DRM_FILE_PAGE_OFFSET,
1784 			       adev->need_dma32);
1785 #else
1786 	r = ttm_bo_device_init(&adev->mman.bdev,
1787 			       adev->mman.bo_global_ref.ref.object,
1788 			       &amdgpu_bo_driver,
1789 			       /*adev->ddev->anon_inode->i_mapping*/ NULL,
1790 			       DRM_FILE_PAGE_OFFSET,
1791 			       adev->need_dma32);
1792 #endif
1793 	if (r) {
1794 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1795 		return r;
1796 	}
1797 	adev->mman.bdev.iot = adev->iot;
1798 	adev->mman.bdev.memt = adev->memt;
1799 	adev->mman.bdev.dmat = adev->dmat;
1800 	adev->mman.initialized = true;
1801 
1802 	/* We opt to avoid OOM on system pages allocations */
1803 	adev->mman.bdev.no_retry = true;
1804 
1805 	/* Initialize VRAM pool with all of VRAM divided into pages */
1806 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1807 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1808 	if (r) {
1809 		DRM_ERROR("Failed initializing VRAM heap.\n");
1810 		return r;
1811 	}
1812 
1813 	/* Reduce size of CPU-visible VRAM if requested */
1814 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1815 	if (amdgpu_vis_vram_limit > 0 &&
1816 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1817 		adev->gmc.visible_vram_size = vis_vram_limit;
1818 
1819 	/* Change the size here instead of the init above so only lpfn is affected */
1820 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1821 #ifdef CONFIG_64BIT
1822 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1823 						adev->gmc.visible_vram_size);
1824 #endif
1825 
1826 	/*
1827 	 *The reserved vram for firmware must be pinned to the specified
1828 	 *place on the VRAM, so reserve it early.
1829 	 */
1830 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1831 	if (r) {
1832 		return r;
1833 	}
1834 
1835 	/* allocate memory as required for VGA
1836 	 * This is used for VGA emulation and pre-OS scanout buffers to
1837 	 * avoid display artifacts while transitioning between pre-OS
1838 	 * and driver.  */
1839 	if (adev->gmc.stolen_size) {
1840 		r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1841 					    AMDGPU_GEM_DOMAIN_VRAM,
1842 					    &adev->stolen_vga_memory,
1843 					    NULL, NULL);
1844 		if (r)
1845 			return r;
1846 	}
1847 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1848 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1849 
1850 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1851 	 * or whatever the user passed on module init */
1852 	if (amdgpu_gtt_size == -1) {
1853 #ifdef __linux__
1854 		struct sysinfo si;
1855 
1856 		si_meminfo(&si);
1857 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1858 			       adev->gmc.mc_vram_size),
1859 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1860 #else
1861 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1862 			       adev->gmc.mc_vram_size),
1863 			       ((uint64_t)ptoa(physmem) * 3/4));
1864 #endif
1865 	}
1866 	else
1867 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1868 
1869 	/* Initialize GTT memory pool */
1870 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1871 	if (r) {
1872 		DRM_ERROR("Failed initializing GTT heap.\n");
1873 		return r;
1874 	}
1875 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1876 		 (unsigned)(gtt_size / (1024 * 1024)));
1877 
1878 	/* Initialize various on-chip memory pools */
1879 	adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT;
1880 	adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT;
1881 	adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT;
1882 	adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT;
1883 	adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT;
1884 	adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT;
1885 	adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT;
1886 	adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT;
1887 	adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT;
1888 	/* GDS Memory */
1889 	if (adev->gds.mem.total_size) {
1890 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1891 				   adev->gds.mem.total_size >> PAGE_SHIFT);
1892 		if (r) {
1893 			DRM_ERROR("Failed initializing GDS heap.\n");
1894 			return r;
1895 		}
1896 	}
1897 
1898 	/* GWS */
1899 	if (adev->gds.gws.total_size) {
1900 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1901 				   adev->gds.gws.total_size >> PAGE_SHIFT);
1902 		if (r) {
1903 			DRM_ERROR("Failed initializing gws heap.\n");
1904 			return r;
1905 		}
1906 	}
1907 
1908 	/* OA */
1909 	if (adev->gds.oa.total_size) {
1910 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1911 				   adev->gds.oa.total_size >> PAGE_SHIFT);
1912 		if (r) {
1913 			DRM_ERROR("Failed initializing oa heap.\n");
1914 			return r;
1915 		}
1916 	}
1917 
1918 	/* Register debugfs entries for amdgpu_ttm */
1919 	r = amdgpu_ttm_debugfs_init(adev);
1920 	if (r) {
1921 		DRM_ERROR("Failed to init debugfs\n");
1922 		return r;
1923 	}
1924 	return 0;
1925 }
1926 
1927 /**
1928  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1929  */
1930 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1931 {
1932 	/* return the VGA stolen memory (if any) back to VRAM */
1933 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1934 }
1935 
1936 /**
1937  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1938  */
1939 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1940 {
1941 	if (!adev->mman.initialized)
1942 		return;
1943 
1944 	amdgpu_ttm_debugfs_fini(adev);
1945 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1946 #ifdef notyet
1947 	if (adev->mman.aper_base_kaddr)
1948 		iounmap(adev->mman.aper_base_kaddr);
1949 #endif
1950 	adev->mman.aper_base_kaddr = NULL;
1951 
1952 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1953 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1954 	if (adev->gds.mem.total_size)
1955 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1956 	if (adev->gds.gws.total_size)
1957 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1958 	if (adev->gds.oa.total_size)
1959 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1960 	ttm_bo_device_release(&adev->mman.bdev);
1961 	amdgpu_ttm_global_fini(adev);
1962 	adev->mman.initialized = false;
1963 	DRM_INFO("amdgpu: ttm finalized\n");
1964 }
1965 
1966 /**
1967  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1968  *
1969  * @adev: amdgpu_device pointer
1970  * @enable: true when we can use buffer functions.
1971  *
1972  * Enable/disable use of buffer functions during suspend/resume. This should
1973  * only be called at bootup or when userspace isn't running.
1974  */
1975 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1976 {
1977 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1978 	uint64_t size;
1979 	int r;
1980 
1981 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1982 	    adev->mman.buffer_funcs_enabled == enable)
1983 		return;
1984 
1985 	if (enable) {
1986 		struct amdgpu_ring *ring;
1987 		struct drm_sched_rq *rq;
1988 
1989 		ring = adev->mman.buffer_funcs_ring;
1990 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1991 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1992 		if (r) {
1993 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1994 				  r);
1995 			return;
1996 		}
1997 	} else {
1998 		drm_sched_entity_destroy(&adev->mman.entity);
1999 		dma_fence_put(man->move);
2000 		man->move = NULL;
2001 	}
2002 
2003 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2004 	if (enable)
2005 		size = adev->gmc.real_vram_size;
2006 	else
2007 		size = adev->gmc.visible_vram_size;
2008 	man->size = size >> PAGE_SHIFT;
2009 	adev->mman.buffer_funcs_enabled = enable;
2010 }
2011 
2012 #ifdef __linux__
2013 
2014 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2015 {
2016 	struct drm_file *file_priv;
2017 	struct amdgpu_device *adev;
2018 
2019 	if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
2020 		return -EINVAL;
2021 
2022 	file_priv = filp->private_data;
2023 	adev = file_priv->minor->dev->dev_private;
2024 	if (adev == NULL)
2025 		return -EINVAL;
2026 
2027 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2028 }
2029 
2030 #else
2031 
2032 struct uvm_object *
2033 amdgpu_mmap(struct drm_device *dev, voff_t off, vsize_t size)
2034 {
2035 	struct amdgpu_device *adev = dev->dev_private;
2036 
2037 	if (unlikely(off < DRM_FILE_PAGE_OFFSET))
2038 		return NULL;
2039 
2040 #if 0
2041 	file_priv = filp->private_data;
2042 	adev = file_priv->minor->dev->dev_private;
2043 	if (adev == NULL)
2044 		return -EINVAL;
2045 #endif
2046 
2047 	return ttm_bo_mmap(off, size, &adev->mman.bdev);
2048 }
2049 
2050 #endif
2051 
2052 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2053 			     struct ttm_mem_reg *mem, unsigned num_pages,
2054 			     uint64_t offset, unsigned window,
2055 			     struct amdgpu_ring *ring,
2056 			     uint64_t *addr)
2057 {
2058 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2059 	struct amdgpu_device *adev = ring->adev;
2060 	struct ttm_tt *ttm = bo->ttm;
2061 	struct amdgpu_job *job;
2062 	unsigned num_dw, num_bytes;
2063 	dma_addr_t *dma_address;
2064 	struct dma_fence *fence;
2065 	uint64_t src_addr, dst_addr;
2066 	uint64_t flags;
2067 	int r;
2068 
2069 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2070 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2071 
2072 	*addr = adev->gmc.gart_start;
2073 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2074 		AMDGPU_GPU_PAGE_SIZE;
2075 
2076 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
2077 	while (num_dw & 0x7)
2078 		num_dw++;
2079 
2080 	num_bytes = num_pages * 8;
2081 
2082 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2083 	if (r)
2084 		return r;
2085 
2086 	src_addr = num_dw * 4;
2087 	src_addr += job->ibs[0].gpu_addr;
2088 
2089 	dst_addr = adev->gart.table_addr;
2090 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2091 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2092 				dst_addr, num_bytes);
2093 
2094 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2095 	WARN_ON(job->ibs[0].length_dw > num_dw);
2096 
2097 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2098 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2099 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2100 			    &job->ibs[0].ptr[num_dw]);
2101 	if (r)
2102 		goto error_free;
2103 
2104 	r = amdgpu_job_submit(job, &adev->mman.entity,
2105 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2106 	if (r)
2107 		goto error_free;
2108 
2109 	dma_fence_put(fence);
2110 
2111 	return r;
2112 
2113 error_free:
2114 	amdgpu_job_free(job);
2115 	return r;
2116 }
2117 
2118 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2119 		       uint64_t dst_offset, uint32_t byte_count,
2120 		       struct reservation_object *resv,
2121 		       struct dma_fence **fence, bool direct_submit,
2122 		       bool vm_needs_flush)
2123 {
2124 	struct amdgpu_device *adev = ring->adev;
2125 	struct amdgpu_job *job;
2126 
2127 	uint32_t max_bytes;
2128 	unsigned num_loops, num_dw;
2129 	unsigned i;
2130 	int r;
2131 
2132 	if (direct_submit && !ring->ready) {
2133 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2134 		return -EINVAL;
2135 	}
2136 
2137 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2138 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2139 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2140 
2141 	/* for IB padding */
2142 	while (num_dw & 0x7)
2143 		num_dw++;
2144 
2145 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2146 	if (r)
2147 		return r;
2148 
2149 	job->vm_needs_flush = vm_needs_flush;
2150 	if (resv) {
2151 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2152 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2153 				     false);
2154 		if (r) {
2155 			DRM_ERROR("sync failed (%d).\n", r);
2156 			goto error_free;
2157 		}
2158 	}
2159 
2160 	for (i = 0; i < num_loops; i++) {
2161 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2162 
2163 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2164 					dst_offset, cur_size_in_bytes);
2165 
2166 		src_offset += cur_size_in_bytes;
2167 		dst_offset += cur_size_in_bytes;
2168 		byte_count -= cur_size_in_bytes;
2169 	}
2170 
2171 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2172 	WARN_ON(job->ibs[0].length_dw > num_dw);
2173 	if (direct_submit)
2174 		r = amdgpu_job_submit_direct(job, ring, fence);
2175 	else
2176 		r = amdgpu_job_submit(job, &adev->mman.entity,
2177 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2178 	if (r)
2179 		goto error_free;
2180 
2181 	return r;
2182 
2183 error_free:
2184 	amdgpu_job_free(job);
2185 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2186 	return r;
2187 }
2188 
2189 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2190 		       uint32_t src_data,
2191 		       struct reservation_object *resv,
2192 		       struct dma_fence **fence)
2193 {
2194 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2195 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2196 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2197 
2198 	struct drm_mm_node *mm_node;
2199 	unsigned long num_pages;
2200 	unsigned int num_loops, num_dw;
2201 
2202 	struct amdgpu_job *job;
2203 	int r;
2204 
2205 	if (!adev->mman.buffer_funcs_enabled) {
2206 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2207 		return -EINVAL;
2208 	}
2209 
2210 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2211 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2212 		if (r)
2213 			return r;
2214 	}
2215 
2216 	num_pages = bo->tbo.num_pages;
2217 	mm_node = bo->tbo.mem.mm_node;
2218 	num_loops = 0;
2219 	while (num_pages) {
2220 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2221 
2222 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2223 		num_pages -= mm_node->size;
2224 		++mm_node;
2225 	}
2226 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2227 
2228 	/* for IB padding */
2229 	num_dw += 64;
2230 
2231 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2232 	if (r)
2233 		return r;
2234 
2235 	if (resv) {
2236 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2237 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2238 		if (r) {
2239 			DRM_ERROR("sync failed (%d).\n", r);
2240 			goto error_free;
2241 		}
2242 	}
2243 
2244 	num_pages = bo->tbo.num_pages;
2245 	mm_node = bo->tbo.mem.mm_node;
2246 
2247 	while (num_pages) {
2248 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2249 		uint64_t dst_addr;
2250 
2251 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2252 		while (byte_count) {
2253 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2254 
2255 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2256 						dst_addr, cur_size_in_bytes);
2257 
2258 			dst_addr += cur_size_in_bytes;
2259 			byte_count -= cur_size_in_bytes;
2260 		}
2261 
2262 		num_pages -= mm_node->size;
2263 		++mm_node;
2264 	}
2265 
2266 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2267 	WARN_ON(job->ibs[0].length_dw > num_dw);
2268 	r = amdgpu_job_submit(job, &adev->mman.entity,
2269 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2270 	if (r)
2271 		goto error_free;
2272 
2273 	return 0;
2274 
2275 error_free:
2276 	amdgpu_job_free(job);
2277 	return r;
2278 }
2279 
2280 #if defined(CONFIG_DEBUG_FS)
2281 
2282 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2283 {
2284 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2285 	unsigned ttm_pl = *(int *)node->info_ent->data;
2286 	struct drm_device *dev = node->minor->dev;
2287 	struct amdgpu_device *adev = dev->dev_private;
2288 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2289 	struct drm_printer p = drm_seq_file_printer(m);
2290 
2291 	man->func->debug(man, &p);
2292 	return 0;
2293 }
2294 
2295 static int ttm_pl_vram = TTM_PL_VRAM;
2296 static int ttm_pl_tt = TTM_PL_TT;
2297 
2298 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2299 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram},
2300 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt},
2301 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2302 #ifdef CONFIG_SWIOTLB
2303 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2304 #endif
2305 };
2306 
2307 /**
2308  * amdgpu_ttm_vram_read - Linear read access to VRAM
2309  *
2310  * Accesses VRAM via MMIO for debugging purposes.
2311  */
2312 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2313 				    size_t size, loff_t *pos)
2314 {
2315 	struct amdgpu_device *adev = file_inode(f)->i_private;
2316 	ssize_t result = 0;
2317 	int r;
2318 
2319 	if (size & 0x3 || *pos & 0x3)
2320 		return -EINVAL;
2321 
2322 	if (*pos >= adev->gmc.mc_vram_size)
2323 		return -ENXIO;
2324 
2325 	while (size) {
2326 		unsigned long flags;
2327 		uint32_t value;
2328 
2329 		if (*pos >= adev->gmc.mc_vram_size)
2330 			return result;
2331 
2332 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2333 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2334 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2335 		value = RREG32_NO_KIQ(mmMM_DATA);
2336 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2337 
2338 		r = put_user(value, (uint32_t *)buf);
2339 		if (r)
2340 			return r;
2341 
2342 		result += 4;
2343 		buf += 4;
2344 		*pos += 4;
2345 		size -= 4;
2346 	}
2347 
2348 	return result;
2349 }
2350 
2351 /**
2352  * amdgpu_ttm_vram_write - Linear write access to VRAM
2353  *
2354  * Accesses VRAM via MMIO for debugging purposes.
2355  */
2356 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2357 				    size_t size, loff_t *pos)
2358 {
2359 	struct amdgpu_device *adev = file_inode(f)->i_private;
2360 	ssize_t result = 0;
2361 	int r;
2362 
2363 	if (size & 0x3 || *pos & 0x3)
2364 		return -EINVAL;
2365 
2366 	if (*pos >= adev->gmc.mc_vram_size)
2367 		return -ENXIO;
2368 
2369 	while (size) {
2370 		unsigned long flags;
2371 		uint32_t value;
2372 
2373 		if (*pos >= adev->gmc.mc_vram_size)
2374 			return result;
2375 
2376 		r = get_user(value, (uint32_t *)buf);
2377 		if (r)
2378 			return r;
2379 
2380 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2381 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2382 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2383 		WREG32_NO_KIQ(mmMM_DATA, value);
2384 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2385 
2386 		result += 4;
2387 		buf += 4;
2388 		*pos += 4;
2389 		size -= 4;
2390 	}
2391 
2392 	return result;
2393 }
2394 
2395 static const struct file_operations amdgpu_ttm_vram_fops = {
2396 	.owner = THIS_MODULE,
2397 	.read = amdgpu_ttm_vram_read,
2398 	.write = amdgpu_ttm_vram_write,
2399 	.llseek = default_llseek,
2400 };
2401 
2402 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2403 
2404 /**
2405  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2406  */
2407 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2408 				   size_t size, loff_t *pos)
2409 {
2410 	struct amdgpu_device *adev = file_inode(f)->i_private;
2411 	ssize_t result = 0;
2412 	int r;
2413 
2414 	while (size) {
2415 		loff_t p = *pos / PAGE_SIZE;
2416 		unsigned off = *pos & PAGE_MASK;
2417 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2418 		struct vm_page *page;
2419 		void *ptr;
2420 
2421 		if (p >= adev->gart.num_cpu_pages)
2422 			return result;
2423 
2424 		page = adev->gart.pages[p];
2425 		if (page) {
2426 			ptr = kmap(page);
2427 			ptr += off;
2428 
2429 			r = copy_to_user(buf, ptr, cur_size);
2430 			kunmap(ptr);
2431 		} else
2432 			r = clear_user(buf, cur_size);
2433 
2434 		if (r)
2435 			return -EFAULT;
2436 
2437 		result += cur_size;
2438 		buf += cur_size;
2439 		*pos += cur_size;
2440 		size -= cur_size;
2441 	}
2442 
2443 	return result;
2444 }
2445 
2446 static const struct file_operations amdgpu_ttm_gtt_fops = {
2447 	.owner = THIS_MODULE,
2448 	.read = amdgpu_ttm_gtt_read,
2449 	.llseek = default_llseek
2450 };
2451 
2452 #endif
2453 
2454 /**
2455  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2456  *
2457  * This function is used to read memory that has been mapped to the
2458  * GPU and the known addresses are not physical addresses but instead
2459  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2460  */
2461 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2462 				 size_t size, loff_t *pos)
2463 {
2464 	struct amdgpu_device *adev = file_inode(f)->i_private;
2465 	struct iommu_domain *dom;
2466 	ssize_t result = 0;
2467 	int r;
2468 
2469 	/* retrieve the IOMMU domain if any for this device */
2470 	dom = iommu_get_domain_for_dev(adev->dev);
2471 
2472 	while (size) {
2473 		phys_addr_t addr = *pos & ~PAGE_MASK;
2474 		loff_t off = *pos & PAGE_MASK;
2475 		size_t bytes = PAGE_SIZE - off;
2476 		unsigned long pfn;
2477 		struct vm_page *p;
2478 		void *ptr;
2479 
2480 		bytes = bytes < size ? bytes : size;
2481 
2482 		/* Translate the bus address to a physical address.  If
2483 		 * the domain is NULL it means there is no IOMMU active
2484 		 * and the address translation is the identity
2485 		 */
2486 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2487 
2488 		pfn = addr >> PAGE_SHIFT;
2489 		if (!pfn_valid(pfn))
2490 			return -EPERM;
2491 
2492 		p = pfn_to_page(pfn);
2493 		if (p->mapping != adev->mman.bdev.dev_mapping)
2494 			return -EPERM;
2495 
2496 		ptr = kmap(p);
2497 		r = copy_to_user(buf, ptr + off, bytes);
2498 		kunmap(ptr);
2499 		if (r)
2500 			return -EFAULT;
2501 
2502 		size -= bytes;
2503 		*pos += bytes;
2504 		result += bytes;
2505 	}
2506 
2507 	return result;
2508 }
2509 
2510 /**
2511  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2512  *
2513  * This function is used to write memory that has been mapped to the
2514  * GPU and the known addresses are not physical addresses but instead
2515  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2516  */
2517 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2518 				 size_t size, loff_t *pos)
2519 {
2520 	struct amdgpu_device *adev = file_inode(f)->i_private;
2521 	struct iommu_domain *dom;
2522 	ssize_t result = 0;
2523 	int r;
2524 
2525 	dom = iommu_get_domain_for_dev(adev->dev);
2526 
2527 	while (size) {
2528 		phys_addr_t addr = *pos & ~PAGE_MASK;
2529 		loff_t off = *pos & PAGE_MASK;
2530 		size_t bytes = PAGE_SIZE - off;
2531 		unsigned long pfn;
2532 		struct vm_page *p;
2533 		void *ptr;
2534 
2535 		bytes = bytes < size ? bytes : size;
2536 
2537 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2538 
2539 		pfn = addr >> PAGE_SHIFT;
2540 		if (!pfn_valid(pfn))
2541 			return -EPERM;
2542 
2543 		p = pfn_to_page(pfn);
2544 		if (p->mapping != adev->mman.bdev.dev_mapping)
2545 			return -EPERM;
2546 
2547 		ptr = kmap(p);
2548 		r = copy_from_user(ptr + off, buf, bytes);
2549 		kunmap(ptr);
2550 		if (r)
2551 			return -EFAULT;
2552 
2553 		size -= bytes;
2554 		*pos += bytes;
2555 		result += bytes;
2556 	}
2557 
2558 	return result;
2559 }
2560 
2561 static const struct file_operations amdgpu_ttm_iomem_fops = {
2562 	.owner = THIS_MODULE,
2563 	.read = amdgpu_iomem_read,
2564 	.write = amdgpu_iomem_write,
2565 	.llseek = default_llseek
2566 };
2567 
2568 static const struct {
2569 	char *name;
2570 	const struct file_operations *fops;
2571 	int domain;
2572 } ttm_debugfs_entries[] = {
2573 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2574 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2575 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2576 #endif
2577 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2578 };
2579 
2580 #endif
2581 
2582 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2583 {
2584 #if defined(CONFIG_DEBUG_FS)
2585 	unsigned count;
2586 
2587 	struct drm_minor *minor = adev->ddev->primary;
2588 	struct dentry *ent, *root = minor->debugfs_root;
2589 
2590 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2591 		ent = debugfs_create_file(
2592 				ttm_debugfs_entries[count].name,
2593 				S_IFREG | S_IRUGO, root,
2594 				adev,
2595 				ttm_debugfs_entries[count].fops);
2596 		if (IS_ERR(ent))
2597 			return PTR_ERR(ent);
2598 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2599 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2600 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2601 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2602 		adev->mman.debugfs_entries[count] = ent;
2603 	}
2604 
2605 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2606 
2607 #ifdef CONFIG_SWIOTLB
2608 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2609 		--count;
2610 #endif
2611 
2612 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2613 #else
2614 	return 0;
2615 #endif
2616 }
2617 
2618 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2619 {
2620 #if defined(CONFIG_DEBUG_FS)
2621 	unsigned i;
2622 
2623 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2624 		debugfs_remove(adev->mman.debugfs_entries[i]);
2625 #endif
2626 }
2627