1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 #include <drm/ttm/ttm_bo_api.h> 33 #include <drm/ttm/ttm_bo_driver.h> 34 #include <drm/ttm/ttm_placement.h> 35 #include <drm/ttm/ttm_module.h> 36 #include <drm/ttm/ttm_page_alloc.h> 37 #include <drm/drmP.h> 38 #include <drm/amdgpu_drm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swiotlb.h> 42 #include <linux/swap.h> 43 #include <linux/pagemap.h> 44 #include <linux/debugfs.h> 45 #include <linux/iommu.h> 46 #include "amdgpu.h" 47 #include "amdgpu_object.h" 48 #include "amdgpu_trace.h" 49 #include "amdgpu_amdkfd.h" 50 #include "bif/bif_4_1_d.h" 51 52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT) 53 54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 55 struct ttm_mem_reg *mem, unsigned num_pages, 56 uint64_t offset, unsigned window, 57 struct amdgpu_ring *ring, 58 uint64_t *addr); 59 60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 62 63 /* 64 * Global memory. 65 */ 66 67 /** 68 * amdgpu_ttm_mem_global_init - Initialize and acquire reference to 69 * memory object 70 * 71 * @ref: Object for initialization. 72 * 73 * This is called by drm_global_item_ref() when an object is being 74 * initialized. 75 */ 76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref) 77 { 78 return ttm_mem_global_init(ref->object); 79 } 80 81 /** 82 * amdgpu_ttm_mem_global_release - Drop reference to a memory object 83 * 84 * @ref: Object being removed 85 * 86 * This is called by drm_global_item_unref() when an object is being 87 * released. 88 */ 89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref) 90 { 91 ttm_mem_global_release(ref->object); 92 } 93 94 /** 95 * amdgpu_ttm_global_init - Initialize global TTM memory reference structures. 96 * 97 * @adev: AMDGPU device for which the global structures need to be registered. 98 * 99 * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init() 100 * during bring up. 101 */ 102 static int amdgpu_ttm_global_init(struct amdgpu_device *adev) 103 { 104 struct drm_global_reference *global_ref; 105 int r; 106 107 /* ensure reference is false in case init fails */ 108 adev->mman.mem_global_referenced = false; 109 110 global_ref = &adev->mman.mem_global_ref; 111 global_ref->global_type = DRM_GLOBAL_TTM_MEM; 112 global_ref->size = sizeof(struct ttm_mem_global); 113 global_ref->init = &amdgpu_ttm_mem_global_init; 114 global_ref->release = &amdgpu_ttm_mem_global_release; 115 r = drm_global_item_ref(global_ref); 116 if (r) { 117 DRM_ERROR("Failed setting up TTM memory accounting " 118 "subsystem.\n"); 119 goto error_mem; 120 } 121 122 adev->mman.bo_global_ref.mem_glob = 123 adev->mman.mem_global_ref.object; 124 global_ref = &adev->mman.bo_global_ref.ref; 125 global_ref->global_type = DRM_GLOBAL_TTM_BO; 126 global_ref->size = sizeof(struct ttm_bo_global); 127 global_ref->init = &ttm_bo_global_init; 128 global_ref->release = &ttm_bo_global_release; 129 r = drm_global_item_ref(global_ref); 130 if (r) { 131 DRM_ERROR("Failed setting up TTM BO subsystem.\n"); 132 goto error_bo; 133 } 134 135 rw_init(&adev->mman.gtt_window_lock, "gttwin"); 136 137 adev->mman.mem_global_referenced = true; 138 139 return 0; 140 141 error_bo: 142 drm_global_item_unref(&adev->mman.mem_global_ref); 143 error_mem: 144 return r; 145 } 146 147 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev) 148 { 149 if (adev->mman.mem_global_referenced) { 150 mutex_destroy(&adev->mman.gtt_window_lock); 151 drm_global_item_unref(&adev->mman.bo_global_ref.ref); 152 drm_global_item_unref(&adev->mman.mem_global_ref); 153 adev->mman.mem_global_referenced = false; 154 } 155 } 156 157 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 158 { 159 return 0; 160 } 161 162 /** 163 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 164 * memory request. 165 * 166 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 167 * @type: The type of memory requested 168 * @man: The memory type manager for each domain 169 * 170 * This is called by ttm_bo_init_mm() when a buffer object is being 171 * initialized. 172 */ 173 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 174 struct ttm_mem_type_manager *man) 175 { 176 struct amdgpu_device *adev; 177 178 adev = amdgpu_ttm_adev(bdev); 179 180 switch (type) { 181 case TTM_PL_SYSTEM: 182 /* System memory */ 183 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 184 man->available_caching = TTM_PL_MASK_CACHING; 185 man->default_caching = TTM_PL_FLAG_CACHED; 186 break; 187 case TTM_PL_TT: 188 /* GTT memory */ 189 man->func = &amdgpu_gtt_mgr_func; 190 man->gpu_offset = adev->gmc.gart_start; 191 man->available_caching = TTM_PL_MASK_CACHING; 192 man->default_caching = TTM_PL_FLAG_CACHED; 193 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 194 break; 195 case TTM_PL_VRAM: 196 /* "On-card" video ram */ 197 man->func = &amdgpu_vram_mgr_func; 198 man->gpu_offset = adev->gmc.vram_start; 199 man->flags = TTM_MEMTYPE_FLAG_FIXED | 200 TTM_MEMTYPE_FLAG_MAPPABLE; 201 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 202 man->default_caching = TTM_PL_FLAG_WC; 203 break; 204 case AMDGPU_PL_GDS: 205 case AMDGPU_PL_GWS: 206 case AMDGPU_PL_OA: 207 /* On-chip GDS memory*/ 208 man->func = &ttm_bo_manager_func; 209 man->gpu_offset = 0; 210 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 211 man->available_caching = TTM_PL_FLAG_UNCACHED; 212 man->default_caching = TTM_PL_FLAG_UNCACHED; 213 break; 214 default: 215 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 216 return -EINVAL; 217 } 218 return 0; 219 } 220 221 /** 222 * amdgpu_evict_flags - Compute placement flags 223 * 224 * @bo: The buffer object to evict 225 * @placement: Possible destination(s) for evicted BO 226 * 227 * Fill in placement data when ttm_bo_evict() is called 228 */ 229 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 230 struct ttm_placement *placement) 231 { 232 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 233 struct amdgpu_bo *abo; 234 static const struct ttm_place placements = { 235 .fpfn = 0, 236 .lpfn = 0, 237 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 238 }; 239 240 /* Don't handle scatter gather BOs */ 241 if (bo->type == ttm_bo_type_sg) { 242 placement->num_placement = 0; 243 placement->num_busy_placement = 0; 244 return; 245 } 246 247 /* Object isn't an AMDGPU object so ignore */ 248 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 249 placement->placement = &placements; 250 placement->busy_placement = &placements; 251 placement->num_placement = 1; 252 placement->num_busy_placement = 1; 253 return; 254 } 255 256 abo = ttm_to_amdgpu_bo(bo); 257 switch (bo->mem.mem_type) { 258 case TTM_PL_VRAM: 259 if (!adev->mman.buffer_funcs_enabled) { 260 /* Move to system memory */ 261 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 262 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 263 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 264 amdgpu_bo_in_cpu_visible_vram(abo)) { 265 266 /* Try evicting to the CPU inaccessible part of VRAM 267 * first, but only set GTT as busy placement, so this 268 * BO will be evicted to GTT rather than causing other 269 * BOs to be evicted from VRAM 270 */ 271 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 272 AMDGPU_GEM_DOMAIN_GTT); 273 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 274 abo->placements[0].lpfn = 0; 275 abo->placement.busy_placement = &abo->placements[1]; 276 abo->placement.num_busy_placement = 1; 277 } else { 278 /* Move to GTT memory */ 279 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 280 } 281 break; 282 case TTM_PL_TT: 283 default: 284 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 285 } 286 *placement = abo->placement; 287 } 288 289 /** 290 * amdgpu_verify_access - Verify access for a mmap call 291 * 292 * @bo: The buffer object to map 293 * @filp: The file pointer from the process performing the mmap 294 * 295 * This is called by ttm_bo_mmap() to verify whether a process 296 * has the right to mmap a BO to their process space. 297 */ 298 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 299 { 300 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 301 302 /* 303 * Don't verify access for KFD BOs. They don't have a GEM 304 * object associated with them. 305 */ 306 if (abo->kfd_bo) 307 return 0; 308 309 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 310 return -EPERM; 311 return drm_vma_node_verify_access(&abo->gem_base.vma_node, filp); 312 } 313 314 /** 315 * amdgpu_move_null - Register memory for a buffer object 316 * 317 * @bo: The bo to assign the memory to 318 * @new_mem: The memory to be assigned. 319 * 320 * Assign the memory from new_mem to the memory of the buffer object bo. 321 */ 322 static void amdgpu_move_null(struct ttm_buffer_object *bo, 323 struct ttm_mem_reg *new_mem) 324 { 325 struct ttm_mem_reg *old_mem = &bo->mem; 326 327 BUG_ON(old_mem->mm_node != NULL); 328 *old_mem = *new_mem; 329 new_mem->mm_node = NULL; 330 } 331 332 /** 333 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 334 * 335 * @bo: The bo to assign the memory to. 336 * @mm_node: Memory manager node for drm allocator. 337 * @mem: The region where the bo resides. 338 * 339 */ 340 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 341 struct drm_mm_node *mm_node, 342 struct ttm_mem_reg *mem) 343 { 344 uint64_t addr = 0; 345 346 if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) { 347 addr = mm_node->start << PAGE_SHIFT; 348 addr += bo->bdev->man[mem->mem_type].gpu_offset; 349 } 350 return addr; 351 } 352 353 /** 354 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 355 * @offset. It also modifies the offset to be within the drm_mm_node returned 356 * 357 * @mem: The region where the bo resides. 358 * @offset: The offset that drm_mm_node is used for finding. 359 * 360 */ 361 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 362 unsigned long *offset) 363 { 364 struct drm_mm_node *mm_node = mem->mm_node; 365 366 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 367 *offset -= (mm_node->size << PAGE_SHIFT); 368 ++mm_node; 369 } 370 return mm_node; 371 } 372 373 /** 374 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 375 * 376 * The function copies @size bytes from {src->mem + src->offset} to 377 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 378 * move and different for a BO to BO copy. 379 * 380 * @f: Returns the last fence if multiple jobs are submitted. 381 */ 382 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 383 struct amdgpu_copy_mem *src, 384 struct amdgpu_copy_mem *dst, 385 uint64_t size, 386 struct reservation_object *resv, 387 struct dma_fence **f) 388 { 389 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 390 struct drm_mm_node *src_mm, *dst_mm; 391 uint64_t src_node_start, dst_node_start, src_node_size, 392 dst_node_size, src_page_offset, dst_page_offset; 393 struct dma_fence *fence = NULL; 394 int r = 0; 395 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 396 AMDGPU_GPU_PAGE_SIZE); 397 398 if (!adev->mman.buffer_funcs_enabled) { 399 DRM_ERROR("Trying to move memory with ring turned off.\n"); 400 return -EINVAL; 401 } 402 403 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 404 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 405 src->offset; 406 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 407 src_page_offset = src_node_start & (PAGE_SIZE - 1); 408 409 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 410 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 411 dst->offset; 412 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 413 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 414 415 mutex_lock(&adev->mman.gtt_window_lock); 416 417 while (size) { 418 unsigned long cur_size; 419 uint64_t from = src_node_start, to = dst_node_start; 420 struct dma_fence *next; 421 422 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 423 * begins at an offset, then adjust the size accordingly 424 */ 425 cur_size = min3(min(src_node_size, dst_node_size), size, 426 GTT_MAX_BYTES); 427 if (cur_size + src_page_offset > GTT_MAX_BYTES || 428 cur_size + dst_page_offset > GTT_MAX_BYTES) 429 cur_size -= max(src_page_offset, dst_page_offset); 430 431 /* Map only what needs to be accessed. Map src to window 0 and 432 * dst to window 1 433 */ 434 if (src->mem->mem_type == TTM_PL_TT && 435 !amdgpu_gtt_mgr_has_gart_addr(src->mem)) { 436 r = amdgpu_map_buffer(src->bo, src->mem, 437 PFN_UP(cur_size + src_page_offset), 438 src_node_start, 0, ring, 439 &from); 440 if (r) 441 goto error; 442 /* Adjust the offset because amdgpu_map_buffer returns 443 * start of mapped page 444 */ 445 from += src_page_offset; 446 } 447 448 if (dst->mem->mem_type == TTM_PL_TT && 449 !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) { 450 r = amdgpu_map_buffer(dst->bo, dst->mem, 451 PFN_UP(cur_size + dst_page_offset), 452 dst_node_start, 1, ring, 453 &to); 454 if (r) 455 goto error; 456 to += dst_page_offset; 457 } 458 459 r = amdgpu_copy_buffer(ring, from, to, cur_size, 460 resv, &next, false, true); 461 if (r) 462 goto error; 463 464 dma_fence_put(fence); 465 fence = next; 466 467 size -= cur_size; 468 if (!size) 469 break; 470 471 src_node_size -= cur_size; 472 if (!src_node_size) { 473 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 474 src->mem); 475 src_node_size = (src_mm->size << PAGE_SHIFT); 476 } else { 477 src_node_start += cur_size; 478 src_page_offset = src_node_start & (PAGE_SIZE - 1); 479 } 480 dst_node_size -= cur_size; 481 if (!dst_node_size) { 482 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 483 dst->mem); 484 dst_node_size = (dst_mm->size << PAGE_SHIFT); 485 } else { 486 dst_node_start += cur_size; 487 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 488 } 489 } 490 error: 491 mutex_unlock(&adev->mman.gtt_window_lock); 492 if (f) 493 *f = dma_fence_get(fence); 494 dma_fence_put(fence); 495 return r; 496 } 497 498 /** 499 * amdgpu_move_blit - Copy an entire buffer to another buffer 500 * 501 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 502 * help move buffers to and from VRAM. 503 */ 504 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 505 bool evict, bool no_wait_gpu, 506 struct ttm_mem_reg *new_mem, 507 struct ttm_mem_reg *old_mem) 508 { 509 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 510 struct amdgpu_copy_mem src, dst; 511 struct dma_fence *fence = NULL; 512 int r; 513 514 src.bo = bo; 515 dst.bo = bo; 516 src.mem = old_mem; 517 dst.mem = new_mem; 518 src.offset = 0; 519 dst.offset = 0; 520 521 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 522 new_mem->num_pages << PAGE_SHIFT, 523 bo->resv, &fence); 524 if (r) 525 goto error; 526 527 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 528 dma_fence_put(fence); 529 return r; 530 531 error: 532 if (fence) 533 dma_fence_wait(fence, false); 534 dma_fence_put(fence); 535 return r; 536 } 537 538 /** 539 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 540 * 541 * Called by amdgpu_bo_move(). 542 */ 543 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 544 struct ttm_operation_ctx *ctx, 545 struct ttm_mem_reg *new_mem) 546 { 547 struct amdgpu_device *adev; 548 struct ttm_mem_reg *old_mem = &bo->mem; 549 struct ttm_mem_reg tmp_mem; 550 struct ttm_place placements; 551 struct ttm_placement placement; 552 int r; 553 554 adev = amdgpu_ttm_adev(bo->bdev); 555 556 /* create space/pages for new_mem in GTT space */ 557 tmp_mem = *new_mem; 558 tmp_mem.mm_node = NULL; 559 placement.num_placement = 1; 560 placement.placement = &placements; 561 placement.num_busy_placement = 1; 562 placement.busy_placement = &placements; 563 placements.fpfn = 0; 564 placements.lpfn = 0; 565 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 566 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 567 if (unlikely(r)) { 568 return r; 569 } 570 571 /* set caching flags */ 572 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 573 if (unlikely(r)) { 574 goto out_cleanup; 575 } 576 577 /* Bind the memory to the GTT space */ 578 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 579 if (unlikely(r)) { 580 goto out_cleanup; 581 } 582 583 /* blit VRAM to GTT */ 584 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 585 if (unlikely(r)) { 586 goto out_cleanup; 587 } 588 589 /* move BO (in tmp_mem) to new_mem */ 590 r = ttm_bo_move_ttm(bo, ctx, new_mem); 591 out_cleanup: 592 ttm_bo_mem_put(bo, &tmp_mem); 593 return r; 594 } 595 596 /** 597 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 598 * 599 * Called by amdgpu_bo_move(). 600 */ 601 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 602 struct ttm_operation_ctx *ctx, 603 struct ttm_mem_reg *new_mem) 604 { 605 struct amdgpu_device *adev; 606 struct ttm_mem_reg *old_mem = &bo->mem; 607 struct ttm_mem_reg tmp_mem; 608 struct ttm_placement placement; 609 struct ttm_place placements; 610 int r; 611 612 adev = amdgpu_ttm_adev(bo->bdev); 613 614 /* make space in GTT for old_mem buffer */ 615 tmp_mem = *new_mem; 616 tmp_mem.mm_node = NULL; 617 placement.num_placement = 1; 618 placement.placement = &placements; 619 placement.num_busy_placement = 1; 620 placement.busy_placement = &placements; 621 placements.fpfn = 0; 622 placements.lpfn = 0; 623 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 624 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 625 if (unlikely(r)) { 626 return r; 627 } 628 629 /* move/bind old memory to GTT space */ 630 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 631 if (unlikely(r)) { 632 goto out_cleanup; 633 } 634 635 /* copy to VRAM */ 636 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 637 if (unlikely(r)) { 638 goto out_cleanup; 639 } 640 out_cleanup: 641 ttm_bo_mem_put(bo, &tmp_mem); 642 return r; 643 } 644 645 /** 646 * amdgpu_bo_move - Move a buffer object to a new memory location 647 * 648 * Called by ttm_bo_handle_move_mem() 649 */ 650 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 651 struct ttm_operation_ctx *ctx, 652 struct ttm_mem_reg *new_mem) 653 { 654 struct amdgpu_device *adev; 655 struct amdgpu_bo *abo; 656 struct ttm_mem_reg *old_mem = &bo->mem; 657 int r; 658 659 /* Can't move a pinned BO */ 660 abo = ttm_to_amdgpu_bo(bo); 661 if (WARN_ON_ONCE(abo->pin_count > 0)) 662 return -EINVAL; 663 664 adev = amdgpu_ttm_adev(bo->bdev); 665 666 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 667 amdgpu_move_null(bo, new_mem); 668 return 0; 669 } 670 if ((old_mem->mem_type == TTM_PL_TT && 671 new_mem->mem_type == TTM_PL_SYSTEM) || 672 (old_mem->mem_type == TTM_PL_SYSTEM && 673 new_mem->mem_type == TTM_PL_TT)) { 674 /* bind is enough */ 675 amdgpu_move_null(bo, new_mem); 676 return 0; 677 } 678 679 if (!adev->mman.buffer_funcs_enabled) 680 goto memcpy; 681 682 if (old_mem->mem_type == TTM_PL_VRAM && 683 new_mem->mem_type == TTM_PL_SYSTEM) { 684 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 685 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 686 new_mem->mem_type == TTM_PL_VRAM) { 687 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 688 } else { 689 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 690 new_mem, old_mem); 691 } 692 693 if (r) { 694 memcpy: 695 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 696 if (r) { 697 return r; 698 } 699 } 700 701 if (bo->type == ttm_bo_type_device && 702 new_mem->mem_type == TTM_PL_VRAM && 703 old_mem->mem_type != TTM_PL_VRAM) { 704 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 705 * accesses the BO after it's moved. 706 */ 707 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 708 } 709 710 /* update statistics */ 711 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 712 return 0; 713 } 714 715 /** 716 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 717 * 718 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 719 */ 720 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 721 { 722 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 723 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 724 struct drm_mm_node *mm_node = mem->mm_node; 725 726 mem->bus.addr = NULL; 727 mem->bus.offset = 0; 728 mem->bus.size = mem->num_pages << PAGE_SHIFT; 729 mem->bus.base = 0; 730 mem->bus.is_iomem = false; 731 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 732 return -EINVAL; 733 switch (mem->mem_type) { 734 case TTM_PL_SYSTEM: 735 /* system memory */ 736 return 0; 737 case TTM_PL_TT: 738 break; 739 case TTM_PL_VRAM: 740 mem->bus.offset = mem->start << PAGE_SHIFT; 741 /* check if it's visible */ 742 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 743 return -EINVAL; 744 /* Only physically contiguous buffers apply. In a contiguous 745 * buffer, size of the first mm_node would match the number of 746 * pages in ttm_mem_reg. 747 */ 748 if (adev->mman.aper_base_kaddr && 749 (mm_node->size == mem->num_pages)) 750 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 751 mem->bus.offset; 752 753 mem->bus.base = adev->gmc.aper_base; 754 mem->bus.is_iomem = true; 755 break; 756 default: 757 return -EINVAL; 758 } 759 return 0; 760 } 761 762 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 763 { 764 } 765 766 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 767 unsigned long page_offset) 768 { 769 struct drm_mm_node *mm; 770 unsigned long offset = (page_offset << PAGE_SHIFT); 771 772 mm = amdgpu_find_mm_node(&bo->mem, &offset); 773 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 774 (offset >> PAGE_SHIFT); 775 } 776 777 /* 778 * TTM backend functions. 779 */ 780 struct amdgpu_ttm_gup_task_list { 781 struct list_head list; 782 struct task_struct *task; 783 }; 784 785 struct amdgpu_ttm_tt { 786 struct ttm_dma_tt ttm; 787 struct amdgpu_device *adev; 788 u64 offset; 789 uint64_t userptr; 790 struct task_struct *usertask; 791 uint32_t userflags; 792 spinlock_t guptasklock; 793 struct list_head guptasks; 794 atomic_t mmu_invalidations; 795 uint32_t last_set_pages; 796 797 bus_dmamap_t map; 798 bus_dma_segment_t *segs; 799 }; 800 801 /** 802 * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR 803 * pointer to memory 804 * 805 * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos(). 806 * This provides a wrapper around the get_user_pages() call to provide 807 * device accessible pages that back user memory. 808 */ 809 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct vm_page **pages) 810 { 811 STUB(); 812 return -ENOSYS; 813 #if 0 814 struct amdgpu_ttm_tt *gtt = (void *)ttm; 815 struct mm_struct *mm = gtt->usertask->mm; 816 unsigned int flags = 0; 817 unsigned pinned = 0; 818 int r; 819 820 if (!mm) /* Happens during process shutdown */ 821 return -ESRCH; 822 823 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 824 flags |= FOLL_WRITE; 825 826 down_read(&mm->mmap_sem); 827 828 if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) { 829 /* 830 * check that we only use anonymous memory to prevent problems 831 * with writeback 832 */ 833 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE; 834 struct vm_area_struct *vma; 835 836 vma = find_vma(mm, gtt->userptr); 837 if (!vma || vma->vm_file || vma->vm_end < end) { 838 up_read(&mm->mmap_sem); 839 return -EPERM; 840 } 841 } 842 843 /* loop enough times using contiguous pages of memory */ 844 do { 845 unsigned num_pages = ttm->num_pages - pinned; 846 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE; 847 struct vm_page **p = pages + pinned; 848 struct amdgpu_ttm_gup_task_list guptask; 849 850 guptask.task = current; 851 spin_lock(>t->guptasklock); 852 list_add(&guptask.list, >t->guptasks); 853 spin_unlock(>t->guptasklock); 854 855 if (mm == current->mm) 856 r = get_user_pages(userptr, num_pages, flags, p, NULL); 857 else 858 r = get_user_pages_remote(gtt->usertask, 859 mm, userptr, num_pages, 860 flags, p, NULL, NULL); 861 862 spin_lock(>t->guptasklock); 863 list_del(&guptask.list); 864 spin_unlock(>t->guptasklock); 865 866 if (r < 0) 867 goto release_pages; 868 869 pinned += r; 870 871 } while (pinned < ttm->num_pages); 872 873 up_read(&mm->mmap_sem); 874 return 0; 875 876 release_pages: 877 release_pages(pages, pinned); 878 up_read(&mm->mmap_sem); 879 return r; 880 #endif 881 } 882 883 /** 884 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 885 * 886 * Called by amdgpu_cs_list_validate(). This creates the page list 887 * that backs user memory and will ultimately be mapped into the device 888 * address space. 889 */ 890 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages) 891 { 892 STUB(); 893 #if 0 894 struct amdgpu_ttm_tt *gtt = (void *)ttm; 895 unsigned i; 896 897 gtt->last_set_pages = atomic_read(>t->mmu_invalidations); 898 for (i = 0; i < ttm->num_pages; ++i) { 899 if (ttm->pages[i]) 900 put_page(ttm->pages[i]); 901 902 ttm->pages[i] = pages ? pages[i] : NULL; 903 } 904 #endif 905 } 906 907 /** 908 * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty 909 * 910 * Called while unpinning userptr pages 911 */ 912 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm) 913 { 914 STUB(); 915 #if 0 916 struct amdgpu_ttm_tt *gtt = (void *)ttm; 917 unsigned i; 918 919 for (i = 0; i < ttm->num_pages; ++i) { 920 struct vm_page *page = ttm->pages[i]; 921 922 if (!page) 923 continue; 924 925 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 926 set_page_dirty(page); 927 928 mark_page_accessed(page); 929 } 930 #endif 931 } 932 933 /** 934 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 935 * 936 * Called by amdgpu_ttm_backend_bind() 937 **/ 938 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 939 { 940 STUB(); 941 return -ENOSYS; 942 #if 0 943 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 944 struct amdgpu_ttm_tt *gtt = (void *)ttm; 945 unsigned nents; 946 int r; 947 948 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 949 enum dma_data_direction direction = write ? 950 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 951 952 /* Allocate an SG array and squash pages into it */ 953 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 954 ttm->num_pages << PAGE_SHIFT, 955 GFP_KERNEL); 956 if (r) 957 goto release_sg; 958 959 /* Map SG to device */ 960 r = -ENOMEM; 961 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 962 if (nents != ttm->sg->nents) 963 goto release_sg; 964 965 /* convert SG to linear array of pages and dma addresses */ 966 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 967 gtt->ttm.dma_address, ttm->num_pages); 968 969 return 0; 970 971 release_sg: 972 kfree(ttm->sg); 973 return r; 974 #endif 975 } 976 977 /** 978 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 979 */ 980 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 981 { 982 STUB(); 983 #if 0 984 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 985 struct amdgpu_ttm_tt *gtt = (void *)ttm; 986 987 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 988 enum dma_data_direction direction = write ? 989 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 990 991 /* double check that we don't free the table twice */ 992 if (!ttm->sg->sgl) 993 return; 994 995 /* unmap the pages mapped to the device */ 996 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 997 998 /* mark the pages as dirty */ 999 amdgpu_ttm_tt_mark_user_pages(ttm); 1000 1001 sg_free_table(ttm->sg); 1002 #endif 1003 } 1004 1005 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1006 struct ttm_buffer_object *tbo, 1007 uint64_t flags) 1008 { 1009 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1010 struct ttm_tt *ttm = tbo->ttm; 1011 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1012 int r; 1013 1014 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 1015 uint64_t page_idx = 1; 1016 1017 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1018 ttm->pages, gtt->ttm.dma_address, flags); 1019 if (r) 1020 goto gart_bind_fail; 1021 1022 /* Patch mtype of the second part BO */ 1023 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1024 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC); 1025 1026 r = amdgpu_gart_bind(adev, 1027 gtt->offset + (page_idx << PAGE_SHIFT), 1028 ttm->num_pages - page_idx, 1029 &ttm->pages[page_idx], 1030 &(gtt->ttm.dma_address[page_idx]), flags); 1031 } else { 1032 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1033 ttm->pages, gtt->ttm.dma_address, flags); 1034 } 1035 1036 gart_bind_fail: 1037 if (r) 1038 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1039 ttm->num_pages, gtt->offset); 1040 1041 return r; 1042 } 1043 1044 /** 1045 * amdgpu_ttm_backend_bind - Bind GTT memory 1046 * 1047 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1048 * This handles binding GTT memory to the device address space. 1049 */ 1050 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1051 struct ttm_mem_reg *bo_mem) 1052 { 1053 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1054 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1055 uint64_t flags; 1056 int r = 0; 1057 1058 if (gtt->userptr) { 1059 r = amdgpu_ttm_tt_pin_userptr(ttm); 1060 if (r) { 1061 DRM_ERROR("failed to pin userptr\n"); 1062 return r; 1063 } 1064 } 1065 if (!ttm->num_pages) { 1066 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1067 ttm->num_pages, bo_mem, ttm); 1068 } 1069 1070 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1071 bo_mem->mem_type == AMDGPU_PL_GWS || 1072 bo_mem->mem_type == AMDGPU_PL_OA) 1073 return -EINVAL; 1074 1075 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1076 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1077 return 0; 1078 } 1079 1080 /* compute PTE flags relevant to this BO memory */ 1081 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1082 1083 /* bind pages into GART page tables */ 1084 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1085 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1086 ttm->pages, gtt->ttm.dma_address, flags); 1087 1088 if (r) 1089 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1090 ttm->num_pages, gtt->offset); 1091 return r; 1092 } 1093 1094 /** 1095 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1096 */ 1097 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1098 { 1099 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1100 struct ttm_operation_ctx ctx = { false, false }; 1101 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1102 struct ttm_mem_reg tmp; 1103 struct ttm_placement placement; 1104 struct ttm_place placements; 1105 uint64_t flags; 1106 int r; 1107 1108 if (bo->mem.mem_type != TTM_PL_TT || 1109 amdgpu_gtt_mgr_has_gart_addr(&bo->mem)) 1110 return 0; 1111 1112 /* allocate GTT space */ 1113 tmp = bo->mem; 1114 tmp.mm_node = NULL; 1115 placement.num_placement = 1; 1116 placement.placement = &placements; 1117 placement.num_busy_placement = 1; 1118 placement.busy_placement = &placements; 1119 placements.fpfn = 0; 1120 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1121 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1122 TTM_PL_FLAG_TT; 1123 1124 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1125 if (unlikely(r)) 1126 return r; 1127 1128 /* compute PTE flags for this buffer object */ 1129 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1130 1131 /* Bind pages */ 1132 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1133 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1134 if (unlikely(r)) { 1135 ttm_bo_mem_put(bo, &tmp); 1136 return r; 1137 } 1138 1139 ttm_bo_mem_put(bo, &bo->mem); 1140 bo->mem = tmp; 1141 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1142 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1143 1144 return 0; 1145 } 1146 1147 /** 1148 * amdgpu_ttm_recover_gart - Rebind GTT pages 1149 * 1150 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1151 * rebind GTT pages during a GPU reset. 1152 */ 1153 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1154 { 1155 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1156 uint64_t flags; 1157 int r; 1158 1159 if (!tbo->ttm) 1160 return 0; 1161 1162 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1163 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1164 1165 return r; 1166 } 1167 1168 /** 1169 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1170 * 1171 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1172 * ttm_tt_destroy(). 1173 */ 1174 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1175 { 1176 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1177 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1178 int r; 1179 1180 /* if the pages have userptr pinning then clear that first */ 1181 if (gtt->userptr) 1182 amdgpu_ttm_tt_unpin_userptr(ttm); 1183 1184 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1185 return 0; 1186 1187 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1188 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1189 if (r) 1190 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1191 gtt->ttm.ttm.num_pages, gtt->offset); 1192 return r; 1193 } 1194 1195 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1196 { 1197 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1198 1199 #ifdef notyet 1200 if (gtt->usertask) 1201 put_task_struct(gtt->usertask); 1202 #endif 1203 1204 bus_dmamap_destroy(gtt->adev->dmat, gtt->map); 1205 free(gtt->segs, M_DRM, 0); 1206 1207 ttm_dma_tt_fini(>t->ttm); 1208 kfree(gtt); 1209 } 1210 1211 static struct ttm_backend_func amdgpu_backend_func = { 1212 .bind = &amdgpu_ttm_backend_bind, 1213 .unbind = &amdgpu_ttm_backend_unbind, 1214 .destroy = &amdgpu_ttm_backend_destroy, 1215 }; 1216 1217 /** 1218 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1219 * 1220 * @bo: The buffer object to create a GTT ttm_tt object around 1221 * 1222 * Called by ttm_tt_create(). 1223 */ 1224 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1225 uint32_t page_flags) 1226 { 1227 struct amdgpu_device *adev; 1228 struct amdgpu_ttm_tt *gtt; 1229 unsigned long size = bo->num_pages << PAGE_SHIFT; 1230 1231 adev = amdgpu_ttm_adev(bo->bdev); 1232 1233 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1234 if (gtt == NULL) { 1235 return NULL; 1236 } 1237 gtt->ttm.ttm.func = &amdgpu_backend_func; 1238 gtt->adev = adev; 1239 1240 /* allocate space for the uninitialized page entries */ 1241 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1242 kfree(gtt); 1243 return NULL; 1244 } 1245 1246 gtt->segs = mallocarray(gtt->ttm.ttm.num_pages, 1247 sizeof(bus_dma_segment_t), M_DRM, M_WAITOK | M_ZERO); 1248 1249 if (bus_dmamap_create(adev->dmat, size, gtt->ttm.ttm.num_pages, size, 1250 0, BUS_DMA_WAITOK, >t->map)) { 1251 free(gtt->segs, M_DRM, 0); 1252 ttm_dma_tt_fini(>t->ttm); 1253 free(gtt, M_DRM, 0); 1254 return NULL; 1255 } 1256 1257 return >t->ttm.ttm; 1258 } 1259 1260 /** 1261 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1262 * 1263 * Map the pages of a ttm_tt object to an address space visible 1264 * to the underlying device. 1265 */ 1266 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1267 struct ttm_operation_ctx *ctx) 1268 { 1269 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1270 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1271 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1272 1273 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1274 if (gtt && gtt->userptr) { 1275 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1276 if (!ttm->sg) 1277 return -ENOMEM; 1278 1279 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1280 ttm->state = tt_unbound; 1281 return 0; 1282 } 1283 1284 if (slave && ttm->sg) { 1285 #ifdef notyet 1286 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1287 gtt->ttm.dma_address, 1288 ttm->num_pages); 1289 #endif 1290 ttm->state = tt_unbound; 1291 return 0; 1292 } 1293 1294 #ifdef CONFIG_SWIOTLB 1295 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1296 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1297 } 1298 #endif 1299 1300 /* fall back to generic helper to populate the page array 1301 * and map them to the device */ 1302 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1303 } 1304 1305 /** 1306 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1307 * 1308 * Unmaps pages of a ttm_tt object from the device address space and 1309 * unpopulates the page array backing it. 1310 */ 1311 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1312 { 1313 struct amdgpu_device *adev; 1314 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1315 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1316 1317 if (gtt && gtt->userptr) { 1318 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1319 kfree(ttm->sg); 1320 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1321 return; 1322 } 1323 1324 if (slave) 1325 return; 1326 1327 adev = amdgpu_ttm_adev(ttm->bdev); 1328 1329 #ifdef CONFIG_SWIOTLB 1330 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1331 ttm_dma_unpopulate(>t->ttm, adev->dev); 1332 return; 1333 } 1334 #endif 1335 1336 /* fall back to generic helper to unmap and unpopulate array */ 1337 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1338 } 1339 1340 /** 1341 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1342 * task 1343 * 1344 * @ttm: The ttm_tt object to bind this userptr object to 1345 * @addr: The address in the current tasks VM space to use 1346 * @flags: Requirements of userptr object. 1347 * 1348 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1349 * to current task 1350 */ 1351 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1352 uint32_t flags) 1353 { 1354 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1355 1356 if (gtt == NULL) 1357 return -EINVAL; 1358 1359 gtt->userptr = addr; 1360 gtt->userflags = flags; 1361 1362 #ifdef notyet 1363 if (gtt->usertask) 1364 put_task_struct(gtt->usertask); 1365 gtt->usertask = current->group_leader; 1366 get_task_struct(gtt->usertask); 1367 #endif 1368 1369 mtx_init(>t->guptasklock, IPL_TTY); 1370 INIT_LIST_HEAD(>t->guptasks); 1371 atomic_set(>t->mmu_invalidations, 0); 1372 gtt->last_set_pages = 0; 1373 1374 return 0; 1375 } 1376 1377 /** 1378 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1379 */ 1380 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1381 { 1382 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1383 1384 if (gtt == NULL) 1385 return NULL; 1386 1387 if (gtt->usertask == NULL) 1388 return NULL; 1389 1390 #if 0 1391 return gtt->usertask->mm; 1392 #else 1393 STUB(); 1394 return NULL; 1395 #endif 1396 } 1397 1398 /** 1399 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1400 * address range for the current task. 1401 * 1402 */ 1403 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1404 unsigned long end) 1405 { 1406 STUB(); 1407 return false; 1408 #if 0 1409 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1410 struct amdgpu_ttm_gup_task_list *entry; 1411 unsigned long size; 1412 1413 if (gtt == NULL || !gtt->userptr) 1414 return false; 1415 1416 /* Return false if no part of the ttm_tt object lies within 1417 * the range 1418 */ 1419 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1420 if (gtt->userptr > end || gtt->userptr + size <= start) 1421 return false; 1422 1423 /* Search the lists of tasks that hold this mapping and see 1424 * if current is one of them. If it is return false. 1425 */ 1426 spin_lock(>t->guptasklock); 1427 list_for_each_entry(entry, >t->guptasks, list) { 1428 if (entry->task == current) { 1429 spin_unlock(>t->guptasklock); 1430 return false; 1431 } 1432 } 1433 spin_unlock(>t->guptasklock); 1434 1435 atomic_inc(>t->mmu_invalidations); 1436 1437 return true; 1438 #endif 1439 } 1440 1441 /** 1442 * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated? 1443 */ 1444 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm, 1445 int *last_invalidated) 1446 { 1447 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1448 int prev_invalidated = *last_invalidated; 1449 1450 *last_invalidated = atomic_read(>t->mmu_invalidations); 1451 return prev_invalidated != *last_invalidated; 1452 } 1453 1454 /** 1455 * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object 1456 * been invalidated since the last time they've been set? 1457 */ 1458 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm) 1459 { 1460 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1461 1462 if (gtt == NULL || !gtt->userptr) 1463 return false; 1464 1465 return atomic_read(>t->mmu_invalidations) != gtt->last_set_pages; 1466 } 1467 1468 /** 1469 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1470 */ 1471 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1472 { 1473 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1474 1475 if (gtt == NULL) 1476 return false; 1477 1478 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1479 } 1480 1481 /** 1482 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1483 * 1484 * @ttm: The ttm_tt object to compute the flags for 1485 * @mem: The memory registry backing this ttm_tt object 1486 */ 1487 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1488 struct ttm_mem_reg *mem) 1489 { 1490 uint64_t flags = 0; 1491 1492 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1493 flags |= AMDGPU_PTE_VALID; 1494 1495 if (mem && mem->mem_type == TTM_PL_TT) { 1496 flags |= AMDGPU_PTE_SYSTEM; 1497 1498 if (ttm->caching_state == tt_cached) 1499 flags |= AMDGPU_PTE_SNOOPED; 1500 } 1501 1502 flags |= adev->gart.gart_pte_flags; 1503 flags |= AMDGPU_PTE_READABLE; 1504 1505 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1506 flags |= AMDGPU_PTE_WRITEABLE; 1507 1508 return flags; 1509 } 1510 1511 /** 1512 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1513 * object. 1514 * 1515 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1516 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1517 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1518 * used to clean out a memory space. 1519 */ 1520 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1521 const struct ttm_place *place) 1522 { 1523 STUB(); 1524 unsigned long num_pages = bo->mem.num_pages; 1525 struct drm_mm_node *node = bo->mem.mm_node; 1526 struct reservation_object_list *flist; 1527 struct dma_fence *f; 1528 int i; 1529 1530 /* If bo is a KFD BO, check if the bo belongs to the current process. 1531 * If true, then return false as any KFD process needs all its BOs to 1532 * be resident to run successfully 1533 */ 1534 flist = reservation_object_get_list(bo->resv); 1535 if (flist) { 1536 for (i = 0; i < flist->shared_count; ++i) { 1537 f = rcu_dereference_protected(flist->shared[i], 1538 reservation_object_held(bo->resv)); 1539 #ifdef notyet 1540 if (amdkfd_fence_check_mm(f, current->mm)) 1541 return false; 1542 #endif 1543 } 1544 } 1545 1546 switch (bo->mem.mem_type) { 1547 case TTM_PL_TT: 1548 return true; 1549 1550 case TTM_PL_VRAM: 1551 /* Check each drm MM node individually */ 1552 while (num_pages) { 1553 if (place->fpfn < (node->start + node->size) && 1554 !(place->lpfn && place->lpfn <= node->start)) 1555 return true; 1556 1557 num_pages -= node->size; 1558 ++node; 1559 } 1560 return false; 1561 1562 default: 1563 break; 1564 } 1565 1566 return ttm_bo_eviction_valuable(bo, place); 1567 } 1568 1569 /** 1570 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1571 * 1572 * @bo: The buffer object to read/write 1573 * @offset: Offset into buffer object 1574 * @buf: Secondary buffer to write/read from 1575 * @len: Length in bytes of access 1576 * @write: true if writing 1577 * 1578 * This is used to access VRAM that backs a buffer object via MMIO 1579 * access for debugging purposes. 1580 */ 1581 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1582 unsigned long offset, 1583 void *buf, int len, int write) 1584 { 1585 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1586 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1587 struct drm_mm_node *nodes; 1588 uint32_t value = 0; 1589 int ret = 0; 1590 uint64_t pos; 1591 unsigned long flags; 1592 1593 if (bo->mem.mem_type != TTM_PL_VRAM) 1594 return -EIO; 1595 1596 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1597 pos = (nodes->start << PAGE_SHIFT) + offset; 1598 1599 while (len && pos < adev->gmc.mc_vram_size) { 1600 uint64_t aligned_pos = pos & ~(uint64_t)3; 1601 uint32_t bytes = 4 - (pos & 3); 1602 uint32_t shift = (pos & 3) * 8; 1603 uint32_t mask = 0xffffffff << shift; 1604 1605 if (len < bytes) { 1606 mask &= 0xffffffff >> (bytes - len) * 8; 1607 bytes = len; 1608 } 1609 1610 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1611 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1612 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1613 if (!write || mask != 0xffffffff) 1614 value = RREG32_NO_KIQ(mmMM_DATA); 1615 if (write) { 1616 value &= ~mask; 1617 value |= (*(uint32_t *)buf << shift) & mask; 1618 WREG32_NO_KIQ(mmMM_DATA, value); 1619 } 1620 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1621 if (!write) { 1622 value = (value & mask) >> shift; 1623 memcpy(buf, &value, bytes); 1624 } 1625 1626 ret += bytes; 1627 buf = (uint8_t *)buf + bytes; 1628 pos += bytes; 1629 len -= bytes; 1630 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1631 ++nodes; 1632 pos = (nodes->start << PAGE_SHIFT); 1633 } 1634 } 1635 1636 return ret; 1637 } 1638 1639 static struct ttm_bo_driver amdgpu_bo_driver = { 1640 .ttm_tt_create = &amdgpu_ttm_tt_create, 1641 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1642 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1643 .invalidate_caches = &amdgpu_invalidate_caches, 1644 .init_mem_type = &amdgpu_init_mem_type, 1645 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1646 .evict_flags = &amdgpu_evict_flags, 1647 .move = &amdgpu_bo_move, 1648 .verify_access = &amdgpu_verify_access, 1649 .move_notify = &amdgpu_bo_move_notify, 1650 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1651 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1652 .io_mem_free = &amdgpu_ttm_io_mem_free, 1653 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1654 .access_memory = &amdgpu_ttm_access_memory 1655 }; 1656 1657 /* 1658 * Firmware Reservation functions 1659 */ 1660 /** 1661 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1662 * 1663 * @adev: amdgpu_device pointer 1664 * 1665 * free fw reserved vram if it has been reserved. 1666 */ 1667 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1668 { 1669 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1670 NULL, &adev->fw_vram_usage.va); 1671 } 1672 1673 /** 1674 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1675 * 1676 * @adev: amdgpu_device pointer 1677 * 1678 * create bo vram reservation from fw. 1679 */ 1680 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1681 { 1682 struct ttm_operation_ctx ctx = { false, false }; 1683 struct amdgpu_bo_param bp; 1684 int r = 0; 1685 int i; 1686 u64 vram_size = adev->gmc.visible_vram_size; 1687 u64 offset = adev->fw_vram_usage.start_offset; 1688 u64 size = adev->fw_vram_usage.size; 1689 struct amdgpu_bo *bo; 1690 1691 memset(&bp, 0, sizeof(bp)); 1692 bp.size = adev->fw_vram_usage.size; 1693 bp.byte_align = PAGE_SIZE; 1694 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1695 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1696 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1697 bp.type = ttm_bo_type_kernel; 1698 bp.resv = NULL; 1699 adev->fw_vram_usage.va = NULL; 1700 adev->fw_vram_usage.reserved_bo = NULL; 1701 1702 if (adev->fw_vram_usage.size > 0 && 1703 adev->fw_vram_usage.size <= vram_size) { 1704 1705 r = amdgpu_bo_create(adev, &bp, 1706 &adev->fw_vram_usage.reserved_bo); 1707 if (r) 1708 goto error_create; 1709 1710 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1711 if (r) 1712 goto error_reserve; 1713 1714 /* remove the original mem node and create a new one at the 1715 * request position 1716 */ 1717 bo = adev->fw_vram_usage.reserved_bo; 1718 offset = roundup2(offset, PAGE_SIZE); 1719 for (i = 0; i < bo->placement.num_placement; ++i) { 1720 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1721 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1722 } 1723 1724 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1725 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1726 &bo->tbo.mem, &ctx); 1727 if (r) 1728 goto error_pin; 1729 1730 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1731 AMDGPU_GEM_DOMAIN_VRAM, 1732 adev->fw_vram_usage.start_offset, 1733 (adev->fw_vram_usage.start_offset + 1734 adev->fw_vram_usage.size)); 1735 if (r) 1736 goto error_pin; 1737 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1738 &adev->fw_vram_usage.va); 1739 if (r) 1740 goto error_kmap; 1741 1742 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1743 } 1744 return r; 1745 1746 error_kmap: 1747 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1748 error_pin: 1749 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1750 error_reserve: 1751 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1752 error_create: 1753 adev->fw_vram_usage.va = NULL; 1754 adev->fw_vram_usage.reserved_bo = NULL; 1755 return r; 1756 } 1757 /** 1758 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1759 * gtt/vram related fields. 1760 * 1761 * This initializes all of the memory space pools that the TTM layer 1762 * will need such as the GTT space (system memory mapped to the device), 1763 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1764 * can be mapped per VMID. 1765 */ 1766 int amdgpu_ttm_init(struct amdgpu_device *adev) 1767 { 1768 uint64_t gtt_size; 1769 int r; 1770 u64 vis_vram_limit; 1771 1772 /* initialize global references for vram/gtt */ 1773 r = amdgpu_ttm_global_init(adev); 1774 if (r) { 1775 return r; 1776 } 1777 /* No others user of address space so set it to 0 */ 1778 #ifdef notyet 1779 r = ttm_bo_device_init(&adev->mman.bdev, 1780 adev->mman.bo_global_ref.ref.object, 1781 &amdgpu_bo_driver, 1782 adev->ddev->anon_inode->i_mapping, 1783 DRM_FILE_PAGE_OFFSET, 1784 adev->need_dma32); 1785 #else 1786 r = ttm_bo_device_init(&adev->mman.bdev, 1787 adev->mman.bo_global_ref.ref.object, 1788 &amdgpu_bo_driver, 1789 /*adev->ddev->anon_inode->i_mapping*/ NULL, 1790 DRM_FILE_PAGE_OFFSET, 1791 adev->need_dma32); 1792 #endif 1793 if (r) { 1794 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1795 return r; 1796 } 1797 adev->mman.bdev.iot = adev->iot; 1798 adev->mman.bdev.memt = adev->memt; 1799 adev->mman.bdev.dmat = adev->dmat; 1800 adev->mman.initialized = true; 1801 1802 /* We opt to avoid OOM on system pages allocations */ 1803 adev->mman.bdev.no_retry = true; 1804 1805 /* Initialize VRAM pool with all of VRAM divided into pages */ 1806 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1807 adev->gmc.real_vram_size >> PAGE_SHIFT); 1808 if (r) { 1809 DRM_ERROR("Failed initializing VRAM heap.\n"); 1810 return r; 1811 } 1812 1813 /* Reduce size of CPU-visible VRAM if requested */ 1814 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1815 if (amdgpu_vis_vram_limit > 0 && 1816 vis_vram_limit <= adev->gmc.visible_vram_size) 1817 adev->gmc.visible_vram_size = vis_vram_limit; 1818 1819 /* Change the size here instead of the init above so only lpfn is affected */ 1820 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1821 #ifdef CONFIG_64BIT 1822 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1823 adev->gmc.visible_vram_size); 1824 #endif 1825 1826 /* 1827 *The reserved vram for firmware must be pinned to the specified 1828 *place on the VRAM, so reserve it early. 1829 */ 1830 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1831 if (r) { 1832 return r; 1833 } 1834 1835 /* allocate memory as required for VGA 1836 * This is used for VGA emulation and pre-OS scanout buffers to 1837 * avoid display artifacts while transitioning between pre-OS 1838 * and driver. */ 1839 if (adev->gmc.stolen_size) { 1840 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1841 AMDGPU_GEM_DOMAIN_VRAM, 1842 &adev->stolen_vga_memory, 1843 NULL, NULL); 1844 if (r) 1845 return r; 1846 } 1847 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1848 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1849 1850 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1851 * or whatever the user passed on module init */ 1852 if (amdgpu_gtt_size == -1) { 1853 #ifdef __linux__ 1854 struct sysinfo si; 1855 1856 si_meminfo(&si); 1857 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1858 adev->gmc.mc_vram_size), 1859 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1860 #else 1861 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1862 adev->gmc.mc_vram_size), 1863 ((uint64_t)ptoa(physmem) * 3/4)); 1864 #endif 1865 } 1866 else 1867 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1868 1869 /* Initialize GTT memory pool */ 1870 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1871 if (r) { 1872 DRM_ERROR("Failed initializing GTT heap.\n"); 1873 return r; 1874 } 1875 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1876 (unsigned)(gtt_size / (1024 * 1024))); 1877 1878 /* Initialize various on-chip memory pools */ 1879 adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT; 1880 adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT; 1881 adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT; 1882 adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT; 1883 adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT; 1884 adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT; 1885 adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT; 1886 adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT; 1887 adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT; 1888 /* GDS Memory */ 1889 if (adev->gds.mem.total_size) { 1890 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1891 adev->gds.mem.total_size >> PAGE_SHIFT); 1892 if (r) { 1893 DRM_ERROR("Failed initializing GDS heap.\n"); 1894 return r; 1895 } 1896 } 1897 1898 /* GWS */ 1899 if (adev->gds.gws.total_size) { 1900 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1901 adev->gds.gws.total_size >> PAGE_SHIFT); 1902 if (r) { 1903 DRM_ERROR("Failed initializing gws heap.\n"); 1904 return r; 1905 } 1906 } 1907 1908 /* OA */ 1909 if (adev->gds.oa.total_size) { 1910 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1911 adev->gds.oa.total_size >> PAGE_SHIFT); 1912 if (r) { 1913 DRM_ERROR("Failed initializing oa heap.\n"); 1914 return r; 1915 } 1916 } 1917 1918 /* Register debugfs entries for amdgpu_ttm */ 1919 r = amdgpu_ttm_debugfs_init(adev); 1920 if (r) { 1921 DRM_ERROR("Failed to init debugfs\n"); 1922 return r; 1923 } 1924 return 0; 1925 } 1926 1927 /** 1928 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1929 */ 1930 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1931 { 1932 /* return the VGA stolen memory (if any) back to VRAM */ 1933 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1934 } 1935 1936 /** 1937 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1938 */ 1939 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1940 { 1941 if (!adev->mman.initialized) 1942 return; 1943 1944 amdgpu_ttm_debugfs_fini(adev); 1945 amdgpu_ttm_fw_reserve_vram_fini(adev); 1946 #ifdef notyet 1947 if (adev->mman.aper_base_kaddr) 1948 iounmap(adev->mman.aper_base_kaddr); 1949 #endif 1950 adev->mman.aper_base_kaddr = NULL; 1951 1952 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1953 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1954 if (adev->gds.mem.total_size) 1955 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1956 if (adev->gds.gws.total_size) 1957 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1958 if (adev->gds.oa.total_size) 1959 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1960 ttm_bo_device_release(&adev->mman.bdev); 1961 amdgpu_ttm_global_fini(adev); 1962 adev->mman.initialized = false; 1963 DRM_INFO("amdgpu: ttm finalized\n"); 1964 } 1965 1966 /** 1967 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1968 * 1969 * @adev: amdgpu_device pointer 1970 * @enable: true when we can use buffer functions. 1971 * 1972 * Enable/disable use of buffer functions during suspend/resume. This should 1973 * only be called at bootup or when userspace isn't running. 1974 */ 1975 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1976 { 1977 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1978 uint64_t size; 1979 int r; 1980 1981 if (!adev->mman.initialized || adev->in_gpu_reset || 1982 adev->mman.buffer_funcs_enabled == enable) 1983 return; 1984 1985 if (enable) { 1986 struct amdgpu_ring *ring; 1987 struct drm_sched_rq *rq; 1988 1989 ring = adev->mman.buffer_funcs_ring; 1990 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1991 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1992 if (r) { 1993 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1994 r); 1995 return; 1996 } 1997 } else { 1998 drm_sched_entity_destroy(&adev->mman.entity); 1999 dma_fence_put(man->move); 2000 man->move = NULL; 2001 } 2002 2003 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2004 if (enable) 2005 size = adev->gmc.real_vram_size; 2006 else 2007 size = adev->gmc.visible_vram_size; 2008 man->size = size >> PAGE_SHIFT; 2009 adev->mman.buffer_funcs_enabled = enable; 2010 } 2011 2012 #ifdef __linux__ 2013 2014 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2015 { 2016 struct drm_file *file_priv; 2017 struct amdgpu_device *adev; 2018 2019 if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET)) 2020 return -EINVAL; 2021 2022 file_priv = filp->private_data; 2023 adev = file_priv->minor->dev->dev_private; 2024 if (adev == NULL) 2025 return -EINVAL; 2026 2027 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2028 } 2029 2030 #else 2031 2032 struct uvm_object * 2033 amdgpu_mmap(struct drm_device *dev, voff_t off, vsize_t size) 2034 { 2035 struct amdgpu_device *adev = dev->dev_private; 2036 2037 if (unlikely(off < DRM_FILE_PAGE_OFFSET)) 2038 return NULL; 2039 2040 #if 0 2041 file_priv = filp->private_data; 2042 adev = file_priv->minor->dev->dev_private; 2043 if (adev == NULL) 2044 return -EINVAL; 2045 #endif 2046 2047 return ttm_bo_mmap(off, size, &adev->mman.bdev); 2048 } 2049 2050 #endif 2051 2052 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 2053 struct ttm_mem_reg *mem, unsigned num_pages, 2054 uint64_t offset, unsigned window, 2055 struct amdgpu_ring *ring, 2056 uint64_t *addr) 2057 { 2058 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 2059 struct amdgpu_device *adev = ring->adev; 2060 struct ttm_tt *ttm = bo->ttm; 2061 struct amdgpu_job *job; 2062 unsigned num_dw, num_bytes; 2063 dma_addr_t *dma_address; 2064 struct dma_fence *fence; 2065 uint64_t src_addr, dst_addr; 2066 uint64_t flags; 2067 int r; 2068 2069 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 2070 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 2071 2072 *addr = adev->gmc.gart_start; 2073 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 2074 AMDGPU_GPU_PAGE_SIZE; 2075 2076 num_dw = adev->mman.buffer_funcs->copy_num_dw; 2077 while (num_dw & 0x7) 2078 num_dw++; 2079 2080 num_bytes = num_pages * 8; 2081 2082 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 2083 if (r) 2084 return r; 2085 2086 src_addr = num_dw * 4; 2087 src_addr += job->ibs[0].gpu_addr; 2088 2089 dst_addr = adev->gart.table_addr; 2090 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 2091 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 2092 dst_addr, num_bytes); 2093 2094 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2095 WARN_ON(job->ibs[0].length_dw > num_dw); 2096 2097 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 2098 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2099 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2100 &job->ibs[0].ptr[num_dw]); 2101 if (r) 2102 goto error_free; 2103 2104 r = amdgpu_job_submit(job, &adev->mman.entity, 2105 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2106 if (r) 2107 goto error_free; 2108 2109 dma_fence_put(fence); 2110 2111 return r; 2112 2113 error_free: 2114 amdgpu_job_free(job); 2115 return r; 2116 } 2117 2118 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2119 uint64_t dst_offset, uint32_t byte_count, 2120 struct reservation_object *resv, 2121 struct dma_fence **fence, bool direct_submit, 2122 bool vm_needs_flush) 2123 { 2124 struct amdgpu_device *adev = ring->adev; 2125 struct amdgpu_job *job; 2126 2127 uint32_t max_bytes; 2128 unsigned num_loops, num_dw; 2129 unsigned i; 2130 int r; 2131 2132 if (direct_submit && !ring->ready) { 2133 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2134 return -EINVAL; 2135 } 2136 2137 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2138 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2139 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 2140 2141 /* for IB padding */ 2142 while (num_dw & 0x7) 2143 num_dw++; 2144 2145 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2146 if (r) 2147 return r; 2148 2149 job->vm_needs_flush = vm_needs_flush; 2150 if (resv) { 2151 r = amdgpu_sync_resv(adev, &job->sync, resv, 2152 AMDGPU_FENCE_OWNER_UNDEFINED, 2153 false); 2154 if (r) { 2155 DRM_ERROR("sync failed (%d).\n", r); 2156 goto error_free; 2157 } 2158 } 2159 2160 for (i = 0; i < num_loops; i++) { 2161 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2162 2163 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2164 dst_offset, cur_size_in_bytes); 2165 2166 src_offset += cur_size_in_bytes; 2167 dst_offset += cur_size_in_bytes; 2168 byte_count -= cur_size_in_bytes; 2169 } 2170 2171 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2172 WARN_ON(job->ibs[0].length_dw > num_dw); 2173 if (direct_submit) 2174 r = amdgpu_job_submit_direct(job, ring, fence); 2175 else 2176 r = amdgpu_job_submit(job, &adev->mman.entity, 2177 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2178 if (r) 2179 goto error_free; 2180 2181 return r; 2182 2183 error_free: 2184 amdgpu_job_free(job); 2185 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2186 return r; 2187 } 2188 2189 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2190 uint32_t src_data, 2191 struct reservation_object *resv, 2192 struct dma_fence **fence) 2193 { 2194 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2195 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2196 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2197 2198 struct drm_mm_node *mm_node; 2199 unsigned long num_pages; 2200 unsigned int num_loops, num_dw; 2201 2202 struct amdgpu_job *job; 2203 int r; 2204 2205 if (!adev->mman.buffer_funcs_enabled) { 2206 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2207 return -EINVAL; 2208 } 2209 2210 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2211 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2212 if (r) 2213 return r; 2214 } 2215 2216 num_pages = bo->tbo.num_pages; 2217 mm_node = bo->tbo.mem.mm_node; 2218 num_loops = 0; 2219 while (num_pages) { 2220 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2221 2222 num_loops += DIV_ROUND_UP(byte_count, max_bytes); 2223 num_pages -= mm_node->size; 2224 ++mm_node; 2225 } 2226 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2227 2228 /* for IB padding */ 2229 num_dw += 64; 2230 2231 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2232 if (r) 2233 return r; 2234 2235 if (resv) { 2236 r = amdgpu_sync_resv(adev, &job->sync, resv, 2237 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2238 if (r) { 2239 DRM_ERROR("sync failed (%d).\n", r); 2240 goto error_free; 2241 } 2242 } 2243 2244 num_pages = bo->tbo.num_pages; 2245 mm_node = bo->tbo.mem.mm_node; 2246 2247 while (num_pages) { 2248 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2249 uint64_t dst_addr; 2250 2251 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2252 while (byte_count) { 2253 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2254 2255 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2256 dst_addr, cur_size_in_bytes); 2257 2258 dst_addr += cur_size_in_bytes; 2259 byte_count -= cur_size_in_bytes; 2260 } 2261 2262 num_pages -= mm_node->size; 2263 ++mm_node; 2264 } 2265 2266 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2267 WARN_ON(job->ibs[0].length_dw > num_dw); 2268 r = amdgpu_job_submit(job, &adev->mman.entity, 2269 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2270 if (r) 2271 goto error_free; 2272 2273 return 0; 2274 2275 error_free: 2276 amdgpu_job_free(job); 2277 return r; 2278 } 2279 2280 #if defined(CONFIG_DEBUG_FS) 2281 2282 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2283 { 2284 struct drm_info_node *node = (struct drm_info_node *)m->private; 2285 unsigned ttm_pl = *(int *)node->info_ent->data; 2286 struct drm_device *dev = node->minor->dev; 2287 struct amdgpu_device *adev = dev->dev_private; 2288 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2289 struct drm_printer p = drm_seq_file_printer(m); 2290 2291 man->func->debug(man, &p); 2292 return 0; 2293 } 2294 2295 static int ttm_pl_vram = TTM_PL_VRAM; 2296 static int ttm_pl_tt = TTM_PL_TT; 2297 2298 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2299 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram}, 2300 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt}, 2301 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2302 #ifdef CONFIG_SWIOTLB 2303 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2304 #endif 2305 }; 2306 2307 /** 2308 * amdgpu_ttm_vram_read - Linear read access to VRAM 2309 * 2310 * Accesses VRAM via MMIO for debugging purposes. 2311 */ 2312 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2313 size_t size, loff_t *pos) 2314 { 2315 struct amdgpu_device *adev = file_inode(f)->i_private; 2316 ssize_t result = 0; 2317 int r; 2318 2319 if (size & 0x3 || *pos & 0x3) 2320 return -EINVAL; 2321 2322 if (*pos >= adev->gmc.mc_vram_size) 2323 return -ENXIO; 2324 2325 while (size) { 2326 unsigned long flags; 2327 uint32_t value; 2328 2329 if (*pos >= adev->gmc.mc_vram_size) 2330 return result; 2331 2332 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2333 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2334 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2335 value = RREG32_NO_KIQ(mmMM_DATA); 2336 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2337 2338 r = put_user(value, (uint32_t *)buf); 2339 if (r) 2340 return r; 2341 2342 result += 4; 2343 buf += 4; 2344 *pos += 4; 2345 size -= 4; 2346 } 2347 2348 return result; 2349 } 2350 2351 /** 2352 * amdgpu_ttm_vram_write - Linear write access to VRAM 2353 * 2354 * Accesses VRAM via MMIO for debugging purposes. 2355 */ 2356 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2357 size_t size, loff_t *pos) 2358 { 2359 struct amdgpu_device *adev = file_inode(f)->i_private; 2360 ssize_t result = 0; 2361 int r; 2362 2363 if (size & 0x3 || *pos & 0x3) 2364 return -EINVAL; 2365 2366 if (*pos >= adev->gmc.mc_vram_size) 2367 return -ENXIO; 2368 2369 while (size) { 2370 unsigned long flags; 2371 uint32_t value; 2372 2373 if (*pos >= adev->gmc.mc_vram_size) 2374 return result; 2375 2376 r = get_user(value, (uint32_t *)buf); 2377 if (r) 2378 return r; 2379 2380 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2381 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2382 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2383 WREG32_NO_KIQ(mmMM_DATA, value); 2384 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2385 2386 result += 4; 2387 buf += 4; 2388 *pos += 4; 2389 size -= 4; 2390 } 2391 2392 return result; 2393 } 2394 2395 static const struct file_operations amdgpu_ttm_vram_fops = { 2396 .owner = THIS_MODULE, 2397 .read = amdgpu_ttm_vram_read, 2398 .write = amdgpu_ttm_vram_write, 2399 .llseek = default_llseek, 2400 }; 2401 2402 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2403 2404 /** 2405 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2406 */ 2407 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2408 size_t size, loff_t *pos) 2409 { 2410 struct amdgpu_device *adev = file_inode(f)->i_private; 2411 ssize_t result = 0; 2412 int r; 2413 2414 while (size) { 2415 loff_t p = *pos / PAGE_SIZE; 2416 unsigned off = *pos & PAGE_MASK; 2417 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2418 struct vm_page *page; 2419 void *ptr; 2420 2421 if (p >= adev->gart.num_cpu_pages) 2422 return result; 2423 2424 page = adev->gart.pages[p]; 2425 if (page) { 2426 ptr = kmap(page); 2427 ptr += off; 2428 2429 r = copy_to_user(buf, ptr, cur_size); 2430 kunmap(ptr); 2431 } else 2432 r = clear_user(buf, cur_size); 2433 2434 if (r) 2435 return -EFAULT; 2436 2437 result += cur_size; 2438 buf += cur_size; 2439 *pos += cur_size; 2440 size -= cur_size; 2441 } 2442 2443 return result; 2444 } 2445 2446 static const struct file_operations amdgpu_ttm_gtt_fops = { 2447 .owner = THIS_MODULE, 2448 .read = amdgpu_ttm_gtt_read, 2449 .llseek = default_llseek 2450 }; 2451 2452 #endif 2453 2454 /** 2455 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2456 * 2457 * This function is used to read memory that has been mapped to the 2458 * GPU and the known addresses are not physical addresses but instead 2459 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2460 */ 2461 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2462 size_t size, loff_t *pos) 2463 { 2464 struct amdgpu_device *adev = file_inode(f)->i_private; 2465 struct iommu_domain *dom; 2466 ssize_t result = 0; 2467 int r; 2468 2469 /* retrieve the IOMMU domain if any for this device */ 2470 dom = iommu_get_domain_for_dev(adev->dev); 2471 2472 while (size) { 2473 phys_addr_t addr = *pos & ~PAGE_MASK; 2474 loff_t off = *pos & PAGE_MASK; 2475 size_t bytes = PAGE_SIZE - off; 2476 unsigned long pfn; 2477 struct vm_page *p; 2478 void *ptr; 2479 2480 bytes = bytes < size ? bytes : size; 2481 2482 /* Translate the bus address to a physical address. If 2483 * the domain is NULL it means there is no IOMMU active 2484 * and the address translation is the identity 2485 */ 2486 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2487 2488 pfn = addr >> PAGE_SHIFT; 2489 if (!pfn_valid(pfn)) 2490 return -EPERM; 2491 2492 p = pfn_to_page(pfn); 2493 if (p->mapping != adev->mman.bdev.dev_mapping) 2494 return -EPERM; 2495 2496 ptr = kmap(p); 2497 r = copy_to_user(buf, ptr + off, bytes); 2498 kunmap(ptr); 2499 if (r) 2500 return -EFAULT; 2501 2502 size -= bytes; 2503 *pos += bytes; 2504 result += bytes; 2505 } 2506 2507 return result; 2508 } 2509 2510 /** 2511 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2512 * 2513 * This function is used to write memory that has been mapped to the 2514 * GPU and the known addresses are not physical addresses but instead 2515 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2516 */ 2517 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2518 size_t size, loff_t *pos) 2519 { 2520 struct amdgpu_device *adev = file_inode(f)->i_private; 2521 struct iommu_domain *dom; 2522 ssize_t result = 0; 2523 int r; 2524 2525 dom = iommu_get_domain_for_dev(adev->dev); 2526 2527 while (size) { 2528 phys_addr_t addr = *pos & ~PAGE_MASK; 2529 loff_t off = *pos & PAGE_MASK; 2530 size_t bytes = PAGE_SIZE - off; 2531 unsigned long pfn; 2532 struct vm_page *p; 2533 void *ptr; 2534 2535 bytes = bytes < size ? bytes : size; 2536 2537 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2538 2539 pfn = addr >> PAGE_SHIFT; 2540 if (!pfn_valid(pfn)) 2541 return -EPERM; 2542 2543 p = pfn_to_page(pfn); 2544 if (p->mapping != adev->mman.bdev.dev_mapping) 2545 return -EPERM; 2546 2547 ptr = kmap(p); 2548 r = copy_from_user(ptr + off, buf, bytes); 2549 kunmap(ptr); 2550 if (r) 2551 return -EFAULT; 2552 2553 size -= bytes; 2554 *pos += bytes; 2555 result += bytes; 2556 } 2557 2558 return result; 2559 } 2560 2561 static const struct file_operations amdgpu_ttm_iomem_fops = { 2562 .owner = THIS_MODULE, 2563 .read = amdgpu_iomem_read, 2564 .write = amdgpu_iomem_write, 2565 .llseek = default_llseek 2566 }; 2567 2568 static const struct { 2569 char *name; 2570 const struct file_operations *fops; 2571 int domain; 2572 } ttm_debugfs_entries[] = { 2573 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2574 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2575 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2576 #endif 2577 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2578 }; 2579 2580 #endif 2581 2582 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2583 { 2584 #if defined(CONFIG_DEBUG_FS) 2585 unsigned count; 2586 2587 struct drm_minor *minor = adev->ddev->primary; 2588 struct dentry *ent, *root = minor->debugfs_root; 2589 2590 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2591 ent = debugfs_create_file( 2592 ttm_debugfs_entries[count].name, 2593 S_IFREG | S_IRUGO, root, 2594 adev, 2595 ttm_debugfs_entries[count].fops); 2596 if (IS_ERR(ent)) 2597 return PTR_ERR(ent); 2598 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2599 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2600 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2601 i_size_write(ent->d_inode, adev->gmc.gart_size); 2602 adev->mman.debugfs_entries[count] = ent; 2603 } 2604 2605 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2606 2607 #ifdef CONFIG_SWIOTLB 2608 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2609 --count; 2610 #endif 2611 2612 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2613 #else 2614 return 0; 2615 #endif 2616 } 2617 2618 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2619 { 2620 #if defined(CONFIG_DEBUG_FS) 2621 unsigned i; 2622 2623 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2624 debugfs_remove(adev->mman.debugfs_entries[i]); 2625 #endif 2626 } 2627