xref: /openbsd-src/sys/dev/pci/drm/amd/amdgpu/amdgpu_ttm.c (revision 99fd087599a8791921855f21bd7e36130f39aadc)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "bif/bif_4_1_d.h"
51 
52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
53 
54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
55 			     struct ttm_mem_reg *mem, unsigned num_pages,
56 			     uint64_t offset, unsigned window,
57 			     struct amdgpu_ring *ring,
58 			     uint64_t *addr);
59 
60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
62 
63 /*
64  * Global memory.
65  */
66 
67 /**
68  * amdgpu_ttm_mem_global_init - Initialize and acquire reference to
69  * memory object
70  *
71  * @ref: Object for initialization.
72  *
73  * This is called by drm_global_item_ref() when an object is being
74  * initialized.
75  */
76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
77 {
78 	return ttm_mem_global_init(ref->object);
79 }
80 
81 /**
82  * amdgpu_ttm_mem_global_release - Drop reference to a memory object
83  *
84  * @ref: Object being removed
85  *
86  * This is called by drm_global_item_unref() when an object is being
87  * released.
88  */
89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
90 {
91 	ttm_mem_global_release(ref->object);
92 }
93 
94 /**
95  * amdgpu_ttm_global_init - Initialize global TTM memory reference structures.
96  *
97  * @adev: AMDGPU device for which the global structures need to be registered.
98  *
99  * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init()
100  * during bring up.
101  */
102 static int amdgpu_ttm_global_init(struct amdgpu_device *adev)
103 {
104 	struct drm_global_reference *global_ref;
105 	int r;
106 
107 	/* ensure reference is false in case init fails */
108 	adev->mman.mem_global_referenced = false;
109 
110 	global_ref = &adev->mman.mem_global_ref;
111 	global_ref->global_type = DRM_GLOBAL_TTM_MEM;
112 	global_ref->size = sizeof(struct ttm_mem_global);
113 	global_ref->init = &amdgpu_ttm_mem_global_init;
114 	global_ref->release = &amdgpu_ttm_mem_global_release;
115 	r = drm_global_item_ref(global_ref);
116 	if (r) {
117 		DRM_ERROR("Failed setting up TTM memory accounting "
118 			  "subsystem.\n");
119 		goto error_mem;
120 	}
121 
122 	adev->mman.bo_global_ref.mem_glob =
123 		adev->mman.mem_global_ref.object;
124 	global_ref = &adev->mman.bo_global_ref.ref;
125 	global_ref->global_type = DRM_GLOBAL_TTM_BO;
126 	global_ref->size = sizeof(struct ttm_bo_global);
127 	global_ref->init = &ttm_bo_global_init;
128 	global_ref->release = &ttm_bo_global_release;
129 	r = drm_global_item_ref(global_ref);
130 	if (r) {
131 		DRM_ERROR("Failed setting up TTM BO subsystem.\n");
132 		goto error_bo;
133 	}
134 
135 	rw_init(&adev->mman.gtt_window_lock, "gttwin");
136 
137 	adev->mman.mem_global_referenced = true;
138 
139 	return 0;
140 
141 error_bo:
142 	drm_global_item_unref(&adev->mman.mem_global_ref);
143 error_mem:
144 	return r;
145 }
146 
147 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
148 {
149 	if (adev->mman.mem_global_referenced) {
150 		mutex_destroy(&adev->mman.gtt_window_lock);
151 		drm_global_item_unref(&adev->mman.bo_global_ref.ref);
152 		drm_global_item_unref(&adev->mman.mem_global_ref);
153 		adev->mman.mem_global_referenced = false;
154 	}
155 }
156 
157 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
158 {
159 	return 0;
160 }
161 
162 /**
163  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
164  * memory request.
165  *
166  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
167  * @type: The type of memory requested
168  * @man: The memory type manager for each domain
169  *
170  * This is called by ttm_bo_init_mm() when a buffer object is being
171  * initialized.
172  */
173 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
174 				struct ttm_mem_type_manager *man)
175 {
176 	struct amdgpu_device *adev;
177 
178 	adev = amdgpu_ttm_adev(bdev);
179 
180 	switch (type) {
181 	case TTM_PL_SYSTEM:
182 		/* System memory */
183 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
184 		man->available_caching = TTM_PL_MASK_CACHING;
185 		man->default_caching = TTM_PL_FLAG_CACHED;
186 		break;
187 	case TTM_PL_TT:
188 		/* GTT memory  */
189 		man->func = &amdgpu_gtt_mgr_func;
190 		man->gpu_offset = adev->gmc.gart_start;
191 		man->available_caching = TTM_PL_MASK_CACHING;
192 		man->default_caching = TTM_PL_FLAG_CACHED;
193 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
194 		break;
195 	case TTM_PL_VRAM:
196 		/* "On-card" video ram */
197 		man->func = &amdgpu_vram_mgr_func;
198 		man->gpu_offset = adev->gmc.vram_start;
199 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
200 			     TTM_MEMTYPE_FLAG_MAPPABLE;
201 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
202 		man->default_caching = TTM_PL_FLAG_WC;
203 		break;
204 	case AMDGPU_PL_GDS:
205 	case AMDGPU_PL_GWS:
206 	case AMDGPU_PL_OA:
207 		/* On-chip GDS memory*/
208 		man->func = &ttm_bo_manager_func;
209 		man->gpu_offset = 0;
210 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
211 		man->available_caching = TTM_PL_FLAG_UNCACHED;
212 		man->default_caching = TTM_PL_FLAG_UNCACHED;
213 		break;
214 	default:
215 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
216 		return -EINVAL;
217 	}
218 	return 0;
219 }
220 
221 /**
222  * amdgpu_evict_flags - Compute placement flags
223  *
224  * @bo: The buffer object to evict
225  * @placement: Possible destination(s) for evicted BO
226  *
227  * Fill in placement data when ttm_bo_evict() is called
228  */
229 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
230 				struct ttm_placement *placement)
231 {
232 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
233 	struct amdgpu_bo *abo;
234 	static const struct ttm_place placements = {
235 		.fpfn = 0,
236 		.lpfn = 0,
237 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
238 	};
239 
240 	/* Don't handle scatter gather BOs */
241 	if (bo->type == ttm_bo_type_sg) {
242 		placement->num_placement = 0;
243 		placement->num_busy_placement = 0;
244 		return;
245 	}
246 
247 	/* Object isn't an AMDGPU object so ignore */
248 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
249 		placement->placement = &placements;
250 		placement->busy_placement = &placements;
251 		placement->num_placement = 1;
252 		placement->num_busy_placement = 1;
253 		return;
254 	}
255 
256 	abo = ttm_to_amdgpu_bo(bo);
257 	switch (bo->mem.mem_type) {
258 	case TTM_PL_VRAM:
259 		if (!adev->mman.buffer_funcs_enabled) {
260 			/* Move to system memory */
261 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
262 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
263 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
264 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
265 
266 			/* Try evicting to the CPU inaccessible part of VRAM
267 			 * first, but only set GTT as busy placement, so this
268 			 * BO will be evicted to GTT rather than causing other
269 			 * BOs to be evicted from VRAM
270 			 */
271 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
272 							 AMDGPU_GEM_DOMAIN_GTT);
273 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
274 			abo->placements[0].lpfn = 0;
275 			abo->placement.busy_placement = &abo->placements[1];
276 			abo->placement.num_busy_placement = 1;
277 		} else {
278 			/* Move to GTT memory */
279 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
280 		}
281 		break;
282 	case TTM_PL_TT:
283 	default:
284 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
285 	}
286 	*placement = abo->placement;
287 }
288 
289 /**
290  * amdgpu_verify_access - Verify access for a mmap call
291  *
292  * @bo:	The buffer object to map
293  * @filp: The file pointer from the process performing the mmap
294  *
295  * This is called by ttm_bo_mmap() to verify whether a process
296  * has the right to mmap a BO to their process space.
297  */
298 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
299 {
300 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
301 
302 	/*
303 	 * Don't verify access for KFD BOs. They don't have a GEM
304 	 * object associated with them.
305 	 */
306 	if (abo->kfd_bo)
307 		return 0;
308 
309 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
310 		return -EPERM;
311 	return drm_vma_node_verify_access(&abo->gem_base.vma_node, filp);
312 }
313 
314 /**
315  * amdgpu_move_null - Register memory for a buffer object
316  *
317  * @bo: The bo to assign the memory to
318  * @new_mem: The memory to be assigned.
319  *
320  * Assign the memory from new_mem to the memory of the buffer object bo.
321  */
322 static void amdgpu_move_null(struct ttm_buffer_object *bo,
323 			     struct ttm_mem_reg *new_mem)
324 {
325 	struct ttm_mem_reg *old_mem = &bo->mem;
326 
327 	BUG_ON(old_mem->mm_node != NULL);
328 	*old_mem = *new_mem;
329 	new_mem->mm_node = NULL;
330 }
331 
332 /**
333  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
334  *
335  * @bo: The bo to assign the memory to.
336  * @mm_node: Memory manager node for drm allocator.
337  * @mem: The region where the bo resides.
338  *
339  */
340 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
341 				    struct drm_mm_node *mm_node,
342 				    struct ttm_mem_reg *mem)
343 {
344 	uint64_t addr = 0;
345 
346 	if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) {
347 		addr = mm_node->start << PAGE_SHIFT;
348 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
349 	}
350 	return addr;
351 }
352 
353 /**
354  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
355  * @offset. It also modifies the offset to be within the drm_mm_node returned
356  *
357  * @mem: The region where the bo resides.
358  * @offset: The offset that drm_mm_node is used for finding.
359  *
360  */
361 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
362 					       unsigned long *offset)
363 {
364 	struct drm_mm_node *mm_node = mem->mm_node;
365 
366 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
367 		*offset -= (mm_node->size << PAGE_SHIFT);
368 		++mm_node;
369 	}
370 	return mm_node;
371 }
372 
373 /**
374  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
375  *
376  * The function copies @size bytes from {src->mem + src->offset} to
377  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
378  * move and different for a BO to BO copy.
379  *
380  * @f: Returns the last fence if multiple jobs are submitted.
381  */
382 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
383 			       struct amdgpu_copy_mem *src,
384 			       struct amdgpu_copy_mem *dst,
385 			       uint64_t size,
386 			       struct reservation_object *resv,
387 			       struct dma_fence **f)
388 {
389 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
390 	struct drm_mm_node *src_mm, *dst_mm;
391 	uint64_t src_node_start, dst_node_start, src_node_size,
392 		 dst_node_size, src_page_offset, dst_page_offset;
393 	struct dma_fence *fence = NULL;
394 	int r = 0;
395 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
396 					AMDGPU_GPU_PAGE_SIZE);
397 
398 	if (!adev->mman.buffer_funcs_enabled) {
399 		DRM_ERROR("Trying to move memory with ring turned off.\n");
400 		return -EINVAL;
401 	}
402 
403 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
404 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
405 					     src->offset;
406 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
407 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
408 
409 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
410 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
411 					     dst->offset;
412 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
413 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
414 
415 	mutex_lock(&adev->mman.gtt_window_lock);
416 
417 	while (size) {
418 		unsigned long cur_size;
419 		uint64_t from = src_node_start, to = dst_node_start;
420 		struct dma_fence *next;
421 
422 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
423 		 * begins at an offset, then adjust the size accordingly
424 		 */
425 		cur_size = min3(min(src_node_size, dst_node_size), size,
426 				GTT_MAX_BYTES);
427 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
428 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
429 			cur_size -= max(src_page_offset, dst_page_offset);
430 
431 		/* Map only what needs to be accessed. Map src to window 0 and
432 		 * dst to window 1
433 		 */
434 		if (src->mem->mem_type == TTM_PL_TT &&
435 		    !amdgpu_gtt_mgr_has_gart_addr(src->mem)) {
436 			r = amdgpu_map_buffer(src->bo, src->mem,
437 					PFN_UP(cur_size + src_page_offset),
438 					src_node_start, 0, ring,
439 					&from);
440 			if (r)
441 				goto error;
442 			/* Adjust the offset because amdgpu_map_buffer returns
443 			 * start of mapped page
444 			 */
445 			from += src_page_offset;
446 		}
447 
448 		if (dst->mem->mem_type == TTM_PL_TT &&
449 		    !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) {
450 			r = amdgpu_map_buffer(dst->bo, dst->mem,
451 					PFN_UP(cur_size + dst_page_offset),
452 					dst_node_start, 1, ring,
453 					&to);
454 			if (r)
455 				goto error;
456 			to += dst_page_offset;
457 		}
458 
459 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
460 				       resv, &next, false, true);
461 		if (r)
462 			goto error;
463 
464 		dma_fence_put(fence);
465 		fence = next;
466 
467 		size -= cur_size;
468 		if (!size)
469 			break;
470 
471 		src_node_size -= cur_size;
472 		if (!src_node_size) {
473 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
474 							     src->mem);
475 			src_node_size = (src_mm->size << PAGE_SHIFT);
476 		} else {
477 			src_node_start += cur_size;
478 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
479 		}
480 		dst_node_size -= cur_size;
481 		if (!dst_node_size) {
482 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
483 							     dst->mem);
484 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
485 		} else {
486 			dst_node_start += cur_size;
487 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
488 		}
489 	}
490 error:
491 	mutex_unlock(&adev->mman.gtt_window_lock);
492 	if (f)
493 		*f = dma_fence_get(fence);
494 	dma_fence_put(fence);
495 	return r;
496 }
497 
498 /**
499  * amdgpu_move_blit - Copy an entire buffer to another buffer
500  *
501  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
502  * help move buffers to and from VRAM.
503  */
504 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
505 			    bool evict, bool no_wait_gpu,
506 			    struct ttm_mem_reg *new_mem,
507 			    struct ttm_mem_reg *old_mem)
508 {
509 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
510 	struct amdgpu_copy_mem src, dst;
511 	struct dma_fence *fence = NULL;
512 	int r;
513 
514 	src.bo = bo;
515 	dst.bo = bo;
516 	src.mem = old_mem;
517 	dst.mem = new_mem;
518 	src.offset = 0;
519 	dst.offset = 0;
520 
521 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
522 				       new_mem->num_pages << PAGE_SHIFT,
523 				       bo->resv, &fence);
524 	if (r)
525 		goto error;
526 
527 	r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
528 	dma_fence_put(fence);
529 	return r;
530 
531 error:
532 	if (fence)
533 		dma_fence_wait(fence, false);
534 	dma_fence_put(fence);
535 	return r;
536 }
537 
538 /**
539  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
540  *
541  * Called by amdgpu_bo_move().
542  */
543 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
544 				struct ttm_operation_ctx *ctx,
545 				struct ttm_mem_reg *new_mem)
546 {
547 	struct amdgpu_device *adev;
548 	struct ttm_mem_reg *old_mem = &bo->mem;
549 	struct ttm_mem_reg tmp_mem;
550 	struct ttm_place placements;
551 	struct ttm_placement placement;
552 	int r;
553 
554 	adev = amdgpu_ttm_adev(bo->bdev);
555 
556 	/* create space/pages for new_mem in GTT space */
557 	tmp_mem = *new_mem;
558 	tmp_mem.mm_node = NULL;
559 	placement.num_placement = 1;
560 	placement.placement = &placements;
561 	placement.num_busy_placement = 1;
562 	placement.busy_placement = &placements;
563 	placements.fpfn = 0;
564 	placements.lpfn = 0;
565 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
566 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
567 	if (unlikely(r)) {
568 		return r;
569 	}
570 
571 	/* set caching flags */
572 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
573 	if (unlikely(r)) {
574 		goto out_cleanup;
575 	}
576 
577 	/* Bind the memory to the GTT space */
578 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
579 	if (unlikely(r)) {
580 		goto out_cleanup;
581 	}
582 
583 	/* blit VRAM to GTT */
584 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
585 	if (unlikely(r)) {
586 		goto out_cleanup;
587 	}
588 
589 	/* move BO (in tmp_mem) to new_mem */
590 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
591 out_cleanup:
592 	ttm_bo_mem_put(bo, &tmp_mem);
593 	return r;
594 }
595 
596 /**
597  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
598  *
599  * Called by amdgpu_bo_move().
600  */
601 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
602 				struct ttm_operation_ctx *ctx,
603 				struct ttm_mem_reg *new_mem)
604 {
605 	struct amdgpu_device *adev;
606 	struct ttm_mem_reg *old_mem = &bo->mem;
607 	struct ttm_mem_reg tmp_mem;
608 	struct ttm_placement placement;
609 	struct ttm_place placements;
610 	int r;
611 
612 	adev = amdgpu_ttm_adev(bo->bdev);
613 
614 	/* make space in GTT for old_mem buffer */
615 	tmp_mem = *new_mem;
616 	tmp_mem.mm_node = NULL;
617 	placement.num_placement = 1;
618 	placement.placement = &placements;
619 	placement.num_busy_placement = 1;
620 	placement.busy_placement = &placements;
621 	placements.fpfn = 0;
622 	placements.lpfn = 0;
623 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
624 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
625 	if (unlikely(r)) {
626 		return r;
627 	}
628 
629 	/* move/bind old memory to GTT space */
630 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
631 	if (unlikely(r)) {
632 		goto out_cleanup;
633 	}
634 
635 	/* copy to VRAM */
636 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
637 	if (unlikely(r)) {
638 		goto out_cleanup;
639 	}
640 out_cleanup:
641 	ttm_bo_mem_put(bo, &tmp_mem);
642 	return r;
643 }
644 
645 /**
646  * amdgpu_bo_move - Move a buffer object to a new memory location
647  *
648  * Called by ttm_bo_handle_move_mem()
649  */
650 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
651 			  struct ttm_operation_ctx *ctx,
652 			  struct ttm_mem_reg *new_mem)
653 {
654 	struct amdgpu_device *adev;
655 	struct amdgpu_bo *abo;
656 	struct ttm_mem_reg *old_mem = &bo->mem;
657 	int r;
658 
659 	/* Can't move a pinned BO */
660 	abo = ttm_to_amdgpu_bo(bo);
661 	if (WARN_ON_ONCE(abo->pin_count > 0))
662 		return -EINVAL;
663 
664 	adev = amdgpu_ttm_adev(bo->bdev);
665 
666 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
667 		amdgpu_move_null(bo, new_mem);
668 		return 0;
669 	}
670 	if ((old_mem->mem_type == TTM_PL_TT &&
671 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
672 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
673 	     new_mem->mem_type == TTM_PL_TT)) {
674 		/* bind is enough */
675 		amdgpu_move_null(bo, new_mem);
676 		return 0;
677 	}
678 
679 	if (!adev->mman.buffer_funcs_enabled)
680 		goto memcpy;
681 
682 	if (old_mem->mem_type == TTM_PL_VRAM &&
683 	    new_mem->mem_type == TTM_PL_SYSTEM) {
684 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
685 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
686 		   new_mem->mem_type == TTM_PL_VRAM) {
687 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
688 	} else {
689 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
690 				     new_mem, old_mem);
691 	}
692 
693 	if (r) {
694 memcpy:
695 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
696 		if (r) {
697 			return r;
698 		}
699 	}
700 
701 	if (bo->type == ttm_bo_type_device &&
702 	    new_mem->mem_type == TTM_PL_VRAM &&
703 	    old_mem->mem_type != TTM_PL_VRAM) {
704 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
705 		 * accesses the BO after it's moved.
706 		 */
707 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
708 	}
709 
710 	/* update statistics */
711 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
712 	return 0;
713 }
714 
715 /**
716  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
717  *
718  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
719  */
720 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
721 {
722 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
723 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
724 	struct drm_mm_node *mm_node = mem->mm_node;
725 
726 	mem->bus.addr = NULL;
727 	mem->bus.offset = 0;
728 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
729 	mem->bus.base = 0;
730 	mem->bus.is_iomem = false;
731 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
732 		return -EINVAL;
733 	switch (mem->mem_type) {
734 	case TTM_PL_SYSTEM:
735 		/* system memory */
736 		return 0;
737 	case TTM_PL_TT:
738 		break;
739 	case TTM_PL_VRAM:
740 		mem->bus.offset = mem->start << PAGE_SHIFT;
741 		/* check if it's visible */
742 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
743 			return -EINVAL;
744 		/* Only physically contiguous buffers apply. In a contiguous
745 		 * buffer, size of the first mm_node would match the number of
746 		 * pages in ttm_mem_reg.
747 		 */
748 		if (adev->mman.aper_base_kaddr &&
749 		    (mm_node->size == mem->num_pages))
750 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
751 					mem->bus.offset;
752 
753 		mem->bus.base = adev->gmc.aper_base;
754 		mem->bus.is_iomem = true;
755 		break;
756 	default:
757 		return -EINVAL;
758 	}
759 	return 0;
760 }
761 
762 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
763 {
764 }
765 
766 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
767 					   unsigned long page_offset)
768 {
769 	struct drm_mm_node *mm;
770 	unsigned long offset = (page_offset << PAGE_SHIFT);
771 
772 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
773 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
774 		(offset >> PAGE_SHIFT);
775 }
776 
777 /*
778  * TTM backend functions.
779  */
780 struct amdgpu_ttm_gup_task_list {
781 	struct list_head	list;
782 	struct task_struct	*task;
783 };
784 
785 struct amdgpu_ttm_tt {
786 	struct ttm_dma_tt	ttm;
787 	struct amdgpu_device	*adev;
788 	u64			offset;
789 	uint64_t		userptr;
790 	struct task_struct	*usertask;
791 	uint32_t		userflags;
792 	spinlock_t              guptasklock;
793 	struct list_head        guptasks;
794 	atomic_t		mmu_invalidations;
795 	uint32_t		last_set_pages;
796 };
797 
798 /**
799  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
800  * pointer to memory
801  *
802  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
803  * This provides a wrapper around the get_user_pages() call to provide
804  * device accessible pages that back user memory.
805  */
806 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
807 {
808 	STUB();
809 	return -ENOSYS;
810 #if 0
811 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
812 	struct mm_struct *mm = gtt->usertask->mm;
813 	unsigned int flags = 0;
814 	unsigned pinned = 0;
815 	int r;
816 
817 	if (!mm) /* Happens during process shutdown */
818 		return -ESRCH;
819 
820 	if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
821 		flags |= FOLL_WRITE;
822 
823 	down_read(&mm->mmap_sem);
824 
825 	if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
826 		/*
827 		 * check that we only use anonymous memory to prevent problems
828 		 * with writeback
829 		 */
830 		unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
831 		struct vm_area_struct *vma;
832 
833 		vma = find_vma(mm, gtt->userptr);
834 		if (!vma || vma->vm_file || vma->vm_end < end) {
835 			up_read(&mm->mmap_sem);
836 			return -EPERM;
837 		}
838 	}
839 
840 	/* loop enough times using contiguous pages of memory */
841 	do {
842 		unsigned num_pages = ttm->num_pages - pinned;
843 		uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
844 		struct vm_page **p = pages + pinned;
845 		struct amdgpu_ttm_gup_task_list guptask;
846 
847 		guptask.task = current;
848 		spin_lock(&gtt->guptasklock);
849 		list_add(&guptask.list, &gtt->guptasks);
850 		spin_unlock(&gtt->guptasklock);
851 
852 		if (mm == current->mm)
853 			r = get_user_pages(userptr, num_pages, flags, p, NULL);
854 		else
855 			r = get_user_pages_remote(gtt->usertask,
856 					mm, userptr, num_pages,
857 					flags, p, NULL, NULL);
858 
859 		spin_lock(&gtt->guptasklock);
860 		list_del(&guptask.list);
861 		spin_unlock(&gtt->guptasklock);
862 
863 		if (r < 0)
864 			goto release_pages;
865 
866 		pinned += r;
867 
868 	} while (pinned < ttm->num_pages);
869 
870 	up_read(&mm->mmap_sem);
871 	return 0;
872 
873 release_pages:
874 	release_pages(pages, pinned);
875 	up_read(&mm->mmap_sem);
876 	return r;
877 #endif
878 }
879 
880 /**
881  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
882  *
883  * Called by amdgpu_cs_list_validate(). This creates the page list
884  * that backs user memory and will ultimately be mapped into the device
885  * address space.
886  */
887 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
888 {
889 	STUB();
890 #if 0
891 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
892 	unsigned i;
893 
894 	gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
895 	for (i = 0; i < ttm->num_pages; ++i) {
896 		if (ttm->pages[i])
897 			put_page(ttm->pages[i]);
898 
899 		ttm->pages[i] = pages ? pages[i] : NULL;
900 	}
901 #endif
902 }
903 
904 /**
905  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
906  *
907  * Called while unpinning userptr pages
908  */
909 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
910 {
911 	STUB();
912 #if 0
913 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
914 	unsigned i;
915 
916 	for (i = 0; i < ttm->num_pages; ++i) {
917 		struct vm_page *page = ttm->pages[i];
918 
919 		if (!page)
920 			continue;
921 
922 		if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
923 			set_page_dirty(page);
924 
925 		mark_page_accessed(page);
926 	}
927 #endif
928 }
929 
930 /**
931  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
932  *
933  * Called by amdgpu_ttm_backend_bind()
934  **/
935 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
936 {
937 	STUB();
938 	return -ENOSYS;
939 #if 0
940 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
941 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
942 	unsigned nents;
943 	int r;
944 
945 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
946 	enum dma_data_direction direction = write ?
947 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
948 
949 	/* Allocate an SG array and squash pages into it */
950 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
951 				      ttm->num_pages << PAGE_SHIFT,
952 				      GFP_KERNEL);
953 	if (r)
954 		goto release_sg;
955 
956 	/* Map SG to device */
957 	r = -ENOMEM;
958 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
959 	if (nents != ttm->sg->nents)
960 		goto release_sg;
961 
962 	/* convert SG to linear array of pages and dma addresses */
963 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
964 					 gtt->ttm.dma_address, ttm->num_pages);
965 
966 	return 0;
967 
968 release_sg:
969 	kfree(ttm->sg);
970 	return r;
971 #endif
972 }
973 
974 /**
975  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
976  */
977 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
978 {
979 	STUB();
980 #if 0
981 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
982 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
983 
984 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
985 	enum dma_data_direction direction = write ?
986 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
987 
988 	/* double check that we don't free the table twice */
989 	if (!ttm->sg->sgl)
990 		return;
991 
992 	/* unmap the pages mapped to the device */
993 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
994 
995 	/* mark the pages as dirty */
996 	amdgpu_ttm_tt_mark_user_pages(ttm);
997 
998 	sg_free_table(ttm->sg);
999 #endif
1000 }
1001 
1002 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1003 				struct ttm_buffer_object *tbo,
1004 				uint64_t flags)
1005 {
1006 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1007 	struct ttm_tt *ttm = tbo->ttm;
1008 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1009 	int r;
1010 
1011 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1012 		uint64_t page_idx = 1;
1013 
1014 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1015 				ttm->pages, gtt->ttm.dma_address, flags);
1016 		if (r)
1017 			goto gart_bind_fail;
1018 
1019 		/* Patch mtype of the second part BO */
1020 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
1021 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
1022 
1023 		r = amdgpu_gart_bind(adev,
1024 				gtt->offset + (page_idx << PAGE_SHIFT),
1025 				ttm->num_pages - page_idx,
1026 				&ttm->pages[page_idx],
1027 				&(gtt->ttm.dma_address[page_idx]), flags);
1028 	} else {
1029 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1030 				     ttm->pages, gtt->ttm.dma_address, flags);
1031 	}
1032 
1033 gart_bind_fail:
1034 	if (r)
1035 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1036 			  ttm->num_pages, gtt->offset);
1037 
1038 	return r;
1039 }
1040 
1041 /**
1042  * amdgpu_ttm_backend_bind - Bind GTT memory
1043  *
1044  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1045  * This handles binding GTT memory to the device address space.
1046  */
1047 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1048 				   struct ttm_mem_reg *bo_mem)
1049 {
1050 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1051 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1052 	uint64_t flags;
1053 	int r = 0;
1054 
1055 	if (gtt->userptr) {
1056 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1057 		if (r) {
1058 			DRM_ERROR("failed to pin userptr\n");
1059 			return r;
1060 		}
1061 	}
1062 	if (!ttm->num_pages) {
1063 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1064 		     ttm->num_pages, bo_mem, ttm);
1065 	}
1066 
1067 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1068 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1069 	    bo_mem->mem_type == AMDGPU_PL_OA)
1070 		return -EINVAL;
1071 
1072 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1073 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1074 		return 0;
1075 	}
1076 
1077 	/* compute PTE flags relevant to this BO memory */
1078 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1079 
1080 	/* bind pages into GART page tables */
1081 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1082 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1083 		ttm->pages, gtt->ttm.dma_address, flags);
1084 
1085 	if (r)
1086 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1087 			  ttm->num_pages, gtt->offset);
1088 	return r;
1089 }
1090 
1091 /**
1092  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1093  */
1094 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1095 {
1096 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1097 	struct ttm_operation_ctx ctx = { false, false };
1098 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1099 	struct ttm_mem_reg tmp;
1100 	struct ttm_placement placement;
1101 	struct ttm_place placements;
1102 	uint64_t flags;
1103 	int r;
1104 
1105 	if (bo->mem.mem_type != TTM_PL_TT ||
1106 	    amdgpu_gtt_mgr_has_gart_addr(&bo->mem))
1107 		return 0;
1108 
1109 	/* allocate GTT space */
1110 	tmp = bo->mem;
1111 	tmp.mm_node = NULL;
1112 	placement.num_placement = 1;
1113 	placement.placement = &placements;
1114 	placement.num_busy_placement = 1;
1115 	placement.busy_placement = &placements;
1116 	placements.fpfn = 0;
1117 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1118 	placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1119 		TTM_PL_FLAG_TT;
1120 
1121 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1122 	if (unlikely(r))
1123 		return r;
1124 
1125 	/* compute PTE flags for this buffer object */
1126 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1127 
1128 	/* Bind pages */
1129 	gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1130 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
1131 	if (unlikely(r)) {
1132 		ttm_bo_mem_put(bo, &tmp);
1133 		return r;
1134 	}
1135 
1136 	ttm_bo_mem_put(bo, &bo->mem);
1137 	bo->mem = tmp;
1138 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1139 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1140 
1141 	return 0;
1142 }
1143 
1144 /**
1145  * amdgpu_ttm_recover_gart - Rebind GTT pages
1146  *
1147  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1148  * rebind GTT pages during a GPU reset.
1149  */
1150 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1151 {
1152 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1153 	uint64_t flags;
1154 	int r;
1155 
1156 	if (!tbo->ttm)
1157 		return 0;
1158 
1159 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1160 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1161 
1162 	return r;
1163 }
1164 
1165 /**
1166  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1167  *
1168  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1169  * ttm_tt_destroy().
1170  */
1171 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1172 {
1173 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1174 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1175 	int r;
1176 
1177 	/* if the pages have userptr pinning then clear that first */
1178 	if (gtt->userptr)
1179 		amdgpu_ttm_tt_unpin_userptr(ttm);
1180 
1181 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1182 		return 0;
1183 
1184 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1185 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1186 	if (r)
1187 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1188 			  gtt->ttm.ttm.num_pages, gtt->offset);
1189 	return r;
1190 }
1191 
1192 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1193 {
1194 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1195 
1196 #ifdef notyet
1197 	if (gtt->usertask)
1198 		put_task_struct(gtt->usertask);
1199 #endif
1200 
1201 	ttm_dma_tt_fini(&gtt->ttm);
1202 	kfree(gtt);
1203 }
1204 
1205 static struct ttm_backend_func amdgpu_backend_func = {
1206 	.bind = &amdgpu_ttm_backend_bind,
1207 	.unbind = &amdgpu_ttm_backend_unbind,
1208 	.destroy = &amdgpu_ttm_backend_destroy,
1209 };
1210 
1211 /**
1212  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1213  *
1214  * @bo: The buffer object to create a GTT ttm_tt object around
1215  *
1216  * Called by ttm_tt_create().
1217  */
1218 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1219 					   uint32_t page_flags)
1220 {
1221 	struct amdgpu_device *adev;
1222 	struct amdgpu_ttm_tt *gtt;
1223 
1224 	adev = amdgpu_ttm_adev(bo->bdev);
1225 
1226 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1227 	if (gtt == NULL) {
1228 		return NULL;
1229 	}
1230 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1231 	gtt->adev = adev;
1232 
1233 	/* allocate space for the uninitialized page entries */
1234 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1235 		kfree(gtt);
1236 		return NULL;
1237 	}
1238 	return &gtt->ttm.ttm;
1239 }
1240 
1241 /**
1242  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1243  *
1244  * Map the pages of a ttm_tt object to an address space visible
1245  * to the underlying device.
1246  */
1247 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1248 			struct ttm_operation_ctx *ctx)
1249 {
1250 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1251 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1252 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1253 
1254 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1255 	if (gtt && gtt->userptr) {
1256 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1257 		if (!ttm->sg)
1258 			return -ENOMEM;
1259 
1260 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1261 		ttm->state = tt_unbound;
1262 		return 0;
1263 	}
1264 
1265 	if (slave && ttm->sg) {
1266 #ifdef notyet
1267 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1268 						 gtt->ttm.dma_address,
1269 						 ttm->num_pages);
1270 #endif
1271 		ttm->state = tt_unbound;
1272 		return 0;
1273 	}
1274 
1275 #ifdef CONFIG_SWIOTLB
1276 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1277 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1278 	}
1279 #endif
1280 
1281 	/* fall back to generic helper to populate the page array
1282 	 * and map them to the device */
1283 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1284 }
1285 
1286 /**
1287  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1288  *
1289  * Unmaps pages of a ttm_tt object from the device address space and
1290  * unpopulates the page array backing it.
1291  */
1292 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1293 {
1294 	struct amdgpu_device *adev;
1295 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1296 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1297 
1298 	if (gtt && gtt->userptr) {
1299 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1300 		kfree(ttm->sg);
1301 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1302 		return;
1303 	}
1304 
1305 	if (slave)
1306 		return;
1307 
1308 	adev = amdgpu_ttm_adev(ttm->bdev);
1309 
1310 #ifdef CONFIG_SWIOTLB
1311 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1312 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1313 		return;
1314 	}
1315 #endif
1316 
1317 	/* fall back to generic helper to unmap and unpopulate array */
1318 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1319 }
1320 
1321 /**
1322  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1323  * task
1324  *
1325  * @ttm: The ttm_tt object to bind this userptr object to
1326  * @addr:  The address in the current tasks VM space to use
1327  * @flags: Requirements of userptr object.
1328  *
1329  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1330  * to current task
1331  */
1332 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1333 			      uint32_t flags)
1334 {
1335 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1336 
1337 	if (gtt == NULL)
1338 		return -EINVAL;
1339 
1340 	gtt->userptr = addr;
1341 	gtt->userflags = flags;
1342 
1343 #ifdef notyet
1344 	if (gtt->usertask)
1345 		put_task_struct(gtt->usertask);
1346 	gtt->usertask = current->group_leader;
1347 	get_task_struct(gtt->usertask);
1348 #endif
1349 
1350 	mtx_init(&gtt->guptasklock, IPL_TTY);
1351 	INIT_LIST_HEAD(&gtt->guptasks);
1352 	atomic_set(&gtt->mmu_invalidations, 0);
1353 	gtt->last_set_pages = 0;
1354 
1355 	return 0;
1356 }
1357 
1358 /**
1359  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1360  */
1361 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1362 {
1363 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1364 
1365 	if (gtt == NULL)
1366 		return NULL;
1367 
1368 	if (gtt->usertask == NULL)
1369 		return NULL;
1370 
1371 #if 0
1372 	return gtt->usertask->mm;
1373 #else
1374 	STUB();
1375 	return NULL;
1376 #endif
1377 }
1378 
1379 /**
1380  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1381  * address range for the current task.
1382  *
1383  */
1384 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1385 				  unsigned long end)
1386 {
1387 	STUB();
1388 	return false;
1389 #if 0
1390 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1391 	struct amdgpu_ttm_gup_task_list *entry;
1392 	unsigned long size;
1393 
1394 	if (gtt == NULL || !gtt->userptr)
1395 		return false;
1396 
1397 	/* Return false if no part of the ttm_tt object lies within
1398 	 * the range
1399 	 */
1400 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1401 	if (gtt->userptr > end || gtt->userptr + size <= start)
1402 		return false;
1403 
1404 	/* Search the lists of tasks that hold this mapping and see
1405 	 * if current is one of them.  If it is return false.
1406 	 */
1407 	spin_lock(&gtt->guptasklock);
1408 	list_for_each_entry(entry, &gtt->guptasks, list) {
1409 		if (entry->task == current) {
1410 			spin_unlock(&gtt->guptasklock);
1411 			return false;
1412 		}
1413 	}
1414 	spin_unlock(&gtt->guptasklock);
1415 
1416 	atomic_inc(&gtt->mmu_invalidations);
1417 
1418 	return true;
1419 #endif
1420 }
1421 
1422 /**
1423  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1424  */
1425 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1426 				       int *last_invalidated)
1427 {
1428 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1429 	int prev_invalidated = *last_invalidated;
1430 
1431 	*last_invalidated = atomic_read(&gtt->mmu_invalidations);
1432 	return prev_invalidated != *last_invalidated;
1433 }
1434 
1435 /**
1436  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1437  * been invalidated since the last time they've been set?
1438  */
1439 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1440 {
1441 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1442 
1443 	if (gtt == NULL || !gtt->userptr)
1444 		return false;
1445 
1446 	return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1447 }
1448 
1449 /**
1450  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1451  */
1452 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1453 {
1454 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1455 
1456 	if (gtt == NULL)
1457 		return false;
1458 
1459 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1460 }
1461 
1462 /**
1463  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1464  *
1465  * @ttm: The ttm_tt object to compute the flags for
1466  * @mem: The memory registry backing this ttm_tt object
1467  */
1468 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1469 				 struct ttm_mem_reg *mem)
1470 {
1471 	uint64_t flags = 0;
1472 
1473 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1474 		flags |= AMDGPU_PTE_VALID;
1475 
1476 	if (mem && mem->mem_type == TTM_PL_TT) {
1477 		flags |= AMDGPU_PTE_SYSTEM;
1478 
1479 		if (ttm->caching_state == tt_cached)
1480 			flags |= AMDGPU_PTE_SNOOPED;
1481 	}
1482 
1483 	flags |= adev->gart.gart_pte_flags;
1484 	flags |= AMDGPU_PTE_READABLE;
1485 
1486 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1487 		flags |= AMDGPU_PTE_WRITEABLE;
1488 
1489 	return flags;
1490 }
1491 
1492 /**
1493  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1494  * object.
1495  *
1496  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1497  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1498  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1499  * used to clean out a memory space.
1500  */
1501 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1502 					    const struct ttm_place *place)
1503 {
1504 	unsigned long num_pages = bo->mem.num_pages;
1505 	struct drm_mm_node *node = bo->mem.mm_node;
1506 	struct reservation_object_list *flist;
1507 	struct dma_fence *f;
1508 	int i;
1509 
1510 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1511 	 * If true, then return false as any KFD process needs all its BOs to
1512 	 * be resident to run successfully
1513 	 */
1514 	flist = reservation_object_get_list(bo->resv);
1515 	if (flist) {
1516 		for (i = 0; i < flist->shared_count; ++i) {
1517 			f = rcu_dereference_protected(flist->shared[i],
1518 				reservation_object_held(bo->resv));
1519 #ifdef notyet
1520 			if (amdkfd_fence_check_mm(f, current->mm))
1521 				return false;
1522 #endif
1523 		}
1524 	}
1525 
1526 	switch (bo->mem.mem_type) {
1527 	case TTM_PL_TT:
1528 		return true;
1529 
1530 	case TTM_PL_VRAM:
1531 		/* Check each drm MM node individually */
1532 		while (num_pages) {
1533 			if (place->fpfn < (node->start + node->size) &&
1534 			    !(place->lpfn && place->lpfn <= node->start))
1535 				return true;
1536 
1537 			num_pages -= node->size;
1538 			++node;
1539 		}
1540 		return false;
1541 
1542 	default:
1543 		break;
1544 	}
1545 
1546 	return ttm_bo_eviction_valuable(bo, place);
1547 }
1548 
1549 /**
1550  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1551  *
1552  * @bo:  The buffer object to read/write
1553  * @offset:  Offset into buffer object
1554  * @buf:  Secondary buffer to write/read from
1555  * @len: Length in bytes of access
1556  * @write:  true if writing
1557  *
1558  * This is used to access VRAM that backs a buffer object via MMIO
1559  * access for debugging purposes.
1560  */
1561 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1562 				    unsigned long offset,
1563 				    void *buf, int len, int write)
1564 {
1565 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1566 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1567 	struct drm_mm_node *nodes;
1568 	uint32_t value = 0;
1569 	int ret = 0;
1570 	uint64_t pos;
1571 	unsigned long flags;
1572 
1573 	if (bo->mem.mem_type != TTM_PL_VRAM)
1574 		return -EIO;
1575 
1576 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1577 	pos = (nodes->start << PAGE_SHIFT) + offset;
1578 
1579 	while (len && pos < adev->gmc.mc_vram_size) {
1580 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1581 		uint32_t bytes = 4 - (pos & 3);
1582 		uint32_t shift = (pos & 3) * 8;
1583 		uint32_t mask = 0xffffffff << shift;
1584 
1585 		if (len < bytes) {
1586 			mask &= 0xffffffff >> (bytes - len) * 8;
1587 			bytes = len;
1588 		}
1589 
1590 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1591 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1592 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1593 		if (!write || mask != 0xffffffff)
1594 			value = RREG32_NO_KIQ(mmMM_DATA);
1595 		if (write) {
1596 			value &= ~mask;
1597 			value |= (*(uint32_t *)buf << shift) & mask;
1598 			WREG32_NO_KIQ(mmMM_DATA, value);
1599 		}
1600 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1601 		if (!write) {
1602 			value = (value & mask) >> shift;
1603 			memcpy(buf, &value, bytes);
1604 		}
1605 
1606 		ret += bytes;
1607 		buf = (uint8_t *)buf + bytes;
1608 		pos += bytes;
1609 		len -= bytes;
1610 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1611 			++nodes;
1612 			pos = (nodes->start << PAGE_SHIFT);
1613 		}
1614 	}
1615 
1616 	return ret;
1617 }
1618 
1619 static struct ttm_bo_driver amdgpu_bo_driver = {
1620 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1621 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1622 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1623 	.invalidate_caches = &amdgpu_invalidate_caches,
1624 	.init_mem_type = &amdgpu_init_mem_type,
1625 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1626 	.evict_flags = &amdgpu_evict_flags,
1627 	.move = &amdgpu_bo_move,
1628 	.verify_access = &amdgpu_verify_access,
1629 	.move_notify = &amdgpu_bo_move_notify,
1630 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1631 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1632 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1633 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1634 	.access_memory = &amdgpu_ttm_access_memory
1635 };
1636 
1637 /*
1638  * Firmware Reservation functions
1639  */
1640 /**
1641  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1642  *
1643  * @adev: amdgpu_device pointer
1644  *
1645  * free fw reserved vram if it has been reserved.
1646  */
1647 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1648 {
1649 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1650 		NULL, &adev->fw_vram_usage.va);
1651 }
1652 
1653 /**
1654  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1655  *
1656  * @adev: amdgpu_device pointer
1657  *
1658  * create bo vram reservation from fw.
1659  */
1660 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1661 {
1662 	struct ttm_operation_ctx ctx = { false, false };
1663 	struct amdgpu_bo_param bp;
1664 	int r = 0;
1665 	int i;
1666 	u64 vram_size = adev->gmc.visible_vram_size;
1667 	u64 offset = adev->fw_vram_usage.start_offset;
1668 	u64 size = adev->fw_vram_usage.size;
1669 	struct amdgpu_bo *bo;
1670 
1671 	memset(&bp, 0, sizeof(bp));
1672 	bp.size = adev->fw_vram_usage.size;
1673 	bp.byte_align = PAGE_SIZE;
1674 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1675 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1676 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1677 	bp.type = ttm_bo_type_kernel;
1678 	bp.resv = NULL;
1679 	adev->fw_vram_usage.va = NULL;
1680 	adev->fw_vram_usage.reserved_bo = NULL;
1681 
1682 	if (adev->fw_vram_usage.size > 0 &&
1683 		adev->fw_vram_usage.size <= vram_size) {
1684 
1685 		r = amdgpu_bo_create(adev, &bp,
1686 				     &adev->fw_vram_usage.reserved_bo);
1687 		if (r)
1688 			goto error_create;
1689 
1690 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1691 		if (r)
1692 			goto error_reserve;
1693 
1694 		/* remove the original mem node and create a new one at the
1695 		 * request position
1696 		 */
1697 		bo = adev->fw_vram_usage.reserved_bo;
1698 		offset = roundup2(offset, PAGE_SIZE);
1699 		for (i = 0; i < bo->placement.num_placement; ++i) {
1700 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1701 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1702 		}
1703 
1704 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1705 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1706 				     &bo->tbo.mem, &ctx);
1707 		if (r)
1708 			goto error_pin;
1709 
1710 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1711 			AMDGPU_GEM_DOMAIN_VRAM,
1712 			adev->fw_vram_usage.start_offset,
1713 			(adev->fw_vram_usage.start_offset +
1714 			adev->fw_vram_usage.size));
1715 		if (r)
1716 			goto error_pin;
1717 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1718 			&adev->fw_vram_usage.va);
1719 		if (r)
1720 			goto error_kmap;
1721 
1722 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1723 	}
1724 	return r;
1725 
1726 error_kmap:
1727 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1728 error_pin:
1729 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1730 error_reserve:
1731 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1732 error_create:
1733 	adev->fw_vram_usage.va = NULL;
1734 	adev->fw_vram_usage.reserved_bo = NULL;
1735 	return r;
1736 }
1737 /**
1738  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1739  * gtt/vram related fields.
1740  *
1741  * This initializes all of the memory space pools that the TTM layer
1742  * will need such as the GTT space (system memory mapped to the device),
1743  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1744  * can be mapped per VMID.
1745  */
1746 int amdgpu_ttm_init(struct amdgpu_device *adev)
1747 {
1748 	uint64_t gtt_size;
1749 	int r;
1750 	u64 vis_vram_limit;
1751 
1752 	/* initialize global references for vram/gtt */
1753 	r = amdgpu_ttm_global_init(adev);
1754 	if (r) {
1755 		return r;
1756 	}
1757 	/* No others user of address space so set it to 0 */
1758 #ifdef notyet
1759 	r = ttm_bo_device_init(&adev->mman.bdev,
1760 			       adev->mman.bo_global_ref.ref.object,
1761 			       &amdgpu_bo_driver,
1762 			       adev->ddev->anon_inode->i_mapping,
1763 			       DRM_FILE_PAGE_OFFSET,
1764 			       adev->need_dma32);
1765 #else
1766 	r = ttm_bo_device_init(&adev->mman.bdev,
1767 			       adev->mman.bo_global_ref.ref.object,
1768 			       &amdgpu_bo_driver,
1769 			       /*adev->ddev->anon_inode->i_mapping*/ NULL,
1770 			       DRM_FILE_PAGE_OFFSET,
1771 			       adev->need_dma32);
1772 #endif
1773 	if (r) {
1774 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1775 		return r;
1776 	}
1777 	adev->mman.bdev.iot = adev->iot;
1778 	adev->mman.bdev.memt = adev->memt;
1779 	adev->mman.bdev.dmat = adev->dmat;
1780 	adev->mman.initialized = true;
1781 
1782 	/* We opt to avoid OOM on system pages allocations */
1783 	adev->mman.bdev.no_retry = true;
1784 
1785 	/* Initialize VRAM pool with all of VRAM divided into pages */
1786 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1787 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1788 	if (r) {
1789 		DRM_ERROR("Failed initializing VRAM heap.\n");
1790 		return r;
1791 	}
1792 
1793 	/* Reduce size of CPU-visible VRAM if requested */
1794 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1795 	if (amdgpu_vis_vram_limit > 0 &&
1796 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1797 		adev->gmc.visible_vram_size = vis_vram_limit;
1798 
1799 	/* Change the size here instead of the init above so only lpfn is affected */
1800 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1801 #ifdef CONFIG_64BIT
1802 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1803 						adev->gmc.visible_vram_size);
1804 #endif
1805 
1806 	/*
1807 	 *The reserved vram for firmware must be pinned to the specified
1808 	 *place on the VRAM, so reserve it early.
1809 	 */
1810 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1811 	if (r) {
1812 		return r;
1813 	}
1814 
1815 	/* allocate memory as required for VGA
1816 	 * This is used for VGA emulation and pre-OS scanout buffers to
1817 	 * avoid display artifacts while transitioning between pre-OS
1818 	 * and driver.  */
1819 	if (adev->gmc.stolen_size) {
1820 		r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1821 					    AMDGPU_GEM_DOMAIN_VRAM,
1822 					    &adev->stolen_vga_memory,
1823 					    NULL, NULL);
1824 		if (r)
1825 			return r;
1826 	}
1827 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1828 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1829 
1830 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1831 	 * or whatever the user passed on module init */
1832 	if (amdgpu_gtt_size == -1) {
1833 #ifdef __linux__
1834 		struct sysinfo si;
1835 
1836 		si_meminfo(&si);
1837 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1838 			       adev->gmc.mc_vram_size),
1839 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1840 #else
1841 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1842 			       adev->gmc.mc_vram_size),
1843 			       ((uint64_t)ptoa(physmem) * 3/4));
1844 #endif
1845 	}
1846 	else
1847 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1848 
1849 	/* Initialize GTT memory pool */
1850 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1851 	if (r) {
1852 		DRM_ERROR("Failed initializing GTT heap.\n");
1853 		return r;
1854 	}
1855 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1856 		 (unsigned)(gtt_size / (1024 * 1024)));
1857 
1858 	/* Initialize various on-chip memory pools */
1859 	adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT;
1860 	adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT;
1861 	adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT;
1862 	adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT;
1863 	adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT;
1864 	adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT;
1865 	adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT;
1866 	adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT;
1867 	adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT;
1868 	/* GDS Memory */
1869 	if (adev->gds.mem.total_size) {
1870 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1871 				   adev->gds.mem.total_size >> PAGE_SHIFT);
1872 		if (r) {
1873 			DRM_ERROR("Failed initializing GDS heap.\n");
1874 			return r;
1875 		}
1876 	}
1877 
1878 	/* GWS */
1879 	if (adev->gds.gws.total_size) {
1880 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1881 				   adev->gds.gws.total_size >> PAGE_SHIFT);
1882 		if (r) {
1883 			DRM_ERROR("Failed initializing gws heap.\n");
1884 			return r;
1885 		}
1886 	}
1887 
1888 	/* OA */
1889 	if (adev->gds.oa.total_size) {
1890 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1891 				   adev->gds.oa.total_size >> PAGE_SHIFT);
1892 		if (r) {
1893 			DRM_ERROR("Failed initializing oa heap.\n");
1894 			return r;
1895 		}
1896 	}
1897 
1898 	/* Register debugfs entries for amdgpu_ttm */
1899 	r = amdgpu_ttm_debugfs_init(adev);
1900 	if (r) {
1901 		DRM_ERROR("Failed to init debugfs\n");
1902 		return r;
1903 	}
1904 	return 0;
1905 }
1906 
1907 /**
1908  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1909  */
1910 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1911 {
1912 	/* return the VGA stolen memory (if any) back to VRAM */
1913 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1914 }
1915 
1916 /**
1917  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1918  */
1919 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1920 {
1921 	if (!adev->mman.initialized)
1922 		return;
1923 
1924 	amdgpu_ttm_debugfs_fini(adev);
1925 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1926 #ifdef notyet
1927 	if (adev->mman.aper_base_kaddr)
1928 		iounmap(adev->mman.aper_base_kaddr);
1929 #endif
1930 	adev->mman.aper_base_kaddr = NULL;
1931 
1932 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1933 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1934 	if (adev->gds.mem.total_size)
1935 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1936 	if (adev->gds.gws.total_size)
1937 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1938 	if (adev->gds.oa.total_size)
1939 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1940 	ttm_bo_device_release(&adev->mman.bdev);
1941 	amdgpu_ttm_global_fini(adev);
1942 	adev->mman.initialized = false;
1943 	DRM_INFO("amdgpu: ttm finalized\n");
1944 }
1945 
1946 /**
1947  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1948  *
1949  * @adev: amdgpu_device pointer
1950  * @enable: true when we can use buffer functions.
1951  *
1952  * Enable/disable use of buffer functions during suspend/resume. This should
1953  * only be called at bootup or when userspace isn't running.
1954  */
1955 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1956 {
1957 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1958 	uint64_t size;
1959 	int r;
1960 
1961 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1962 	    adev->mman.buffer_funcs_enabled == enable)
1963 		return;
1964 
1965 	if (enable) {
1966 		struct amdgpu_ring *ring;
1967 		struct drm_sched_rq *rq;
1968 
1969 		ring = adev->mman.buffer_funcs_ring;
1970 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1971 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1972 		if (r) {
1973 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1974 				  r);
1975 			return;
1976 		}
1977 	} else {
1978 		drm_sched_entity_destroy(&adev->mman.entity);
1979 		dma_fence_put(man->move);
1980 		man->move = NULL;
1981 	}
1982 
1983 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1984 	if (enable)
1985 		size = adev->gmc.real_vram_size;
1986 	else
1987 		size = adev->gmc.visible_vram_size;
1988 	man->size = size >> PAGE_SHIFT;
1989 	adev->mman.buffer_funcs_enabled = enable;
1990 }
1991 
1992 #ifdef __linux__
1993 
1994 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1995 {
1996 	struct drm_file *file_priv;
1997 	struct amdgpu_device *adev;
1998 
1999 	if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
2000 		return -EINVAL;
2001 
2002 	file_priv = filp->private_data;
2003 	adev = file_priv->minor->dev->dev_private;
2004 	if (adev == NULL)
2005 		return -EINVAL;
2006 
2007 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2008 }
2009 
2010 #else
2011 
2012 struct uvm_object *
2013 amdgpu_mmap(struct drm_device *dev, voff_t off, vsize_t size)
2014 {
2015 	struct amdgpu_device *adev = dev->dev_private;
2016 
2017 	if (unlikely(off < DRM_FILE_PAGE_OFFSET))
2018 		return NULL;
2019 
2020 #if 0
2021 	file_priv = filp->private_data;
2022 	adev = file_priv->minor->dev->dev_private;
2023 	if (adev == NULL)
2024 		return -EINVAL;
2025 #endif
2026 
2027 	return ttm_bo_mmap(off, size, &adev->mman.bdev);
2028 }
2029 
2030 #endif
2031 
2032 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2033 			     struct ttm_mem_reg *mem, unsigned num_pages,
2034 			     uint64_t offset, unsigned window,
2035 			     struct amdgpu_ring *ring,
2036 			     uint64_t *addr)
2037 {
2038 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2039 	struct amdgpu_device *adev = ring->adev;
2040 	struct ttm_tt *ttm = bo->ttm;
2041 	struct amdgpu_job *job;
2042 	unsigned num_dw, num_bytes;
2043 	dma_addr_t *dma_address;
2044 	struct dma_fence *fence;
2045 	uint64_t src_addr, dst_addr;
2046 	uint64_t flags;
2047 	int r;
2048 
2049 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2050 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2051 
2052 	*addr = adev->gmc.gart_start;
2053 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2054 		AMDGPU_GPU_PAGE_SIZE;
2055 
2056 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
2057 	while (num_dw & 0x7)
2058 		num_dw++;
2059 
2060 	num_bytes = num_pages * 8;
2061 
2062 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2063 	if (r)
2064 		return r;
2065 
2066 	src_addr = num_dw * 4;
2067 	src_addr += job->ibs[0].gpu_addr;
2068 
2069 	dst_addr = adev->gart.table_addr;
2070 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2071 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2072 				dst_addr, num_bytes);
2073 
2074 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2075 	WARN_ON(job->ibs[0].length_dw > num_dw);
2076 
2077 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2078 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2079 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2080 			    &job->ibs[0].ptr[num_dw]);
2081 	if (r)
2082 		goto error_free;
2083 
2084 	r = amdgpu_job_submit(job, &adev->mman.entity,
2085 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2086 	if (r)
2087 		goto error_free;
2088 
2089 	dma_fence_put(fence);
2090 
2091 	return r;
2092 
2093 error_free:
2094 	amdgpu_job_free(job);
2095 	return r;
2096 }
2097 
2098 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2099 		       uint64_t dst_offset, uint32_t byte_count,
2100 		       struct reservation_object *resv,
2101 		       struct dma_fence **fence, bool direct_submit,
2102 		       bool vm_needs_flush)
2103 {
2104 	struct amdgpu_device *adev = ring->adev;
2105 	struct amdgpu_job *job;
2106 
2107 	uint32_t max_bytes;
2108 	unsigned num_loops, num_dw;
2109 	unsigned i;
2110 	int r;
2111 
2112 	if (direct_submit && !ring->ready) {
2113 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2114 		return -EINVAL;
2115 	}
2116 
2117 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2118 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2119 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2120 
2121 	/* for IB padding */
2122 	while (num_dw & 0x7)
2123 		num_dw++;
2124 
2125 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2126 	if (r)
2127 		return r;
2128 
2129 	job->vm_needs_flush = vm_needs_flush;
2130 	if (resv) {
2131 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2132 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2133 				     false);
2134 		if (r) {
2135 			DRM_ERROR("sync failed (%d).\n", r);
2136 			goto error_free;
2137 		}
2138 	}
2139 
2140 	for (i = 0; i < num_loops; i++) {
2141 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2142 
2143 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2144 					dst_offset, cur_size_in_bytes);
2145 
2146 		src_offset += cur_size_in_bytes;
2147 		dst_offset += cur_size_in_bytes;
2148 		byte_count -= cur_size_in_bytes;
2149 	}
2150 
2151 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2152 	WARN_ON(job->ibs[0].length_dw > num_dw);
2153 	if (direct_submit)
2154 		r = amdgpu_job_submit_direct(job, ring, fence);
2155 	else
2156 		r = amdgpu_job_submit(job, &adev->mman.entity,
2157 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2158 	if (r)
2159 		goto error_free;
2160 
2161 	return r;
2162 
2163 error_free:
2164 	amdgpu_job_free(job);
2165 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2166 	return r;
2167 }
2168 
2169 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2170 		       uint32_t src_data,
2171 		       struct reservation_object *resv,
2172 		       struct dma_fence **fence)
2173 {
2174 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2175 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2176 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2177 
2178 	struct drm_mm_node *mm_node;
2179 	unsigned long num_pages;
2180 	unsigned int num_loops, num_dw;
2181 
2182 	struct amdgpu_job *job;
2183 	int r;
2184 
2185 	if (!adev->mman.buffer_funcs_enabled) {
2186 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2187 		return -EINVAL;
2188 	}
2189 
2190 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2191 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2192 		if (r)
2193 			return r;
2194 	}
2195 
2196 	num_pages = bo->tbo.num_pages;
2197 	mm_node = bo->tbo.mem.mm_node;
2198 	num_loops = 0;
2199 	while (num_pages) {
2200 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2201 
2202 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2203 		num_pages -= mm_node->size;
2204 		++mm_node;
2205 	}
2206 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2207 
2208 	/* for IB padding */
2209 	num_dw += 64;
2210 
2211 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2212 	if (r)
2213 		return r;
2214 
2215 	if (resv) {
2216 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2217 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2218 		if (r) {
2219 			DRM_ERROR("sync failed (%d).\n", r);
2220 			goto error_free;
2221 		}
2222 	}
2223 
2224 	num_pages = bo->tbo.num_pages;
2225 	mm_node = bo->tbo.mem.mm_node;
2226 
2227 	while (num_pages) {
2228 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2229 		uint64_t dst_addr;
2230 
2231 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2232 		while (byte_count) {
2233 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2234 
2235 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2236 						dst_addr, cur_size_in_bytes);
2237 
2238 			dst_addr += cur_size_in_bytes;
2239 			byte_count -= cur_size_in_bytes;
2240 		}
2241 
2242 		num_pages -= mm_node->size;
2243 		++mm_node;
2244 	}
2245 
2246 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2247 	WARN_ON(job->ibs[0].length_dw > num_dw);
2248 	r = amdgpu_job_submit(job, &adev->mman.entity,
2249 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2250 	if (r)
2251 		goto error_free;
2252 
2253 	return 0;
2254 
2255 error_free:
2256 	amdgpu_job_free(job);
2257 	return r;
2258 }
2259 
2260 #if defined(CONFIG_DEBUG_FS)
2261 
2262 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2263 {
2264 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2265 	unsigned ttm_pl = *(int *)node->info_ent->data;
2266 	struct drm_device *dev = node->minor->dev;
2267 	struct amdgpu_device *adev = dev->dev_private;
2268 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2269 	struct drm_printer p = drm_seq_file_printer(m);
2270 
2271 	man->func->debug(man, &p);
2272 	return 0;
2273 }
2274 
2275 static int ttm_pl_vram = TTM_PL_VRAM;
2276 static int ttm_pl_tt = TTM_PL_TT;
2277 
2278 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2279 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram},
2280 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt},
2281 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2282 #ifdef CONFIG_SWIOTLB
2283 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2284 #endif
2285 };
2286 
2287 /**
2288  * amdgpu_ttm_vram_read - Linear read access to VRAM
2289  *
2290  * Accesses VRAM via MMIO for debugging purposes.
2291  */
2292 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2293 				    size_t size, loff_t *pos)
2294 {
2295 	struct amdgpu_device *adev = file_inode(f)->i_private;
2296 	ssize_t result = 0;
2297 	int r;
2298 
2299 	if (size & 0x3 || *pos & 0x3)
2300 		return -EINVAL;
2301 
2302 	if (*pos >= adev->gmc.mc_vram_size)
2303 		return -ENXIO;
2304 
2305 	while (size) {
2306 		unsigned long flags;
2307 		uint32_t value;
2308 
2309 		if (*pos >= adev->gmc.mc_vram_size)
2310 			return result;
2311 
2312 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2313 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2314 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2315 		value = RREG32_NO_KIQ(mmMM_DATA);
2316 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2317 
2318 		r = put_user(value, (uint32_t *)buf);
2319 		if (r)
2320 			return r;
2321 
2322 		result += 4;
2323 		buf += 4;
2324 		*pos += 4;
2325 		size -= 4;
2326 	}
2327 
2328 	return result;
2329 }
2330 
2331 /**
2332  * amdgpu_ttm_vram_write - Linear write access to VRAM
2333  *
2334  * Accesses VRAM via MMIO for debugging purposes.
2335  */
2336 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2337 				    size_t size, loff_t *pos)
2338 {
2339 	struct amdgpu_device *adev = file_inode(f)->i_private;
2340 	ssize_t result = 0;
2341 	int r;
2342 
2343 	if (size & 0x3 || *pos & 0x3)
2344 		return -EINVAL;
2345 
2346 	if (*pos >= adev->gmc.mc_vram_size)
2347 		return -ENXIO;
2348 
2349 	while (size) {
2350 		unsigned long flags;
2351 		uint32_t value;
2352 
2353 		if (*pos >= adev->gmc.mc_vram_size)
2354 			return result;
2355 
2356 		r = get_user(value, (uint32_t *)buf);
2357 		if (r)
2358 			return r;
2359 
2360 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2361 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2362 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2363 		WREG32_NO_KIQ(mmMM_DATA, value);
2364 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2365 
2366 		result += 4;
2367 		buf += 4;
2368 		*pos += 4;
2369 		size -= 4;
2370 	}
2371 
2372 	return result;
2373 }
2374 
2375 static const struct file_operations amdgpu_ttm_vram_fops = {
2376 	.owner = THIS_MODULE,
2377 	.read = amdgpu_ttm_vram_read,
2378 	.write = amdgpu_ttm_vram_write,
2379 	.llseek = default_llseek,
2380 };
2381 
2382 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2383 
2384 /**
2385  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2386  */
2387 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2388 				   size_t size, loff_t *pos)
2389 {
2390 	struct amdgpu_device *adev = file_inode(f)->i_private;
2391 	ssize_t result = 0;
2392 	int r;
2393 
2394 	while (size) {
2395 		loff_t p = *pos / PAGE_SIZE;
2396 		unsigned off = *pos & PAGE_MASK;
2397 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2398 		struct vm_page *page;
2399 		void *ptr;
2400 
2401 		if (p >= adev->gart.num_cpu_pages)
2402 			return result;
2403 
2404 		page = adev->gart.pages[p];
2405 		if (page) {
2406 			ptr = kmap(page);
2407 			ptr += off;
2408 
2409 			r = copy_to_user(buf, ptr, cur_size);
2410 			kunmap(ptr);
2411 		} else
2412 			r = clear_user(buf, cur_size);
2413 
2414 		if (r)
2415 			return -EFAULT;
2416 
2417 		result += cur_size;
2418 		buf += cur_size;
2419 		*pos += cur_size;
2420 		size -= cur_size;
2421 	}
2422 
2423 	return result;
2424 }
2425 
2426 static const struct file_operations amdgpu_ttm_gtt_fops = {
2427 	.owner = THIS_MODULE,
2428 	.read = amdgpu_ttm_gtt_read,
2429 	.llseek = default_llseek
2430 };
2431 
2432 #endif
2433 
2434 /**
2435  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2436  *
2437  * This function is used to read memory that has been mapped to the
2438  * GPU and the known addresses are not physical addresses but instead
2439  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2440  */
2441 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2442 				 size_t size, loff_t *pos)
2443 {
2444 	struct amdgpu_device *adev = file_inode(f)->i_private;
2445 	struct iommu_domain *dom;
2446 	ssize_t result = 0;
2447 	int r;
2448 
2449 	/* retrieve the IOMMU domain if any for this device */
2450 	dom = iommu_get_domain_for_dev(adev->dev);
2451 
2452 	while (size) {
2453 		phys_addr_t addr = *pos & ~PAGE_MASK;
2454 		loff_t off = *pos & PAGE_MASK;
2455 		size_t bytes = PAGE_SIZE - off;
2456 		unsigned long pfn;
2457 		struct vm_page *p;
2458 		void *ptr;
2459 
2460 		bytes = bytes < size ? bytes : size;
2461 
2462 		/* Translate the bus address to a physical address.  If
2463 		 * the domain is NULL it means there is no IOMMU active
2464 		 * and the address translation is the identity
2465 		 */
2466 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2467 
2468 		pfn = addr >> PAGE_SHIFT;
2469 		if (!pfn_valid(pfn))
2470 			return -EPERM;
2471 
2472 		p = pfn_to_page(pfn);
2473 		if (p->mapping != adev->mman.bdev.dev_mapping)
2474 			return -EPERM;
2475 
2476 		ptr = kmap(p);
2477 		r = copy_to_user(buf, ptr + off, bytes);
2478 		kunmap(ptr);
2479 		if (r)
2480 			return -EFAULT;
2481 
2482 		size -= bytes;
2483 		*pos += bytes;
2484 		result += bytes;
2485 	}
2486 
2487 	return result;
2488 }
2489 
2490 /**
2491  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2492  *
2493  * This function is used to write memory that has been mapped to the
2494  * GPU and the known addresses are not physical addresses but instead
2495  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2496  */
2497 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2498 				 size_t size, loff_t *pos)
2499 {
2500 	struct amdgpu_device *adev = file_inode(f)->i_private;
2501 	struct iommu_domain *dom;
2502 	ssize_t result = 0;
2503 	int r;
2504 
2505 	dom = iommu_get_domain_for_dev(adev->dev);
2506 
2507 	while (size) {
2508 		phys_addr_t addr = *pos & ~PAGE_MASK;
2509 		loff_t off = *pos & PAGE_MASK;
2510 		size_t bytes = PAGE_SIZE - off;
2511 		unsigned long pfn;
2512 		struct vm_page *p;
2513 		void *ptr;
2514 
2515 		bytes = bytes < size ? bytes : size;
2516 
2517 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2518 
2519 		pfn = addr >> PAGE_SHIFT;
2520 		if (!pfn_valid(pfn))
2521 			return -EPERM;
2522 
2523 		p = pfn_to_page(pfn);
2524 		if (p->mapping != adev->mman.bdev.dev_mapping)
2525 			return -EPERM;
2526 
2527 		ptr = kmap(p);
2528 		r = copy_from_user(ptr + off, buf, bytes);
2529 		kunmap(ptr);
2530 		if (r)
2531 			return -EFAULT;
2532 
2533 		size -= bytes;
2534 		*pos += bytes;
2535 		result += bytes;
2536 	}
2537 
2538 	return result;
2539 }
2540 
2541 static const struct file_operations amdgpu_ttm_iomem_fops = {
2542 	.owner = THIS_MODULE,
2543 	.read = amdgpu_iomem_read,
2544 	.write = amdgpu_iomem_write,
2545 	.llseek = default_llseek
2546 };
2547 
2548 static const struct {
2549 	char *name;
2550 	const struct file_operations *fops;
2551 	int domain;
2552 } ttm_debugfs_entries[] = {
2553 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2554 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2555 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2556 #endif
2557 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2558 };
2559 
2560 #endif
2561 
2562 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2563 {
2564 #if defined(CONFIG_DEBUG_FS)
2565 	unsigned count;
2566 
2567 	struct drm_minor *minor = adev->ddev->primary;
2568 	struct dentry *ent, *root = minor->debugfs_root;
2569 
2570 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2571 		ent = debugfs_create_file(
2572 				ttm_debugfs_entries[count].name,
2573 				S_IFREG | S_IRUGO, root,
2574 				adev,
2575 				ttm_debugfs_entries[count].fops);
2576 		if (IS_ERR(ent))
2577 			return PTR_ERR(ent);
2578 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2579 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2580 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2581 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2582 		adev->mman.debugfs_entries[count] = ent;
2583 	}
2584 
2585 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2586 
2587 #ifdef CONFIG_SWIOTLB
2588 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2589 		--count;
2590 #endif
2591 
2592 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2593 #else
2594 	return 0;
2595 #endif
2596 }
2597 
2598 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2599 {
2600 #if defined(CONFIG_DEBUG_FS)
2601 	unsigned i;
2602 
2603 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2604 		debugfs_remove(adev->mman.debugfs_entries[i]);
2605 #endif
2606 }
2607