1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 #include <drm/ttm/ttm_bo_api.h> 33 #include <drm/ttm/ttm_bo_driver.h> 34 #include <drm/ttm/ttm_placement.h> 35 #include <drm/ttm/ttm_module.h> 36 #include <drm/ttm/ttm_page_alloc.h> 37 #include <drm/drmP.h> 38 #include <drm/amdgpu_drm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swiotlb.h> 42 #include <linux/swap.h> 43 #include <linux/pagemap.h> 44 #include <linux/debugfs.h> 45 #include <linux/iommu.h> 46 #include "amdgpu.h" 47 #include "amdgpu_object.h" 48 #include "amdgpu_trace.h" 49 #include "amdgpu_amdkfd.h" 50 #include "bif/bif_4_1_d.h" 51 52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT) 53 54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 55 struct ttm_mem_reg *mem, unsigned num_pages, 56 uint64_t offset, unsigned window, 57 struct amdgpu_ring *ring, 58 uint64_t *addr); 59 60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 62 63 /* 64 * Global memory. 65 */ 66 67 /** 68 * amdgpu_ttm_mem_global_init - Initialize and acquire reference to 69 * memory object 70 * 71 * @ref: Object for initialization. 72 * 73 * This is called by drm_global_item_ref() when an object is being 74 * initialized. 75 */ 76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref) 77 { 78 return ttm_mem_global_init(ref->object); 79 } 80 81 /** 82 * amdgpu_ttm_mem_global_release - Drop reference to a memory object 83 * 84 * @ref: Object being removed 85 * 86 * This is called by drm_global_item_unref() when an object is being 87 * released. 88 */ 89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref) 90 { 91 ttm_mem_global_release(ref->object); 92 } 93 94 /** 95 * amdgpu_ttm_global_init - Initialize global TTM memory reference structures. 96 * 97 * @adev: AMDGPU device for which the global structures need to be registered. 98 * 99 * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init() 100 * during bring up. 101 */ 102 static int amdgpu_ttm_global_init(struct amdgpu_device *adev) 103 { 104 struct drm_global_reference *global_ref; 105 int r; 106 107 /* ensure reference is false in case init fails */ 108 adev->mman.mem_global_referenced = false; 109 110 global_ref = &adev->mman.mem_global_ref; 111 global_ref->global_type = DRM_GLOBAL_TTM_MEM; 112 global_ref->size = sizeof(struct ttm_mem_global); 113 global_ref->init = &amdgpu_ttm_mem_global_init; 114 global_ref->release = &amdgpu_ttm_mem_global_release; 115 r = drm_global_item_ref(global_ref); 116 if (r) { 117 DRM_ERROR("Failed setting up TTM memory accounting " 118 "subsystem.\n"); 119 goto error_mem; 120 } 121 122 adev->mman.bo_global_ref.mem_glob = 123 adev->mman.mem_global_ref.object; 124 global_ref = &adev->mman.bo_global_ref.ref; 125 global_ref->global_type = DRM_GLOBAL_TTM_BO; 126 global_ref->size = sizeof(struct ttm_bo_global); 127 global_ref->init = &ttm_bo_global_init; 128 global_ref->release = &ttm_bo_global_release; 129 r = drm_global_item_ref(global_ref); 130 if (r) { 131 DRM_ERROR("Failed setting up TTM BO subsystem.\n"); 132 goto error_bo; 133 } 134 135 rw_init(&adev->mman.gtt_window_lock, "gttwin"); 136 137 adev->mman.mem_global_referenced = true; 138 139 return 0; 140 141 error_bo: 142 drm_global_item_unref(&adev->mman.mem_global_ref); 143 error_mem: 144 return r; 145 } 146 147 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev) 148 { 149 if (adev->mman.mem_global_referenced) { 150 mutex_destroy(&adev->mman.gtt_window_lock); 151 drm_global_item_unref(&adev->mman.bo_global_ref.ref); 152 drm_global_item_unref(&adev->mman.mem_global_ref); 153 adev->mman.mem_global_referenced = false; 154 } 155 } 156 157 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 158 { 159 return 0; 160 } 161 162 /** 163 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 164 * memory request. 165 * 166 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 167 * @type: The type of memory requested 168 * @man: The memory type manager for each domain 169 * 170 * This is called by ttm_bo_init_mm() when a buffer object is being 171 * initialized. 172 */ 173 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 174 struct ttm_mem_type_manager *man) 175 { 176 struct amdgpu_device *adev; 177 178 adev = amdgpu_ttm_adev(bdev); 179 180 switch (type) { 181 case TTM_PL_SYSTEM: 182 /* System memory */ 183 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 184 man->available_caching = TTM_PL_MASK_CACHING; 185 man->default_caching = TTM_PL_FLAG_CACHED; 186 break; 187 case TTM_PL_TT: 188 /* GTT memory */ 189 man->func = &amdgpu_gtt_mgr_func; 190 man->gpu_offset = adev->gmc.gart_start; 191 man->available_caching = TTM_PL_MASK_CACHING; 192 man->default_caching = TTM_PL_FLAG_CACHED; 193 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 194 break; 195 case TTM_PL_VRAM: 196 /* "On-card" video ram */ 197 man->func = &amdgpu_vram_mgr_func; 198 man->gpu_offset = adev->gmc.vram_start; 199 man->flags = TTM_MEMTYPE_FLAG_FIXED | 200 TTM_MEMTYPE_FLAG_MAPPABLE; 201 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 202 man->default_caching = TTM_PL_FLAG_WC; 203 break; 204 case AMDGPU_PL_GDS: 205 case AMDGPU_PL_GWS: 206 case AMDGPU_PL_OA: 207 /* On-chip GDS memory*/ 208 man->func = &ttm_bo_manager_func; 209 man->gpu_offset = 0; 210 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 211 man->available_caching = TTM_PL_FLAG_UNCACHED; 212 man->default_caching = TTM_PL_FLAG_UNCACHED; 213 break; 214 default: 215 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 216 return -EINVAL; 217 } 218 return 0; 219 } 220 221 /** 222 * amdgpu_evict_flags - Compute placement flags 223 * 224 * @bo: The buffer object to evict 225 * @placement: Possible destination(s) for evicted BO 226 * 227 * Fill in placement data when ttm_bo_evict() is called 228 */ 229 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 230 struct ttm_placement *placement) 231 { 232 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 233 struct amdgpu_bo *abo; 234 static const struct ttm_place placements = { 235 .fpfn = 0, 236 .lpfn = 0, 237 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 238 }; 239 240 /* Don't handle scatter gather BOs */ 241 if (bo->type == ttm_bo_type_sg) { 242 placement->num_placement = 0; 243 placement->num_busy_placement = 0; 244 return; 245 } 246 247 /* Object isn't an AMDGPU object so ignore */ 248 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 249 placement->placement = &placements; 250 placement->busy_placement = &placements; 251 placement->num_placement = 1; 252 placement->num_busy_placement = 1; 253 return; 254 } 255 256 abo = ttm_to_amdgpu_bo(bo); 257 switch (bo->mem.mem_type) { 258 case TTM_PL_VRAM: 259 if (!adev->mman.buffer_funcs_enabled) { 260 /* Move to system memory */ 261 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 262 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 263 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 264 amdgpu_bo_in_cpu_visible_vram(abo)) { 265 266 /* Try evicting to the CPU inaccessible part of VRAM 267 * first, but only set GTT as busy placement, so this 268 * BO will be evicted to GTT rather than causing other 269 * BOs to be evicted from VRAM 270 */ 271 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 272 AMDGPU_GEM_DOMAIN_GTT); 273 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 274 abo->placements[0].lpfn = 0; 275 abo->placement.busy_placement = &abo->placements[1]; 276 abo->placement.num_busy_placement = 1; 277 } else { 278 /* Move to GTT memory */ 279 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 280 } 281 break; 282 case TTM_PL_TT: 283 default: 284 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 285 } 286 *placement = abo->placement; 287 } 288 289 /** 290 * amdgpu_verify_access - Verify access for a mmap call 291 * 292 * @bo: The buffer object to map 293 * @filp: The file pointer from the process performing the mmap 294 * 295 * This is called by ttm_bo_mmap() to verify whether a process 296 * has the right to mmap a BO to their process space. 297 */ 298 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 299 { 300 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 301 302 /* 303 * Don't verify access for KFD BOs. They don't have a GEM 304 * object associated with them. 305 */ 306 if (abo->kfd_bo) 307 return 0; 308 309 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 310 return -EPERM; 311 return drm_vma_node_verify_access(&abo->gem_base.vma_node, filp); 312 } 313 314 /** 315 * amdgpu_move_null - Register memory for a buffer object 316 * 317 * @bo: The bo to assign the memory to 318 * @new_mem: The memory to be assigned. 319 * 320 * Assign the memory from new_mem to the memory of the buffer object bo. 321 */ 322 static void amdgpu_move_null(struct ttm_buffer_object *bo, 323 struct ttm_mem_reg *new_mem) 324 { 325 struct ttm_mem_reg *old_mem = &bo->mem; 326 327 BUG_ON(old_mem->mm_node != NULL); 328 *old_mem = *new_mem; 329 new_mem->mm_node = NULL; 330 } 331 332 /** 333 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 334 * 335 * @bo: The bo to assign the memory to. 336 * @mm_node: Memory manager node for drm allocator. 337 * @mem: The region where the bo resides. 338 * 339 */ 340 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 341 struct drm_mm_node *mm_node, 342 struct ttm_mem_reg *mem) 343 { 344 uint64_t addr = 0; 345 346 if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) { 347 addr = mm_node->start << PAGE_SHIFT; 348 addr += bo->bdev->man[mem->mem_type].gpu_offset; 349 } 350 return addr; 351 } 352 353 /** 354 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 355 * @offset. It also modifies the offset to be within the drm_mm_node returned 356 * 357 * @mem: The region where the bo resides. 358 * @offset: The offset that drm_mm_node is used for finding. 359 * 360 */ 361 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 362 unsigned long *offset) 363 { 364 struct drm_mm_node *mm_node = mem->mm_node; 365 366 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 367 *offset -= (mm_node->size << PAGE_SHIFT); 368 ++mm_node; 369 } 370 return mm_node; 371 } 372 373 /** 374 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 375 * 376 * The function copies @size bytes from {src->mem + src->offset} to 377 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 378 * move and different for a BO to BO copy. 379 * 380 * @f: Returns the last fence if multiple jobs are submitted. 381 */ 382 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 383 struct amdgpu_copy_mem *src, 384 struct amdgpu_copy_mem *dst, 385 uint64_t size, 386 struct reservation_object *resv, 387 struct dma_fence **f) 388 { 389 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 390 struct drm_mm_node *src_mm, *dst_mm; 391 uint64_t src_node_start, dst_node_start, src_node_size, 392 dst_node_size, src_page_offset, dst_page_offset; 393 struct dma_fence *fence = NULL; 394 int r = 0; 395 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 396 AMDGPU_GPU_PAGE_SIZE); 397 398 if (!adev->mman.buffer_funcs_enabled) { 399 DRM_ERROR("Trying to move memory with ring turned off.\n"); 400 return -EINVAL; 401 } 402 403 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 404 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 405 src->offset; 406 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 407 src_page_offset = src_node_start & (PAGE_SIZE - 1); 408 409 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 410 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 411 dst->offset; 412 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 413 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 414 415 mutex_lock(&adev->mman.gtt_window_lock); 416 417 while (size) { 418 unsigned long cur_size; 419 uint64_t from = src_node_start, to = dst_node_start; 420 struct dma_fence *next; 421 422 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 423 * begins at an offset, then adjust the size accordingly 424 */ 425 cur_size = min3(min(src_node_size, dst_node_size), size, 426 GTT_MAX_BYTES); 427 if (cur_size + src_page_offset > GTT_MAX_BYTES || 428 cur_size + dst_page_offset > GTT_MAX_BYTES) 429 cur_size -= max(src_page_offset, dst_page_offset); 430 431 /* Map only what needs to be accessed. Map src to window 0 and 432 * dst to window 1 433 */ 434 if (src->mem->mem_type == TTM_PL_TT && 435 !amdgpu_gtt_mgr_has_gart_addr(src->mem)) { 436 r = amdgpu_map_buffer(src->bo, src->mem, 437 PFN_UP(cur_size + src_page_offset), 438 src_node_start, 0, ring, 439 &from); 440 if (r) 441 goto error; 442 /* Adjust the offset because amdgpu_map_buffer returns 443 * start of mapped page 444 */ 445 from += src_page_offset; 446 } 447 448 if (dst->mem->mem_type == TTM_PL_TT && 449 !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) { 450 r = amdgpu_map_buffer(dst->bo, dst->mem, 451 PFN_UP(cur_size + dst_page_offset), 452 dst_node_start, 1, ring, 453 &to); 454 if (r) 455 goto error; 456 to += dst_page_offset; 457 } 458 459 r = amdgpu_copy_buffer(ring, from, to, cur_size, 460 resv, &next, false, true); 461 if (r) 462 goto error; 463 464 dma_fence_put(fence); 465 fence = next; 466 467 size -= cur_size; 468 if (!size) 469 break; 470 471 src_node_size -= cur_size; 472 if (!src_node_size) { 473 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 474 src->mem); 475 src_node_size = (src_mm->size << PAGE_SHIFT); 476 } else { 477 src_node_start += cur_size; 478 src_page_offset = src_node_start & (PAGE_SIZE - 1); 479 } 480 dst_node_size -= cur_size; 481 if (!dst_node_size) { 482 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 483 dst->mem); 484 dst_node_size = (dst_mm->size << PAGE_SHIFT); 485 } else { 486 dst_node_start += cur_size; 487 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 488 } 489 } 490 error: 491 mutex_unlock(&adev->mman.gtt_window_lock); 492 if (f) 493 *f = dma_fence_get(fence); 494 dma_fence_put(fence); 495 return r; 496 } 497 498 /** 499 * amdgpu_move_blit - Copy an entire buffer to another buffer 500 * 501 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 502 * help move buffers to and from VRAM. 503 */ 504 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 505 bool evict, bool no_wait_gpu, 506 struct ttm_mem_reg *new_mem, 507 struct ttm_mem_reg *old_mem) 508 { 509 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 510 struct amdgpu_copy_mem src, dst; 511 struct dma_fence *fence = NULL; 512 int r; 513 514 src.bo = bo; 515 dst.bo = bo; 516 src.mem = old_mem; 517 dst.mem = new_mem; 518 src.offset = 0; 519 dst.offset = 0; 520 521 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 522 new_mem->num_pages << PAGE_SHIFT, 523 bo->resv, &fence); 524 if (r) 525 goto error; 526 527 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 528 dma_fence_put(fence); 529 return r; 530 531 error: 532 if (fence) 533 dma_fence_wait(fence, false); 534 dma_fence_put(fence); 535 return r; 536 } 537 538 /** 539 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 540 * 541 * Called by amdgpu_bo_move(). 542 */ 543 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 544 struct ttm_operation_ctx *ctx, 545 struct ttm_mem_reg *new_mem) 546 { 547 struct amdgpu_device *adev; 548 struct ttm_mem_reg *old_mem = &bo->mem; 549 struct ttm_mem_reg tmp_mem; 550 struct ttm_place placements; 551 struct ttm_placement placement; 552 int r; 553 554 adev = amdgpu_ttm_adev(bo->bdev); 555 556 /* create space/pages for new_mem in GTT space */ 557 tmp_mem = *new_mem; 558 tmp_mem.mm_node = NULL; 559 placement.num_placement = 1; 560 placement.placement = &placements; 561 placement.num_busy_placement = 1; 562 placement.busy_placement = &placements; 563 placements.fpfn = 0; 564 placements.lpfn = 0; 565 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 566 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 567 if (unlikely(r)) { 568 return r; 569 } 570 571 /* set caching flags */ 572 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 573 if (unlikely(r)) { 574 goto out_cleanup; 575 } 576 577 /* Bind the memory to the GTT space */ 578 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 579 if (unlikely(r)) { 580 goto out_cleanup; 581 } 582 583 /* blit VRAM to GTT */ 584 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 585 if (unlikely(r)) { 586 goto out_cleanup; 587 } 588 589 /* move BO (in tmp_mem) to new_mem */ 590 r = ttm_bo_move_ttm(bo, ctx, new_mem); 591 out_cleanup: 592 ttm_bo_mem_put(bo, &tmp_mem); 593 return r; 594 } 595 596 /** 597 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 598 * 599 * Called by amdgpu_bo_move(). 600 */ 601 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 602 struct ttm_operation_ctx *ctx, 603 struct ttm_mem_reg *new_mem) 604 { 605 struct amdgpu_device *adev; 606 struct ttm_mem_reg *old_mem = &bo->mem; 607 struct ttm_mem_reg tmp_mem; 608 struct ttm_placement placement; 609 struct ttm_place placements; 610 int r; 611 612 adev = amdgpu_ttm_adev(bo->bdev); 613 614 /* make space in GTT for old_mem buffer */ 615 tmp_mem = *new_mem; 616 tmp_mem.mm_node = NULL; 617 placement.num_placement = 1; 618 placement.placement = &placements; 619 placement.num_busy_placement = 1; 620 placement.busy_placement = &placements; 621 placements.fpfn = 0; 622 placements.lpfn = 0; 623 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 624 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 625 if (unlikely(r)) { 626 return r; 627 } 628 629 /* move/bind old memory to GTT space */ 630 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 631 if (unlikely(r)) { 632 goto out_cleanup; 633 } 634 635 /* copy to VRAM */ 636 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 637 if (unlikely(r)) { 638 goto out_cleanup; 639 } 640 out_cleanup: 641 ttm_bo_mem_put(bo, &tmp_mem); 642 return r; 643 } 644 645 /** 646 * amdgpu_bo_move - Move a buffer object to a new memory location 647 * 648 * Called by ttm_bo_handle_move_mem() 649 */ 650 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 651 struct ttm_operation_ctx *ctx, 652 struct ttm_mem_reg *new_mem) 653 { 654 struct amdgpu_device *adev; 655 struct amdgpu_bo *abo; 656 struct ttm_mem_reg *old_mem = &bo->mem; 657 int r; 658 659 /* Can't move a pinned BO */ 660 abo = ttm_to_amdgpu_bo(bo); 661 if (WARN_ON_ONCE(abo->pin_count > 0)) 662 return -EINVAL; 663 664 adev = amdgpu_ttm_adev(bo->bdev); 665 666 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 667 amdgpu_move_null(bo, new_mem); 668 return 0; 669 } 670 if ((old_mem->mem_type == TTM_PL_TT && 671 new_mem->mem_type == TTM_PL_SYSTEM) || 672 (old_mem->mem_type == TTM_PL_SYSTEM && 673 new_mem->mem_type == TTM_PL_TT)) { 674 /* bind is enough */ 675 amdgpu_move_null(bo, new_mem); 676 return 0; 677 } 678 679 if (!adev->mman.buffer_funcs_enabled) 680 goto memcpy; 681 682 if (old_mem->mem_type == TTM_PL_VRAM && 683 new_mem->mem_type == TTM_PL_SYSTEM) { 684 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 685 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 686 new_mem->mem_type == TTM_PL_VRAM) { 687 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 688 } else { 689 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 690 new_mem, old_mem); 691 } 692 693 if (r) { 694 memcpy: 695 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 696 if (r) { 697 return r; 698 } 699 } 700 701 if (bo->type == ttm_bo_type_device && 702 new_mem->mem_type == TTM_PL_VRAM && 703 old_mem->mem_type != TTM_PL_VRAM) { 704 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 705 * accesses the BO after it's moved. 706 */ 707 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 708 } 709 710 /* update statistics */ 711 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 712 return 0; 713 } 714 715 /** 716 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 717 * 718 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 719 */ 720 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 721 { 722 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 723 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 724 struct drm_mm_node *mm_node = mem->mm_node; 725 726 mem->bus.addr = NULL; 727 mem->bus.offset = 0; 728 mem->bus.size = mem->num_pages << PAGE_SHIFT; 729 mem->bus.base = 0; 730 mem->bus.is_iomem = false; 731 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 732 return -EINVAL; 733 switch (mem->mem_type) { 734 case TTM_PL_SYSTEM: 735 /* system memory */ 736 return 0; 737 case TTM_PL_TT: 738 break; 739 case TTM_PL_VRAM: 740 mem->bus.offset = mem->start << PAGE_SHIFT; 741 /* check if it's visible */ 742 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 743 return -EINVAL; 744 /* Only physically contiguous buffers apply. In a contiguous 745 * buffer, size of the first mm_node would match the number of 746 * pages in ttm_mem_reg. 747 */ 748 if (adev->mman.aper_base_kaddr && 749 (mm_node->size == mem->num_pages)) 750 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 751 mem->bus.offset; 752 753 mem->bus.base = adev->gmc.aper_base; 754 mem->bus.is_iomem = true; 755 break; 756 default: 757 return -EINVAL; 758 } 759 return 0; 760 } 761 762 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 763 { 764 } 765 766 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 767 unsigned long page_offset) 768 { 769 struct drm_mm_node *mm; 770 unsigned long offset = (page_offset << PAGE_SHIFT); 771 772 mm = amdgpu_find_mm_node(&bo->mem, &offset); 773 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 774 (offset >> PAGE_SHIFT); 775 } 776 777 /* 778 * TTM backend functions. 779 */ 780 struct amdgpu_ttm_gup_task_list { 781 struct list_head list; 782 struct task_struct *task; 783 }; 784 785 struct amdgpu_ttm_tt { 786 struct ttm_dma_tt ttm; 787 struct amdgpu_device *adev; 788 u64 offset; 789 uint64_t userptr; 790 struct task_struct *usertask; 791 uint32_t userflags; 792 spinlock_t guptasklock; 793 struct list_head guptasks; 794 atomic_t mmu_invalidations; 795 uint32_t last_set_pages; 796 }; 797 798 /** 799 * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR 800 * pointer to memory 801 * 802 * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos(). 803 * This provides a wrapper around the get_user_pages() call to provide 804 * device accessible pages that back user memory. 805 */ 806 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct vm_page **pages) 807 { 808 STUB(); 809 return -ENOSYS; 810 #if 0 811 struct amdgpu_ttm_tt *gtt = (void *)ttm; 812 struct mm_struct *mm = gtt->usertask->mm; 813 unsigned int flags = 0; 814 unsigned pinned = 0; 815 int r; 816 817 if (!mm) /* Happens during process shutdown */ 818 return -ESRCH; 819 820 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 821 flags |= FOLL_WRITE; 822 823 down_read(&mm->mmap_sem); 824 825 if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) { 826 /* 827 * check that we only use anonymous memory to prevent problems 828 * with writeback 829 */ 830 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE; 831 struct vm_area_struct *vma; 832 833 vma = find_vma(mm, gtt->userptr); 834 if (!vma || vma->vm_file || vma->vm_end < end) { 835 up_read(&mm->mmap_sem); 836 return -EPERM; 837 } 838 } 839 840 /* loop enough times using contiguous pages of memory */ 841 do { 842 unsigned num_pages = ttm->num_pages - pinned; 843 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE; 844 struct vm_page **p = pages + pinned; 845 struct amdgpu_ttm_gup_task_list guptask; 846 847 guptask.task = current; 848 spin_lock(>t->guptasklock); 849 list_add(&guptask.list, >t->guptasks); 850 spin_unlock(>t->guptasklock); 851 852 if (mm == current->mm) 853 r = get_user_pages(userptr, num_pages, flags, p, NULL); 854 else 855 r = get_user_pages_remote(gtt->usertask, 856 mm, userptr, num_pages, 857 flags, p, NULL, NULL); 858 859 spin_lock(>t->guptasklock); 860 list_del(&guptask.list); 861 spin_unlock(>t->guptasklock); 862 863 if (r < 0) 864 goto release_pages; 865 866 pinned += r; 867 868 } while (pinned < ttm->num_pages); 869 870 up_read(&mm->mmap_sem); 871 return 0; 872 873 release_pages: 874 release_pages(pages, pinned); 875 up_read(&mm->mmap_sem); 876 return r; 877 #endif 878 } 879 880 /** 881 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 882 * 883 * Called by amdgpu_cs_list_validate(). This creates the page list 884 * that backs user memory and will ultimately be mapped into the device 885 * address space. 886 */ 887 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages) 888 { 889 STUB(); 890 #if 0 891 struct amdgpu_ttm_tt *gtt = (void *)ttm; 892 unsigned i; 893 894 gtt->last_set_pages = atomic_read(>t->mmu_invalidations); 895 for (i = 0; i < ttm->num_pages; ++i) { 896 if (ttm->pages[i]) 897 put_page(ttm->pages[i]); 898 899 ttm->pages[i] = pages ? pages[i] : NULL; 900 } 901 #endif 902 } 903 904 /** 905 * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty 906 * 907 * Called while unpinning userptr pages 908 */ 909 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm) 910 { 911 STUB(); 912 #if 0 913 struct amdgpu_ttm_tt *gtt = (void *)ttm; 914 unsigned i; 915 916 for (i = 0; i < ttm->num_pages; ++i) { 917 struct vm_page *page = ttm->pages[i]; 918 919 if (!page) 920 continue; 921 922 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 923 set_page_dirty(page); 924 925 mark_page_accessed(page); 926 } 927 #endif 928 } 929 930 /** 931 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 932 * 933 * Called by amdgpu_ttm_backend_bind() 934 **/ 935 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 936 { 937 STUB(); 938 return -ENOSYS; 939 #if 0 940 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 941 struct amdgpu_ttm_tt *gtt = (void *)ttm; 942 unsigned nents; 943 int r; 944 945 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 946 enum dma_data_direction direction = write ? 947 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 948 949 /* Allocate an SG array and squash pages into it */ 950 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 951 ttm->num_pages << PAGE_SHIFT, 952 GFP_KERNEL); 953 if (r) 954 goto release_sg; 955 956 /* Map SG to device */ 957 r = -ENOMEM; 958 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 959 if (nents != ttm->sg->nents) 960 goto release_sg; 961 962 /* convert SG to linear array of pages and dma addresses */ 963 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 964 gtt->ttm.dma_address, ttm->num_pages); 965 966 return 0; 967 968 release_sg: 969 kfree(ttm->sg); 970 return r; 971 #endif 972 } 973 974 /** 975 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 976 */ 977 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 978 { 979 STUB(); 980 #if 0 981 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 982 struct amdgpu_ttm_tt *gtt = (void *)ttm; 983 984 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 985 enum dma_data_direction direction = write ? 986 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 987 988 /* double check that we don't free the table twice */ 989 if (!ttm->sg->sgl) 990 return; 991 992 /* unmap the pages mapped to the device */ 993 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 994 995 /* mark the pages as dirty */ 996 amdgpu_ttm_tt_mark_user_pages(ttm); 997 998 sg_free_table(ttm->sg); 999 #endif 1000 } 1001 1002 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1003 struct ttm_buffer_object *tbo, 1004 uint64_t flags) 1005 { 1006 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1007 struct ttm_tt *ttm = tbo->ttm; 1008 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1009 int r; 1010 1011 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 1012 uint64_t page_idx = 1; 1013 1014 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1015 ttm->pages, gtt->ttm.dma_address, flags); 1016 if (r) 1017 goto gart_bind_fail; 1018 1019 /* Patch mtype of the second part BO */ 1020 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1021 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC); 1022 1023 r = amdgpu_gart_bind(adev, 1024 gtt->offset + (page_idx << PAGE_SHIFT), 1025 ttm->num_pages - page_idx, 1026 &ttm->pages[page_idx], 1027 &(gtt->ttm.dma_address[page_idx]), flags); 1028 } else { 1029 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1030 ttm->pages, gtt->ttm.dma_address, flags); 1031 } 1032 1033 gart_bind_fail: 1034 if (r) 1035 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1036 ttm->num_pages, gtt->offset); 1037 1038 return r; 1039 } 1040 1041 /** 1042 * amdgpu_ttm_backend_bind - Bind GTT memory 1043 * 1044 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1045 * This handles binding GTT memory to the device address space. 1046 */ 1047 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1048 struct ttm_mem_reg *bo_mem) 1049 { 1050 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1051 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1052 uint64_t flags; 1053 int r = 0; 1054 1055 if (gtt->userptr) { 1056 r = amdgpu_ttm_tt_pin_userptr(ttm); 1057 if (r) { 1058 DRM_ERROR("failed to pin userptr\n"); 1059 return r; 1060 } 1061 } 1062 if (!ttm->num_pages) { 1063 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1064 ttm->num_pages, bo_mem, ttm); 1065 } 1066 1067 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1068 bo_mem->mem_type == AMDGPU_PL_GWS || 1069 bo_mem->mem_type == AMDGPU_PL_OA) 1070 return -EINVAL; 1071 1072 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1073 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1074 return 0; 1075 } 1076 1077 /* compute PTE flags relevant to this BO memory */ 1078 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1079 1080 /* bind pages into GART page tables */ 1081 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1082 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1083 ttm->pages, gtt->ttm.dma_address, flags); 1084 1085 if (r) 1086 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1087 ttm->num_pages, gtt->offset); 1088 return r; 1089 } 1090 1091 /** 1092 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1093 */ 1094 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1095 { 1096 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1097 struct ttm_operation_ctx ctx = { false, false }; 1098 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1099 struct ttm_mem_reg tmp; 1100 struct ttm_placement placement; 1101 struct ttm_place placements; 1102 uint64_t flags; 1103 int r; 1104 1105 if (bo->mem.mem_type != TTM_PL_TT || 1106 amdgpu_gtt_mgr_has_gart_addr(&bo->mem)) 1107 return 0; 1108 1109 /* allocate GTT space */ 1110 tmp = bo->mem; 1111 tmp.mm_node = NULL; 1112 placement.num_placement = 1; 1113 placement.placement = &placements; 1114 placement.num_busy_placement = 1; 1115 placement.busy_placement = &placements; 1116 placements.fpfn = 0; 1117 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1118 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1119 TTM_PL_FLAG_TT; 1120 1121 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1122 if (unlikely(r)) 1123 return r; 1124 1125 /* compute PTE flags for this buffer object */ 1126 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1127 1128 /* Bind pages */ 1129 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1130 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1131 if (unlikely(r)) { 1132 ttm_bo_mem_put(bo, &tmp); 1133 return r; 1134 } 1135 1136 ttm_bo_mem_put(bo, &bo->mem); 1137 bo->mem = tmp; 1138 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1139 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1140 1141 return 0; 1142 } 1143 1144 /** 1145 * amdgpu_ttm_recover_gart - Rebind GTT pages 1146 * 1147 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1148 * rebind GTT pages during a GPU reset. 1149 */ 1150 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1151 { 1152 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1153 uint64_t flags; 1154 int r; 1155 1156 if (!tbo->ttm) 1157 return 0; 1158 1159 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1160 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1161 1162 return r; 1163 } 1164 1165 /** 1166 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1167 * 1168 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1169 * ttm_tt_destroy(). 1170 */ 1171 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1172 { 1173 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1174 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1175 int r; 1176 1177 /* if the pages have userptr pinning then clear that first */ 1178 if (gtt->userptr) 1179 amdgpu_ttm_tt_unpin_userptr(ttm); 1180 1181 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1182 return 0; 1183 1184 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1185 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1186 if (r) 1187 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1188 gtt->ttm.ttm.num_pages, gtt->offset); 1189 return r; 1190 } 1191 1192 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1193 { 1194 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1195 1196 #ifdef notyet 1197 if (gtt->usertask) 1198 put_task_struct(gtt->usertask); 1199 #endif 1200 1201 ttm_dma_tt_fini(>t->ttm); 1202 kfree(gtt); 1203 } 1204 1205 static struct ttm_backend_func amdgpu_backend_func = { 1206 .bind = &amdgpu_ttm_backend_bind, 1207 .unbind = &amdgpu_ttm_backend_unbind, 1208 .destroy = &amdgpu_ttm_backend_destroy, 1209 }; 1210 1211 /** 1212 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1213 * 1214 * @bo: The buffer object to create a GTT ttm_tt object around 1215 * 1216 * Called by ttm_tt_create(). 1217 */ 1218 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1219 uint32_t page_flags) 1220 { 1221 struct amdgpu_device *adev; 1222 struct amdgpu_ttm_tt *gtt; 1223 1224 adev = amdgpu_ttm_adev(bo->bdev); 1225 1226 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1227 if (gtt == NULL) { 1228 return NULL; 1229 } 1230 gtt->ttm.ttm.func = &amdgpu_backend_func; 1231 gtt->adev = adev; 1232 1233 /* allocate space for the uninitialized page entries */ 1234 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1235 kfree(gtt); 1236 return NULL; 1237 } 1238 return >t->ttm.ttm; 1239 } 1240 1241 /** 1242 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1243 * 1244 * Map the pages of a ttm_tt object to an address space visible 1245 * to the underlying device. 1246 */ 1247 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1248 struct ttm_operation_ctx *ctx) 1249 { 1250 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1251 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1252 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1253 1254 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1255 if (gtt && gtt->userptr) { 1256 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1257 if (!ttm->sg) 1258 return -ENOMEM; 1259 1260 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1261 ttm->state = tt_unbound; 1262 return 0; 1263 } 1264 1265 if (slave && ttm->sg) { 1266 #ifdef notyet 1267 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1268 gtt->ttm.dma_address, 1269 ttm->num_pages); 1270 #endif 1271 ttm->state = tt_unbound; 1272 return 0; 1273 } 1274 1275 #ifdef CONFIG_SWIOTLB 1276 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1277 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1278 } 1279 #endif 1280 1281 /* fall back to generic helper to populate the page array 1282 * and map them to the device */ 1283 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1284 } 1285 1286 /** 1287 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1288 * 1289 * Unmaps pages of a ttm_tt object from the device address space and 1290 * unpopulates the page array backing it. 1291 */ 1292 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1293 { 1294 struct amdgpu_device *adev; 1295 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1296 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1297 1298 if (gtt && gtt->userptr) { 1299 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1300 kfree(ttm->sg); 1301 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1302 return; 1303 } 1304 1305 if (slave) 1306 return; 1307 1308 adev = amdgpu_ttm_adev(ttm->bdev); 1309 1310 #ifdef CONFIG_SWIOTLB 1311 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1312 ttm_dma_unpopulate(>t->ttm, adev->dev); 1313 return; 1314 } 1315 #endif 1316 1317 /* fall back to generic helper to unmap and unpopulate array */ 1318 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1319 } 1320 1321 /** 1322 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1323 * task 1324 * 1325 * @ttm: The ttm_tt object to bind this userptr object to 1326 * @addr: The address in the current tasks VM space to use 1327 * @flags: Requirements of userptr object. 1328 * 1329 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1330 * to current task 1331 */ 1332 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1333 uint32_t flags) 1334 { 1335 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1336 1337 if (gtt == NULL) 1338 return -EINVAL; 1339 1340 gtt->userptr = addr; 1341 gtt->userflags = flags; 1342 1343 #ifdef notyet 1344 if (gtt->usertask) 1345 put_task_struct(gtt->usertask); 1346 gtt->usertask = current->group_leader; 1347 get_task_struct(gtt->usertask); 1348 #endif 1349 1350 mtx_init(>t->guptasklock, IPL_TTY); 1351 INIT_LIST_HEAD(>t->guptasks); 1352 atomic_set(>t->mmu_invalidations, 0); 1353 gtt->last_set_pages = 0; 1354 1355 return 0; 1356 } 1357 1358 /** 1359 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1360 */ 1361 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1362 { 1363 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1364 1365 if (gtt == NULL) 1366 return NULL; 1367 1368 if (gtt->usertask == NULL) 1369 return NULL; 1370 1371 #if 0 1372 return gtt->usertask->mm; 1373 #else 1374 STUB(); 1375 return NULL; 1376 #endif 1377 } 1378 1379 /** 1380 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1381 * address range for the current task. 1382 * 1383 */ 1384 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1385 unsigned long end) 1386 { 1387 STUB(); 1388 return false; 1389 #if 0 1390 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1391 struct amdgpu_ttm_gup_task_list *entry; 1392 unsigned long size; 1393 1394 if (gtt == NULL || !gtt->userptr) 1395 return false; 1396 1397 /* Return false if no part of the ttm_tt object lies within 1398 * the range 1399 */ 1400 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1401 if (gtt->userptr > end || gtt->userptr + size <= start) 1402 return false; 1403 1404 /* Search the lists of tasks that hold this mapping and see 1405 * if current is one of them. If it is return false. 1406 */ 1407 spin_lock(>t->guptasklock); 1408 list_for_each_entry(entry, >t->guptasks, list) { 1409 if (entry->task == current) { 1410 spin_unlock(>t->guptasklock); 1411 return false; 1412 } 1413 } 1414 spin_unlock(>t->guptasklock); 1415 1416 atomic_inc(>t->mmu_invalidations); 1417 1418 return true; 1419 #endif 1420 } 1421 1422 /** 1423 * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated? 1424 */ 1425 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm, 1426 int *last_invalidated) 1427 { 1428 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1429 int prev_invalidated = *last_invalidated; 1430 1431 *last_invalidated = atomic_read(>t->mmu_invalidations); 1432 return prev_invalidated != *last_invalidated; 1433 } 1434 1435 /** 1436 * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object 1437 * been invalidated since the last time they've been set? 1438 */ 1439 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm) 1440 { 1441 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1442 1443 if (gtt == NULL || !gtt->userptr) 1444 return false; 1445 1446 return atomic_read(>t->mmu_invalidations) != gtt->last_set_pages; 1447 } 1448 1449 /** 1450 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1451 */ 1452 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1453 { 1454 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1455 1456 if (gtt == NULL) 1457 return false; 1458 1459 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1460 } 1461 1462 /** 1463 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1464 * 1465 * @ttm: The ttm_tt object to compute the flags for 1466 * @mem: The memory registry backing this ttm_tt object 1467 */ 1468 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1469 struct ttm_mem_reg *mem) 1470 { 1471 uint64_t flags = 0; 1472 1473 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1474 flags |= AMDGPU_PTE_VALID; 1475 1476 if (mem && mem->mem_type == TTM_PL_TT) { 1477 flags |= AMDGPU_PTE_SYSTEM; 1478 1479 if (ttm->caching_state == tt_cached) 1480 flags |= AMDGPU_PTE_SNOOPED; 1481 } 1482 1483 flags |= adev->gart.gart_pte_flags; 1484 flags |= AMDGPU_PTE_READABLE; 1485 1486 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1487 flags |= AMDGPU_PTE_WRITEABLE; 1488 1489 return flags; 1490 } 1491 1492 /** 1493 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1494 * object. 1495 * 1496 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1497 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1498 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1499 * used to clean out a memory space. 1500 */ 1501 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1502 const struct ttm_place *place) 1503 { 1504 unsigned long num_pages = bo->mem.num_pages; 1505 struct drm_mm_node *node = bo->mem.mm_node; 1506 struct reservation_object_list *flist; 1507 struct dma_fence *f; 1508 int i; 1509 1510 /* If bo is a KFD BO, check if the bo belongs to the current process. 1511 * If true, then return false as any KFD process needs all its BOs to 1512 * be resident to run successfully 1513 */ 1514 flist = reservation_object_get_list(bo->resv); 1515 if (flist) { 1516 for (i = 0; i < flist->shared_count; ++i) { 1517 f = rcu_dereference_protected(flist->shared[i], 1518 reservation_object_held(bo->resv)); 1519 #ifdef notyet 1520 if (amdkfd_fence_check_mm(f, current->mm)) 1521 return false; 1522 #endif 1523 } 1524 } 1525 1526 switch (bo->mem.mem_type) { 1527 case TTM_PL_TT: 1528 return true; 1529 1530 case TTM_PL_VRAM: 1531 /* Check each drm MM node individually */ 1532 while (num_pages) { 1533 if (place->fpfn < (node->start + node->size) && 1534 !(place->lpfn && place->lpfn <= node->start)) 1535 return true; 1536 1537 num_pages -= node->size; 1538 ++node; 1539 } 1540 return false; 1541 1542 default: 1543 break; 1544 } 1545 1546 return ttm_bo_eviction_valuable(bo, place); 1547 } 1548 1549 /** 1550 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1551 * 1552 * @bo: The buffer object to read/write 1553 * @offset: Offset into buffer object 1554 * @buf: Secondary buffer to write/read from 1555 * @len: Length in bytes of access 1556 * @write: true if writing 1557 * 1558 * This is used to access VRAM that backs a buffer object via MMIO 1559 * access for debugging purposes. 1560 */ 1561 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1562 unsigned long offset, 1563 void *buf, int len, int write) 1564 { 1565 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1566 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1567 struct drm_mm_node *nodes; 1568 uint32_t value = 0; 1569 int ret = 0; 1570 uint64_t pos; 1571 unsigned long flags; 1572 1573 if (bo->mem.mem_type != TTM_PL_VRAM) 1574 return -EIO; 1575 1576 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1577 pos = (nodes->start << PAGE_SHIFT) + offset; 1578 1579 while (len && pos < adev->gmc.mc_vram_size) { 1580 uint64_t aligned_pos = pos & ~(uint64_t)3; 1581 uint32_t bytes = 4 - (pos & 3); 1582 uint32_t shift = (pos & 3) * 8; 1583 uint32_t mask = 0xffffffff << shift; 1584 1585 if (len < bytes) { 1586 mask &= 0xffffffff >> (bytes - len) * 8; 1587 bytes = len; 1588 } 1589 1590 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1591 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1592 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1593 if (!write || mask != 0xffffffff) 1594 value = RREG32_NO_KIQ(mmMM_DATA); 1595 if (write) { 1596 value &= ~mask; 1597 value |= (*(uint32_t *)buf << shift) & mask; 1598 WREG32_NO_KIQ(mmMM_DATA, value); 1599 } 1600 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1601 if (!write) { 1602 value = (value & mask) >> shift; 1603 memcpy(buf, &value, bytes); 1604 } 1605 1606 ret += bytes; 1607 buf = (uint8_t *)buf + bytes; 1608 pos += bytes; 1609 len -= bytes; 1610 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1611 ++nodes; 1612 pos = (nodes->start << PAGE_SHIFT); 1613 } 1614 } 1615 1616 return ret; 1617 } 1618 1619 static struct ttm_bo_driver amdgpu_bo_driver = { 1620 .ttm_tt_create = &amdgpu_ttm_tt_create, 1621 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1622 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1623 .invalidate_caches = &amdgpu_invalidate_caches, 1624 .init_mem_type = &amdgpu_init_mem_type, 1625 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1626 .evict_flags = &amdgpu_evict_flags, 1627 .move = &amdgpu_bo_move, 1628 .verify_access = &amdgpu_verify_access, 1629 .move_notify = &amdgpu_bo_move_notify, 1630 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1631 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1632 .io_mem_free = &amdgpu_ttm_io_mem_free, 1633 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1634 .access_memory = &amdgpu_ttm_access_memory 1635 }; 1636 1637 /* 1638 * Firmware Reservation functions 1639 */ 1640 /** 1641 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1642 * 1643 * @adev: amdgpu_device pointer 1644 * 1645 * free fw reserved vram if it has been reserved. 1646 */ 1647 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1648 { 1649 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1650 NULL, &adev->fw_vram_usage.va); 1651 } 1652 1653 /** 1654 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1655 * 1656 * @adev: amdgpu_device pointer 1657 * 1658 * create bo vram reservation from fw. 1659 */ 1660 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1661 { 1662 struct ttm_operation_ctx ctx = { false, false }; 1663 struct amdgpu_bo_param bp; 1664 int r = 0; 1665 int i; 1666 u64 vram_size = adev->gmc.visible_vram_size; 1667 u64 offset = adev->fw_vram_usage.start_offset; 1668 u64 size = adev->fw_vram_usage.size; 1669 struct amdgpu_bo *bo; 1670 1671 memset(&bp, 0, sizeof(bp)); 1672 bp.size = adev->fw_vram_usage.size; 1673 bp.byte_align = PAGE_SIZE; 1674 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1675 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1676 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1677 bp.type = ttm_bo_type_kernel; 1678 bp.resv = NULL; 1679 adev->fw_vram_usage.va = NULL; 1680 adev->fw_vram_usage.reserved_bo = NULL; 1681 1682 if (adev->fw_vram_usage.size > 0 && 1683 adev->fw_vram_usage.size <= vram_size) { 1684 1685 r = amdgpu_bo_create(adev, &bp, 1686 &adev->fw_vram_usage.reserved_bo); 1687 if (r) 1688 goto error_create; 1689 1690 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1691 if (r) 1692 goto error_reserve; 1693 1694 /* remove the original mem node and create a new one at the 1695 * request position 1696 */ 1697 bo = adev->fw_vram_usage.reserved_bo; 1698 offset = roundup2(offset, PAGE_SIZE); 1699 for (i = 0; i < bo->placement.num_placement; ++i) { 1700 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1701 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1702 } 1703 1704 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1705 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1706 &bo->tbo.mem, &ctx); 1707 if (r) 1708 goto error_pin; 1709 1710 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1711 AMDGPU_GEM_DOMAIN_VRAM, 1712 adev->fw_vram_usage.start_offset, 1713 (adev->fw_vram_usage.start_offset + 1714 adev->fw_vram_usage.size)); 1715 if (r) 1716 goto error_pin; 1717 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1718 &adev->fw_vram_usage.va); 1719 if (r) 1720 goto error_kmap; 1721 1722 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1723 } 1724 return r; 1725 1726 error_kmap: 1727 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1728 error_pin: 1729 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1730 error_reserve: 1731 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1732 error_create: 1733 adev->fw_vram_usage.va = NULL; 1734 adev->fw_vram_usage.reserved_bo = NULL; 1735 return r; 1736 } 1737 /** 1738 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1739 * gtt/vram related fields. 1740 * 1741 * This initializes all of the memory space pools that the TTM layer 1742 * will need such as the GTT space (system memory mapped to the device), 1743 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1744 * can be mapped per VMID. 1745 */ 1746 int amdgpu_ttm_init(struct amdgpu_device *adev) 1747 { 1748 uint64_t gtt_size; 1749 int r; 1750 u64 vis_vram_limit; 1751 1752 /* initialize global references for vram/gtt */ 1753 r = amdgpu_ttm_global_init(adev); 1754 if (r) { 1755 return r; 1756 } 1757 /* No others user of address space so set it to 0 */ 1758 #ifdef notyet 1759 r = ttm_bo_device_init(&adev->mman.bdev, 1760 adev->mman.bo_global_ref.ref.object, 1761 &amdgpu_bo_driver, 1762 adev->ddev->anon_inode->i_mapping, 1763 DRM_FILE_PAGE_OFFSET, 1764 adev->need_dma32); 1765 #else 1766 r = ttm_bo_device_init(&adev->mman.bdev, 1767 adev->mman.bo_global_ref.ref.object, 1768 &amdgpu_bo_driver, 1769 /*adev->ddev->anon_inode->i_mapping*/ NULL, 1770 DRM_FILE_PAGE_OFFSET, 1771 adev->need_dma32); 1772 #endif 1773 if (r) { 1774 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1775 return r; 1776 } 1777 adev->mman.bdev.iot = adev->iot; 1778 adev->mman.bdev.memt = adev->memt; 1779 adev->mman.bdev.dmat = adev->dmat; 1780 adev->mman.initialized = true; 1781 1782 /* We opt to avoid OOM on system pages allocations */ 1783 adev->mman.bdev.no_retry = true; 1784 1785 /* Initialize VRAM pool with all of VRAM divided into pages */ 1786 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1787 adev->gmc.real_vram_size >> PAGE_SHIFT); 1788 if (r) { 1789 DRM_ERROR("Failed initializing VRAM heap.\n"); 1790 return r; 1791 } 1792 1793 /* Reduce size of CPU-visible VRAM if requested */ 1794 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1795 if (amdgpu_vis_vram_limit > 0 && 1796 vis_vram_limit <= adev->gmc.visible_vram_size) 1797 adev->gmc.visible_vram_size = vis_vram_limit; 1798 1799 /* Change the size here instead of the init above so only lpfn is affected */ 1800 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1801 #ifdef CONFIG_64BIT 1802 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1803 adev->gmc.visible_vram_size); 1804 #endif 1805 1806 /* 1807 *The reserved vram for firmware must be pinned to the specified 1808 *place on the VRAM, so reserve it early. 1809 */ 1810 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1811 if (r) { 1812 return r; 1813 } 1814 1815 /* allocate memory as required for VGA 1816 * This is used for VGA emulation and pre-OS scanout buffers to 1817 * avoid display artifacts while transitioning between pre-OS 1818 * and driver. */ 1819 if (adev->gmc.stolen_size) { 1820 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1821 AMDGPU_GEM_DOMAIN_VRAM, 1822 &adev->stolen_vga_memory, 1823 NULL, NULL); 1824 if (r) 1825 return r; 1826 } 1827 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1828 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1829 1830 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1831 * or whatever the user passed on module init */ 1832 if (amdgpu_gtt_size == -1) { 1833 #ifdef __linux__ 1834 struct sysinfo si; 1835 1836 si_meminfo(&si); 1837 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1838 adev->gmc.mc_vram_size), 1839 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1840 #else 1841 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1842 adev->gmc.mc_vram_size), 1843 ((uint64_t)ptoa(physmem) * 3/4)); 1844 #endif 1845 } 1846 else 1847 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1848 1849 /* Initialize GTT memory pool */ 1850 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1851 if (r) { 1852 DRM_ERROR("Failed initializing GTT heap.\n"); 1853 return r; 1854 } 1855 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1856 (unsigned)(gtt_size / (1024 * 1024))); 1857 1858 /* Initialize various on-chip memory pools */ 1859 adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT; 1860 adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT; 1861 adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT; 1862 adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT; 1863 adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT; 1864 adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT; 1865 adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT; 1866 adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT; 1867 adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT; 1868 /* GDS Memory */ 1869 if (adev->gds.mem.total_size) { 1870 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1871 adev->gds.mem.total_size >> PAGE_SHIFT); 1872 if (r) { 1873 DRM_ERROR("Failed initializing GDS heap.\n"); 1874 return r; 1875 } 1876 } 1877 1878 /* GWS */ 1879 if (adev->gds.gws.total_size) { 1880 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1881 adev->gds.gws.total_size >> PAGE_SHIFT); 1882 if (r) { 1883 DRM_ERROR("Failed initializing gws heap.\n"); 1884 return r; 1885 } 1886 } 1887 1888 /* OA */ 1889 if (adev->gds.oa.total_size) { 1890 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1891 adev->gds.oa.total_size >> PAGE_SHIFT); 1892 if (r) { 1893 DRM_ERROR("Failed initializing oa heap.\n"); 1894 return r; 1895 } 1896 } 1897 1898 /* Register debugfs entries for amdgpu_ttm */ 1899 r = amdgpu_ttm_debugfs_init(adev); 1900 if (r) { 1901 DRM_ERROR("Failed to init debugfs\n"); 1902 return r; 1903 } 1904 return 0; 1905 } 1906 1907 /** 1908 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1909 */ 1910 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1911 { 1912 /* return the VGA stolen memory (if any) back to VRAM */ 1913 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1914 } 1915 1916 /** 1917 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1918 */ 1919 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1920 { 1921 if (!adev->mman.initialized) 1922 return; 1923 1924 amdgpu_ttm_debugfs_fini(adev); 1925 amdgpu_ttm_fw_reserve_vram_fini(adev); 1926 #ifdef notyet 1927 if (adev->mman.aper_base_kaddr) 1928 iounmap(adev->mman.aper_base_kaddr); 1929 #endif 1930 adev->mman.aper_base_kaddr = NULL; 1931 1932 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1933 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1934 if (adev->gds.mem.total_size) 1935 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1936 if (adev->gds.gws.total_size) 1937 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1938 if (adev->gds.oa.total_size) 1939 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1940 ttm_bo_device_release(&adev->mman.bdev); 1941 amdgpu_ttm_global_fini(adev); 1942 adev->mman.initialized = false; 1943 DRM_INFO("amdgpu: ttm finalized\n"); 1944 } 1945 1946 /** 1947 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1948 * 1949 * @adev: amdgpu_device pointer 1950 * @enable: true when we can use buffer functions. 1951 * 1952 * Enable/disable use of buffer functions during suspend/resume. This should 1953 * only be called at bootup or when userspace isn't running. 1954 */ 1955 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1956 { 1957 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1958 uint64_t size; 1959 int r; 1960 1961 if (!adev->mman.initialized || adev->in_gpu_reset || 1962 adev->mman.buffer_funcs_enabled == enable) 1963 return; 1964 1965 if (enable) { 1966 struct amdgpu_ring *ring; 1967 struct drm_sched_rq *rq; 1968 1969 ring = adev->mman.buffer_funcs_ring; 1970 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1971 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1972 if (r) { 1973 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1974 r); 1975 return; 1976 } 1977 } else { 1978 drm_sched_entity_destroy(&adev->mman.entity); 1979 dma_fence_put(man->move); 1980 man->move = NULL; 1981 } 1982 1983 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1984 if (enable) 1985 size = adev->gmc.real_vram_size; 1986 else 1987 size = adev->gmc.visible_vram_size; 1988 man->size = size >> PAGE_SHIFT; 1989 adev->mman.buffer_funcs_enabled = enable; 1990 } 1991 1992 #ifdef __linux__ 1993 1994 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1995 { 1996 struct drm_file *file_priv; 1997 struct amdgpu_device *adev; 1998 1999 if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET)) 2000 return -EINVAL; 2001 2002 file_priv = filp->private_data; 2003 adev = file_priv->minor->dev->dev_private; 2004 if (adev == NULL) 2005 return -EINVAL; 2006 2007 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2008 } 2009 2010 #else 2011 2012 struct uvm_object * 2013 amdgpu_mmap(struct drm_device *dev, voff_t off, vsize_t size) 2014 { 2015 struct amdgpu_device *adev = dev->dev_private; 2016 2017 if (unlikely(off < DRM_FILE_PAGE_OFFSET)) 2018 return NULL; 2019 2020 #if 0 2021 file_priv = filp->private_data; 2022 adev = file_priv->minor->dev->dev_private; 2023 if (adev == NULL) 2024 return -EINVAL; 2025 #endif 2026 2027 return ttm_bo_mmap(off, size, &adev->mman.bdev); 2028 } 2029 2030 #endif 2031 2032 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 2033 struct ttm_mem_reg *mem, unsigned num_pages, 2034 uint64_t offset, unsigned window, 2035 struct amdgpu_ring *ring, 2036 uint64_t *addr) 2037 { 2038 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 2039 struct amdgpu_device *adev = ring->adev; 2040 struct ttm_tt *ttm = bo->ttm; 2041 struct amdgpu_job *job; 2042 unsigned num_dw, num_bytes; 2043 dma_addr_t *dma_address; 2044 struct dma_fence *fence; 2045 uint64_t src_addr, dst_addr; 2046 uint64_t flags; 2047 int r; 2048 2049 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 2050 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 2051 2052 *addr = adev->gmc.gart_start; 2053 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 2054 AMDGPU_GPU_PAGE_SIZE; 2055 2056 num_dw = adev->mman.buffer_funcs->copy_num_dw; 2057 while (num_dw & 0x7) 2058 num_dw++; 2059 2060 num_bytes = num_pages * 8; 2061 2062 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 2063 if (r) 2064 return r; 2065 2066 src_addr = num_dw * 4; 2067 src_addr += job->ibs[0].gpu_addr; 2068 2069 dst_addr = adev->gart.table_addr; 2070 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 2071 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 2072 dst_addr, num_bytes); 2073 2074 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2075 WARN_ON(job->ibs[0].length_dw > num_dw); 2076 2077 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 2078 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2079 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2080 &job->ibs[0].ptr[num_dw]); 2081 if (r) 2082 goto error_free; 2083 2084 r = amdgpu_job_submit(job, &adev->mman.entity, 2085 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2086 if (r) 2087 goto error_free; 2088 2089 dma_fence_put(fence); 2090 2091 return r; 2092 2093 error_free: 2094 amdgpu_job_free(job); 2095 return r; 2096 } 2097 2098 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2099 uint64_t dst_offset, uint32_t byte_count, 2100 struct reservation_object *resv, 2101 struct dma_fence **fence, bool direct_submit, 2102 bool vm_needs_flush) 2103 { 2104 struct amdgpu_device *adev = ring->adev; 2105 struct amdgpu_job *job; 2106 2107 uint32_t max_bytes; 2108 unsigned num_loops, num_dw; 2109 unsigned i; 2110 int r; 2111 2112 if (direct_submit && !ring->ready) { 2113 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2114 return -EINVAL; 2115 } 2116 2117 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2118 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2119 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 2120 2121 /* for IB padding */ 2122 while (num_dw & 0x7) 2123 num_dw++; 2124 2125 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2126 if (r) 2127 return r; 2128 2129 job->vm_needs_flush = vm_needs_flush; 2130 if (resv) { 2131 r = amdgpu_sync_resv(adev, &job->sync, resv, 2132 AMDGPU_FENCE_OWNER_UNDEFINED, 2133 false); 2134 if (r) { 2135 DRM_ERROR("sync failed (%d).\n", r); 2136 goto error_free; 2137 } 2138 } 2139 2140 for (i = 0; i < num_loops; i++) { 2141 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2142 2143 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2144 dst_offset, cur_size_in_bytes); 2145 2146 src_offset += cur_size_in_bytes; 2147 dst_offset += cur_size_in_bytes; 2148 byte_count -= cur_size_in_bytes; 2149 } 2150 2151 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2152 WARN_ON(job->ibs[0].length_dw > num_dw); 2153 if (direct_submit) 2154 r = amdgpu_job_submit_direct(job, ring, fence); 2155 else 2156 r = amdgpu_job_submit(job, &adev->mman.entity, 2157 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2158 if (r) 2159 goto error_free; 2160 2161 return r; 2162 2163 error_free: 2164 amdgpu_job_free(job); 2165 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2166 return r; 2167 } 2168 2169 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2170 uint32_t src_data, 2171 struct reservation_object *resv, 2172 struct dma_fence **fence) 2173 { 2174 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2175 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2176 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2177 2178 struct drm_mm_node *mm_node; 2179 unsigned long num_pages; 2180 unsigned int num_loops, num_dw; 2181 2182 struct amdgpu_job *job; 2183 int r; 2184 2185 if (!adev->mman.buffer_funcs_enabled) { 2186 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2187 return -EINVAL; 2188 } 2189 2190 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2191 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2192 if (r) 2193 return r; 2194 } 2195 2196 num_pages = bo->tbo.num_pages; 2197 mm_node = bo->tbo.mem.mm_node; 2198 num_loops = 0; 2199 while (num_pages) { 2200 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2201 2202 num_loops += DIV_ROUND_UP(byte_count, max_bytes); 2203 num_pages -= mm_node->size; 2204 ++mm_node; 2205 } 2206 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2207 2208 /* for IB padding */ 2209 num_dw += 64; 2210 2211 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2212 if (r) 2213 return r; 2214 2215 if (resv) { 2216 r = amdgpu_sync_resv(adev, &job->sync, resv, 2217 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2218 if (r) { 2219 DRM_ERROR("sync failed (%d).\n", r); 2220 goto error_free; 2221 } 2222 } 2223 2224 num_pages = bo->tbo.num_pages; 2225 mm_node = bo->tbo.mem.mm_node; 2226 2227 while (num_pages) { 2228 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2229 uint64_t dst_addr; 2230 2231 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2232 while (byte_count) { 2233 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2234 2235 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2236 dst_addr, cur_size_in_bytes); 2237 2238 dst_addr += cur_size_in_bytes; 2239 byte_count -= cur_size_in_bytes; 2240 } 2241 2242 num_pages -= mm_node->size; 2243 ++mm_node; 2244 } 2245 2246 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2247 WARN_ON(job->ibs[0].length_dw > num_dw); 2248 r = amdgpu_job_submit(job, &adev->mman.entity, 2249 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2250 if (r) 2251 goto error_free; 2252 2253 return 0; 2254 2255 error_free: 2256 amdgpu_job_free(job); 2257 return r; 2258 } 2259 2260 #if defined(CONFIG_DEBUG_FS) 2261 2262 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2263 { 2264 struct drm_info_node *node = (struct drm_info_node *)m->private; 2265 unsigned ttm_pl = *(int *)node->info_ent->data; 2266 struct drm_device *dev = node->minor->dev; 2267 struct amdgpu_device *adev = dev->dev_private; 2268 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2269 struct drm_printer p = drm_seq_file_printer(m); 2270 2271 man->func->debug(man, &p); 2272 return 0; 2273 } 2274 2275 static int ttm_pl_vram = TTM_PL_VRAM; 2276 static int ttm_pl_tt = TTM_PL_TT; 2277 2278 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2279 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram}, 2280 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt}, 2281 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2282 #ifdef CONFIG_SWIOTLB 2283 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2284 #endif 2285 }; 2286 2287 /** 2288 * amdgpu_ttm_vram_read - Linear read access to VRAM 2289 * 2290 * Accesses VRAM via MMIO for debugging purposes. 2291 */ 2292 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2293 size_t size, loff_t *pos) 2294 { 2295 struct amdgpu_device *adev = file_inode(f)->i_private; 2296 ssize_t result = 0; 2297 int r; 2298 2299 if (size & 0x3 || *pos & 0x3) 2300 return -EINVAL; 2301 2302 if (*pos >= adev->gmc.mc_vram_size) 2303 return -ENXIO; 2304 2305 while (size) { 2306 unsigned long flags; 2307 uint32_t value; 2308 2309 if (*pos >= adev->gmc.mc_vram_size) 2310 return result; 2311 2312 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2313 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2314 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2315 value = RREG32_NO_KIQ(mmMM_DATA); 2316 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2317 2318 r = put_user(value, (uint32_t *)buf); 2319 if (r) 2320 return r; 2321 2322 result += 4; 2323 buf += 4; 2324 *pos += 4; 2325 size -= 4; 2326 } 2327 2328 return result; 2329 } 2330 2331 /** 2332 * amdgpu_ttm_vram_write - Linear write access to VRAM 2333 * 2334 * Accesses VRAM via MMIO for debugging purposes. 2335 */ 2336 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2337 size_t size, loff_t *pos) 2338 { 2339 struct amdgpu_device *adev = file_inode(f)->i_private; 2340 ssize_t result = 0; 2341 int r; 2342 2343 if (size & 0x3 || *pos & 0x3) 2344 return -EINVAL; 2345 2346 if (*pos >= adev->gmc.mc_vram_size) 2347 return -ENXIO; 2348 2349 while (size) { 2350 unsigned long flags; 2351 uint32_t value; 2352 2353 if (*pos >= adev->gmc.mc_vram_size) 2354 return result; 2355 2356 r = get_user(value, (uint32_t *)buf); 2357 if (r) 2358 return r; 2359 2360 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2361 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2362 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2363 WREG32_NO_KIQ(mmMM_DATA, value); 2364 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2365 2366 result += 4; 2367 buf += 4; 2368 *pos += 4; 2369 size -= 4; 2370 } 2371 2372 return result; 2373 } 2374 2375 static const struct file_operations amdgpu_ttm_vram_fops = { 2376 .owner = THIS_MODULE, 2377 .read = amdgpu_ttm_vram_read, 2378 .write = amdgpu_ttm_vram_write, 2379 .llseek = default_llseek, 2380 }; 2381 2382 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2383 2384 /** 2385 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2386 */ 2387 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2388 size_t size, loff_t *pos) 2389 { 2390 struct amdgpu_device *adev = file_inode(f)->i_private; 2391 ssize_t result = 0; 2392 int r; 2393 2394 while (size) { 2395 loff_t p = *pos / PAGE_SIZE; 2396 unsigned off = *pos & PAGE_MASK; 2397 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2398 struct vm_page *page; 2399 void *ptr; 2400 2401 if (p >= adev->gart.num_cpu_pages) 2402 return result; 2403 2404 page = adev->gart.pages[p]; 2405 if (page) { 2406 ptr = kmap(page); 2407 ptr += off; 2408 2409 r = copy_to_user(buf, ptr, cur_size); 2410 kunmap(ptr); 2411 } else 2412 r = clear_user(buf, cur_size); 2413 2414 if (r) 2415 return -EFAULT; 2416 2417 result += cur_size; 2418 buf += cur_size; 2419 *pos += cur_size; 2420 size -= cur_size; 2421 } 2422 2423 return result; 2424 } 2425 2426 static const struct file_operations amdgpu_ttm_gtt_fops = { 2427 .owner = THIS_MODULE, 2428 .read = amdgpu_ttm_gtt_read, 2429 .llseek = default_llseek 2430 }; 2431 2432 #endif 2433 2434 /** 2435 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2436 * 2437 * This function is used to read memory that has been mapped to the 2438 * GPU and the known addresses are not physical addresses but instead 2439 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2440 */ 2441 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2442 size_t size, loff_t *pos) 2443 { 2444 struct amdgpu_device *adev = file_inode(f)->i_private; 2445 struct iommu_domain *dom; 2446 ssize_t result = 0; 2447 int r; 2448 2449 /* retrieve the IOMMU domain if any for this device */ 2450 dom = iommu_get_domain_for_dev(adev->dev); 2451 2452 while (size) { 2453 phys_addr_t addr = *pos & ~PAGE_MASK; 2454 loff_t off = *pos & PAGE_MASK; 2455 size_t bytes = PAGE_SIZE - off; 2456 unsigned long pfn; 2457 struct vm_page *p; 2458 void *ptr; 2459 2460 bytes = bytes < size ? bytes : size; 2461 2462 /* Translate the bus address to a physical address. If 2463 * the domain is NULL it means there is no IOMMU active 2464 * and the address translation is the identity 2465 */ 2466 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2467 2468 pfn = addr >> PAGE_SHIFT; 2469 if (!pfn_valid(pfn)) 2470 return -EPERM; 2471 2472 p = pfn_to_page(pfn); 2473 if (p->mapping != adev->mman.bdev.dev_mapping) 2474 return -EPERM; 2475 2476 ptr = kmap(p); 2477 r = copy_to_user(buf, ptr + off, bytes); 2478 kunmap(ptr); 2479 if (r) 2480 return -EFAULT; 2481 2482 size -= bytes; 2483 *pos += bytes; 2484 result += bytes; 2485 } 2486 2487 return result; 2488 } 2489 2490 /** 2491 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2492 * 2493 * This function is used to write memory that has been mapped to the 2494 * GPU and the known addresses are not physical addresses but instead 2495 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2496 */ 2497 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2498 size_t size, loff_t *pos) 2499 { 2500 struct amdgpu_device *adev = file_inode(f)->i_private; 2501 struct iommu_domain *dom; 2502 ssize_t result = 0; 2503 int r; 2504 2505 dom = iommu_get_domain_for_dev(adev->dev); 2506 2507 while (size) { 2508 phys_addr_t addr = *pos & ~PAGE_MASK; 2509 loff_t off = *pos & PAGE_MASK; 2510 size_t bytes = PAGE_SIZE - off; 2511 unsigned long pfn; 2512 struct vm_page *p; 2513 void *ptr; 2514 2515 bytes = bytes < size ? bytes : size; 2516 2517 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2518 2519 pfn = addr >> PAGE_SHIFT; 2520 if (!pfn_valid(pfn)) 2521 return -EPERM; 2522 2523 p = pfn_to_page(pfn); 2524 if (p->mapping != adev->mman.bdev.dev_mapping) 2525 return -EPERM; 2526 2527 ptr = kmap(p); 2528 r = copy_from_user(ptr + off, buf, bytes); 2529 kunmap(ptr); 2530 if (r) 2531 return -EFAULT; 2532 2533 size -= bytes; 2534 *pos += bytes; 2535 result += bytes; 2536 } 2537 2538 return result; 2539 } 2540 2541 static const struct file_operations amdgpu_ttm_iomem_fops = { 2542 .owner = THIS_MODULE, 2543 .read = amdgpu_iomem_read, 2544 .write = amdgpu_iomem_write, 2545 .llseek = default_llseek 2546 }; 2547 2548 static const struct { 2549 char *name; 2550 const struct file_operations *fops; 2551 int domain; 2552 } ttm_debugfs_entries[] = { 2553 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2554 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2555 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2556 #endif 2557 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2558 }; 2559 2560 #endif 2561 2562 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2563 { 2564 #if defined(CONFIG_DEBUG_FS) 2565 unsigned count; 2566 2567 struct drm_minor *minor = adev->ddev->primary; 2568 struct dentry *ent, *root = minor->debugfs_root; 2569 2570 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2571 ent = debugfs_create_file( 2572 ttm_debugfs_entries[count].name, 2573 S_IFREG | S_IRUGO, root, 2574 adev, 2575 ttm_debugfs_entries[count].fops); 2576 if (IS_ERR(ent)) 2577 return PTR_ERR(ent); 2578 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2579 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2580 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2581 i_size_write(ent->d_inode, adev->gmc.gart_size); 2582 adev->mman.debugfs_entries[count] = ent; 2583 } 2584 2585 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2586 2587 #ifdef CONFIG_SWIOTLB 2588 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2589 --count; 2590 #endif 2591 2592 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2593 #else 2594 return 0; 2595 #endif 2596 } 2597 2598 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2599 { 2600 #if defined(CONFIG_DEBUG_FS) 2601 unsigned i; 2602 2603 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2604 debugfs_remove(adev->mman.debugfs_entries[i]); 2605 #endif 2606 } 2607