1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 placement->num_busy_placement = 0; 106 return; 107 } 108 109 /* Object isn't an AMDGPU object so ignore */ 110 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 111 placement->placement = &placements; 112 placement->busy_placement = &placements; 113 placement->num_placement = 1; 114 placement->num_busy_placement = 1; 115 return; 116 } 117 118 abo = ttm_to_amdgpu_bo(bo); 119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 120 placement->num_placement = 0; 121 placement->num_busy_placement = 0; 122 return; 123 } 124 125 switch (bo->resource->mem_type) { 126 case AMDGPU_PL_GDS: 127 case AMDGPU_PL_GWS: 128 case AMDGPU_PL_OA: 129 case AMDGPU_PL_DOORBELL: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned int window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned int offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct amdgpu_job *job; 193 void *cpu_addr; 194 uint64_t flags; 195 unsigned int i; 196 int r; 197 198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 200 201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 202 return -EINVAL; 203 204 /* Map only what can't be accessed directly */ 205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 207 mm_cur->start; 208 return 0; 209 } 210 211 212 /* 213 * If start begins at an offset inside the page, then adjust the size 214 * and addr accordingly 215 */ 216 offset = mm_cur->start & ~LINUX_PAGE_MASK; 217 218 num_pages = PFN_UP(*size + offset); 219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 220 221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 222 223 *addr = adev->gmc.gart_start; 224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 225 AMDGPU_GPU_PAGE_SIZE; 226 *addr += offset; 227 228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 230 231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 232 AMDGPU_FENCE_OWNER_UNDEFINED, 233 num_dw * 4 + num_bytes, 234 AMDGPU_IB_POOL_DELAYED, &job); 235 if (r) 236 return r; 237 238 src_addr = num_dw * 4; 239 src_addr += job->ibs[0].gpu_addr; 240 241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 244 dst_addr, num_bytes, false); 245 246 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 247 WARN_ON(job->ibs[0].length_dw > num_dw); 248 249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 250 if (tmz) 251 flags |= AMDGPU_PTE_TMZ; 252 253 cpu_addr = &job->ibs[0].ptr[num_dw]; 254 255 if (mem->mem_type == TTM_PL_TT) { 256 dma_addr_t *dma_addr; 257 258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 260 } else { 261 dma_addr_t dma_address; 262 263 dma_address = mm_cur->start; 264 dma_address += adev->vm_manager.vram_base_offset; 265 266 for (i = 0; i < num_pages; ++i) { 267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 268 flags, cpu_addr); 269 dma_address += PAGE_SIZE; 270 } 271 } 272 273 dma_fence_put(amdgpu_job_submit(job)); 274 return 0; 275 } 276 277 /** 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 279 * @adev: amdgpu device 280 * @src: buffer/address where to read from 281 * @dst: buffer/address where to write to 282 * @size: number of bytes to copy 283 * @tmz: if a secure copy should be used 284 * @resv: resv object to sync to 285 * @f: Returns the last fence if multiple jobs are submitted. 286 * 287 * The function copies @size bytes from {src->mem + src->offset} to 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 289 * move and different for a BO to BO copy. 290 * 291 */ 292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 293 const struct amdgpu_copy_mem *src, 294 const struct amdgpu_copy_mem *dst, 295 uint64_t size, bool tmz, 296 struct dma_resv *resv, 297 struct dma_fence **f) 298 { 299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 300 struct amdgpu_res_cursor src_mm, dst_mm; 301 struct dma_fence *fence = NULL; 302 int r = 0; 303 304 if (!adev->mman.buffer_funcs_enabled) { 305 DRM_ERROR("Trying to move memory with ring turned off.\n"); 306 return -EINVAL; 307 } 308 309 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 311 312 mutex_lock(&adev->mman.gtt_window_lock); 313 while (src_mm.remaining) { 314 uint64_t from, to, cur_size; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, 332 resv, &next, false, true, tmz); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /* 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 413 * 414 * Called by amdgpu_bo_move() 415 */ 416 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 417 struct ttm_resource *mem) 418 { 419 u64 mem_size = (u64)mem->size; 420 struct amdgpu_res_cursor cursor; 421 u64 end; 422 423 if (mem->mem_type == TTM_PL_SYSTEM || 424 mem->mem_type == TTM_PL_TT) 425 return true; 426 if (mem->mem_type != TTM_PL_VRAM) 427 return false; 428 429 amdgpu_res_first(mem, 0, mem_size, &cursor); 430 end = cursor.start + cursor.size; 431 while (cursor.remaining) { 432 amdgpu_res_next(&cursor, cursor.size); 433 434 if (!cursor.remaining) 435 break; 436 437 /* ttm_resource_ioremap only supports contiguous memory */ 438 if (end != cursor.start) 439 return false; 440 441 end = cursor.start + cursor.size; 442 } 443 444 return end <= adev->gmc.visible_vram_size; 445 } 446 447 /* 448 * amdgpu_bo_move - Move a buffer object to a new memory location 449 * 450 * Called by ttm_bo_handle_move_mem() 451 */ 452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 453 struct ttm_operation_ctx *ctx, 454 struct ttm_resource *new_mem, 455 struct ttm_place *hop) 456 { 457 struct amdgpu_device *adev; 458 struct amdgpu_bo *abo; 459 struct ttm_resource *old_mem = bo->resource; 460 int r; 461 462 if (new_mem->mem_type == TTM_PL_TT || 463 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 465 if (r) 466 return r; 467 } 468 469 abo = ttm_to_amdgpu_bo(bo); 470 adev = amdgpu_ttm_adev(bo->bdev); 471 472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 473 bo->ttm == NULL)) { 474 ttm_bo_move_null(bo, new_mem); 475 goto out; 476 } 477 if (old_mem->mem_type == TTM_PL_SYSTEM && 478 (new_mem->mem_type == TTM_PL_TT || 479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 480 ttm_bo_move_null(bo, new_mem); 481 goto out; 482 } 483 if ((old_mem->mem_type == TTM_PL_TT || 484 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 485 new_mem->mem_type == TTM_PL_SYSTEM) { 486 r = ttm_bo_wait_ctx(bo, ctx); 487 if (r) 488 return r; 489 490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 491 ttm_resource_free(bo, &bo->resource); 492 ttm_bo_assign_mem(bo, new_mem); 493 goto out; 494 } 495 496 if (old_mem->mem_type == AMDGPU_PL_GDS || 497 old_mem->mem_type == AMDGPU_PL_GWS || 498 old_mem->mem_type == AMDGPU_PL_OA || 499 old_mem->mem_type == AMDGPU_PL_DOORBELL || 500 new_mem->mem_type == AMDGPU_PL_GDS || 501 new_mem->mem_type == AMDGPU_PL_GWS || 502 new_mem->mem_type == AMDGPU_PL_OA || 503 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 504 /* Nothing to save here */ 505 ttm_bo_move_null(bo, new_mem); 506 goto out; 507 } 508 509 if (bo->type == ttm_bo_type_device && 510 new_mem->mem_type == TTM_PL_VRAM && 511 old_mem->mem_type != TTM_PL_VRAM) { 512 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 513 * accesses the BO after it's moved. 514 */ 515 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 516 } 517 518 if (adev->mman.buffer_funcs_enabled) { 519 if (((old_mem->mem_type == TTM_PL_SYSTEM && 520 new_mem->mem_type == TTM_PL_VRAM) || 521 (old_mem->mem_type == TTM_PL_VRAM && 522 new_mem->mem_type == TTM_PL_SYSTEM))) { 523 hop->fpfn = 0; 524 hop->lpfn = 0; 525 hop->mem_type = TTM_PL_TT; 526 hop->flags = TTM_PL_FLAG_TEMPORARY; 527 return -EMULTIHOP; 528 } 529 530 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 531 } else { 532 r = -ENODEV; 533 } 534 535 if (r) { 536 /* Check that all memory is CPU accessible */ 537 if (!amdgpu_mem_visible(adev, old_mem) || 538 !amdgpu_mem_visible(adev, new_mem)) { 539 pr_err("Move buffer fallback to memcpy unavailable\n"); 540 return r; 541 } 542 543 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 544 if (r) 545 return r; 546 } 547 548 out: 549 /* update statistics */ 550 atomic64_add(bo->base.size, &adev->num_bytes_moved); 551 amdgpu_bo_move_notify(bo, evict, new_mem); 552 return 0; 553 } 554 555 /* 556 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 557 * 558 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 559 */ 560 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 561 struct ttm_resource *mem) 562 { 563 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 564 size_t bus_size = (size_t)mem->size; 565 566 switch (mem->mem_type) { 567 case TTM_PL_SYSTEM: 568 /* system memory */ 569 return 0; 570 case TTM_PL_TT: 571 case AMDGPU_PL_PREEMPT: 572 break; 573 case TTM_PL_VRAM: 574 mem->bus.offset = mem->start << PAGE_SHIFT; 575 /* check if it's visible */ 576 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 577 return -EINVAL; 578 579 if (adev->mman.aper_base_kaddr && 580 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 581 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 582 mem->bus.offset; 583 584 mem->bus.offset += adev->gmc.aper_base; 585 mem->bus.is_iomem = true; 586 break; 587 case AMDGPU_PL_DOORBELL: 588 mem->bus.offset = mem->start << PAGE_SHIFT; 589 mem->bus.offset += adev->doorbell.base; 590 mem->bus.is_iomem = true; 591 mem->bus.caching = ttm_uncached; 592 break; 593 default: 594 return -EINVAL; 595 } 596 return 0; 597 } 598 599 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 600 unsigned long page_offset) 601 { 602 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 603 struct amdgpu_res_cursor cursor; 604 605 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 606 &cursor); 607 608 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 609 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 610 611 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 612 } 613 614 /** 615 * amdgpu_ttm_domain_start - Returns GPU start address 616 * @adev: amdgpu device object 617 * @type: type of the memory 618 * 619 * Returns: 620 * GPU start address of a memory domain 621 */ 622 623 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 624 { 625 switch (type) { 626 case TTM_PL_TT: 627 return adev->gmc.gart_start; 628 case TTM_PL_VRAM: 629 return adev->gmc.vram_start; 630 } 631 632 return 0; 633 } 634 635 /* 636 * TTM backend functions. 637 */ 638 struct amdgpu_ttm_tt { 639 struct ttm_tt ttm; 640 struct drm_gem_object *gobj; 641 u64 offset; 642 uint64_t userptr; 643 struct task_struct *usertask; 644 uint32_t userflags; 645 bool bound; 646 int32_t pool_id; 647 }; 648 649 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 650 651 #ifdef CONFIG_DRM_AMDGPU_USERPTR 652 /* 653 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 654 * memory and start HMM tracking CPU page table update 655 * 656 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 657 * once afterwards to stop HMM tracking 658 */ 659 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages, 660 struct hmm_range **range) 661 { 662 struct ttm_tt *ttm = bo->tbo.ttm; 663 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 664 unsigned long start = gtt->userptr; 665 struct vm_area_struct *vma; 666 struct mm_struct *mm; 667 bool readonly; 668 int r = 0; 669 670 /* Make sure get_user_pages_done() can cleanup gracefully */ 671 *range = NULL; 672 673 mm = bo->notifier.mm; 674 if (unlikely(!mm)) { 675 DRM_DEBUG_DRIVER("BO is not registered?\n"); 676 return -EFAULT; 677 } 678 679 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 680 return -ESRCH; 681 682 mmap_read_lock(mm); 683 vma = vma_lookup(mm, start); 684 if (unlikely(!vma)) { 685 r = -EFAULT; 686 goto out_unlock; 687 } 688 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 689 vma->vm_file)) { 690 r = -EPERM; 691 goto out_unlock; 692 } 693 694 readonly = amdgpu_ttm_tt_is_readonly(ttm); 695 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 696 readonly, NULL, pages, range); 697 out_unlock: 698 mmap_read_unlock(mm); 699 if (r) 700 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 701 702 mmput(mm); 703 704 return r; 705 } 706 707 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 708 */ 709 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 710 struct hmm_range *range) 711 { 712 struct amdgpu_ttm_tt *gtt = (void *)ttm; 713 714 if (gtt && gtt->userptr && range) 715 amdgpu_hmm_range_get_pages_done(range); 716 } 717 718 /* 719 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 720 * Check if the pages backing this ttm range have been invalidated 721 * 722 * Returns: true if pages are still valid 723 */ 724 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 725 struct hmm_range *range) 726 { 727 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 728 729 if (!gtt || !gtt->userptr || !range) 730 return false; 731 732 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 733 gtt->userptr, ttm->num_pages); 734 735 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 736 737 return !amdgpu_hmm_range_get_pages_done(range); 738 } 739 #endif 740 741 /* 742 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 743 * 744 * Called by amdgpu_cs_list_validate(). This creates the page list 745 * that backs user memory and will ultimately be mapped into the device 746 * address space. 747 */ 748 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages) 749 { 750 unsigned long i; 751 752 for (i = 0; i < ttm->num_pages; ++i) 753 ttm->pages[i] = pages ? pages[i] : NULL; 754 } 755 756 /* 757 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 758 * 759 * Called by amdgpu_ttm_backend_bind() 760 **/ 761 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 762 struct ttm_tt *ttm) 763 { 764 STUB(); 765 return -ENOSYS; 766 #ifdef notyet 767 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 768 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 769 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 770 enum dma_data_direction direction = write ? 771 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 772 int r; 773 774 /* Allocate an SG array and squash pages into it */ 775 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 776 (u64)ttm->num_pages << PAGE_SHIFT, 777 GFP_KERNEL); 778 if (r) 779 goto release_sg; 780 781 /* Map SG to device */ 782 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 783 if (r) 784 goto release_sg; 785 786 /* convert SG to linear array of pages and dma addresses */ 787 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 788 ttm->num_pages); 789 790 return 0; 791 792 release_sg: 793 kfree(ttm->sg); 794 ttm->sg = NULL; 795 return r; 796 #endif 797 } 798 799 /* 800 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 801 */ 802 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 803 struct ttm_tt *ttm) 804 { 805 STUB(); 806 #ifdef notyet 807 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 808 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 809 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 810 enum dma_data_direction direction = write ? 811 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 812 813 /* double check that we don't free the table twice */ 814 if (!ttm->sg || !ttm->sg->sgl) 815 return; 816 817 /* unmap the pages mapped to the device */ 818 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 819 sg_free_table(ttm->sg); 820 #endif 821 } 822 823 /* 824 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 825 * MQDn+CtrlStackn where n is the number of XCCs per partition. 826 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 827 * and uses memory type default, UC. The rest of pages_per_xcc are 828 * Ctrl stack and modify their memory type to NC. 829 */ 830 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 831 struct ttm_tt *ttm, uint64_t flags) 832 { 833 struct amdgpu_ttm_tt *gtt = (void *)ttm; 834 uint64_t total_pages = ttm->num_pages; 835 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 836 uint64_t page_idx, pages_per_xcc; 837 int i; 838 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 839 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 840 841 pages_per_xcc = total_pages; 842 do_div(pages_per_xcc, num_xcc); 843 844 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 845 /* MQD page: use default flags */ 846 amdgpu_gart_bind(adev, 847 gtt->offset + (page_idx << PAGE_SHIFT), 848 1, >t->ttm.dma_address[page_idx], flags); 849 /* 850 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 851 * the second page of the BO onward. 852 */ 853 amdgpu_gart_bind(adev, 854 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 855 pages_per_xcc - 1, 856 >t->ttm.dma_address[page_idx + 1], 857 ctrl_flags); 858 } 859 } 860 861 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 862 struct ttm_buffer_object *tbo, 863 uint64_t flags) 864 { 865 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 866 struct ttm_tt *ttm = tbo->ttm; 867 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 868 869 if (amdgpu_bo_encrypted(abo)) 870 flags |= AMDGPU_PTE_TMZ; 871 872 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 873 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 874 } else { 875 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 876 gtt->ttm.dma_address, flags); 877 } 878 } 879 880 /* 881 * amdgpu_ttm_backend_bind - Bind GTT memory 882 * 883 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 884 * This handles binding GTT memory to the device address space. 885 */ 886 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 887 struct ttm_tt *ttm, 888 struct ttm_resource *bo_mem) 889 { 890 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 891 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 892 uint64_t flags; 893 int r; 894 895 if (!bo_mem) 896 return -EINVAL; 897 898 if (gtt->bound) 899 return 0; 900 901 if (gtt->userptr) { 902 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 903 if (r) { 904 DRM_ERROR("failed to pin userptr\n"); 905 return r; 906 } 907 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 908 if (!ttm->sg) { 909 struct dma_buf_attachment *attach; 910 struct sg_table *sgt; 911 912 attach = gtt->gobj->import_attach; 913 #ifdef notyet 914 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 915 if (IS_ERR(sgt)) 916 return PTR_ERR(sgt); 917 #else 918 STUB(); 919 return -ENOSYS; 920 #endif 921 922 ttm->sg = sgt; 923 } 924 925 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 926 ttm->num_pages); 927 } 928 929 if (!ttm->num_pages) { 930 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 931 ttm->num_pages, bo_mem, ttm); 932 } 933 934 if (bo_mem->mem_type != TTM_PL_TT || 935 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 936 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 937 return 0; 938 } 939 940 /* compute PTE flags relevant to this BO memory */ 941 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 942 943 /* bind pages into GART page tables */ 944 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 945 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 946 gtt->ttm.dma_address, flags); 947 gtt->bound = true; 948 return 0; 949 } 950 951 /* 952 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 953 * through AGP or GART aperture. 954 * 955 * If bo is accessible through AGP aperture, then use AGP aperture 956 * to access bo; otherwise allocate logical space in GART aperture 957 * and map bo to GART aperture. 958 */ 959 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 960 { 961 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 962 struct ttm_operation_ctx ctx = { false, false }; 963 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 964 struct ttm_placement placement; 965 struct ttm_place placements; 966 struct ttm_resource *tmp; 967 uint64_t addr, flags; 968 int r; 969 970 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 971 return 0; 972 973 addr = amdgpu_gmc_agp_addr(bo); 974 if (addr != AMDGPU_BO_INVALID_OFFSET) { 975 bo->resource->start = addr >> PAGE_SHIFT; 976 return 0; 977 } 978 979 /* allocate GART space */ 980 placement.num_placement = 1; 981 placement.placement = &placements; 982 placement.num_busy_placement = 1; 983 placement.busy_placement = &placements; 984 placements.fpfn = 0; 985 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 986 placements.mem_type = TTM_PL_TT; 987 placements.flags = bo->resource->placement; 988 989 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 990 if (unlikely(r)) 991 return r; 992 993 /* compute PTE flags for this buffer object */ 994 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 995 996 /* Bind pages */ 997 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 998 amdgpu_ttm_gart_bind(adev, bo, flags); 999 amdgpu_gart_invalidate_tlb(adev); 1000 ttm_resource_free(bo, &bo->resource); 1001 ttm_bo_assign_mem(bo, tmp); 1002 1003 return 0; 1004 } 1005 1006 /* 1007 * amdgpu_ttm_recover_gart - Rebind GTT pages 1008 * 1009 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1010 * rebind GTT pages during a GPU reset. 1011 */ 1012 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1013 { 1014 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1015 uint64_t flags; 1016 1017 if (!tbo->ttm) 1018 return; 1019 1020 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1021 amdgpu_ttm_gart_bind(adev, tbo, flags); 1022 } 1023 1024 /* 1025 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1026 * 1027 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1028 * ttm_tt_destroy(). 1029 */ 1030 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1031 struct ttm_tt *ttm) 1032 { 1033 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1034 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1035 1036 /* if the pages have userptr pinning then clear that first */ 1037 if (gtt->userptr) { 1038 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1039 } else if (ttm->sg && gtt->gobj->import_attach) { 1040 struct dma_buf_attachment *attach; 1041 1042 attach = gtt->gobj->import_attach; 1043 #ifdef notyet 1044 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1045 #else 1046 STUB(); 1047 #endif 1048 ttm->sg = NULL; 1049 } 1050 1051 if (!gtt->bound) 1052 return; 1053 1054 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1055 return; 1056 1057 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1058 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1059 gtt->bound = false; 1060 } 1061 1062 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1063 struct ttm_tt *ttm) 1064 { 1065 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1066 1067 #ifdef notyet 1068 if (gtt->usertask) 1069 put_task_struct(gtt->usertask); 1070 #endif 1071 1072 ttm_tt_fini(>t->ttm); 1073 kfree(gtt); 1074 } 1075 1076 /** 1077 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1078 * 1079 * @bo: The buffer object to create a GTT ttm_tt object around 1080 * @page_flags: Page flags to be added to the ttm_tt object 1081 * 1082 * Called by ttm_tt_create(). 1083 */ 1084 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1085 uint32_t page_flags) 1086 { 1087 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1088 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1089 struct amdgpu_ttm_tt *gtt; 1090 enum ttm_caching caching; 1091 1092 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1093 if (!gtt) 1094 return NULL; 1095 1096 gtt->gobj = &bo->base; 1097 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1098 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1099 else 1100 gtt->pool_id = abo->xcp_id; 1101 1102 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1103 caching = ttm_write_combined; 1104 else 1105 caching = ttm_cached; 1106 1107 /* allocate space for the uninitialized page entries */ 1108 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1109 kfree(gtt); 1110 return NULL; 1111 } 1112 return >t->ttm; 1113 } 1114 1115 /* 1116 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1117 * 1118 * Map the pages of a ttm_tt object to an address space visible 1119 * to the underlying device. 1120 */ 1121 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1122 struct ttm_tt *ttm, 1123 struct ttm_operation_ctx *ctx) 1124 { 1125 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1126 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1127 struct ttm_pool *pool; 1128 pgoff_t i; 1129 int ret; 1130 1131 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1132 if (gtt->userptr) { 1133 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1134 if (!ttm->sg) 1135 return -ENOMEM; 1136 return 0; 1137 } 1138 1139 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1140 return 0; 1141 1142 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1143 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1144 else 1145 pool = &adev->mman.bdev.pool; 1146 ret = ttm_pool_alloc(pool, ttm, ctx); 1147 if (ret) 1148 return ret; 1149 1150 #ifdef notyet 1151 for (i = 0; i < ttm->num_pages; ++i) 1152 ttm->pages[i]->mapping = bdev->dev_mapping; 1153 #endif 1154 1155 return 0; 1156 } 1157 1158 /* 1159 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1160 * 1161 * Unmaps pages of a ttm_tt object from the device address space and 1162 * unpopulates the page array backing it. 1163 */ 1164 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1165 struct ttm_tt *ttm) 1166 { 1167 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1168 struct amdgpu_device *adev; 1169 struct ttm_pool *pool; 1170 pgoff_t i; 1171 struct vm_page *page; 1172 1173 amdgpu_ttm_backend_unbind(bdev, ttm); 1174 1175 if (gtt->userptr) { 1176 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1177 kfree(ttm->sg); 1178 ttm->sg = NULL; 1179 return; 1180 } 1181 1182 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1183 return; 1184 1185 for (i = 0; i < ttm->num_pages; ++i) { 1186 page = ttm->pages[i]; 1187 if (unlikely(page == NULL)) 1188 continue; 1189 pmap_page_protect(page, PROT_NONE); 1190 } 1191 1192 adev = amdgpu_ttm_adev(bdev); 1193 1194 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1195 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1196 else 1197 pool = &adev->mman.bdev.pool; 1198 1199 return ttm_pool_free(pool, ttm); 1200 } 1201 1202 /** 1203 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1204 * task 1205 * 1206 * @tbo: The ttm_buffer_object that contains the userptr 1207 * @user_addr: The returned value 1208 */ 1209 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1210 uint64_t *user_addr) 1211 { 1212 struct amdgpu_ttm_tt *gtt; 1213 1214 if (!tbo->ttm) 1215 return -EINVAL; 1216 1217 gtt = (void *)tbo->ttm; 1218 *user_addr = gtt->userptr; 1219 return 0; 1220 } 1221 1222 /** 1223 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1224 * task 1225 * 1226 * @bo: The ttm_buffer_object to bind this userptr to 1227 * @addr: The address in the current tasks VM space to use 1228 * @flags: Requirements of userptr object. 1229 * 1230 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1231 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1232 * initialize GPU VM for a KFD process. 1233 */ 1234 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1235 uint64_t addr, uint32_t flags) 1236 { 1237 struct amdgpu_ttm_tt *gtt; 1238 1239 if (!bo->ttm) { 1240 /* TODO: We want a separate TTM object type for userptrs */ 1241 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1242 if (bo->ttm == NULL) 1243 return -ENOMEM; 1244 } 1245 1246 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1247 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1248 1249 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1250 gtt->userptr = addr; 1251 gtt->userflags = flags; 1252 1253 #ifdef notyet 1254 if (gtt->usertask) 1255 put_task_struct(gtt->usertask); 1256 gtt->usertask = current->group_leader; 1257 get_task_struct(gtt->usertask); 1258 #endif 1259 1260 return 0; 1261 } 1262 1263 /* 1264 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1265 */ 1266 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1267 { 1268 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1269 1270 if (gtt == NULL) 1271 return NULL; 1272 1273 if (gtt->usertask == NULL) 1274 return NULL; 1275 1276 #ifdef notyet 1277 return gtt->usertask->mm; 1278 #else 1279 STUB(); 1280 return NULL; 1281 #endif 1282 } 1283 1284 /* 1285 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1286 * address range for the current task. 1287 * 1288 */ 1289 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1290 unsigned long end, unsigned long *userptr) 1291 { 1292 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1293 unsigned long size; 1294 1295 if (gtt == NULL || !gtt->userptr) 1296 return false; 1297 1298 /* Return false if no part of the ttm_tt object lies within 1299 * the range 1300 */ 1301 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1302 if (gtt->userptr > end || gtt->userptr + size <= start) 1303 return false; 1304 1305 if (userptr) 1306 *userptr = gtt->userptr; 1307 return true; 1308 } 1309 1310 /* 1311 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1312 */ 1313 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1314 { 1315 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1316 1317 if (gtt == NULL || !gtt->userptr) 1318 return false; 1319 1320 return true; 1321 } 1322 1323 /* 1324 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1325 */ 1326 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1327 { 1328 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1329 1330 if (gtt == NULL) 1331 return false; 1332 1333 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1334 } 1335 1336 /** 1337 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1338 * 1339 * @ttm: The ttm_tt object to compute the flags for 1340 * @mem: The memory registry backing this ttm_tt object 1341 * 1342 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1343 */ 1344 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1345 { 1346 uint64_t flags = 0; 1347 1348 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1349 flags |= AMDGPU_PTE_VALID; 1350 1351 if (mem && (mem->mem_type == TTM_PL_TT || 1352 mem->mem_type == AMDGPU_PL_DOORBELL || 1353 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1354 flags |= AMDGPU_PTE_SYSTEM; 1355 1356 if (ttm->caching == ttm_cached) 1357 flags |= AMDGPU_PTE_SNOOPED; 1358 } 1359 1360 if (mem && mem->mem_type == TTM_PL_VRAM && 1361 mem->bus.caching == ttm_cached) 1362 flags |= AMDGPU_PTE_SNOOPED; 1363 1364 return flags; 1365 } 1366 1367 /** 1368 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1369 * 1370 * @adev: amdgpu_device pointer 1371 * @ttm: The ttm_tt object to compute the flags for 1372 * @mem: The memory registry backing this ttm_tt object 1373 * 1374 * Figure out the flags to use for a VM PTE (Page Table Entry). 1375 */ 1376 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1377 struct ttm_resource *mem) 1378 { 1379 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1380 1381 flags |= adev->gart.gart_pte_flags; 1382 flags |= AMDGPU_PTE_READABLE; 1383 1384 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1385 flags |= AMDGPU_PTE_WRITEABLE; 1386 1387 return flags; 1388 } 1389 1390 /* 1391 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1392 * object. 1393 * 1394 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1395 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1396 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1397 * used to clean out a memory space. 1398 */ 1399 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1400 const struct ttm_place *place) 1401 { 1402 struct dma_resv_iter resv_cursor; 1403 struct dma_fence *f; 1404 1405 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1406 return ttm_bo_eviction_valuable(bo, place); 1407 1408 /* Swapout? */ 1409 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1410 return true; 1411 1412 if (bo->type == ttm_bo_type_kernel && 1413 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1414 return false; 1415 1416 /* If bo is a KFD BO, check if the bo belongs to the current process. 1417 * If true, then return false as any KFD process needs all its BOs to 1418 * be resident to run successfully 1419 */ 1420 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1421 DMA_RESV_USAGE_BOOKKEEP, f) { 1422 #ifdef notyet 1423 if (amdkfd_fence_check_mm(f, current->mm)) 1424 return false; 1425 #endif 1426 } 1427 1428 /* Preemptible BOs don't own system resources managed by the 1429 * driver (pages, VRAM, GART space). They point to resources 1430 * owned by someone else (e.g. pageable memory in user mode 1431 * or a DMABuf). They are used in a preemptible context so we 1432 * can guarantee no deadlocks and good QoS in case of MMU 1433 * notifiers or DMABuf move notifiers from the resource owner. 1434 */ 1435 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1436 return false; 1437 1438 if (bo->resource->mem_type == TTM_PL_TT && 1439 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1440 return false; 1441 1442 return ttm_bo_eviction_valuable(bo, place); 1443 } 1444 1445 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1446 void *buf, size_t size, bool write) 1447 { 1448 STUB(); 1449 #ifdef notyet 1450 while (size) { 1451 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1452 uint64_t bytes = 4 - (pos & 0x3); 1453 uint32_t shift = (pos & 0x3) * 8; 1454 uint32_t mask = 0xffffffff << shift; 1455 uint32_t value = 0; 1456 1457 if (size < bytes) { 1458 mask &= 0xffffffff >> (bytes - size) * 8; 1459 bytes = size; 1460 } 1461 1462 if (mask != 0xffffffff) { 1463 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1464 if (write) { 1465 value &= ~mask; 1466 value |= (*(uint32_t *)buf << shift) & mask; 1467 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1468 } else { 1469 value = (value & mask) >> shift; 1470 memcpy(buf, &value, bytes); 1471 } 1472 } else { 1473 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1474 } 1475 1476 pos += bytes; 1477 buf += bytes; 1478 size -= bytes; 1479 } 1480 #endif 1481 } 1482 1483 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1484 unsigned long offset, void *buf, 1485 int len, int write) 1486 { 1487 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1488 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1489 struct amdgpu_res_cursor src_mm; 1490 struct amdgpu_job *job; 1491 struct dma_fence *fence; 1492 uint64_t src_addr, dst_addr; 1493 unsigned int num_dw; 1494 int r, idx; 1495 1496 if (len != PAGE_SIZE) 1497 return -EINVAL; 1498 1499 if (!adev->mman.sdma_access_ptr) 1500 return -EACCES; 1501 1502 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1503 return -ENODEV; 1504 1505 if (write) 1506 memcpy(adev->mman.sdma_access_ptr, buf, len); 1507 1508 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1509 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1510 AMDGPU_FENCE_OWNER_UNDEFINED, 1511 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1512 &job); 1513 if (r) 1514 goto out; 1515 1516 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1517 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1518 src_mm.start; 1519 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1520 if (write) 1521 swap(src_addr, dst_addr); 1522 1523 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1524 PAGE_SIZE, false); 1525 1526 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1527 WARN_ON(job->ibs[0].length_dw > num_dw); 1528 1529 fence = amdgpu_job_submit(job); 1530 1531 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1532 r = -ETIMEDOUT; 1533 dma_fence_put(fence); 1534 1535 if (!(r || write)) 1536 memcpy(buf, adev->mman.sdma_access_ptr, len); 1537 out: 1538 drm_dev_exit(idx); 1539 return r; 1540 } 1541 1542 /** 1543 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1544 * 1545 * @bo: The buffer object to read/write 1546 * @offset: Offset into buffer object 1547 * @buf: Secondary buffer to write/read from 1548 * @len: Length in bytes of access 1549 * @write: true if writing 1550 * 1551 * This is used to access VRAM that backs a buffer object via MMIO 1552 * access for debugging purposes. 1553 */ 1554 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1555 unsigned long offset, void *buf, int len, 1556 int write) 1557 { 1558 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1559 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1560 struct amdgpu_res_cursor cursor; 1561 int ret = 0; 1562 1563 if (bo->resource->mem_type != TTM_PL_VRAM) 1564 return -EIO; 1565 1566 if (amdgpu_device_has_timeouts_enabled(adev) && 1567 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1568 return len; 1569 1570 amdgpu_res_first(bo->resource, offset, len, &cursor); 1571 while (cursor.remaining) { 1572 size_t count, size = cursor.size; 1573 loff_t pos = cursor.start; 1574 1575 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1576 size -= count; 1577 if (size) { 1578 /* using MM to access rest vram and handle un-aligned address */ 1579 pos += count; 1580 buf += count; 1581 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1582 } 1583 1584 ret += cursor.size; 1585 buf += cursor.size; 1586 amdgpu_res_next(&cursor, cursor.size); 1587 } 1588 1589 return ret; 1590 } 1591 1592 static void 1593 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1594 { 1595 amdgpu_bo_move_notify(bo, false, NULL); 1596 } 1597 1598 static struct ttm_device_funcs amdgpu_bo_driver = { 1599 .ttm_tt_create = &amdgpu_ttm_tt_create, 1600 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1601 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1602 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1603 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1604 .evict_flags = &amdgpu_evict_flags, 1605 .move = &amdgpu_bo_move, 1606 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1607 .release_notify = &amdgpu_bo_release_notify, 1608 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1609 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1610 .access_memory = &amdgpu_ttm_access_memory, 1611 }; 1612 1613 /* 1614 * Firmware Reservation functions 1615 */ 1616 /** 1617 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1618 * 1619 * @adev: amdgpu_device pointer 1620 * 1621 * free fw reserved vram if it has been reserved. 1622 */ 1623 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1624 { 1625 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1626 NULL, &adev->mman.fw_vram_usage_va); 1627 } 1628 1629 /* 1630 * Driver Reservation functions 1631 */ 1632 /** 1633 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1634 * 1635 * @adev: amdgpu_device pointer 1636 * 1637 * free drv reserved vram if it has been reserved. 1638 */ 1639 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1640 { 1641 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1642 NULL, 1643 &adev->mman.drv_vram_usage_va); 1644 } 1645 1646 /** 1647 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1648 * 1649 * @adev: amdgpu_device pointer 1650 * 1651 * create bo vram reservation from fw. 1652 */ 1653 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1654 { 1655 uint64_t vram_size = adev->gmc.visible_vram_size; 1656 1657 adev->mman.fw_vram_usage_va = NULL; 1658 adev->mman.fw_vram_usage_reserved_bo = NULL; 1659 1660 if (adev->mman.fw_vram_usage_size == 0 || 1661 adev->mman.fw_vram_usage_size > vram_size) 1662 return 0; 1663 1664 return amdgpu_bo_create_kernel_at(adev, 1665 adev->mman.fw_vram_usage_start_offset, 1666 adev->mman.fw_vram_usage_size, 1667 &adev->mman.fw_vram_usage_reserved_bo, 1668 &adev->mman.fw_vram_usage_va); 1669 } 1670 1671 /** 1672 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1673 * 1674 * @adev: amdgpu_device pointer 1675 * 1676 * create bo vram reservation from drv. 1677 */ 1678 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1679 { 1680 u64 vram_size = adev->gmc.visible_vram_size; 1681 1682 adev->mman.drv_vram_usage_va = NULL; 1683 adev->mman.drv_vram_usage_reserved_bo = NULL; 1684 1685 if (adev->mman.drv_vram_usage_size == 0 || 1686 adev->mman.drv_vram_usage_size > vram_size) 1687 return 0; 1688 1689 return amdgpu_bo_create_kernel_at(adev, 1690 adev->mman.drv_vram_usage_start_offset, 1691 adev->mman.drv_vram_usage_size, 1692 &adev->mman.drv_vram_usage_reserved_bo, 1693 &adev->mman.drv_vram_usage_va); 1694 } 1695 1696 /* 1697 * Memoy training reservation functions 1698 */ 1699 1700 /** 1701 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1702 * 1703 * @adev: amdgpu_device pointer 1704 * 1705 * free memory training reserved vram if it has been reserved. 1706 */ 1707 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1708 { 1709 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1710 1711 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1712 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1713 ctx->c2p_bo = NULL; 1714 1715 return 0; 1716 } 1717 1718 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1719 uint32_t reserve_size) 1720 { 1721 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1722 1723 memset(ctx, 0, sizeof(*ctx)); 1724 1725 ctx->c2p_train_data_offset = 1726 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1727 ctx->p2c_train_data_offset = 1728 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1729 ctx->train_data_size = 1730 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1731 1732 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1733 ctx->train_data_size, 1734 ctx->p2c_train_data_offset, 1735 ctx->c2p_train_data_offset); 1736 } 1737 1738 /* 1739 * reserve TMR memory at the top of VRAM which holds 1740 * IP Discovery data and is protected by PSP. 1741 */ 1742 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1743 { 1744 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1745 bool mem_train_support = false; 1746 uint32_t reserve_size = 0; 1747 int ret; 1748 1749 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1750 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1751 mem_train_support = true; 1752 else 1753 DRM_DEBUG("memory training does not support!\n"); 1754 } 1755 1756 /* 1757 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1758 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1759 * 1760 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1761 * discovery data and G6 memory training data respectively 1762 */ 1763 if (adev->bios) 1764 reserve_size = 1765 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1766 1767 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3)) 1768 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1769 else if (!reserve_size) 1770 reserve_size = DISCOVERY_TMR_OFFSET; 1771 1772 if (mem_train_support) { 1773 /* reserve vram for mem train according to TMR location */ 1774 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1775 ret = amdgpu_bo_create_kernel_at(adev, 1776 ctx->c2p_train_data_offset, 1777 ctx->train_data_size, 1778 &ctx->c2p_bo, 1779 NULL); 1780 if (ret) { 1781 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1782 amdgpu_ttm_training_reserve_vram_fini(adev); 1783 return ret; 1784 } 1785 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1786 } 1787 1788 if (!adev->gmc.is_app_apu) { 1789 ret = amdgpu_bo_create_kernel_at( 1790 adev, adev->gmc.real_vram_size - reserve_size, 1791 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1792 if (ret) { 1793 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1794 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1795 NULL, NULL); 1796 return ret; 1797 } 1798 } else { 1799 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1800 } 1801 1802 return 0; 1803 } 1804 1805 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1806 { 1807 int i; 1808 1809 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1810 return 0; 1811 1812 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1813 sizeof(*adev->mman.ttm_pools), 1814 GFP_KERNEL); 1815 if (!adev->mman.ttm_pools) 1816 return -ENOMEM; 1817 1818 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1819 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1820 adev->gmc.mem_partitions[i].numa.node, 1821 false, false); 1822 } 1823 return 0; 1824 } 1825 1826 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1827 { 1828 int i; 1829 1830 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1831 return; 1832 1833 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1834 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1835 1836 kfree(adev->mman.ttm_pools); 1837 adev->mman.ttm_pools = NULL; 1838 } 1839 1840 /* 1841 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1842 * gtt/vram related fields. 1843 * 1844 * This initializes all of the memory space pools that the TTM layer 1845 * will need such as the GTT space (system memory mapped to the device), 1846 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1847 * can be mapped per VMID. 1848 */ 1849 int amdgpu_ttm_init(struct amdgpu_device *adev) 1850 { 1851 uint64_t gtt_size; 1852 int r; 1853 1854 rw_init(&adev->mman.gtt_window_lock, "gttwin"); 1855 1856 /* No others user of address space so set it to 0 */ 1857 #ifdef notyet 1858 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1859 adev_to_drm(adev)->anon_inode->i_mapping, 1860 adev_to_drm(adev)->vma_offset_manager, 1861 adev->need_swiotlb, 1862 dma_addressing_limited(adev->dev)); 1863 #else 1864 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1865 /*adev_to_drm(adev)->anon_inode->i_mapping*/NULL, 1866 adev_to_drm(adev)->vma_offset_manager, 1867 adev->need_swiotlb, 1868 dma_addressing_limited(adev->dev)); 1869 #endif 1870 if (r) { 1871 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1872 return r; 1873 } 1874 1875 r = amdgpu_ttm_pools_init(adev); 1876 if (r) { 1877 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1878 return r; 1879 } 1880 adev->mman.bdev.iot = adev->iot; 1881 adev->mman.bdev.memt = adev->memt; 1882 adev->mman.bdev.dmat = adev->dmat; 1883 adev->mman.initialized = true; 1884 1885 /* Initialize VRAM pool with all of VRAM divided into pages */ 1886 r = amdgpu_vram_mgr_init(adev); 1887 if (r) { 1888 DRM_ERROR("Failed initializing VRAM heap.\n"); 1889 return r; 1890 } 1891 1892 /* Change the size here instead of the init above so only lpfn is affected */ 1893 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1894 #if defined(CONFIG_64BIT) && defined(__linux__) 1895 #ifdef CONFIG_X86 1896 if (adev->gmc.xgmi.connected_to_cpu) 1897 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1898 adev->gmc.visible_vram_size); 1899 1900 else if (adev->gmc.is_app_apu) 1901 DRM_DEBUG_DRIVER( 1902 "No need to ioremap when real vram size is 0\n"); 1903 else 1904 #endif 1905 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1906 adev->gmc.visible_vram_size); 1907 #else 1908 if (bus_space_map(adev->memt, adev->gmc.aper_base, 1909 adev->gmc.visible_vram_size, 1910 BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE, 1911 &adev->mman.aper_bsh)) { 1912 adev->mman.aper_base_kaddr = NULL; 1913 } else { 1914 adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt, 1915 adev->mman.aper_bsh); 1916 } 1917 #endif 1918 1919 /* 1920 *The reserved vram for firmware must be pinned to the specified 1921 *place on the VRAM, so reserve it early. 1922 */ 1923 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1924 if (r) 1925 return r; 1926 1927 /* 1928 *The reserved vram for driver must be pinned to the specified 1929 *place on the VRAM, so reserve it early. 1930 */ 1931 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1932 if (r) 1933 return r; 1934 1935 /* 1936 * only NAVI10 and onwards ASIC support for IP discovery. 1937 * If IP discovery enabled, a block of memory should be 1938 * reserved for IP discovey. 1939 */ 1940 if (adev->mman.discovery_bin) { 1941 r = amdgpu_ttm_reserve_tmr(adev); 1942 if (r) 1943 return r; 1944 } 1945 1946 /* allocate memory as required for VGA 1947 * This is used for VGA emulation and pre-OS scanout buffers to 1948 * avoid display artifacts while transitioning between pre-OS 1949 * and driver. 1950 */ 1951 if (!adev->gmc.is_app_apu) { 1952 r = amdgpu_bo_create_kernel_at(adev, 0, 1953 adev->mman.stolen_vga_size, 1954 &adev->mman.stolen_vga_memory, 1955 NULL); 1956 if (r) 1957 return r; 1958 1959 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1960 adev->mman.stolen_extended_size, 1961 &adev->mman.stolen_extended_memory, 1962 NULL); 1963 1964 if (r) 1965 return r; 1966 1967 r = amdgpu_bo_create_kernel_at(adev, 1968 adev->mman.stolen_reserved_offset, 1969 adev->mman.stolen_reserved_size, 1970 &adev->mman.stolen_reserved_memory, 1971 NULL); 1972 if (r) 1973 return r; 1974 } else { 1975 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1976 } 1977 1978 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1979 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1980 1981 /* Compute GTT size, either based on TTM limit 1982 * or whatever the user passed on module init. 1983 */ 1984 if (amdgpu_gtt_size == -1) 1985 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1986 else 1987 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1988 1989 /* Initialize GTT memory pool */ 1990 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1991 if (r) { 1992 DRM_ERROR("Failed initializing GTT heap.\n"); 1993 return r; 1994 } 1995 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1996 (unsigned int)(gtt_size / (1024 * 1024))); 1997 1998 /* Initiailize doorbell pool on PCI BAR */ 1999 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 2000 if (r) { 2001 DRM_ERROR("Failed initializing doorbell heap.\n"); 2002 return r; 2003 } 2004 2005 /* Create a boorbell page for kernel usages */ 2006 r = amdgpu_doorbell_create_kernel_doorbells(adev); 2007 if (r) { 2008 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 2009 return r; 2010 } 2011 2012 /* Initialize preemptible memory pool */ 2013 r = amdgpu_preempt_mgr_init(adev); 2014 if (r) { 2015 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 2016 return r; 2017 } 2018 2019 /* Initialize various on-chip memory pools */ 2020 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 2021 if (r) { 2022 DRM_ERROR("Failed initializing GDS heap.\n"); 2023 return r; 2024 } 2025 2026 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 2027 if (r) { 2028 DRM_ERROR("Failed initializing gws heap.\n"); 2029 return r; 2030 } 2031 2032 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 2033 if (r) { 2034 DRM_ERROR("Failed initializing oa heap.\n"); 2035 return r; 2036 } 2037 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 2038 AMDGPU_GEM_DOMAIN_GTT, 2039 &adev->mman.sdma_access_bo, NULL, 2040 &adev->mman.sdma_access_ptr)) 2041 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2042 2043 return 0; 2044 } 2045 2046 /* 2047 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2048 */ 2049 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2050 { 2051 int idx; 2052 2053 if (!adev->mman.initialized) 2054 return; 2055 2056 amdgpu_ttm_pools_fini(adev); 2057 2058 amdgpu_ttm_training_reserve_vram_fini(adev); 2059 /* return the stolen vga memory back to VRAM */ 2060 if (!adev->gmc.is_app_apu) { 2061 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2062 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2063 /* return the FW reserved memory back to VRAM */ 2064 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2065 NULL); 2066 if (adev->mman.stolen_reserved_size) 2067 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2068 NULL, NULL); 2069 } 2070 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2071 &adev->mman.sdma_access_ptr); 2072 amdgpu_ttm_fw_reserve_vram_fini(adev); 2073 amdgpu_ttm_drv_reserve_vram_fini(adev); 2074 2075 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2076 2077 #ifdef __linux__ 2078 if (adev->mman.aper_base_kaddr) 2079 iounmap(adev->mman.aper_base_kaddr); 2080 #else 2081 if (adev->mman.aper_base_kaddr) 2082 bus_space_unmap(adev->memt, adev->mman.aper_bsh, 2083 adev->gmc.visible_vram_size); 2084 #endif 2085 adev->mman.aper_base_kaddr = NULL; 2086 2087 drm_dev_exit(idx); 2088 } 2089 2090 amdgpu_vram_mgr_fini(adev); 2091 amdgpu_gtt_mgr_fini(adev); 2092 amdgpu_preempt_mgr_fini(adev); 2093 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2094 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2095 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2096 ttm_device_fini(&adev->mman.bdev); 2097 adev->mman.initialized = false; 2098 DRM_INFO("amdgpu: ttm finalized\n"); 2099 } 2100 2101 /** 2102 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2103 * 2104 * @adev: amdgpu_device pointer 2105 * @enable: true when we can use buffer functions. 2106 * 2107 * Enable/disable use of buffer functions during suspend/resume. This should 2108 * only be called at bootup or when userspace isn't running. 2109 */ 2110 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2111 { 2112 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2113 uint64_t size; 2114 int r; 2115 2116 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2117 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2118 return; 2119 2120 if (enable) { 2121 struct amdgpu_ring *ring; 2122 struct drm_gpu_scheduler *sched; 2123 2124 ring = adev->mman.buffer_funcs_ring; 2125 sched = &ring->sched; 2126 r = drm_sched_entity_init(&adev->mman.high_pr, 2127 DRM_SCHED_PRIORITY_KERNEL, &sched, 2128 1, NULL); 2129 if (r) { 2130 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2131 r); 2132 return; 2133 } 2134 2135 r = drm_sched_entity_init(&adev->mman.low_pr, 2136 DRM_SCHED_PRIORITY_NORMAL, &sched, 2137 1, NULL); 2138 if (r) { 2139 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2140 r); 2141 goto error_free_entity; 2142 } 2143 } else { 2144 drm_sched_entity_destroy(&adev->mman.high_pr); 2145 drm_sched_entity_destroy(&adev->mman.low_pr); 2146 dma_fence_put(man->move); 2147 man->move = NULL; 2148 } 2149 2150 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2151 if (enable) 2152 size = adev->gmc.real_vram_size; 2153 else 2154 size = adev->gmc.visible_vram_size; 2155 man->size = size; 2156 adev->mman.buffer_funcs_enabled = enable; 2157 2158 return; 2159 2160 error_free_entity: 2161 drm_sched_entity_destroy(&adev->mman.high_pr); 2162 } 2163 2164 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2165 bool direct_submit, 2166 unsigned int num_dw, 2167 struct dma_resv *resv, 2168 bool vm_needs_flush, 2169 struct amdgpu_job **job, 2170 bool delayed) 2171 { 2172 enum amdgpu_ib_pool_type pool = direct_submit ? 2173 AMDGPU_IB_POOL_DIRECT : 2174 AMDGPU_IB_POOL_DELAYED; 2175 int r; 2176 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2177 &adev->mman.high_pr; 2178 r = amdgpu_job_alloc_with_ib(adev, entity, 2179 AMDGPU_FENCE_OWNER_UNDEFINED, 2180 num_dw * 4, pool, job); 2181 if (r) 2182 return r; 2183 2184 if (vm_needs_flush) { 2185 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2186 adev->gmc.pdb0_bo : 2187 adev->gart.bo); 2188 (*job)->vm_needs_flush = true; 2189 } 2190 if (!resv) 2191 return 0; 2192 2193 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2194 DMA_RESV_USAGE_BOOKKEEP); 2195 } 2196 2197 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2198 uint64_t dst_offset, uint32_t byte_count, 2199 struct dma_resv *resv, 2200 struct dma_fence **fence, bool direct_submit, 2201 bool vm_needs_flush, bool tmz) 2202 { 2203 struct amdgpu_device *adev = ring->adev; 2204 unsigned int num_loops, num_dw; 2205 struct amdgpu_job *job; 2206 uint32_t max_bytes; 2207 unsigned int i; 2208 int r; 2209 2210 if (!direct_submit && !ring->sched.ready) { 2211 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2212 return -EINVAL; 2213 } 2214 2215 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2216 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2217 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2218 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2219 resv, vm_needs_flush, &job, false); 2220 if (r) 2221 return r; 2222 2223 for (i = 0; i < num_loops; i++) { 2224 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2225 2226 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2227 dst_offset, cur_size_in_bytes, tmz); 2228 2229 src_offset += cur_size_in_bytes; 2230 dst_offset += cur_size_in_bytes; 2231 byte_count -= cur_size_in_bytes; 2232 } 2233 2234 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2235 WARN_ON(job->ibs[0].length_dw > num_dw); 2236 if (direct_submit) 2237 r = amdgpu_job_submit_direct(job, ring, fence); 2238 else 2239 *fence = amdgpu_job_submit(job); 2240 if (r) 2241 goto error_free; 2242 2243 return r; 2244 2245 error_free: 2246 amdgpu_job_free(job); 2247 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2248 return r; 2249 } 2250 2251 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2252 uint64_t dst_addr, uint32_t byte_count, 2253 struct dma_resv *resv, 2254 struct dma_fence **fence, 2255 bool vm_needs_flush, bool delayed) 2256 { 2257 struct amdgpu_device *adev = ring->adev; 2258 unsigned int num_loops, num_dw; 2259 struct amdgpu_job *job; 2260 uint32_t max_bytes; 2261 unsigned int i; 2262 int r; 2263 2264 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2265 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2266 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2267 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2268 &job, delayed); 2269 if (r) 2270 return r; 2271 2272 for (i = 0; i < num_loops; i++) { 2273 uint32_t cur_size = min(byte_count, max_bytes); 2274 2275 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2276 cur_size); 2277 2278 dst_addr += cur_size; 2279 byte_count -= cur_size; 2280 } 2281 2282 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2283 WARN_ON(job->ibs[0].length_dw > num_dw); 2284 *fence = amdgpu_job_submit(job); 2285 return 0; 2286 } 2287 2288 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2289 uint32_t src_data, 2290 struct dma_resv *resv, 2291 struct dma_fence **f, 2292 bool delayed) 2293 { 2294 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2295 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2296 struct dma_fence *fence = NULL; 2297 struct amdgpu_res_cursor dst; 2298 int r; 2299 2300 if (!adev->mman.buffer_funcs_enabled) { 2301 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2302 return -EINVAL; 2303 } 2304 2305 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2306 2307 mutex_lock(&adev->mman.gtt_window_lock); 2308 while (dst.remaining) { 2309 struct dma_fence *next; 2310 uint64_t cur_size, to; 2311 2312 /* Never fill more than 256MiB at once to avoid timeouts */ 2313 cur_size = min(dst.size, 256ULL << 20); 2314 2315 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2316 1, ring, false, &cur_size, &to); 2317 if (r) 2318 goto error; 2319 2320 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2321 &next, true, delayed); 2322 if (r) 2323 goto error; 2324 2325 dma_fence_put(fence); 2326 fence = next; 2327 2328 amdgpu_res_next(&dst, cur_size); 2329 } 2330 error: 2331 mutex_unlock(&adev->mman.gtt_window_lock); 2332 if (f) 2333 *f = dma_fence_get(fence); 2334 dma_fence_put(fence); 2335 return r; 2336 } 2337 2338 /** 2339 * amdgpu_ttm_evict_resources - evict memory buffers 2340 * @adev: amdgpu device object 2341 * @mem_type: evicted BO's memory type 2342 * 2343 * Evicts all @mem_type buffers on the lru list of the memory type. 2344 * 2345 * Returns: 2346 * 0 for success or a negative error code on failure. 2347 */ 2348 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2349 { 2350 struct ttm_resource_manager *man; 2351 2352 switch (mem_type) { 2353 case TTM_PL_VRAM: 2354 case TTM_PL_TT: 2355 case AMDGPU_PL_GWS: 2356 case AMDGPU_PL_GDS: 2357 case AMDGPU_PL_OA: 2358 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2359 break; 2360 default: 2361 DRM_ERROR("Trying to evict invalid memory type\n"); 2362 return -EINVAL; 2363 } 2364 2365 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2366 } 2367 2368 #if defined(CONFIG_DEBUG_FS) 2369 2370 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2371 { 2372 struct amdgpu_device *adev = m->private; 2373 2374 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2375 } 2376 2377 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2378 2379 /* 2380 * amdgpu_ttm_vram_read - Linear read access to VRAM 2381 * 2382 * Accesses VRAM via MMIO for debugging purposes. 2383 */ 2384 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2385 size_t size, loff_t *pos) 2386 { 2387 struct amdgpu_device *adev = file_inode(f)->i_private; 2388 ssize_t result = 0; 2389 2390 if (size & 0x3 || *pos & 0x3) 2391 return -EINVAL; 2392 2393 if (*pos >= adev->gmc.mc_vram_size) 2394 return -ENXIO; 2395 2396 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2397 while (size) { 2398 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2399 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2400 2401 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2402 if (copy_to_user(buf, value, bytes)) 2403 return -EFAULT; 2404 2405 result += bytes; 2406 buf += bytes; 2407 *pos += bytes; 2408 size -= bytes; 2409 } 2410 2411 return result; 2412 } 2413 2414 /* 2415 * amdgpu_ttm_vram_write - Linear write access to VRAM 2416 * 2417 * Accesses VRAM via MMIO for debugging purposes. 2418 */ 2419 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2420 size_t size, loff_t *pos) 2421 { 2422 struct amdgpu_device *adev = file_inode(f)->i_private; 2423 ssize_t result = 0; 2424 int r; 2425 2426 if (size & 0x3 || *pos & 0x3) 2427 return -EINVAL; 2428 2429 if (*pos >= adev->gmc.mc_vram_size) 2430 return -ENXIO; 2431 2432 while (size) { 2433 uint32_t value; 2434 2435 if (*pos >= adev->gmc.mc_vram_size) 2436 return result; 2437 2438 r = get_user(value, (uint32_t *)buf); 2439 if (r) 2440 return r; 2441 2442 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2443 2444 result += 4; 2445 buf += 4; 2446 *pos += 4; 2447 size -= 4; 2448 } 2449 2450 return result; 2451 } 2452 2453 static const struct file_operations amdgpu_ttm_vram_fops = { 2454 .owner = THIS_MODULE, 2455 .read = amdgpu_ttm_vram_read, 2456 .write = amdgpu_ttm_vram_write, 2457 .llseek = default_llseek, 2458 }; 2459 2460 /* 2461 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2462 * 2463 * This function is used to read memory that has been mapped to the 2464 * GPU and the known addresses are not physical addresses but instead 2465 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2466 */ 2467 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2468 size_t size, loff_t *pos) 2469 { 2470 struct amdgpu_device *adev = file_inode(f)->i_private; 2471 struct iommu_domain *dom; 2472 ssize_t result = 0; 2473 int r; 2474 2475 /* retrieve the IOMMU domain if any for this device */ 2476 dom = iommu_get_domain_for_dev(adev->dev); 2477 2478 while (size) { 2479 phys_addr_t addr = *pos & LINUX_PAGE_MASK; 2480 loff_t off = *pos & ~LINUX_PAGE_MASK; 2481 size_t bytes = PAGE_SIZE - off; 2482 unsigned long pfn; 2483 struct vm_page *p; 2484 void *ptr; 2485 2486 bytes = min(bytes, size); 2487 2488 /* Translate the bus address to a physical address. If 2489 * the domain is NULL it means there is no IOMMU active 2490 * and the address translation is the identity 2491 */ 2492 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2493 2494 pfn = addr >> PAGE_SHIFT; 2495 if (!pfn_valid(pfn)) 2496 return -EPERM; 2497 2498 p = pfn_to_page(pfn); 2499 #ifdef notyet 2500 if (p->mapping != adev->mman.bdev.dev_mapping) 2501 return -EPERM; 2502 #else 2503 STUB(); 2504 #endif 2505 2506 ptr = kmap_local_page(p); 2507 r = copy_to_user(buf, ptr + off, bytes); 2508 kunmap_local(ptr); 2509 if (r) 2510 return -EFAULT; 2511 2512 size -= bytes; 2513 *pos += bytes; 2514 result += bytes; 2515 } 2516 2517 return result; 2518 } 2519 2520 /* 2521 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2522 * 2523 * This function is used to write memory that has been mapped to the 2524 * GPU and the known addresses are not physical addresses but instead 2525 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2526 */ 2527 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2528 size_t size, loff_t *pos) 2529 { 2530 struct amdgpu_device *adev = file_inode(f)->i_private; 2531 struct iommu_domain *dom; 2532 ssize_t result = 0; 2533 int r; 2534 2535 dom = iommu_get_domain_for_dev(adev->dev); 2536 2537 while (size) { 2538 phys_addr_t addr = *pos & LINUX_PAGE_MASK; 2539 loff_t off = *pos & ~LINUX_PAGE_MASK; 2540 size_t bytes = PAGE_SIZE - off; 2541 unsigned long pfn; 2542 struct vm_page *p; 2543 void *ptr; 2544 2545 bytes = min(bytes, size); 2546 2547 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2548 2549 pfn = addr >> PAGE_SHIFT; 2550 if (!pfn_valid(pfn)) 2551 return -EPERM; 2552 2553 p = pfn_to_page(pfn); 2554 #ifdef notyet 2555 if (p->mapping != adev->mman.bdev.dev_mapping) 2556 return -EPERM; 2557 #else 2558 STUB(); 2559 #endif 2560 2561 ptr = kmap_local_page(p); 2562 r = copy_from_user(ptr + off, buf, bytes); 2563 kunmap_local(ptr); 2564 if (r) 2565 return -EFAULT; 2566 2567 size -= bytes; 2568 *pos += bytes; 2569 result += bytes; 2570 } 2571 2572 return result; 2573 } 2574 2575 static const struct file_operations amdgpu_ttm_iomem_fops = { 2576 .owner = THIS_MODULE, 2577 .read = amdgpu_iomem_read, 2578 .write = amdgpu_iomem_write, 2579 .llseek = default_llseek 2580 }; 2581 2582 #endif 2583 2584 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2585 { 2586 #if defined(CONFIG_DEBUG_FS) 2587 struct drm_minor *minor = adev_to_drm(adev)->primary; 2588 struct dentry *root = minor->debugfs_root; 2589 2590 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2591 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2592 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2593 &amdgpu_ttm_iomem_fops); 2594 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2595 &amdgpu_ttm_page_pool_fops); 2596 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2597 TTM_PL_VRAM), 2598 root, "amdgpu_vram_mm"); 2599 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2600 TTM_PL_TT), 2601 root, "amdgpu_gtt_mm"); 2602 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2603 AMDGPU_PL_GDS), 2604 root, "amdgpu_gds_mm"); 2605 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2606 AMDGPU_PL_GWS), 2607 root, "amdgpu_gws_mm"); 2608 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2609 AMDGPU_PL_OA), 2610 root, "amdgpu_oa_mm"); 2611 2612 #endif 2613 } 2614