1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include "amdgpu_ras_eeprom.h" 25 #include "amdgpu.h" 26 #include "amdgpu_ras.h" 27 #include <linux/bits.h> 28 #include "atom.h" 29 #include "amdgpu_eeprom.h" 30 #include "amdgpu_atomfirmware.h" 31 #include <linux/debugfs.h> 32 #include <linux/uaccess.h> 33 34 #include "amdgpu_reset.h" 35 36 #define EEPROM_I2C_MADDR_VEGA20 0x0 37 #define EEPROM_I2C_MADDR_ARCTURUS 0x40000 38 #define EEPROM_I2C_MADDR_ARCTURUS_D342 0x0 39 #define EEPROM_I2C_MADDR_SIENNA_CICHLID 0x0 40 #define EEPROM_I2C_MADDR_ALDEBARAN 0x0 41 #define EEPROM_I2C_MADDR_SMU_13_0_0 (0x54UL << 16) 42 43 /* 44 * The 2 macros bellow represent the actual size in bytes that 45 * those entities occupy in the EEPROM memory. 46 * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which 47 * uses uint64 to store 6b fields such as retired_page. 48 */ 49 #define RAS_TABLE_HEADER_SIZE 20 50 #define RAS_TABLE_RECORD_SIZE 24 51 52 /* Table hdr is 'AMDR' */ 53 #define RAS_TABLE_HDR_VAL 0x414d4452 54 #define RAS_TABLE_VER 0x00010000 55 56 /* Bad GPU tag ‘BADG’ */ 57 #define RAS_TABLE_HDR_BAD 0x42414447 58 59 /* Assume 2-Mbit size EEPROM and take up the whole space. */ 60 #define RAS_TBL_SIZE_BYTES (256 * 1024) 61 #define RAS_TABLE_START 0 62 #define RAS_HDR_START RAS_TABLE_START 63 #define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE) 64 #define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \ 65 / RAS_TABLE_RECORD_SIZE) 66 67 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM 68 * offset off of RAS_TABLE_START. That is, this is something you can 69 * add to control->i2c_address, and then tell I2C layer to read 70 * from/write to there. _N is the so called absolute index, 71 * because it starts right after the table header. 72 */ 73 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \ 74 (_N) * RAS_TABLE_RECORD_SIZE) 75 76 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \ 77 (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE) 78 79 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off 80 * of "fri", return the absolute record index off of the end of 81 * the table header. 82 */ 83 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \ 84 (_C)->ras_max_record_count) 85 86 #define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ 87 RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE) 88 89 #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev 90 91 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev) 92 { 93 return adev->asic_type == CHIP_VEGA20 || 94 adev->asic_type == CHIP_ARCTURUS || 95 adev->asic_type == CHIP_SIENNA_CICHLID || 96 adev->asic_type == CHIP_ALDEBARAN; 97 } 98 99 static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev, 100 struct amdgpu_ras_eeprom_control *control) 101 { 102 STUB(); 103 return false; 104 #ifdef notyet 105 struct atom_context *atom_ctx = adev->mode_info.atom_context; 106 107 if (!control || !atom_ctx) 108 return false; 109 110 if (strnstr(atom_ctx->vbios_version, 111 "D342", 112 sizeof(atom_ctx->vbios_version))) 113 control->i2c_address = EEPROM_I2C_MADDR_ARCTURUS_D342; 114 else 115 control->i2c_address = EEPROM_I2C_MADDR_ARCTURUS; 116 117 return true; 118 #endif 119 } 120 121 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev, 122 struct amdgpu_ras_eeprom_control *control) 123 { 124 u8 i2c_addr; 125 126 if (!control) 127 return false; 128 129 if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) { 130 /* The address given by VBIOS is an 8-bit, wire-format 131 * address, i.e. the most significant byte. 132 * 133 * Normalize it to a 19-bit EEPROM address. Remove the 134 * device type identifier and make it a 7-bit address; 135 * then make it a 19-bit EEPROM address. See top of 136 * amdgpu_eeprom.c. 137 */ 138 i2c_addr = (i2c_addr & 0x0F) >> 1; 139 control->i2c_address = ((u32) i2c_addr) << 16; 140 141 return true; 142 } 143 144 switch (adev->asic_type) { 145 case CHIP_VEGA20: 146 control->i2c_address = EEPROM_I2C_MADDR_VEGA20; 147 break; 148 149 case CHIP_ARCTURUS: 150 return __get_eeprom_i2c_addr_arct(adev, control); 151 152 case CHIP_SIENNA_CICHLID: 153 control->i2c_address = EEPROM_I2C_MADDR_SIENNA_CICHLID; 154 break; 155 156 case CHIP_ALDEBARAN: 157 control->i2c_address = EEPROM_I2C_MADDR_ALDEBARAN; 158 break; 159 160 default: 161 return false; 162 } 163 164 switch (adev->ip_versions[MP1_HWIP][0]) { 165 case IP_VERSION(13, 0, 0): 166 control->i2c_address = EEPROM_I2C_MADDR_SMU_13_0_0; 167 break; 168 169 default: 170 break; 171 } 172 173 return true; 174 } 175 176 static void 177 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr, 178 unsigned char *buf) 179 { 180 u32 *pp = (uint32_t *)buf; 181 182 pp[0] = cpu_to_le32(hdr->header); 183 pp[1] = cpu_to_le32(hdr->version); 184 pp[2] = cpu_to_le32(hdr->first_rec_offset); 185 pp[3] = cpu_to_le32(hdr->tbl_size); 186 pp[4] = cpu_to_le32(hdr->checksum); 187 } 188 189 static void 190 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr, 191 unsigned char *buf) 192 { 193 u32 *pp = (uint32_t *)buf; 194 195 hdr->header = le32_to_cpu(pp[0]); 196 hdr->version = le32_to_cpu(pp[1]); 197 hdr->first_rec_offset = le32_to_cpu(pp[2]); 198 hdr->tbl_size = le32_to_cpu(pp[3]); 199 hdr->checksum = le32_to_cpu(pp[4]); 200 } 201 202 static int __write_table_header(struct amdgpu_ras_eeprom_control *control) 203 { 204 u8 buf[RAS_TABLE_HEADER_SIZE]; 205 struct amdgpu_device *adev = to_amdgpu_device(control); 206 int res; 207 208 memset(buf, 0, sizeof(buf)); 209 __encode_table_header_to_buf(&control->tbl_hdr, buf); 210 211 /* i2c may be unstable in gpu reset */ 212 down_read(&adev->reset_domain->sem); 213 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 214 control->i2c_address + 215 control->ras_header_offset, 216 buf, RAS_TABLE_HEADER_SIZE); 217 up_read(&adev->reset_domain->sem); 218 219 if (res < 0) { 220 DRM_ERROR("Failed to write EEPROM table header:%d", res); 221 } else if (res < RAS_TABLE_HEADER_SIZE) { 222 DRM_ERROR("Short write:%d out of %d\n", 223 res, RAS_TABLE_HEADER_SIZE); 224 res = -EIO; 225 } else { 226 res = 0; 227 } 228 229 return res; 230 } 231 232 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control) 233 { 234 int ii; 235 u8 *pp, csum; 236 size_t sz; 237 238 /* Header checksum, skip checksum field in the calculation */ 239 sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); 240 pp = (u8 *) &control->tbl_hdr; 241 csum = 0; 242 for (ii = 0; ii < sz; ii++, pp++) 243 csum += *pp; 244 245 return csum; 246 } 247 248 static int amdgpu_ras_eeprom_correct_header_tag( 249 struct amdgpu_ras_eeprom_control *control, 250 uint32_t header) 251 { 252 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 253 u8 *hh; 254 int res; 255 u8 csum; 256 257 csum = -hdr->checksum; 258 259 hh = (void *) &hdr->header; 260 csum -= (hh[0] + hh[1] + hh[2] + hh[3]); 261 hh = (void *) &header; 262 csum += hh[0] + hh[1] + hh[2] + hh[3]; 263 csum = -csum; 264 mutex_lock(&control->ras_tbl_mutex); 265 hdr->header = header; 266 hdr->checksum = csum; 267 res = __write_table_header(control); 268 mutex_unlock(&control->ras_tbl_mutex); 269 270 return res; 271 } 272 273 /** 274 * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table 275 * @control: pointer to control structure 276 * 277 * Reset the contents of the header of the RAS EEPROM table. 278 * Return 0 on success, -errno on error. 279 */ 280 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control) 281 { 282 struct amdgpu_device *adev = to_amdgpu_device(control); 283 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 284 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 285 u8 csum; 286 int res; 287 288 mutex_lock(&control->ras_tbl_mutex); 289 290 hdr->header = RAS_TABLE_HDR_VAL; 291 hdr->version = RAS_TABLE_VER; 292 hdr->first_rec_offset = RAS_RECORD_START; 293 hdr->tbl_size = RAS_TABLE_HEADER_SIZE; 294 295 csum = __calc_hdr_byte_sum(control); 296 csum = -csum; 297 hdr->checksum = csum; 298 res = __write_table_header(control); 299 300 control->ras_num_recs = 0; 301 control->ras_fri = 0; 302 303 amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs); 304 305 control->bad_channel_bitmap = 0; 306 amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap); 307 con->update_channel_flag = false; 308 309 amdgpu_ras_debugfs_set_ret_size(control); 310 311 mutex_unlock(&control->ras_tbl_mutex); 312 313 return res; 314 } 315 316 static void 317 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control, 318 struct eeprom_table_record *record, 319 unsigned char *buf) 320 { 321 __le64 tmp = 0; 322 int i = 0; 323 324 /* Next are all record fields according to EEPROM page spec in LE foramt */ 325 buf[i++] = record->err_type; 326 327 buf[i++] = record->bank; 328 329 tmp = cpu_to_le64(record->ts); 330 memcpy(buf + i, &tmp, 8); 331 i += 8; 332 333 tmp = cpu_to_le64((record->offset & 0xffffffffffff)); 334 memcpy(buf + i, &tmp, 6); 335 i += 6; 336 337 buf[i++] = record->mem_channel; 338 buf[i++] = record->mcumc_id; 339 340 tmp = cpu_to_le64((record->retired_page & 0xffffffffffff)); 341 memcpy(buf + i, &tmp, 6); 342 } 343 344 static void 345 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control, 346 struct eeprom_table_record *record, 347 unsigned char *buf) 348 { 349 __le64 tmp = 0; 350 int i = 0; 351 352 /* Next are all record fields according to EEPROM page spec in LE foramt */ 353 record->err_type = buf[i++]; 354 355 record->bank = buf[i++]; 356 357 memcpy(&tmp, buf + i, 8); 358 record->ts = le64_to_cpu(tmp); 359 i += 8; 360 361 memcpy(&tmp, buf + i, 6); 362 record->offset = (le64_to_cpu(tmp) & 0xffffffffffff); 363 i += 6; 364 365 record->mem_channel = buf[i++]; 366 record->mcumc_id = buf[i++]; 367 368 memcpy(&tmp, buf + i, 6); 369 record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff); 370 } 371 372 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev) 373 { 374 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 375 376 if (!__is_ras_eeprom_supported(adev)) 377 return false; 378 379 /* skip check eeprom table for VEGA20 Gaming */ 380 if (!con) 381 return false; 382 else 383 if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC))) 384 return false; 385 386 if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) { 387 dev_warn(adev->dev, "This GPU is in BAD status."); 388 dev_warn(adev->dev, "Please retire it or set a larger " 389 "threshold value when reloading driver.\n"); 390 return true; 391 } 392 393 return false; 394 } 395 396 /** 397 * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM 398 * @control: pointer to control structure 399 * @buf: pointer to buffer containing data to write 400 * @fri: start writing at this index 401 * @num: number of records to write 402 * 403 * The caller must hold the table mutex in @control. 404 * Return 0 on success, -errno otherwise. 405 */ 406 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control, 407 u8 *buf, const u32 fri, const u32 num) 408 { 409 struct amdgpu_device *adev = to_amdgpu_device(control); 410 u32 buf_size; 411 int res; 412 413 /* i2c may be unstable in gpu reset */ 414 down_read(&adev->reset_domain->sem); 415 buf_size = num * RAS_TABLE_RECORD_SIZE; 416 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 417 control->i2c_address + 418 RAS_INDEX_TO_OFFSET(control, fri), 419 buf, buf_size); 420 up_read(&adev->reset_domain->sem); 421 if (res < 0) { 422 DRM_ERROR("Writing %d EEPROM table records error:%d", 423 num, res); 424 } else if (res < buf_size) { 425 /* Short write, return error. 426 */ 427 DRM_ERROR("Wrote %d records out of %d", 428 res / RAS_TABLE_RECORD_SIZE, num); 429 res = -EIO; 430 } else { 431 res = 0; 432 } 433 434 return res; 435 } 436 437 static int 438 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control, 439 struct eeprom_table_record *record, 440 const u32 num) 441 { 442 struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control)); 443 u32 a, b, i; 444 u8 *buf, *pp; 445 int res; 446 447 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 448 if (!buf) 449 return -ENOMEM; 450 451 /* Encode all of them in one go. 452 */ 453 pp = buf; 454 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { 455 __encode_table_record_to_buf(control, &record[i], pp); 456 457 /* update bad channel bitmap */ 458 if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { 459 control->bad_channel_bitmap |= 1 << record[i].mem_channel; 460 con->update_channel_flag = true; 461 } 462 } 463 464 /* a, first record index to write into. 465 * b, last record index to write into. 466 * a = first index to read (fri) + number of records in the table, 467 * b = a + @num - 1. 468 * Let N = control->ras_max_num_record_count, then we have, 469 * case 0: 0 <= a <= b < N, 470 * just append @num records starting at a; 471 * case 1: 0 <= a < N <= b, 472 * append (N - a) records starting at a, and 473 * append the remainder, b % N + 1, starting at 0. 474 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases, 475 * case 2a: 0 <= a <= b < N 476 * append num records starting at a; and fix fri if b overwrote it, 477 * and since a <= b, if b overwrote it then a must've also, 478 * and if b didn't overwrite it, then a didn't also. 479 * case 2b: 0 <= b < a < N 480 * write num records starting at a, which wraps around 0=N 481 * and overwrite fri unconditionally. Now from case 2a, 482 * this means that b eclipsed fri to overwrite it and wrap 483 * around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally 484 * set fri = b + 1 (mod N). 485 * Now, since fri is updated in every case, except the trivial case 0, 486 * the number of records present in the table after writing, is, 487 * num_recs - 1 = b - fri (mod N), and we take the positive value, 488 * by adding an arbitrary multiple of N before taking the modulo N 489 * as shown below. 490 */ 491 a = control->ras_fri + control->ras_num_recs; 492 b = a + num - 1; 493 if (b < control->ras_max_record_count) { 494 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 495 } else if (a < control->ras_max_record_count) { 496 u32 g0, g1; 497 498 g0 = control->ras_max_record_count - a; 499 g1 = b % control->ras_max_record_count + 1; 500 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 501 if (res) 502 goto Out; 503 res = __amdgpu_ras_eeprom_write(control, 504 buf + g0 * RAS_TABLE_RECORD_SIZE, 505 0, g1); 506 if (res) 507 goto Out; 508 if (g1 > control->ras_fri) 509 control->ras_fri = g1 % control->ras_max_record_count; 510 } else { 511 a %= control->ras_max_record_count; 512 b %= control->ras_max_record_count; 513 514 if (a <= b) { 515 /* Note that, b - a + 1 = num. */ 516 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 517 if (res) 518 goto Out; 519 if (b >= control->ras_fri) 520 control->ras_fri = (b + 1) % control->ras_max_record_count; 521 } else { 522 u32 g0, g1; 523 524 /* b < a, which means, we write from 525 * a to the end of the table, and from 526 * the start of the table to b. 527 */ 528 g0 = control->ras_max_record_count - a; 529 g1 = b + 1; 530 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 531 if (res) 532 goto Out; 533 res = __amdgpu_ras_eeprom_write(control, 534 buf + g0 * RAS_TABLE_RECORD_SIZE, 535 0, g1); 536 if (res) 537 goto Out; 538 control->ras_fri = g1 % control->ras_max_record_count; 539 } 540 } 541 control->ras_num_recs = 1 + (control->ras_max_record_count + b 542 - control->ras_fri) 543 % control->ras_max_record_count; 544 Out: 545 kfree(buf); 546 return res; 547 } 548 549 static int 550 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control) 551 { 552 struct amdgpu_device *adev = to_amdgpu_device(control); 553 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 554 u8 *buf, *pp, csum; 555 u32 buf_size; 556 int res; 557 558 /* Modify the header if it exceeds. 559 */ 560 if (amdgpu_bad_page_threshold != 0 && 561 control->ras_num_recs >= ras->bad_page_cnt_threshold) { 562 dev_warn(adev->dev, 563 "Saved bad pages %d reaches threshold value %d\n", 564 control->ras_num_recs, ras->bad_page_cnt_threshold); 565 control->tbl_hdr.header = RAS_TABLE_HDR_BAD; 566 } 567 568 control->tbl_hdr.version = RAS_TABLE_VER; 569 control->tbl_hdr.first_rec_offset = RAS_INDEX_TO_OFFSET(control, control->ras_fri); 570 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 571 control->tbl_hdr.checksum = 0; 572 573 buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 574 buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 575 if (!buf) { 576 DRM_ERROR("allocating memory for table of size %d bytes failed\n", 577 control->tbl_hdr.tbl_size); 578 res = -ENOMEM; 579 goto Out; 580 } 581 582 down_read(&adev->reset_domain->sem); 583 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 584 control->i2c_address + 585 control->ras_record_offset, 586 buf, buf_size); 587 up_read(&adev->reset_domain->sem); 588 if (res < 0) { 589 DRM_ERROR("EEPROM failed reading records:%d\n", 590 res); 591 goto Out; 592 } else if (res < buf_size) { 593 DRM_ERROR("EEPROM read %d out of %d bytes\n", 594 res, buf_size); 595 res = -EIO; 596 goto Out; 597 } 598 599 /* Recalc the checksum. 600 */ 601 csum = 0; 602 for (pp = buf; pp < buf + buf_size; pp++) 603 csum += *pp; 604 605 csum += __calc_hdr_byte_sum(control); 606 /* avoid sign extension when assigning to "checksum" */ 607 csum = -csum; 608 control->tbl_hdr.checksum = csum; 609 res = __write_table_header(control); 610 Out: 611 kfree(buf); 612 return res; 613 } 614 615 /** 616 * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table 617 * @control: pointer to control structure 618 * @record: array of records to append 619 * @num: number of records in @record array 620 * 621 * Append @num records to the table, calculate the checksum and write 622 * the table back to EEPROM. The maximum number of records that 623 * can be appended is between 1 and control->ras_max_record_count, 624 * regardless of how many records are already stored in the table. 625 * 626 * Return 0 on success or if EEPROM is not supported, -errno on error. 627 */ 628 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control, 629 struct eeprom_table_record *record, 630 const u32 num) 631 { 632 struct amdgpu_device *adev = to_amdgpu_device(control); 633 int res; 634 635 if (!__is_ras_eeprom_supported(adev)) 636 return 0; 637 638 if (num == 0) { 639 DRM_ERROR("will not append 0 records\n"); 640 return -EINVAL; 641 } else if (num > control->ras_max_record_count) { 642 DRM_ERROR("cannot append %d records than the size of table %d\n", 643 num, control->ras_max_record_count); 644 return -EINVAL; 645 } 646 647 mutex_lock(&control->ras_tbl_mutex); 648 649 res = amdgpu_ras_eeprom_append_table(control, record, num); 650 if (!res) 651 res = amdgpu_ras_eeprom_update_header(control); 652 if (!res) 653 amdgpu_ras_debugfs_set_ret_size(control); 654 655 mutex_unlock(&control->ras_tbl_mutex); 656 return res; 657 } 658 659 /** 660 * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer 661 * @control: pointer to control structure 662 * @buf: pointer to buffer to read into 663 * @fri: first record index, start reading at this index, absolute index 664 * @num: number of records to read 665 * 666 * The caller must hold the table mutex in @control. 667 * Return 0 on success, -errno otherwise. 668 */ 669 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 670 u8 *buf, const u32 fri, const u32 num) 671 { 672 struct amdgpu_device *adev = to_amdgpu_device(control); 673 u32 buf_size; 674 int res; 675 676 /* i2c may be unstable in gpu reset */ 677 down_read(&adev->reset_domain->sem); 678 buf_size = num * RAS_TABLE_RECORD_SIZE; 679 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 680 control->i2c_address + 681 RAS_INDEX_TO_OFFSET(control, fri), 682 buf, buf_size); 683 up_read(&adev->reset_domain->sem); 684 if (res < 0) { 685 DRM_ERROR("Reading %d EEPROM table records error:%d", 686 num, res); 687 } else if (res < buf_size) { 688 /* Short read, return error. 689 */ 690 DRM_ERROR("Read %d records out of %d", 691 res / RAS_TABLE_RECORD_SIZE, num); 692 res = -EIO; 693 } else { 694 res = 0; 695 } 696 697 return res; 698 } 699 700 /** 701 * amdgpu_ras_eeprom_read -- read EEPROM 702 * @control: pointer to control structure 703 * @record: array of records to read into 704 * @num: number of records in @record 705 * 706 * Reads num records from the RAS table in EEPROM and 707 * writes the data into @record array. 708 * 709 * Returns 0 on success, -errno on error. 710 */ 711 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 712 struct eeprom_table_record *record, 713 const u32 num) 714 { 715 struct amdgpu_device *adev = to_amdgpu_device(control); 716 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 717 int i, res; 718 u8 *buf, *pp; 719 u32 g0, g1; 720 721 if (!__is_ras_eeprom_supported(adev)) 722 return 0; 723 724 if (num == 0) { 725 DRM_ERROR("will not read 0 records\n"); 726 return -EINVAL; 727 } else if (num > control->ras_num_recs) { 728 DRM_ERROR("too many records to read:%d available:%d\n", 729 num, control->ras_num_recs); 730 return -EINVAL; 731 } 732 733 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 734 if (!buf) 735 return -ENOMEM; 736 737 /* Determine how many records to read, from the first record 738 * index, fri, to the end of the table, and from the beginning 739 * of the table, such that the total number of records is 740 * @num, and we handle wrap around when fri > 0 and 741 * fri + num > RAS_MAX_RECORD_COUNT. 742 * 743 * First we compute the index of the last element 744 * which would be fetched from each region, 745 * g0 is in [fri, fri + num - 1], and 746 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1]. 747 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of 748 * the last element to fetch, we set g0 to _the number_ 749 * of elements to fetch, @num, since we know that the last 750 * indexed to be fetched does not exceed the table. 751 * 752 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then 753 * we set g0 to the number of elements to read 754 * until the end of the table, and g1 to the number of 755 * elements to read from the beginning of the table. 756 */ 757 g0 = control->ras_fri + num - 1; 758 g1 = g0 % control->ras_max_record_count; 759 if (g0 < control->ras_max_record_count) { 760 g0 = num; 761 g1 = 0; 762 } else { 763 g0 = control->ras_max_record_count - control->ras_fri; 764 g1 += 1; 765 } 766 767 mutex_lock(&control->ras_tbl_mutex); 768 res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0); 769 if (res) 770 goto Out; 771 if (g1) { 772 res = __amdgpu_ras_eeprom_read(control, 773 buf + g0 * RAS_TABLE_RECORD_SIZE, 774 0, g1); 775 if (res) 776 goto Out; 777 } 778 779 res = 0; 780 781 /* Read up everything? Then transform. 782 */ 783 pp = buf; 784 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { 785 __decode_table_record_from_buf(control, &record[i], pp); 786 787 /* update bad channel bitmap */ 788 if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { 789 control->bad_channel_bitmap |= 1 << record[i].mem_channel; 790 con->update_channel_flag = true; 791 } 792 } 793 Out: 794 kfree(buf); 795 mutex_unlock(&control->ras_tbl_mutex); 796 797 return res; 798 } 799 800 uint32_t amdgpu_ras_eeprom_max_record_count(void) 801 { 802 return RAS_MAX_RECORD_COUNT; 803 } 804 805 #ifdef __linux__ 806 static ssize_t 807 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf, 808 size_t size, loff_t *pos) 809 { 810 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 811 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 812 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 813 u8 data[50]; 814 int res; 815 816 if (!size) 817 return size; 818 819 if (!ras || !control) { 820 res = snprintf(data, sizeof(data), "Not supported\n"); 821 } else { 822 res = snprintf(data, sizeof(data), "%d bytes or %d records\n", 823 RAS_TBL_SIZE_BYTES, control->ras_max_record_count); 824 } 825 826 if (*pos >= res) 827 return 0; 828 829 res -= *pos; 830 res = min_t(size_t, res, size); 831 832 if (copy_to_user(buf, &data[*pos], res)) 833 return -EFAULT; 834 835 *pos += res; 836 837 return res; 838 } 839 840 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = { 841 .owner = THIS_MODULE, 842 .read = amdgpu_ras_debugfs_eeprom_size_read, 843 .write = NULL, 844 .llseek = default_llseek, 845 }; 846 847 static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n"; 848 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n"; 849 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1) 850 static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n"; 851 static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n"; 852 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1) 853 854 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = { 855 "ignore", 856 "re", 857 "ue", 858 }; 859 860 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control) 861 { 862 return strlen(tbl_hdr_str) + tbl_hdr_fmt_size + 863 strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs; 864 } 865 866 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control) 867 { 868 struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras, 869 eeprom_control); 870 struct dentry *de = ras->de_ras_eeprom_table; 871 872 if (de) 873 d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control); 874 } 875 876 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf, 877 size_t size, loff_t *pos) 878 { 879 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 880 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 881 struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control; 882 const size_t orig_size = size; 883 int res = -EFAULT; 884 size_t data_len; 885 886 mutex_lock(&control->ras_tbl_mutex); 887 888 /* We want *pos - data_len > 0, which means there's 889 * bytes to be printed from data. 890 */ 891 data_len = strlen(tbl_hdr_str); 892 if (*pos < data_len) { 893 data_len -= *pos; 894 data_len = min_t(size_t, data_len, size); 895 if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len)) 896 goto Out; 897 buf += data_len; 898 size -= data_len; 899 *pos += data_len; 900 } 901 902 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size; 903 if (*pos < data_len && size > 0) { 904 u8 data[tbl_hdr_fmt_size + 1]; 905 loff_t lpos; 906 907 snprintf(data, sizeof(data), tbl_hdr_fmt, 908 control->tbl_hdr.header, 909 control->tbl_hdr.version, 910 control->tbl_hdr.first_rec_offset, 911 control->tbl_hdr.tbl_size, 912 control->tbl_hdr.checksum); 913 914 data_len -= *pos; 915 data_len = min_t(size_t, data_len, size); 916 lpos = *pos - strlen(tbl_hdr_str); 917 if (copy_to_user(buf, &data[lpos], data_len)) 918 goto Out; 919 buf += data_len; 920 size -= data_len; 921 *pos += data_len; 922 } 923 924 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str); 925 if (*pos < data_len && size > 0) { 926 loff_t lpos; 927 928 data_len -= *pos; 929 data_len = min_t(size_t, data_len, size); 930 lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size; 931 if (copy_to_user(buf, &rec_hdr_str[lpos], data_len)) 932 goto Out; 933 buf += data_len; 934 size -= data_len; 935 *pos += data_len; 936 } 937 938 data_len = amdgpu_ras_debugfs_table_size(control); 939 if (*pos < data_len && size > 0) { 940 u8 dare[RAS_TABLE_RECORD_SIZE]; 941 u8 data[rec_hdr_fmt_size + 1]; 942 struct eeprom_table_record record; 943 int s, r; 944 945 /* Find the starting record index 946 */ 947 s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 948 strlen(rec_hdr_str); 949 s = s / rec_hdr_fmt_size; 950 r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 951 strlen(rec_hdr_str); 952 r = r % rec_hdr_fmt_size; 953 954 for ( ; size > 0 && s < control->ras_num_recs; s++) { 955 u32 ai = RAS_RI_TO_AI(control, s); 956 /* Read a single record 957 */ 958 res = __amdgpu_ras_eeprom_read(control, dare, ai, 1); 959 if (res) 960 goto Out; 961 __decode_table_record_from_buf(control, &record, dare); 962 snprintf(data, sizeof(data), rec_hdr_fmt, 963 s, 964 RAS_INDEX_TO_OFFSET(control, ai), 965 record_err_type_str[record.err_type], 966 record.bank, 967 record.ts, 968 record.offset, 969 record.mem_channel, 970 record.mcumc_id, 971 record.retired_page); 972 973 data_len = min_t(size_t, rec_hdr_fmt_size - r, size); 974 if (copy_to_user(buf, &data[r], data_len)) { 975 res = -EFAULT; 976 goto Out; 977 } 978 buf += data_len; 979 size -= data_len; 980 *pos += data_len; 981 r = 0; 982 } 983 } 984 res = 0; 985 Out: 986 mutex_unlock(&control->ras_tbl_mutex); 987 return res < 0 ? res : orig_size - size; 988 } 989 990 static ssize_t 991 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf, 992 size_t size, loff_t *pos) 993 { 994 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 995 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 996 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 997 u8 data[81]; 998 int res; 999 1000 if (!size) 1001 return size; 1002 1003 if (!ras || !control) { 1004 res = snprintf(data, sizeof(data), "Not supported\n"); 1005 if (*pos >= res) 1006 return 0; 1007 1008 res -= *pos; 1009 res = min_t(size_t, res, size); 1010 1011 if (copy_to_user(buf, &data[*pos], res)) 1012 return -EFAULT; 1013 1014 *pos += res; 1015 1016 return res; 1017 } else { 1018 return amdgpu_ras_debugfs_table_read(f, buf, size, pos); 1019 } 1020 } 1021 1022 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = { 1023 .owner = THIS_MODULE, 1024 .read = amdgpu_ras_debugfs_eeprom_table_read, 1025 .write = NULL, 1026 .llseek = default_llseek, 1027 }; 1028 #else /* !__linux__ */ 1029 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control) 1030 { 1031 } 1032 #endif 1033 1034 /** 1035 * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum 1036 * @control: pointer to control structure 1037 * 1038 * Check the checksum of the stored in EEPROM RAS table. 1039 * 1040 * Return 0 if the checksum is correct, 1041 * positive if it is not correct, and 1042 * -errno on I/O error. 1043 */ 1044 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control) 1045 { 1046 struct amdgpu_device *adev = to_amdgpu_device(control); 1047 int buf_size, res; 1048 u8 csum, *buf, *pp; 1049 1050 buf_size = RAS_TABLE_HEADER_SIZE + 1051 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 1052 buf = kzalloc(buf_size, GFP_KERNEL); 1053 if (!buf) { 1054 DRM_ERROR("Out of memory checking RAS table checksum.\n"); 1055 return -ENOMEM; 1056 } 1057 1058 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1059 control->i2c_address + 1060 control->ras_header_offset, 1061 buf, buf_size); 1062 if (res < buf_size) { 1063 DRM_ERROR("Partial read for checksum, res:%d\n", res); 1064 /* On partial reads, return -EIO. 1065 */ 1066 if (res >= 0) 1067 res = -EIO; 1068 goto Out; 1069 } 1070 1071 csum = 0; 1072 for (pp = buf; pp < buf + buf_size; pp++) 1073 csum += *pp; 1074 Out: 1075 kfree(buf); 1076 return res < 0 ? res : csum; 1077 } 1078 1079 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control, 1080 bool *exceed_err_limit) 1081 { 1082 struct amdgpu_device *adev = to_amdgpu_device(control); 1083 unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 }; 1084 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 1085 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1086 int res; 1087 1088 *exceed_err_limit = false; 1089 1090 if (!__is_ras_eeprom_supported(adev)) 1091 return 0; 1092 1093 /* Verify i2c adapter is initialized */ 1094 if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo) 1095 return -ENOENT; 1096 1097 if (!__get_eeprom_i2c_addr(adev, control)) 1098 return -EINVAL; 1099 1100 control->ras_header_offset = RAS_HDR_START; 1101 control->ras_record_offset = RAS_RECORD_START; 1102 control->ras_max_record_count = RAS_MAX_RECORD_COUNT; 1103 rw_init(&control->ras_tbl_mutex, "rastbl"); 1104 1105 /* Read the table header from EEPROM address */ 1106 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1107 control->i2c_address + control->ras_header_offset, 1108 buf, RAS_TABLE_HEADER_SIZE); 1109 if (res < RAS_TABLE_HEADER_SIZE) { 1110 DRM_ERROR("Failed to read EEPROM table header, res:%d", res); 1111 return res >= 0 ? -EIO : res; 1112 } 1113 1114 __decode_table_header_from_buf(hdr, buf); 1115 1116 control->ras_num_recs = RAS_NUM_RECS(hdr); 1117 control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset); 1118 1119 if (hdr->header == RAS_TABLE_HDR_VAL) { 1120 DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records", 1121 control->ras_num_recs); 1122 res = __verify_ras_table_checksum(control); 1123 if (res) 1124 DRM_ERROR("RAS table incorrect checksum or error:%d\n", 1125 res); 1126 1127 /* Warn if we are at 90% of the threshold or above 1128 */ 1129 if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold) 1130 dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d", 1131 control->ras_num_recs, 1132 ras->bad_page_cnt_threshold); 1133 } else if (hdr->header == RAS_TABLE_HDR_BAD && 1134 amdgpu_bad_page_threshold != 0) { 1135 res = __verify_ras_table_checksum(control); 1136 if (res) 1137 DRM_ERROR("RAS Table incorrect checksum or error:%d\n", 1138 res); 1139 if (ras->bad_page_cnt_threshold > control->ras_num_recs) { 1140 /* This means that, the threshold was increased since 1141 * the last time the system was booted, and now, 1142 * ras->bad_page_cnt_threshold - control->num_recs > 0, 1143 * so that at least one more record can be saved, 1144 * before the page count threshold is reached. 1145 */ 1146 dev_info(adev->dev, 1147 "records:%d threshold:%d, resetting " 1148 "RAS table header signature", 1149 control->ras_num_recs, 1150 ras->bad_page_cnt_threshold); 1151 res = amdgpu_ras_eeprom_correct_header_tag(control, 1152 RAS_TABLE_HDR_VAL); 1153 } else { 1154 dev_err(adev->dev, "RAS records:%d exceed threshold:%d", 1155 control->ras_num_recs, ras->bad_page_cnt_threshold); 1156 if (amdgpu_bad_page_threshold == -2) { 1157 dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -2."); 1158 res = 0; 1159 } else { 1160 *exceed_err_limit = true; 1161 dev_err(adev->dev, 1162 "RAS records:%d exceed threshold:%d, " 1163 "GPU will not be initialized. Replace this GPU or increase the threshold", 1164 control->ras_num_recs, ras->bad_page_cnt_threshold); 1165 } 1166 } 1167 } else { 1168 DRM_INFO("Creating a new EEPROM table"); 1169 1170 res = amdgpu_ras_eeprom_reset_table(control); 1171 } 1172 1173 return res < 0 ? res : 0; 1174 } 1175