xref: /openbsd-src/sys/dev/pci/drm/amd/amdgpu/amdgpu_gfx.c (revision 68dd5bb1859285b71cb62a10bf107b8ad54064d9)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 #include "amdgpu_xcp.h"
32 
33 /* delay 0.1 second to enable gfx off feature */
34 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
35 
36 #define GFX_OFF_NO_DELAY 0
37 
38 /*
39  * GPU GFX IP block helpers function.
40  */
41 
42 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
43 				int pipe, int queue)
44 {
45 	int bit = 0;
46 
47 	bit += mec * adev->gfx.mec.num_pipe_per_mec
48 		* adev->gfx.mec.num_queue_per_pipe;
49 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
50 	bit += queue;
51 
52 	return bit;
53 }
54 
55 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
56 				 int *mec, int *pipe, int *queue)
57 {
58 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
59 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
60 		% adev->gfx.mec.num_pipe_per_mec;
61 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
62 	       / adev->gfx.mec.num_pipe_per_mec;
63 
64 }
65 
66 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
67 				     int xcc_id, int mec, int pipe, int queue)
68 {
69 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
70 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
71 }
72 
73 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
74 			       int me, int pipe, int queue)
75 {
76 	int bit = 0;
77 
78 	bit += me * adev->gfx.me.num_pipe_per_me
79 		* adev->gfx.me.num_queue_per_pipe;
80 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
81 	bit += queue;
82 
83 	return bit;
84 }
85 
86 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
87 				int *me, int *pipe, int *queue)
88 {
89 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
90 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
91 		% adev->gfx.me.num_pipe_per_me;
92 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
93 		/ adev->gfx.me.num_pipe_per_me;
94 }
95 
96 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
97 				    int me, int pipe, int queue)
98 {
99 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
100 			adev->gfx.me.queue_bitmap);
101 }
102 
103 /**
104  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
105  *
106  * @mask: array in which the per-shader array disable masks will be stored
107  * @max_se: number of SEs
108  * @max_sh: number of SHs
109  *
110  * The bitmask of CUs to be disabled in the shader array determined by se and
111  * sh is stored in mask[se * max_sh + sh].
112  */
113 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
114 {
115 	unsigned int se, sh, cu;
116 	const char *p;
117 
118 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
119 
120 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
121 		return;
122 
123 #ifdef notyet
124 	p = amdgpu_disable_cu;
125 	for (;;) {
126 		char *next;
127 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
128 
129 		if (ret < 3) {
130 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
131 			return;
132 		}
133 
134 		if (se < max_se && sh < max_sh && cu < 16) {
135 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
136 			mask[se * max_sh + sh] |= 1u << cu;
137 		} else {
138 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
139 				  se, sh, cu);
140 		}
141 
142 		next = strchr(p, ',');
143 		if (!next)
144 			break;
145 		p = next + 1;
146 	}
147 #endif
148 }
149 
150 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
151 {
152 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
153 }
154 
155 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
156 {
157 	if (amdgpu_compute_multipipe != -1) {
158 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
159 			 amdgpu_compute_multipipe);
160 		return amdgpu_compute_multipipe == 1;
161 	}
162 
163 	if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
164 		return true;
165 
166 	/* FIXME: spreading the queues across pipes causes perf regressions
167 	 * on POLARIS11 compute workloads */
168 	if (adev->asic_type == CHIP_POLARIS11)
169 		return false;
170 
171 	return adev->gfx.mec.num_mec > 1;
172 }
173 
174 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
175 						struct amdgpu_ring *ring)
176 {
177 	int queue = ring->queue;
178 	int pipe = ring->pipe;
179 
180 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
181 	 * have more than one gfx pipe.
182 	 */
183 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
184 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
185 		int me = ring->me;
186 		int bit;
187 
188 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
189 		if (ring == &adev->gfx.gfx_ring[bit])
190 			return true;
191 	}
192 
193 	return false;
194 }
195 
196 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
197 					       struct amdgpu_ring *ring)
198 {
199 	/* Policy: use 1st queue as high priority compute queue if we
200 	 * have more than one compute queue.
201 	 */
202 	if (adev->gfx.num_compute_rings > 1 &&
203 	    ring == &adev->gfx.compute_ring[0])
204 		return true;
205 
206 	return false;
207 }
208 
209 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
210 {
211 	int i, j, queue, pipe;
212 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
213 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
214 				     adev->gfx.mec.num_queue_per_pipe,
215 				     adev->gfx.num_compute_rings);
216 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
217 
218 	if (multipipe_policy) {
219 		/* policy: make queues evenly cross all pipes on MEC1 only
220 		 * for multiple xcc, just use the original policy for simplicity */
221 		for (j = 0; j < num_xcc; j++) {
222 			for (i = 0; i < max_queues_per_mec; i++) {
223 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
224 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
225 					 adev->gfx.mec.num_queue_per_pipe;
226 
227 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
228 					adev->gfx.mec_bitmap[j].queue_bitmap);
229 			}
230 		}
231 	} else {
232 		/* policy: amdgpu owns all queues in the given pipe */
233 		for (j = 0; j < num_xcc; j++) {
234 			for (i = 0; i < max_queues_per_mec; ++i)
235 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
236 		}
237 	}
238 
239 	for (j = 0; j < num_xcc; j++) {
240 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
241 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
242 	}
243 }
244 
245 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
246 {
247 	int i, queue, pipe;
248 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
249 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
250 					adev->gfx.me.num_queue_per_pipe;
251 
252 	if (multipipe_policy) {
253 		/* policy: amdgpu owns the first queue per pipe at this stage
254 		 * will extend to mulitple queues per pipe later */
255 		for (i = 0; i < max_queues_per_me; i++) {
256 			pipe = i % adev->gfx.me.num_pipe_per_me;
257 			queue = (i / adev->gfx.me.num_pipe_per_me) %
258 				adev->gfx.me.num_queue_per_pipe;
259 
260 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
261 				adev->gfx.me.queue_bitmap);
262 		}
263 	} else {
264 		for (i = 0; i < max_queues_per_me; ++i)
265 			set_bit(i, adev->gfx.me.queue_bitmap);
266 	}
267 
268 	/* update the number of active graphics rings */
269 	adev->gfx.num_gfx_rings =
270 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
271 }
272 
273 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
274 				  struct amdgpu_ring *ring, int xcc_id)
275 {
276 	int queue_bit;
277 	int mec, pipe, queue;
278 
279 	queue_bit = adev->gfx.mec.num_mec
280 		    * adev->gfx.mec.num_pipe_per_mec
281 		    * adev->gfx.mec.num_queue_per_pipe;
282 
283 	while (--queue_bit >= 0) {
284 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
285 			continue;
286 
287 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
288 
289 		/*
290 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
291 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
292 		 * only can be issued on queue 0.
293 		 */
294 		if ((mec == 1 && pipe > 1) || queue != 0)
295 			continue;
296 
297 		ring->me = mec + 1;
298 		ring->pipe = pipe;
299 		ring->queue = queue;
300 
301 		return 0;
302 	}
303 
304 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
305 	return -EINVAL;
306 }
307 
308 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
309 			     struct amdgpu_ring *ring,
310 			     struct amdgpu_irq_src *irq, int xcc_id)
311 {
312 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
313 	int r = 0;
314 
315 	mtx_init(&kiq->ring_lock, IPL_TTY);
316 
317 	ring->adev = NULL;
318 	ring->ring_obj = NULL;
319 	ring->use_doorbell = true;
320 	ring->xcc_id = xcc_id;
321 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
322 	ring->doorbell_index =
323 		(adev->doorbell_index.kiq +
324 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
325 		<< 1;
326 
327 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
328 	if (r)
329 		return r;
330 
331 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
332 	ring->no_scheduler = true;
333 	snprintf(ring->name, sizeof(ring->name), "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
334 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
335 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
336 	if (r)
337 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
338 
339 	return r;
340 }
341 
342 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
343 {
344 	amdgpu_ring_fini(ring);
345 }
346 
347 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
348 {
349 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
350 
351 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
352 }
353 
354 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
355 			unsigned int hpd_size, int xcc_id)
356 {
357 	int r;
358 	u32 *hpd;
359 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
360 
361 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
362 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
363 				    &kiq->eop_gpu_addr, (void **)&hpd);
364 	if (r) {
365 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
366 		return r;
367 	}
368 
369 	memset(hpd, 0, hpd_size);
370 
371 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
372 	if (unlikely(r != 0))
373 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
374 	amdgpu_bo_kunmap(kiq->eop_obj);
375 	amdgpu_bo_unreserve(kiq->eop_obj);
376 
377 	return 0;
378 }
379 
380 /* create MQD for each compute/gfx queue */
381 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
382 			   unsigned int mqd_size, int xcc_id)
383 {
384 	int r, i, j;
385 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
386 	struct amdgpu_ring *ring = &kiq->ring;
387 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
388 
389 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
390 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
391 	if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
392 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
393 #endif
394 
395 	/* create MQD for KIQ */
396 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
397 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
398 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
399 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
400 		 * KIQ MQD no matter SRIOV or Bare-metal
401 		 */
402 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
403 					    AMDGPU_GEM_DOMAIN_VRAM |
404 					    AMDGPU_GEM_DOMAIN_GTT,
405 					    &ring->mqd_obj,
406 					    &ring->mqd_gpu_addr,
407 					    &ring->mqd_ptr);
408 		if (r) {
409 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
410 			return r;
411 		}
412 
413 		/* prepare MQD backup */
414 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
415 		if (!kiq->mqd_backup) {
416 			dev_warn(adev->dev,
417 				 "no memory to create MQD backup for ring %s\n", ring->name);
418 			return -ENOMEM;
419 		}
420 	}
421 
422 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
423 		/* create MQD for each KGQ */
424 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
425 			ring = &adev->gfx.gfx_ring[i];
426 			if (!ring->mqd_obj) {
427 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
428 							    domain, &ring->mqd_obj,
429 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
430 				if (r) {
431 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
432 					return r;
433 				}
434 
435 				ring->mqd_size = mqd_size;
436 				/* prepare MQD backup */
437 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
438 				if (!adev->gfx.me.mqd_backup[i]) {
439 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
440 					return -ENOMEM;
441 				}
442 			}
443 		}
444 	}
445 
446 	/* create MQD for each KCQ */
447 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
448 		j = i + xcc_id * adev->gfx.num_compute_rings;
449 		ring = &adev->gfx.compute_ring[j];
450 		if (!ring->mqd_obj) {
451 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
452 						    domain, &ring->mqd_obj,
453 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
454 			if (r) {
455 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
456 				return r;
457 			}
458 
459 			ring->mqd_size = mqd_size;
460 			/* prepare MQD backup */
461 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
462 			if (!adev->gfx.mec.mqd_backup[j]) {
463 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
464 				return -ENOMEM;
465 			}
466 		}
467 	}
468 
469 	return 0;
470 }
471 
472 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
473 {
474 	struct amdgpu_ring *ring = NULL;
475 	int i, j;
476 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
477 
478 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
479 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
480 			ring = &adev->gfx.gfx_ring[i];
481 			kfree(adev->gfx.me.mqd_backup[i]);
482 			amdgpu_bo_free_kernel(&ring->mqd_obj,
483 					      &ring->mqd_gpu_addr,
484 					      &ring->mqd_ptr);
485 		}
486 	}
487 
488 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
489 		j = i + xcc_id * adev->gfx.num_compute_rings;
490 		ring = &adev->gfx.compute_ring[j];
491 		kfree(adev->gfx.mec.mqd_backup[j]);
492 		amdgpu_bo_free_kernel(&ring->mqd_obj,
493 				      &ring->mqd_gpu_addr,
494 				      &ring->mqd_ptr);
495 	}
496 
497 	ring = &kiq->ring;
498 	kfree(kiq->mqd_backup);
499 	amdgpu_bo_free_kernel(&ring->mqd_obj,
500 			      &ring->mqd_gpu_addr,
501 			      &ring->mqd_ptr);
502 }
503 
504 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
505 {
506 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
507 	struct amdgpu_ring *kiq_ring = &kiq->ring;
508 	int i, r = 0;
509 	int j;
510 
511 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
512 		return -EINVAL;
513 
514 	spin_lock(&kiq->ring_lock);
515 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
516 					adev->gfx.num_compute_rings)) {
517 		spin_unlock(&kiq->ring_lock);
518 		return -ENOMEM;
519 	}
520 
521 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
522 		j = i + xcc_id * adev->gfx.num_compute_rings;
523 		kiq->pmf->kiq_unmap_queues(kiq_ring,
524 					   &adev->gfx.compute_ring[j],
525 					   RESET_QUEUES, 0, 0);
526 	}
527 
528 	if (kiq_ring->sched.ready && !adev->job_hang)
529 		r = amdgpu_ring_test_helper(kiq_ring);
530 	spin_unlock(&kiq->ring_lock);
531 
532 	return r;
533 }
534 
535 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
536 {
537 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
538 	struct amdgpu_ring *kiq_ring = &kiq->ring;
539 	int i, r = 0;
540 	int j;
541 
542 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
543 		return -EINVAL;
544 
545 	spin_lock(&kiq->ring_lock);
546 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
547 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
548 						adev->gfx.num_gfx_rings)) {
549 			spin_unlock(&kiq->ring_lock);
550 			return -ENOMEM;
551 		}
552 
553 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
554 			j = i + xcc_id * adev->gfx.num_gfx_rings;
555 			kiq->pmf->kiq_unmap_queues(kiq_ring,
556 						   &adev->gfx.gfx_ring[j],
557 						   PREEMPT_QUEUES, 0, 0);
558 		}
559 	}
560 
561 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
562 		r = amdgpu_ring_test_helper(kiq_ring);
563 	spin_unlock(&kiq->ring_lock);
564 
565 	return r;
566 }
567 
568 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
569 					int queue_bit)
570 {
571 	int mec, pipe, queue;
572 	int set_resource_bit = 0;
573 
574 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
575 
576 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
577 
578 	return set_resource_bit;
579 }
580 
581 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
582 {
583 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
584 	struct amdgpu_ring *kiq_ring = &kiq->ring;
585 	uint64_t queue_mask = 0;
586 	int r, i, j;
587 
588 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
589 		return -EINVAL;
590 
591 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
592 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
593 			continue;
594 
595 		/* This situation may be hit in the future if a new HW
596 		 * generation exposes more than 64 queues. If so, the
597 		 * definition of queue_mask needs updating */
598 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
599 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
600 			break;
601 		}
602 
603 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
604 	}
605 
606 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
607 							kiq_ring->queue);
608 	amdgpu_device_flush_hdp(adev, NULL);
609 
610 	spin_lock(&kiq->ring_lock);
611 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
612 					adev->gfx.num_compute_rings +
613 					kiq->pmf->set_resources_size);
614 	if (r) {
615 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
616 		spin_unlock(&kiq->ring_lock);
617 		return r;
618 	}
619 
620 	if (adev->enable_mes)
621 		queue_mask = ~0ULL;
622 
623 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
624 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
625 		j = i + xcc_id * adev->gfx.num_compute_rings;
626 			kiq->pmf->kiq_map_queues(kiq_ring,
627 						 &adev->gfx.compute_ring[j]);
628 	}
629 
630 	r = amdgpu_ring_test_helper(kiq_ring);
631 	spin_unlock(&kiq->ring_lock);
632 	if (r)
633 		DRM_ERROR("KCQ enable failed\n");
634 
635 	return r;
636 }
637 
638 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
639 {
640 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
641 	struct amdgpu_ring *kiq_ring = &kiq->ring;
642 	int r, i, j;
643 
644 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
645 		return -EINVAL;
646 
647 	amdgpu_device_flush_hdp(adev, NULL);
648 
649 	spin_lock(&kiq->ring_lock);
650 	/* No need to map kcq on the slave */
651 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
652 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
653 						adev->gfx.num_gfx_rings);
654 		if (r) {
655 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
656 			spin_unlock(&kiq->ring_lock);
657 			return r;
658 		}
659 
660 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
661 			j = i + xcc_id * adev->gfx.num_gfx_rings;
662 			kiq->pmf->kiq_map_queues(kiq_ring,
663 						 &adev->gfx.gfx_ring[j]);
664 		}
665 	}
666 
667 	r = amdgpu_ring_test_helper(kiq_ring);
668 	spin_unlock(&kiq->ring_lock);
669 	if (r)
670 		DRM_ERROR("KCQ enable failed\n");
671 
672 	return r;
673 }
674 
675 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
676  *
677  * @adev: amdgpu_device pointer
678  * @bool enable true: enable gfx off feature, false: disable gfx off feature
679  *
680  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
681  * 2. other client can send request to disable gfx off feature, the request should be honored.
682  * 3. other client can cancel their request of disable gfx off feature
683  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
684  */
685 
686 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
687 {
688 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
689 
690 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
691 		return;
692 
693 	mutex_lock(&adev->gfx.gfx_off_mutex);
694 
695 	if (enable) {
696 		/* If the count is already 0, it means there's an imbalance bug somewhere.
697 		 * Note that the bug may be in a different caller than the one which triggers the
698 		 * WARN_ON_ONCE.
699 		 */
700 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
701 			goto unlock;
702 
703 		adev->gfx.gfx_off_req_count--;
704 
705 		if (adev->gfx.gfx_off_req_count == 0 &&
706 		    !adev->gfx.gfx_off_state) {
707 			schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
708 					      delay);
709 		}
710 	} else {
711 		if (adev->gfx.gfx_off_req_count == 0) {
712 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
713 
714 			if (adev->gfx.gfx_off_state &&
715 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
716 				adev->gfx.gfx_off_state = false;
717 
718 				if (adev->gfx.funcs->init_spm_golden) {
719 					dev_dbg(adev->dev,
720 						"GFXOFF is disabled, re-init SPM golden settings\n");
721 					amdgpu_gfx_init_spm_golden(adev);
722 				}
723 			}
724 		}
725 
726 		adev->gfx.gfx_off_req_count++;
727 	}
728 
729 unlock:
730 	mutex_unlock(&adev->gfx.gfx_off_mutex);
731 }
732 
733 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
734 {
735 	int r = 0;
736 
737 	mutex_lock(&adev->gfx.gfx_off_mutex);
738 
739 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
740 
741 	mutex_unlock(&adev->gfx.gfx_off_mutex);
742 
743 	return r;
744 }
745 
746 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
747 {
748 	int r = 0;
749 
750 	mutex_lock(&adev->gfx.gfx_off_mutex);
751 
752 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
753 
754 	mutex_unlock(&adev->gfx.gfx_off_mutex);
755 
756 	return r;
757 }
758 
759 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
760 {
761 	int r = 0;
762 
763 	mutex_lock(&adev->gfx.gfx_off_mutex);
764 
765 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
766 
767 	mutex_unlock(&adev->gfx.gfx_off_mutex);
768 
769 	return r;
770 }
771 
772 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
773 {
774 
775 	int r = 0;
776 
777 	mutex_lock(&adev->gfx.gfx_off_mutex);
778 
779 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
780 
781 	mutex_unlock(&adev->gfx.gfx_off_mutex);
782 
783 	return r;
784 }
785 
786 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
787 {
788 	int r;
789 
790 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
791 		if (!amdgpu_persistent_edc_harvesting_supported(adev))
792 			amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
793 
794 		r = amdgpu_ras_block_late_init(adev, ras_block);
795 		if (r)
796 			return r;
797 
798 		if (adev->gfx.cp_ecc_error_irq.funcs) {
799 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
800 			if (r)
801 				goto late_fini;
802 		}
803 	} else {
804 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
805 	}
806 
807 	return 0;
808 late_fini:
809 	amdgpu_ras_block_late_fini(adev, ras_block);
810 	return r;
811 }
812 
813 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
814 {
815 	int err = 0;
816 	struct amdgpu_gfx_ras *ras = NULL;
817 
818 	/* adev->gfx.ras is NULL, which means gfx does not
819 	 * support ras function, then do nothing here.
820 	 */
821 	if (!adev->gfx.ras)
822 		return 0;
823 
824 	ras = adev->gfx.ras;
825 
826 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
827 	if (err) {
828 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
829 		return err;
830 	}
831 
832 	strlcpy(ras->ras_block.ras_comm.name, "gfx",
833 	    sizeof(ras->ras_block.ras_comm.name));
834 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
835 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
836 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
837 
838 	/* If not define special ras_late_init function, use gfx default ras_late_init */
839 	if (!ras->ras_block.ras_late_init)
840 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
841 
842 	/* If not defined special ras_cb function, use default ras_cb */
843 	if (!ras->ras_block.ras_cb)
844 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
845 
846 	return 0;
847 }
848 
849 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
850 						struct amdgpu_iv_entry *entry)
851 {
852 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
853 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
854 
855 	return 0;
856 }
857 
858 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
859 		void *err_data,
860 		struct amdgpu_iv_entry *entry)
861 {
862 	/* TODO ue will trigger an interrupt.
863 	 *
864 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
865 	 * be disabled and the driver should only look for the aggregated
866 	 * interrupt via sync flood
867 	 */
868 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
869 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
870 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
871 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
872 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
873 		amdgpu_ras_reset_gpu(adev);
874 	}
875 	return AMDGPU_RAS_SUCCESS;
876 }
877 
878 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
879 				  struct amdgpu_irq_src *source,
880 				  struct amdgpu_iv_entry *entry)
881 {
882 	struct ras_common_if *ras_if = adev->gfx.ras_if;
883 	struct ras_dispatch_if ih_data = {
884 		.entry = entry,
885 	};
886 
887 	if (!ras_if)
888 		return 0;
889 
890 	ih_data.head = *ras_if;
891 
892 	DRM_ERROR("CP ECC ERROR IRQ\n");
893 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
894 	return 0;
895 }
896 
897 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
898 		void *ras_error_status,
899 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
900 				int xcc_id))
901 {
902 	int i;
903 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
904 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
905 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
906 
907 	if (err_data) {
908 		err_data->ue_count = 0;
909 		err_data->ce_count = 0;
910 	}
911 
912 	for_each_inst(i, xcc_mask)
913 		func(adev, ras_error_status, i);
914 }
915 
916 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
917 {
918 	signed long r, cnt = 0;
919 	unsigned long flags;
920 	uint32_t seq, reg_val_offs = 0, value = 0;
921 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
922 	struct amdgpu_ring *ring = &kiq->ring;
923 
924 	if (amdgpu_device_skip_hw_access(adev))
925 		return 0;
926 
927 	if (adev->mes.ring.sched.ready)
928 		return amdgpu_mes_rreg(adev, reg);
929 
930 	BUG_ON(!ring->funcs->emit_rreg);
931 
932 	spin_lock_irqsave(&kiq->ring_lock, flags);
933 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
934 		pr_err("critical bug! too many kiq readers\n");
935 		goto failed_unlock;
936 	}
937 	amdgpu_ring_alloc(ring, 32);
938 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
939 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
940 	if (r)
941 		goto failed_undo;
942 
943 	amdgpu_ring_commit(ring);
944 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
945 
946 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
947 
948 	/* don't wait anymore for gpu reset case because this way may
949 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
950 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
951 	 * never return if we keep waiting in virt_kiq_rreg, which cause
952 	 * gpu_recover() hang there.
953 	 *
954 	 * also don't wait anymore for IRQ context
955 	 * */
956 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
957 		goto failed_kiq_read;
958 
959 	might_sleep();
960 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
961 		drm_msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
962 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
963 	}
964 
965 	if (cnt > MAX_KIQ_REG_TRY)
966 		goto failed_kiq_read;
967 
968 	mb();
969 	value = adev->wb.wb[reg_val_offs];
970 	amdgpu_device_wb_free(adev, reg_val_offs);
971 	return value;
972 
973 failed_undo:
974 	amdgpu_ring_undo(ring);
975 failed_unlock:
976 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
977 failed_kiq_read:
978 	if (reg_val_offs)
979 		amdgpu_device_wb_free(adev, reg_val_offs);
980 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
981 	return ~0;
982 }
983 
984 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
985 {
986 	signed long r, cnt = 0;
987 	unsigned long flags;
988 	uint32_t seq;
989 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
990 	struct amdgpu_ring *ring = &kiq->ring;
991 
992 	BUG_ON(!ring->funcs->emit_wreg);
993 
994 	if (amdgpu_device_skip_hw_access(adev))
995 		return;
996 
997 	if (adev->mes.ring.sched.ready) {
998 		amdgpu_mes_wreg(adev, reg, v);
999 		return;
1000 	}
1001 
1002 	spin_lock_irqsave(&kiq->ring_lock, flags);
1003 	amdgpu_ring_alloc(ring, 32);
1004 	amdgpu_ring_emit_wreg(ring, reg, v);
1005 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1006 	if (r)
1007 		goto failed_undo;
1008 
1009 	amdgpu_ring_commit(ring);
1010 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1011 
1012 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1013 
1014 	/* don't wait anymore for gpu reset case because this way may
1015 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1016 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1017 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1018 	 * gpu_recover() hang there.
1019 	 *
1020 	 * also don't wait anymore for IRQ context
1021 	 * */
1022 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1023 		goto failed_kiq_write;
1024 
1025 	might_sleep();
1026 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1027 
1028 		drm_msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1029 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1030 	}
1031 
1032 	if (cnt > MAX_KIQ_REG_TRY)
1033 		goto failed_kiq_write;
1034 
1035 	return;
1036 
1037 failed_undo:
1038 	amdgpu_ring_undo(ring);
1039 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1040 failed_kiq_write:
1041 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1042 }
1043 
1044 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1045 {
1046 	if (amdgpu_num_kcq == -1) {
1047 		return 8;
1048 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1049 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1050 		return 8;
1051 	}
1052 	return amdgpu_num_kcq;
1053 }
1054 
1055 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1056 				  uint32_t ucode_id)
1057 {
1058 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1059 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1060 	struct amdgpu_firmware_info *info = NULL;
1061 	const struct firmware *ucode_fw;
1062 	unsigned int fw_size;
1063 
1064 	switch (ucode_id) {
1065 	case AMDGPU_UCODE_ID_CP_PFP:
1066 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1067 			adev->gfx.pfp_fw->data;
1068 		adev->gfx.pfp_fw_version =
1069 			le32_to_cpu(cp_hdr->header.ucode_version);
1070 		adev->gfx.pfp_feature_version =
1071 			le32_to_cpu(cp_hdr->ucode_feature_version);
1072 		ucode_fw = adev->gfx.pfp_fw;
1073 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1074 		break;
1075 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1076 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1077 			adev->gfx.pfp_fw->data;
1078 		adev->gfx.pfp_fw_version =
1079 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1080 		adev->gfx.pfp_feature_version =
1081 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1082 		ucode_fw = adev->gfx.pfp_fw;
1083 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1084 		break;
1085 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1086 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1087 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1088 			adev->gfx.pfp_fw->data;
1089 		ucode_fw = adev->gfx.pfp_fw;
1090 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1091 		break;
1092 	case AMDGPU_UCODE_ID_CP_ME:
1093 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1094 			adev->gfx.me_fw->data;
1095 		adev->gfx.me_fw_version =
1096 			le32_to_cpu(cp_hdr->header.ucode_version);
1097 		adev->gfx.me_feature_version =
1098 			le32_to_cpu(cp_hdr->ucode_feature_version);
1099 		ucode_fw = adev->gfx.me_fw;
1100 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1101 		break;
1102 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1103 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1104 			adev->gfx.me_fw->data;
1105 		adev->gfx.me_fw_version =
1106 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1107 		adev->gfx.me_feature_version =
1108 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1109 		ucode_fw = adev->gfx.me_fw;
1110 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1111 		break;
1112 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1113 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1114 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1115 			adev->gfx.me_fw->data;
1116 		ucode_fw = adev->gfx.me_fw;
1117 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1118 		break;
1119 	case AMDGPU_UCODE_ID_CP_CE:
1120 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1121 			adev->gfx.ce_fw->data;
1122 		adev->gfx.ce_fw_version =
1123 			le32_to_cpu(cp_hdr->header.ucode_version);
1124 		adev->gfx.ce_feature_version =
1125 			le32_to_cpu(cp_hdr->ucode_feature_version);
1126 		ucode_fw = adev->gfx.ce_fw;
1127 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1128 		break;
1129 	case AMDGPU_UCODE_ID_CP_MEC1:
1130 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1131 			adev->gfx.mec_fw->data;
1132 		adev->gfx.mec_fw_version =
1133 			le32_to_cpu(cp_hdr->header.ucode_version);
1134 		adev->gfx.mec_feature_version =
1135 			le32_to_cpu(cp_hdr->ucode_feature_version);
1136 		ucode_fw = adev->gfx.mec_fw;
1137 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1138 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1139 		break;
1140 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1141 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1142 			adev->gfx.mec_fw->data;
1143 		ucode_fw = adev->gfx.mec_fw;
1144 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1145 		break;
1146 	case AMDGPU_UCODE_ID_CP_MEC2:
1147 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1148 			adev->gfx.mec2_fw->data;
1149 		adev->gfx.mec2_fw_version =
1150 			le32_to_cpu(cp_hdr->header.ucode_version);
1151 		adev->gfx.mec2_feature_version =
1152 			le32_to_cpu(cp_hdr->ucode_feature_version);
1153 		ucode_fw = adev->gfx.mec2_fw;
1154 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1155 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1156 		break;
1157 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1158 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1159 			adev->gfx.mec2_fw->data;
1160 		ucode_fw = adev->gfx.mec2_fw;
1161 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1162 		break;
1163 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1164 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1165 			adev->gfx.mec_fw->data;
1166 		adev->gfx.mec_fw_version =
1167 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1168 		adev->gfx.mec_feature_version =
1169 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1170 		ucode_fw = adev->gfx.mec_fw;
1171 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1172 		break;
1173 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1174 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1175 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1176 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1177 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1178 			adev->gfx.mec_fw->data;
1179 		ucode_fw = adev->gfx.mec_fw;
1180 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1181 		break;
1182 	default:
1183 		break;
1184 	}
1185 
1186 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1187 		info = &adev->firmware.ucode[ucode_id];
1188 		info->ucode_id = ucode_id;
1189 		info->fw = ucode_fw;
1190 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1191 	}
1192 }
1193 
1194 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1195 {
1196 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1197 			adev->gfx.num_xcc_per_xcp : 1));
1198 }
1199 
1200 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1201 						struct device_attribute *addr,
1202 						char *buf)
1203 {
1204 	struct drm_device *ddev = dev_get_drvdata(dev);
1205 	struct amdgpu_device *adev = drm_to_adev(ddev);
1206 	int mode;
1207 
1208 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1209 					       AMDGPU_XCP_FL_NONE);
1210 
1211 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1212 }
1213 
1214 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1215 						struct device_attribute *addr,
1216 						const char *buf, size_t count)
1217 {
1218 	struct drm_device *ddev = dev_get_drvdata(dev);
1219 	struct amdgpu_device *adev = drm_to_adev(ddev);
1220 	enum amdgpu_gfx_partition mode;
1221 	int ret = 0, num_xcc;
1222 
1223 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1224 	if (num_xcc % 2 != 0)
1225 		return -EINVAL;
1226 
1227 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1228 		mode = AMDGPU_SPX_PARTITION_MODE;
1229 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1230 		/*
1231 		 * DPX mode needs AIDs to be in multiple of 2.
1232 		 * Each AID connects 2 XCCs.
1233 		 */
1234 		if (num_xcc%4)
1235 			return -EINVAL;
1236 		mode = AMDGPU_DPX_PARTITION_MODE;
1237 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1238 		if (num_xcc != 6)
1239 			return -EINVAL;
1240 		mode = AMDGPU_TPX_PARTITION_MODE;
1241 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1242 		if (num_xcc != 8)
1243 			return -EINVAL;
1244 		mode = AMDGPU_QPX_PARTITION_MODE;
1245 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1246 		mode = AMDGPU_CPX_PARTITION_MODE;
1247 	} else {
1248 		return -EINVAL;
1249 	}
1250 
1251 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1252 
1253 	if (ret)
1254 		return ret;
1255 
1256 	return count;
1257 }
1258 
1259 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1260 						struct device_attribute *addr,
1261 						char *buf)
1262 {
1263 	struct drm_device *ddev = dev_get_drvdata(dev);
1264 	struct amdgpu_device *adev = drm_to_adev(ddev);
1265 	char *supported_partition;
1266 
1267 	/* TBD */
1268 	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1269 	case 8:
1270 		supported_partition = "SPX, DPX, QPX, CPX";
1271 		break;
1272 	case 6:
1273 		supported_partition = "SPX, TPX, CPX";
1274 		break;
1275 	case 4:
1276 		supported_partition = "SPX, DPX, CPX";
1277 		break;
1278 	/* this seems only existing in emulation phase */
1279 	case 2:
1280 		supported_partition = "SPX, CPX";
1281 		break;
1282 	default:
1283 		supported_partition = "Not supported";
1284 		break;
1285 	}
1286 
1287 	return sysfs_emit(buf, "%s\n", supported_partition);
1288 }
1289 
1290 static DEVICE_ATTR(current_compute_partition, 0644,
1291 		   amdgpu_gfx_get_current_compute_partition,
1292 		   amdgpu_gfx_set_compute_partition);
1293 
1294 static DEVICE_ATTR(available_compute_partition, 0444,
1295 		   amdgpu_gfx_get_available_compute_partition, NULL);
1296 
1297 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1298 {
1299 	int r;
1300 
1301 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1302 	if (r)
1303 		return r;
1304 
1305 	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1306 
1307 	return r;
1308 }
1309 
1310 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1311 {
1312 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1313 	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1314 }
1315