1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 #include "amdgpu_xcp.h" 32 33 /* delay 0.1 second to enable gfx off feature */ 34 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 35 36 #define GFX_OFF_NO_DELAY 0 37 38 /* 39 * GPU GFX IP block helpers function. 40 */ 41 42 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 43 int pipe, int queue) 44 { 45 int bit = 0; 46 47 bit += mec * adev->gfx.mec.num_pipe_per_mec 48 * adev->gfx.mec.num_queue_per_pipe; 49 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 50 bit += queue; 51 52 return bit; 53 } 54 55 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 56 int *mec, int *pipe, int *queue) 57 { 58 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 59 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 60 % adev->gfx.mec.num_pipe_per_mec; 61 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 62 / adev->gfx.mec.num_pipe_per_mec; 63 64 } 65 66 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 67 int xcc_id, int mec, int pipe, int queue) 68 { 69 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 70 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 71 } 72 73 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 74 int me, int pipe, int queue) 75 { 76 int bit = 0; 77 78 bit += me * adev->gfx.me.num_pipe_per_me 79 * adev->gfx.me.num_queue_per_pipe; 80 bit += pipe * adev->gfx.me.num_queue_per_pipe; 81 bit += queue; 82 83 return bit; 84 } 85 86 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 87 int *me, int *pipe, int *queue) 88 { 89 *queue = bit % adev->gfx.me.num_queue_per_pipe; 90 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 91 % adev->gfx.me.num_pipe_per_me; 92 *me = (bit / adev->gfx.me.num_queue_per_pipe) 93 / adev->gfx.me.num_pipe_per_me; 94 } 95 96 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 97 int me, int pipe, int queue) 98 { 99 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 100 adev->gfx.me.queue_bitmap); 101 } 102 103 /** 104 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 105 * 106 * @mask: array in which the per-shader array disable masks will be stored 107 * @max_se: number of SEs 108 * @max_sh: number of SHs 109 * 110 * The bitmask of CUs to be disabled in the shader array determined by se and 111 * sh is stored in mask[se * max_sh + sh]. 112 */ 113 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) 114 { 115 unsigned int se, sh, cu; 116 const char *p; 117 118 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 119 120 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 121 return; 122 123 #ifdef notyet 124 p = amdgpu_disable_cu; 125 for (;;) { 126 char *next; 127 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 128 129 if (ret < 3) { 130 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 131 return; 132 } 133 134 if (se < max_se && sh < max_sh && cu < 16) { 135 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 136 mask[se * max_sh + sh] |= 1u << cu; 137 } else { 138 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 139 se, sh, cu); 140 } 141 142 next = strchr(p, ','); 143 if (!next) 144 break; 145 p = next + 1; 146 } 147 #endif 148 } 149 150 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 151 { 152 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 153 } 154 155 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 156 { 157 if (amdgpu_compute_multipipe != -1) { 158 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 159 amdgpu_compute_multipipe); 160 return amdgpu_compute_multipipe == 1; 161 } 162 163 if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0)) 164 return true; 165 166 /* FIXME: spreading the queues across pipes causes perf regressions 167 * on POLARIS11 compute workloads */ 168 if (adev->asic_type == CHIP_POLARIS11) 169 return false; 170 171 return adev->gfx.mec.num_mec > 1; 172 } 173 174 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 175 struct amdgpu_ring *ring) 176 { 177 int queue = ring->queue; 178 int pipe = ring->pipe; 179 180 /* Policy: use pipe1 queue0 as high priority graphics queue if we 181 * have more than one gfx pipe. 182 */ 183 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 184 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 185 int me = ring->me; 186 int bit; 187 188 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 189 if (ring == &adev->gfx.gfx_ring[bit]) 190 return true; 191 } 192 193 return false; 194 } 195 196 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 197 struct amdgpu_ring *ring) 198 { 199 /* Policy: use 1st queue as high priority compute queue if we 200 * have more than one compute queue. 201 */ 202 if (adev->gfx.num_compute_rings > 1 && 203 ring == &adev->gfx.compute_ring[0]) 204 return true; 205 206 return false; 207 } 208 209 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 210 { 211 int i, j, queue, pipe; 212 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 213 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 214 adev->gfx.mec.num_queue_per_pipe, 215 adev->gfx.num_compute_rings); 216 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 217 218 if (multipipe_policy) { 219 /* policy: make queues evenly cross all pipes on MEC1 only 220 * for multiple xcc, just use the original policy for simplicity */ 221 for (j = 0; j < num_xcc; j++) { 222 for (i = 0; i < max_queues_per_mec; i++) { 223 pipe = i % adev->gfx.mec.num_pipe_per_mec; 224 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 225 adev->gfx.mec.num_queue_per_pipe; 226 227 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 228 adev->gfx.mec_bitmap[j].queue_bitmap); 229 } 230 } 231 } else { 232 /* policy: amdgpu owns all queues in the given pipe */ 233 for (j = 0; j < num_xcc; j++) { 234 for (i = 0; i < max_queues_per_mec; ++i) 235 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 236 } 237 } 238 239 for (j = 0; j < num_xcc; j++) { 240 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 241 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 242 } 243 } 244 245 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 246 { 247 int i, queue, pipe; 248 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 249 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 250 adev->gfx.me.num_queue_per_pipe; 251 252 if (multipipe_policy) { 253 /* policy: amdgpu owns the first queue per pipe at this stage 254 * will extend to mulitple queues per pipe later */ 255 for (i = 0; i < max_queues_per_me; i++) { 256 pipe = i % adev->gfx.me.num_pipe_per_me; 257 queue = (i / adev->gfx.me.num_pipe_per_me) % 258 adev->gfx.me.num_queue_per_pipe; 259 260 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 261 adev->gfx.me.queue_bitmap); 262 } 263 } else { 264 for (i = 0; i < max_queues_per_me; ++i) 265 set_bit(i, adev->gfx.me.queue_bitmap); 266 } 267 268 /* update the number of active graphics rings */ 269 adev->gfx.num_gfx_rings = 270 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 271 } 272 273 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 274 struct amdgpu_ring *ring, int xcc_id) 275 { 276 int queue_bit; 277 int mec, pipe, queue; 278 279 queue_bit = adev->gfx.mec.num_mec 280 * adev->gfx.mec.num_pipe_per_mec 281 * adev->gfx.mec.num_queue_per_pipe; 282 283 while (--queue_bit >= 0) { 284 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 285 continue; 286 287 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 288 289 /* 290 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 291 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 292 * only can be issued on queue 0. 293 */ 294 if ((mec == 1 && pipe > 1) || queue != 0) 295 continue; 296 297 ring->me = mec + 1; 298 ring->pipe = pipe; 299 ring->queue = queue; 300 301 return 0; 302 } 303 304 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 305 return -EINVAL; 306 } 307 308 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, 309 struct amdgpu_ring *ring, 310 struct amdgpu_irq_src *irq, int xcc_id) 311 { 312 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 313 int r = 0; 314 315 mtx_init(&kiq->ring_lock, IPL_TTY); 316 317 ring->adev = NULL; 318 ring->ring_obj = NULL; 319 ring->use_doorbell = true; 320 ring->xcc_id = xcc_id; 321 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 322 ring->doorbell_index = 323 (adev->doorbell_index.kiq + 324 xcc_id * adev->doorbell_index.xcc_doorbell_range) 325 << 1; 326 327 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 328 if (r) 329 return r; 330 331 ring->eop_gpu_addr = kiq->eop_gpu_addr; 332 ring->no_scheduler = true; 333 snprintf(ring->name, sizeof(ring->name), "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue); 334 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 335 AMDGPU_RING_PRIO_DEFAULT, NULL); 336 if (r) 337 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 338 339 return r; 340 } 341 342 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 343 { 344 amdgpu_ring_fini(ring); 345 } 346 347 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 348 { 349 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 350 351 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 352 } 353 354 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 355 unsigned int hpd_size, int xcc_id) 356 { 357 int r; 358 u32 *hpd; 359 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 360 361 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 362 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 363 &kiq->eop_gpu_addr, (void **)&hpd); 364 if (r) { 365 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 366 return r; 367 } 368 369 memset(hpd, 0, hpd_size); 370 371 r = amdgpu_bo_reserve(kiq->eop_obj, true); 372 if (unlikely(r != 0)) 373 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 374 amdgpu_bo_kunmap(kiq->eop_obj); 375 amdgpu_bo_unreserve(kiq->eop_obj); 376 377 return 0; 378 } 379 380 /* create MQD for each compute/gfx queue */ 381 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 382 unsigned int mqd_size, int xcc_id) 383 { 384 int r, i, j; 385 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 386 struct amdgpu_ring *ring = &kiq->ring; 387 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 388 389 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) 390 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 391 if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0)) 392 domain |= AMDGPU_GEM_DOMAIN_VRAM; 393 #endif 394 395 /* create MQD for KIQ */ 396 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 397 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 398 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 399 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 400 * KIQ MQD no matter SRIOV or Bare-metal 401 */ 402 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 403 AMDGPU_GEM_DOMAIN_VRAM | 404 AMDGPU_GEM_DOMAIN_GTT, 405 &ring->mqd_obj, 406 &ring->mqd_gpu_addr, 407 &ring->mqd_ptr); 408 if (r) { 409 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 410 return r; 411 } 412 413 /* prepare MQD backup */ 414 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 415 if (!kiq->mqd_backup) { 416 dev_warn(adev->dev, 417 "no memory to create MQD backup for ring %s\n", ring->name); 418 return -ENOMEM; 419 } 420 } 421 422 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 423 /* create MQD for each KGQ */ 424 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 425 ring = &adev->gfx.gfx_ring[i]; 426 if (!ring->mqd_obj) { 427 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 428 domain, &ring->mqd_obj, 429 &ring->mqd_gpu_addr, &ring->mqd_ptr); 430 if (r) { 431 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 432 return r; 433 } 434 435 ring->mqd_size = mqd_size; 436 /* prepare MQD backup */ 437 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 438 if (!adev->gfx.me.mqd_backup[i]) { 439 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 440 return -ENOMEM; 441 } 442 } 443 } 444 } 445 446 /* create MQD for each KCQ */ 447 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 448 j = i + xcc_id * adev->gfx.num_compute_rings; 449 ring = &adev->gfx.compute_ring[j]; 450 if (!ring->mqd_obj) { 451 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 452 domain, &ring->mqd_obj, 453 &ring->mqd_gpu_addr, &ring->mqd_ptr); 454 if (r) { 455 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 456 return r; 457 } 458 459 ring->mqd_size = mqd_size; 460 /* prepare MQD backup */ 461 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL); 462 if (!adev->gfx.mec.mqd_backup[j]) { 463 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 464 return -ENOMEM; 465 } 466 } 467 } 468 469 return 0; 470 } 471 472 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 473 { 474 struct amdgpu_ring *ring = NULL; 475 int i, j; 476 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 477 478 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 479 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 480 ring = &adev->gfx.gfx_ring[i]; 481 kfree(adev->gfx.me.mqd_backup[i]); 482 amdgpu_bo_free_kernel(&ring->mqd_obj, 483 &ring->mqd_gpu_addr, 484 &ring->mqd_ptr); 485 } 486 } 487 488 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 489 j = i + xcc_id * adev->gfx.num_compute_rings; 490 ring = &adev->gfx.compute_ring[j]; 491 kfree(adev->gfx.mec.mqd_backup[j]); 492 amdgpu_bo_free_kernel(&ring->mqd_obj, 493 &ring->mqd_gpu_addr, 494 &ring->mqd_ptr); 495 } 496 497 ring = &kiq->ring; 498 kfree(kiq->mqd_backup); 499 amdgpu_bo_free_kernel(&ring->mqd_obj, 500 &ring->mqd_gpu_addr, 501 &ring->mqd_ptr); 502 } 503 504 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 505 { 506 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 507 struct amdgpu_ring *kiq_ring = &kiq->ring; 508 int i, r = 0; 509 int j; 510 511 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 512 return -EINVAL; 513 514 spin_lock(&kiq->ring_lock); 515 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 516 adev->gfx.num_compute_rings)) { 517 spin_unlock(&kiq->ring_lock); 518 return -ENOMEM; 519 } 520 521 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 522 j = i + xcc_id * adev->gfx.num_compute_rings; 523 kiq->pmf->kiq_unmap_queues(kiq_ring, 524 &adev->gfx.compute_ring[j], 525 RESET_QUEUES, 0, 0); 526 } 527 528 if (kiq_ring->sched.ready && !adev->job_hang) 529 r = amdgpu_ring_test_helper(kiq_ring); 530 spin_unlock(&kiq->ring_lock); 531 532 return r; 533 } 534 535 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 536 { 537 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 538 struct amdgpu_ring *kiq_ring = &kiq->ring; 539 int i, r = 0; 540 int j; 541 542 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 543 return -EINVAL; 544 545 spin_lock(&kiq->ring_lock); 546 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 547 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 548 adev->gfx.num_gfx_rings)) { 549 spin_unlock(&kiq->ring_lock); 550 return -ENOMEM; 551 } 552 553 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 554 j = i + xcc_id * adev->gfx.num_gfx_rings; 555 kiq->pmf->kiq_unmap_queues(kiq_ring, 556 &adev->gfx.gfx_ring[j], 557 PREEMPT_QUEUES, 0, 0); 558 } 559 } 560 561 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 562 r = amdgpu_ring_test_helper(kiq_ring); 563 spin_unlock(&kiq->ring_lock); 564 565 return r; 566 } 567 568 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 569 int queue_bit) 570 { 571 int mec, pipe, queue; 572 int set_resource_bit = 0; 573 574 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 575 576 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 577 578 return set_resource_bit; 579 } 580 581 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 582 { 583 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 584 struct amdgpu_ring *kiq_ring = &kiq->ring; 585 uint64_t queue_mask = 0; 586 int r, i, j; 587 588 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 589 return -EINVAL; 590 591 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 592 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 593 continue; 594 595 /* This situation may be hit in the future if a new HW 596 * generation exposes more than 64 queues. If so, the 597 * definition of queue_mask needs updating */ 598 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 599 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 600 break; 601 } 602 603 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 604 } 605 606 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 607 kiq_ring->queue); 608 amdgpu_device_flush_hdp(adev, NULL); 609 610 spin_lock(&kiq->ring_lock); 611 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 612 adev->gfx.num_compute_rings + 613 kiq->pmf->set_resources_size); 614 if (r) { 615 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 616 spin_unlock(&kiq->ring_lock); 617 return r; 618 } 619 620 if (adev->enable_mes) 621 queue_mask = ~0ULL; 622 623 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 624 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 625 j = i + xcc_id * adev->gfx.num_compute_rings; 626 kiq->pmf->kiq_map_queues(kiq_ring, 627 &adev->gfx.compute_ring[j]); 628 } 629 630 r = amdgpu_ring_test_helper(kiq_ring); 631 spin_unlock(&kiq->ring_lock); 632 if (r) 633 DRM_ERROR("KCQ enable failed\n"); 634 635 return r; 636 } 637 638 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 639 { 640 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 641 struct amdgpu_ring *kiq_ring = &kiq->ring; 642 int r, i, j; 643 644 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 645 return -EINVAL; 646 647 amdgpu_device_flush_hdp(adev, NULL); 648 649 spin_lock(&kiq->ring_lock); 650 /* No need to map kcq on the slave */ 651 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 652 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 653 adev->gfx.num_gfx_rings); 654 if (r) { 655 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 656 spin_unlock(&kiq->ring_lock); 657 return r; 658 } 659 660 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 661 j = i + xcc_id * adev->gfx.num_gfx_rings; 662 kiq->pmf->kiq_map_queues(kiq_ring, 663 &adev->gfx.gfx_ring[j]); 664 } 665 } 666 667 r = amdgpu_ring_test_helper(kiq_ring); 668 spin_unlock(&kiq->ring_lock); 669 if (r) 670 DRM_ERROR("KCQ enable failed\n"); 671 672 return r; 673 } 674 675 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 676 * 677 * @adev: amdgpu_device pointer 678 * @bool enable true: enable gfx off feature, false: disable gfx off feature 679 * 680 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 681 * 2. other client can send request to disable gfx off feature, the request should be honored. 682 * 3. other client can cancel their request of disable gfx off feature 683 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 684 */ 685 686 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 687 { 688 unsigned long delay = GFX_OFF_DELAY_ENABLE; 689 690 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 691 return; 692 693 mutex_lock(&adev->gfx.gfx_off_mutex); 694 695 if (enable) { 696 /* If the count is already 0, it means there's an imbalance bug somewhere. 697 * Note that the bug may be in a different caller than the one which triggers the 698 * WARN_ON_ONCE. 699 */ 700 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 701 goto unlock; 702 703 adev->gfx.gfx_off_req_count--; 704 705 if (adev->gfx.gfx_off_req_count == 0 && 706 !adev->gfx.gfx_off_state) { 707 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 708 delay); 709 } 710 } else { 711 if (adev->gfx.gfx_off_req_count == 0) { 712 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 713 714 if (adev->gfx.gfx_off_state && 715 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 716 adev->gfx.gfx_off_state = false; 717 718 if (adev->gfx.funcs->init_spm_golden) { 719 dev_dbg(adev->dev, 720 "GFXOFF is disabled, re-init SPM golden settings\n"); 721 amdgpu_gfx_init_spm_golden(adev); 722 } 723 } 724 } 725 726 adev->gfx.gfx_off_req_count++; 727 } 728 729 unlock: 730 mutex_unlock(&adev->gfx.gfx_off_mutex); 731 } 732 733 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 734 { 735 int r = 0; 736 737 mutex_lock(&adev->gfx.gfx_off_mutex); 738 739 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 740 741 mutex_unlock(&adev->gfx.gfx_off_mutex); 742 743 return r; 744 } 745 746 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 747 { 748 int r = 0; 749 750 mutex_lock(&adev->gfx.gfx_off_mutex); 751 752 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 753 754 mutex_unlock(&adev->gfx.gfx_off_mutex); 755 756 return r; 757 } 758 759 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 760 { 761 int r = 0; 762 763 mutex_lock(&adev->gfx.gfx_off_mutex); 764 765 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 766 767 mutex_unlock(&adev->gfx.gfx_off_mutex); 768 769 return r; 770 } 771 772 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 773 { 774 775 int r = 0; 776 777 mutex_lock(&adev->gfx.gfx_off_mutex); 778 779 r = amdgpu_dpm_get_status_gfxoff(adev, value); 780 781 mutex_unlock(&adev->gfx.gfx_off_mutex); 782 783 return r; 784 } 785 786 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 787 { 788 int r; 789 790 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 791 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 792 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 793 794 r = amdgpu_ras_block_late_init(adev, ras_block); 795 if (r) 796 return r; 797 798 if (adev->gfx.cp_ecc_error_irq.funcs) { 799 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 800 if (r) 801 goto late_fini; 802 } 803 } else { 804 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 805 } 806 807 return 0; 808 late_fini: 809 amdgpu_ras_block_late_fini(adev, ras_block); 810 return r; 811 } 812 813 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 814 { 815 int err = 0; 816 struct amdgpu_gfx_ras *ras = NULL; 817 818 /* adev->gfx.ras is NULL, which means gfx does not 819 * support ras function, then do nothing here. 820 */ 821 if (!adev->gfx.ras) 822 return 0; 823 824 ras = adev->gfx.ras; 825 826 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 827 if (err) { 828 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 829 return err; 830 } 831 832 strlcpy(ras->ras_block.ras_comm.name, "gfx", 833 sizeof(ras->ras_block.ras_comm.name)); 834 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 835 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 836 adev->gfx.ras_if = &ras->ras_block.ras_comm; 837 838 /* If not define special ras_late_init function, use gfx default ras_late_init */ 839 if (!ras->ras_block.ras_late_init) 840 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 841 842 /* If not defined special ras_cb function, use default ras_cb */ 843 if (!ras->ras_block.ras_cb) 844 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 845 846 return 0; 847 } 848 849 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 850 struct amdgpu_iv_entry *entry) 851 { 852 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 853 return adev->gfx.ras->poison_consumption_handler(adev, entry); 854 855 return 0; 856 } 857 858 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 859 void *err_data, 860 struct amdgpu_iv_entry *entry) 861 { 862 /* TODO ue will trigger an interrupt. 863 * 864 * When “Full RAS” is enabled, the per-IP interrupt sources should 865 * be disabled and the driver should only look for the aggregated 866 * interrupt via sync flood 867 */ 868 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 869 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 870 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 871 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 872 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 873 amdgpu_ras_reset_gpu(adev); 874 } 875 return AMDGPU_RAS_SUCCESS; 876 } 877 878 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 879 struct amdgpu_irq_src *source, 880 struct amdgpu_iv_entry *entry) 881 { 882 struct ras_common_if *ras_if = adev->gfx.ras_if; 883 struct ras_dispatch_if ih_data = { 884 .entry = entry, 885 }; 886 887 if (!ras_if) 888 return 0; 889 890 ih_data.head = *ras_if; 891 892 DRM_ERROR("CP ECC ERROR IRQ\n"); 893 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 894 return 0; 895 } 896 897 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 898 void *ras_error_status, 899 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 900 int xcc_id)) 901 { 902 int i; 903 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 904 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 905 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 906 907 if (err_data) { 908 err_data->ue_count = 0; 909 err_data->ce_count = 0; 910 } 911 912 for_each_inst(i, xcc_mask) 913 func(adev, ras_error_status, i); 914 } 915 916 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg) 917 { 918 signed long r, cnt = 0; 919 unsigned long flags; 920 uint32_t seq, reg_val_offs = 0, value = 0; 921 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 922 struct amdgpu_ring *ring = &kiq->ring; 923 924 if (amdgpu_device_skip_hw_access(adev)) 925 return 0; 926 927 if (adev->mes.ring.sched.ready) 928 return amdgpu_mes_rreg(adev, reg); 929 930 BUG_ON(!ring->funcs->emit_rreg); 931 932 spin_lock_irqsave(&kiq->ring_lock, flags); 933 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 934 pr_err("critical bug! too many kiq readers\n"); 935 goto failed_unlock; 936 } 937 amdgpu_ring_alloc(ring, 32); 938 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 939 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 940 if (r) 941 goto failed_undo; 942 943 amdgpu_ring_commit(ring); 944 spin_unlock_irqrestore(&kiq->ring_lock, flags); 945 946 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 947 948 /* don't wait anymore for gpu reset case because this way may 949 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 950 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 951 * never return if we keep waiting in virt_kiq_rreg, which cause 952 * gpu_recover() hang there. 953 * 954 * also don't wait anymore for IRQ context 955 * */ 956 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 957 goto failed_kiq_read; 958 959 might_sleep(); 960 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 961 drm_msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 962 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 963 } 964 965 if (cnt > MAX_KIQ_REG_TRY) 966 goto failed_kiq_read; 967 968 mb(); 969 value = adev->wb.wb[reg_val_offs]; 970 amdgpu_device_wb_free(adev, reg_val_offs); 971 return value; 972 973 failed_undo: 974 amdgpu_ring_undo(ring); 975 failed_unlock: 976 spin_unlock_irqrestore(&kiq->ring_lock, flags); 977 failed_kiq_read: 978 if (reg_val_offs) 979 amdgpu_device_wb_free(adev, reg_val_offs); 980 dev_err(adev->dev, "failed to read reg:%x\n", reg); 981 return ~0; 982 } 983 984 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) 985 { 986 signed long r, cnt = 0; 987 unsigned long flags; 988 uint32_t seq; 989 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 990 struct amdgpu_ring *ring = &kiq->ring; 991 992 BUG_ON(!ring->funcs->emit_wreg); 993 994 if (amdgpu_device_skip_hw_access(adev)) 995 return; 996 997 if (adev->mes.ring.sched.ready) { 998 amdgpu_mes_wreg(adev, reg, v); 999 return; 1000 } 1001 1002 spin_lock_irqsave(&kiq->ring_lock, flags); 1003 amdgpu_ring_alloc(ring, 32); 1004 amdgpu_ring_emit_wreg(ring, reg, v); 1005 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1006 if (r) 1007 goto failed_undo; 1008 1009 amdgpu_ring_commit(ring); 1010 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1011 1012 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1013 1014 /* don't wait anymore for gpu reset case because this way may 1015 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1016 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1017 * never return if we keep waiting in virt_kiq_rreg, which cause 1018 * gpu_recover() hang there. 1019 * 1020 * also don't wait anymore for IRQ context 1021 * */ 1022 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1023 goto failed_kiq_write; 1024 1025 might_sleep(); 1026 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1027 1028 drm_msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1029 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1030 } 1031 1032 if (cnt > MAX_KIQ_REG_TRY) 1033 goto failed_kiq_write; 1034 1035 return; 1036 1037 failed_undo: 1038 amdgpu_ring_undo(ring); 1039 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1040 failed_kiq_write: 1041 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1042 } 1043 1044 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1045 { 1046 if (amdgpu_num_kcq == -1) { 1047 return 8; 1048 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1049 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1050 return 8; 1051 } 1052 return amdgpu_num_kcq; 1053 } 1054 1055 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1056 uint32_t ucode_id) 1057 { 1058 const struct gfx_firmware_header_v1_0 *cp_hdr; 1059 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1060 struct amdgpu_firmware_info *info = NULL; 1061 const struct firmware *ucode_fw; 1062 unsigned int fw_size; 1063 1064 switch (ucode_id) { 1065 case AMDGPU_UCODE_ID_CP_PFP: 1066 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1067 adev->gfx.pfp_fw->data; 1068 adev->gfx.pfp_fw_version = 1069 le32_to_cpu(cp_hdr->header.ucode_version); 1070 adev->gfx.pfp_feature_version = 1071 le32_to_cpu(cp_hdr->ucode_feature_version); 1072 ucode_fw = adev->gfx.pfp_fw; 1073 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1074 break; 1075 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1076 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1077 adev->gfx.pfp_fw->data; 1078 adev->gfx.pfp_fw_version = 1079 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1080 adev->gfx.pfp_feature_version = 1081 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1082 ucode_fw = adev->gfx.pfp_fw; 1083 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1084 break; 1085 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1086 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1087 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1088 adev->gfx.pfp_fw->data; 1089 ucode_fw = adev->gfx.pfp_fw; 1090 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1091 break; 1092 case AMDGPU_UCODE_ID_CP_ME: 1093 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1094 adev->gfx.me_fw->data; 1095 adev->gfx.me_fw_version = 1096 le32_to_cpu(cp_hdr->header.ucode_version); 1097 adev->gfx.me_feature_version = 1098 le32_to_cpu(cp_hdr->ucode_feature_version); 1099 ucode_fw = adev->gfx.me_fw; 1100 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1101 break; 1102 case AMDGPU_UCODE_ID_CP_RS64_ME: 1103 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1104 adev->gfx.me_fw->data; 1105 adev->gfx.me_fw_version = 1106 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1107 adev->gfx.me_feature_version = 1108 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1109 ucode_fw = adev->gfx.me_fw; 1110 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1111 break; 1112 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1113 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1114 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1115 adev->gfx.me_fw->data; 1116 ucode_fw = adev->gfx.me_fw; 1117 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1118 break; 1119 case AMDGPU_UCODE_ID_CP_CE: 1120 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1121 adev->gfx.ce_fw->data; 1122 adev->gfx.ce_fw_version = 1123 le32_to_cpu(cp_hdr->header.ucode_version); 1124 adev->gfx.ce_feature_version = 1125 le32_to_cpu(cp_hdr->ucode_feature_version); 1126 ucode_fw = adev->gfx.ce_fw; 1127 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1128 break; 1129 case AMDGPU_UCODE_ID_CP_MEC1: 1130 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1131 adev->gfx.mec_fw->data; 1132 adev->gfx.mec_fw_version = 1133 le32_to_cpu(cp_hdr->header.ucode_version); 1134 adev->gfx.mec_feature_version = 1135 le32_to_cpu(cp_hdr->ucode_feature_version); 1136 ucode_fw = adev->gfx.mec_fw; 1137 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1138 le32_to_cpu(cp_hdr->jt_size) * 4; 1139 break; 1140 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1141 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1142 adev->gfx.mec_fw->data; 1143 ucode_fw = adev->gfx.mec_fw; 1144 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1145 break; 1146 case AMDGPU_UCODE_ID_CP_MEC2: 1147 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1148 adev->gfx.mec2_fw->data; 1149 adev->gfx.mec2_fw_version = 1150 le32_to_cpu(cp_hdr->header.ucode_version); 1151 adev->gfx.mec2_feature_version = 1152 le32_to_cpu(cp_hdr->ucode_feature_version); 1153 ucode_fw = adev->gfx.mec2_fw; 1154 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1155 le32_to_cpu(cp_hdr->jt_size) * 4; 1156 break; 1157 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1158 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1159 adev->gfx.mec2_fw->data; 1160 ucode_fw = adev->gfx.mec2_fw; 1161 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1162 break; 1163 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1164 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1165 adev->gfx.mec_fw->data; 1166 adev->gfx.mec_fw_version = 1167 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1168 adev->gfx.mec_feature_version = 1169 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1170 ucode_fw = adev->gfx.mec_fw; 1171 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1172 break; 1173 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1174 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1175 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1176 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1177 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1178 adev->gfx.mec_fw->data; 1179 ucode_fw = adev->gfx.mec_fw; 1180 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1181 break; 1182 default: 1183 break; 1184 } 1185 1186 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1187 info = &adev->firmware.ucode[ucode_id]; 1188 info->ucode_id = ucode_id; 1189 info->fw = ucode_fw; 1190 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1191 } 1192 } 1193 1194 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1195 { 1196 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1197 adev->gfx.num_xcc_per_xcp : 1)); 1198 } 1199 1200 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1201 struct device_attribute *addr, 1202 char *buf) 1203 { 1204 struct drm_device *ddev = dev_get_drvdata(dev); 1205 struct amdgpu_device *adev = drm_to_adev(ddev); 1206 int mode; 1207 1208 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1209 AMDGPU_XCP_FL_NONE); 1210 1211 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1212 } 1213 1214 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1215 struct device_attribute *addr, 1216 const char *buf, size_t count) 1217 { 1218 struct drm_device *ddev = dev_get_drvdata(dev); 1219 struct amdgpu_device *adev = drm_to_adev(ddev); 1220 enum amdgpu_gfx_partition mode; 1221 int ret = 0, num_xcc; 1222 1223 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1224 if (num_xcc % 2 != 0) 1225 return -EINVAL; 1226 1227 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1228 mode = AMDGPU_SPX_PARTITION_MODE; 1229 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1230 /* 1231 * DPX mode needs AIDs to be in multiple of 2. 1232 * Each AID connects 2 XCCs. 1233 */ 1234 if (num_xcc%4) 1235 return -EINVAL; 1236 mode = AMDGPU_DPX_PARTITION_MODE; 1237 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1238 if (num_xcc != 6) 1239 return -EINVAL; 1240 mode = AMDGPU_TPX_PARTITION_MODE; 1241 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1242 if (num_xcc != 8) 1243 return -EINVAL; 1244 mode = AMDGPU_QPX_PARTITION_MODE; 1245 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1246 mode = AMDGPU_CPX_PARTITION_MODE; 1247 } else { 1248 return -EINVAL; 1249 } 1250 1251 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1252 1253 if (ret) 1254 return ret; 1255 1256 return count; 1257 } 1258 1259 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1260 struct device_attribute *addr, 1261 char *buf) 1262 { 1263 struct drm_device *ddev = dev_get_drvdata(dev); 1264 struct amdgpu_device *adev = drm_to_adev(ddev); 1265 char *supported_partition; 1266 1267 /* TBD */ 1268 switch (NUM_XCC(adev->gfx.xcc_mask)) { 1269 case 8: 1270 supported_partition = "SPX, DPX, QPX, CPX"; 1271 break; 1272 case 6: 1273 supported_partition = "SPX, TPX, CPX"; 1274 break; 1275 case 4: 1276 supported_partition = "SPX, DPX, CPX"; 1277 break; 1278 /* this seems only existing in emulation phase */ 1279 case 2: 1280 supported_partition = "SPX, CPX"; 1281 break; 1282 default: 1283 supported_partition = "Not supported"; 1284 break; 1285 } 1286 1287 return sysfs_emit(buf, "%s\n", supported_partition); 1288 } 1289 1290 static DEVICE_ATTR(current_compute_partition, 0644, 1291 amdgpu_gfx_get_current_compute_partition, 1292 amdgpu_gfx_set_compute_partition); 1293 1294 static DEVICE_ATTR(available_compute_partition, 0444, 1295 amdgpu_gfx_get_available_compute_partition, NULL); 1296 1297 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1298 { 1299 int r; 1300 1301 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1302 if (r) 1303 return r; 1304 1305 r = device_create_file(adev->dev, &dev_attr_available_compute_partition); 1306 1307 return r; 1308 } 1309 1310 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 1311 { 1312 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1313 device_remove_file(adev->dev, &dev_attr_available_compute_partition); 1314 } 1315