1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include "amdgpu_cs.h" 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_gmc.h" 39 #include "amdgpu_gem.h" 40 #include "amdgpu_ras.h" 41 42 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 43 struct amdgpu_device *adev, 44 struct drm_file *filp, 45 union drm_amdgpu_cs *cs) 46 { 47 struct amdgpu_fpriv *fpriv = filp->driver_priv; 48 49 if (cs->in.num_chunks == 0) 50 return -EINVAL; 51 52 memset(p, 0, sizeof(*p)); 53 p->adev = adev; 54 p->filp = filp; 55 56 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 57 if (!p->ctx) 58 return -EINVAL; 59 60 if (atomic_read(&p->ctx->guilty)) { 61 amdgpu_ctx_put(p->ctx); 62 return -ECANCELED; 63 } 64 return 0; 65 } 66 67 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 68 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 69 { 70 struct drm_sched_entity *entity; 71 unsigned int i; 72 int r; 73 74 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 75 chunk_ib->ip_instance, 76 chunk_ib->ring, &entity); 77 if (r) 78 return r; 79 80 /* 81 * Abort if there is no run queue associated with this entity. 82 * Possibly because of disabled HW IP. 83 */ 84 if (entity->rq == NULL) 85 return -EINVAL; 86 87 /* Check if we can add this IB to some existing job */ 88 for (i = 0; i < p->gang_size; ++i) 89 if (p->entities[i] == entity) 90 return i; 91 92 /* If not increase the gang size if possible */ 93 if (i == AMDGPU_CS_GANG_SIZE) 94 return -EINVAL; 95 96 p->entities[i] = entity; 97 p->gang_size = i + 1; 98 return i; 99 } 100 101 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 102 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 103 unsigned int *num_ibs) 104 { 105 int r; 106 107 r = amdgpu_cs_job_idx(p, chunk_ib); 108 if (r < 0) 109 return r; 110 111 ++(num_ibs[r]); 112 p->gang_leader_idx = r; 113 return 0; 114 } 115 116 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 117 struct drm_amdgpu_cs_chunk_fence *data, 118 uint32_t *offset) 119 { 120 struct drm_gem_object *gobj; 121 struct amdgpu_bo *bo; 122 unsigned long size; 123 int r; 124 125 gobj = drm_gem_object_lookup(p->filp, data->handle); 126 if (gobj == NULL) 127 return -EINVAL; 128 129 bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 130 p->uf_entry.priority = 0; 131 p->uf_entry.tv.bo = &bo->tbo; 132 drm_gem_object_put(gobj); 133 134 size = amdgpu_bo_size(bo); 135 if (size != PAGE_SIZE || (data->offset + 8) > size) { 136 r = -EINVAL; 137 goto error_unref; 138 } 139 140 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 141 r = -EINVAL; 142 goto error_unref; 143 } 144 145 *offset = data->offset; 146 147 return 0; 148 149 error_unref: 150 amdgpu_bo_unref(&bo); 151 return r; 152 } 153 154 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 155 struct drm_amdgpu_bo_list_in *data) 156 { 157 struct drm_amdgpu_bo_list_entry *info; 158 int r; 159 160 r = amdgpu_bo_create_list_entry_array(data, &info); 161 if (r) 162 return r; 163 164 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 165 &p->bo_list); 166 if (r) 167 goto error_free; 168 169 kvfree(info); 170 return 0; 171 172 error_free: 173 kvfree(info); 174 175 return r; 176 } 177 178 /* Copy the data from userspace and go over it the first time */ 179 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 180 union drm_amdgpu_cs *cs) 181 { 182 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 183 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 184 struct amdgpu_vm *vm = &fpriv->vm; 185 uint64_t *chunk_array_user; 186 uint64_t *chunk_array; 187 uint32_t uf_offset = 0; 188 size_t size; 189 int ret; 190 int i; 191 192 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), 193 GFP_KERNEL); 194 if (!chunk_array) 195 return -ENOMEM; 196 197 /* get chunks */ 198 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 199 if (copy_from_user(chunk_array, chunk_array_user, 200 sizeof(uint64_t)*cs->in.num_chunks)) { 201 ret = -EFAULT; 202 goto free_chunk; 203 } 204 205 p->nchunks = cs->in.num_chunks; 206 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 207 GFP_KERNEL); 208 if (!p->chunks) { 209 ret = -ENOMEM; 210 goto free_chunk; 211 } 212 213 for (i = 0; i < p->nchunks; i++) { 214 struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; 215 struct drm_amdgpu_cs_chunk user_chunk; 216 uint32_t __user *cdata; 217 218 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 219 if (copy_from_user(&user_chunk, chunk_ptr, 220 sizeof(struct drm_amdgpu_cs_chunk))) { 221 ret = -EFAULT; 222 i--; 223 goto free_partial_kdata; 224 } 225 p->chunks[i].chunk_id = user_chunk.chunk_id; 226 p->chunks[i].length_dw = user_chunk.length_dw; 227 228 size = p->chunks[i].length_dw; 229 cdata = u64_to_user_ptr(user_chunk.chunk_data); 230 231 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), 232 GFP_KERNEL); 233 if (p->chunks[i].kdata == NULL) { 234 ret = -ENOMEM; 235 i--; 236 goto free_partial_kdata; 237 } 238 size *= sizeof(uint32_t); 239 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 240 ret = -EFAULT; 241 goto free_partial_kdata; 242 } 243 244 /* Assume the worst on the following checks */ 245 ret = -EINVAL; 246 switch (p->chunks[i].chunk_id) { 247 case AMDGPU_CHUNK_ID_IB: 248 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 249 goto free_partial_kdata; 250 251 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 252 if (ret) 253 goto free_partial_kdata; 254 break; 255 256 case AMDGPU_CHUNK_ID_FENCE: 257 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 258 goto free_partial_kdata; 259 260 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 261 &uf_offset); 262 if (ret) 263 goto free_partial_kdata; 264 break; 265 266 case AMDGPU_CHUNK_ID_BO_HANDLES: 267 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 268 goto free_partial_kdata; 269 270 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 271 if (ret) 272 goto free_partial_kdata; 273 break; 274 275 case AMDGPU_CHUNK_ID_DEPENDENCIES: 276 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 277 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 278 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 279 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 280 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 281 break; 282 283 default: 284 goto free_partial_kdata; 285 } 286 } 287 288 if (!p->gang_size) { 289 ret = -EINVAL; 290 goto free_all_kdata; 291 } 292 293 for (i = 0; i < p->gang_size; ++i) { 294 ret = amdgpu_job_alloc(p->adev, num_ibs[i], &p->jobs[i], vm); 295 if (ret) 296 goto free_all_kdata; 297 298 ret = drm_sched_job_init(&p->jobs[i]->base, p->entities[i], 299 &fpriv->vm); 300 if (ret) 301 goto free_all_kdata; 302 } 303 p->gang_leader = p->jobs[p->gang_leader_idx]; 304 305 if (p->ctx->vram_lost_counter != p->gang_leader->vram_lost_counter) { 306 ret = -ECANCELED; 307 goto free_all_kdata; 308 } 309 310 if (p->uf_entry.tv.bo) 311 p->gang_leader->uf_addr = uf_offset; 312 kvfree(chunk_array); 313 314 /* Use this opportunity to fill in task info for the vm */ 315 amdgpu_vm_set_task_info(vm); 316 317 return 0; 318 319 free_all_kdata: 320 i = p->nchunks - 1; 321 free_partial_kdata: 322 for (; i >= 0; i--) 323 kvfree(p->chunks[i].kdata); 324 kvfree(p->chunks); 325 p->chunks = NULL; 326 p->nchunks = 0; 327 free_chunk: 328 kvfree(chunk_array); 329 330 return ret; 331 } 332 333 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 334 struct amdgpu_cs_chunk *chunk, 335 unsigned int *ce_preempt, 336 unsigned int *de_preempt) 337 { 338 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 339 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 340 struct amdgpu_vm *vm = &fpriv->vm; 341 struct amdgpu_ring *ring; 342 struct amdgpu_job *job; 343 struct amdgpu_ib *ib; 344 int r; 345 346 r = amdgpu_cs_job_idx(p, chunk_ib); 347 if (r < 0) 348 return r; 349 350 job = p->jobs[r]; 351 ring = amdgpu_job_ring(job); 352 ib = &job->ibs[job->num_ibs++]; 353 354 /* MM engine doesn't support user fences */ 355 if (p->uf_entry.tv.bo && ring->funcs->no_user_fence) 356 return -EINVAL; 357 358 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 359 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 360 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 361 (*ce_preempt)++; 362 else 363 (*de_preempt)++; 364 365 /* Each GFX command submit allows only 1 IB max 366 * preemptible for CE & DE */ 367 if (*ce_preempt > 1 || *de_preempt > 1) 368 return -EINVAL; 369 } 370 371 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 372 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 373 374 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 375 chunk_ib->ib_bytes : 0, 376 AMDGPU_IB_POOL_DELAYED, ib); 377 if (r) { 378 DRM_ERROR("Failed to get ib !\n"); 379 return r; 380 } 381 382 ib->gpu_addr = chunk_ib->va_start; 383 ib->length_dw = chunk_ib->ib_bytes / 4; 384 ib->flags = chunk_ib->flags; 385 return 0; 386 } 387 388 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 389 struct amdgpu_cs_chunk *chunk) 390 { 391 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 392 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 393 unsigned num_deps; 394 int i, r; 395 396 num_deps = chunk->length_dw * 4 / 397 sizeof(struct drm_amdgpu_cs_chunk_dep); 398 399 for (i = 0; i < num_deps; ++i) { 400 struct amdgpu_ctx *ctx; 401 struct drm_sched_entity *entity; 402 struct dma_fence *fence; 403 404 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 405 if (ctx == NULL) 406 return -EINVAL; 407 408 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 409 deps[i].ip_instance, 410 deps[i].ring, &entity); 411 if (r) { 412 amdgpu_ctx_put(ctx); 413 return r; 414 } 415 416 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 417 amdgpu_ctx_put(ctx); 418 419 if (IS_ERR(fence)) 420 return PTR_ERR(fence); 421 else if (!fence) 422 continue; 423 424 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 425 struct drm_sched_fence *s_fence; 426 struct dma_fence *old = fence; 427 428 s_fence = to_drm_sched_fence(fence); 429 fence = dma_fence_get(&s_fence->scheduled); 430 dma_fence_put(old); 431 } 432 433 r = amdgpu_sync_fence(&p->gang_leader->sync, fence); 434 dma_fence_put(fence); 435 if (r) 436 return r; 437 } 438 return 0; 439 } 440 441 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 442 uint32_t handle, u64 point, 443 u64 flags) 444 { 445 struct dma_fence *fence; 446 int r; 447 448 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 449 if (r) { 450 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 451 handle, point, r); 452 return r; 453 } 454 455 r = amdgpu_sync_fence(&p->gang_leader->sync, fence); 456 dma_fence_put(fence); 457 458 return r; 459 } 460 461 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 462 struct amdgpu_cs_chunk *chunk) 463 { 464 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 465 unsigned num_deps; 466 int i, r; 467 468 num_deps = chunk->length_dw * 4 / 469 sizeof(struct drm_amdgpu_cs_chunk_sem); 470 for (i = 0; i < num_deps; ++i) { 471 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 472 if (r) 473 return r; 474 } 475 476 return 0; 477 } 478 479 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 480 struct amdgpu_cs_chunk *chunk) 481 { 482 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 483 unsigned num_deps; 484 int i, r; 485 486 num_deps = chunk->length_dw * 4 / 487 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 488 for (i = 0; i < num_deps; ++i) { 489 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 490 syncobj_deps[i].point, 491 syncobj_deps[i].flags); 492 if (r) 493 return r; 494 } 495 496 return 0; 497 } 498 499 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 500 struct amdgpu_cs_chunk *chunk) 501 { 502 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 503 unsigned num_deps; 504 int i; 505 506 num_deps = chunk->length_dw * 4 / 507 sizeof(struct drm_amdgpu_cs_chunk_sem); 508 509 if (p->post_deps) 510 return -EINVAL; 511 512 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 513 GFP_KERNEL); 514 p->num_post_deps = 0; 515 516 if (!p->post_deps) 517 return -ENOMEM; 518 519 520 for (i = 0; i < num_deps; ++i) { 521 p->post_deps[i].syncobj = 522 drm_syncobj_find(p->filp, deps[i].handle); 523 if (!p->post_deps[i].syncobj) 524 return -EINVAL; 525 p->post_deps[i].chain = NULL; 526 p->post_deps[i].point = 0; 527 p->num_post_deps++; 528 } 529 530 return 0; 531 } 532 533 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 534 struct amdgpu_cs_chunk *chunk) 535 { 536 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 537 unsigned num_deps; 538 int i; 539 540 num_deps = chunk->length_dw * 4 / 541 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 542 543 if (p->post_deps) 544 return -EINVAL; 545 546 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 547 GFP_KERNEL); 548 p->num_post_deps = 0; 549 550 if (!p->post_deps) 551 return -ENOMEM; 552 553 for (i = 0; i < num_deps; ++i) { 554 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 555 556 dep->chain = NULL; 557 if (syncobj_deps[i].point) { 558 dep->chain = dma_fence_chain_alloc(); 559 if (!dep->chain) 560 return -ENOMEM; 561 } 562 563 dep->syncobj = drm_syncobj_find(p->filp, 564 syncobj_deps[i].handle); 565 if (!dep->syncobj) { 566 dma_fence_chain_free(dep->chain); 567 return -EINVAL; 568 } 569 dep->point = syncobj_deps[i].point; 570 p->num_post_deps++; 571 } 572 573 return 0; 574 } 575 576 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 577 { 578 unsigned int ce_preempt = 0, de_preempt = 0; 579 int i, r; 580 581 for (i = 0; i < p->nchunks; ++i) { 582 struct amdgpu_cs_chunk *chunk; 583 584 chunk = &p->chunks[i]; 585 586 switch (chunk->chunk_id) { 587 case AMDGPU_CHUNK_ID_IB: 588 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 589 if (r) 590 return r; 591 break; 592 case AMDGPU_CHUNK_ID_DEPENDENCIES: 593 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 594 r = amdgpu_cs_p2_dependencies(p, chunk); 595 if (r) 596 return r; 597 break; 598 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 599 r = amdgpu_cs_p2_syncobj_in(p, chunk); 600 if (r) 601 return r; 602 break; 603 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 604 r = amdgpu_cs_p2_syncobj_out(p, chunk); 605 if (r) 606 return r; 607 break; 608 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 609 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 610 if (r) 611 return r; 612 break; 613 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 614 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 615 if (r) 616 return r; 617 break; 618 } 619 } 620 621 return 0; 622 } 623 624 /* Convert microseconds to bytes. */ 625 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 626 { 627 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 628 return 0; 629 630 /* Since accum_us is incremented by a million per second, just 631 * multiply it by the number of MB/s to get the number of bytes. 632 */ 633 return us << adev->mm_stats.log2_max_MBps; 634 } 635 636 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 637 { 638 if (!adev->mm_stats.log2_max_MBps) 639 return 0; 640 641 return bytes >> adev->mm_stats.log2_max_MBps; 642 } 643 644 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 645 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 646 * which means it can go over the threshold once. If that happens, the driver 647 * will be in debt and no other buffer migrations can be done until that debt 648 * is repaid. 649 * 650 * This approach allows moving a buffer of any size (it's important to allow 651 * that). 652 * 653 * The currency is simply time in microseconds and it increases as the clock 654 * ticks. The accumulated microseconds (us) are converted to bytes and 655 * returned. 656 */ 657 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 658 u64 *max_bytes, 659 u64 *max_vis_bytes) 660 { 661 s64 time_us, increment_us; 662 u64 free_vram, total_vram, used_vram; 663 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 664 * throttling. 665 * 666 * It means that in order to get full max MBps, at least 5 IBs per 667 * second must be submitted and not more than 200ms apart from each 668 * other. 669 */ 670 const s64 us_upper_bound = 200000; 671 672 if (!adev->mm_stats.log2_max_MBps) { 673 *max_bytes = 0; 674 *max_vis_bytes = 0; 675 return; 676 } 677 678 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 679 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 680 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 681 682 spin_lock(&adev->mm_stats.lock); 683 684 /* Increase the amount of accumulated us. */ 685 time_us = ktime_to_us(ktime_get()); 686 increment_us = time_us - adev->mm_stats.last_update_us; 687 adev->mm_stats.last_update_us = time_us; 688 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 689 us_upper_bound); 690 691 /* This prevents the short period of low performance when the VRAM 692 * usage is low and the driver is in debt or doesn't have enough 693 * accumulated us to fill VRAM quickly. 694 * 695 * The situation can occur in these cases: 696 * - a lot of VRAM is freed by userspace 697 * - the presence of a big buffer causes a lot of evictions 698 * (solution: split buffers into smaller ones) 699 * 700 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 701 * accum_us to a positive number. 702 */ 703 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 704 s64 min_us; 705 706 /* Be more aggressive on dGPUs. Try to fill a portion of free 707 * VRAM now. 708 */ 709 if (!(adev->flags & AMD_IS_APU)) 710 min_us = bytes_to_us(adev, free_vram / 4); 711 else 712 min_us = 0; /* Reset accum_us on APUs. */ 713 714 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 715 } 716 717 /* This is set to 0 if the driver is in debt to disallow (optional) 718 * buffer moves. 719 */ 720 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 721 722 /* Do the same for visible VRAM if half of it is free */ 723 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 724 u64 total_vis_vram = adev->gmc.visible_vram_size; 725 u64 used_vis_vram = 726 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 727 728 if (used_vis_vram < total_vis_vram) { 729 u64 free_vis_vram = total_vis_vram - used_vis_vram; 730 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 731 increment_us, us_upper_bound); 732 733 if (free_vis_vram >= total_vis_vram / 2) 734 adev->mm_stats.accum_us_vis = 735 max(bytes_to_us(adev, free_vis_vram / 2), 736 adev->mm_stats.accum_us_vis); 737 } 738 739 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 740 } else { 741 *max_vis_bytes = 0; 742 } 743 744 spin_unlock(&adev->mm_stats.lock); 745 } 746 747 /* Report how many bytes have really been moved for the last command 748 * submission. This can result in a debt that can stop buffer migrations 749 * temporarily. 750 */ 751 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 752 u64 num_vis_bytes) 753 { 754 spin_lock(&adev->mm_stats.lock); 755 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 756 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 757 spin_unlock(&adev->mm_stats.lock); 758 } 759 760 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 761 { 762 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 763 struct amdgpu_cs_parser *p = param; 764 struct ttm_operation_ctx ctx = { 765 .interruptible = true, 766 .no_wait_gpu = false, 767 .resv = bo->tbo.base.resv 768 }; 769 uint32_t domain; 770 int r; 771 772 if (bo->tbo.pin_count) 773 return 0; 774 775 /* Don't move this buffer if we have depleted our allowance 776 * to move it. Don't move anything if the threshold is zero. 777 */ 778 if (p->bytes_moved < p->bytes_moved_threshold && 779 (!bo->tbo.base.dma_buf || 780 list_empty(&bo->tbo.base.dma_buf->attachments))) { 781 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 782 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 783 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 784 * visible VRAM if we've depleted our allowance to do 785 * that. 786 */ 787 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 788 domain = bo->preferred_domains; 789 else 790 domain = bo->allowed_domains; 791 } else { 792 domain = bo->preferred_domains; 793 } 794 } else { 795 domain = bo->allowed_domains; 796 } 797 798 retry: 799 amdgpu_bo_placement_from_domain(bo, domain); 800 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 801 802 p->bytes_moved += ctx.bytes_moved; 803 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 804 amdgpu_bo_in_cpu_visible_vram(bo)) 805 p->bytes_moved_vis += ctx.bytes_moved; 806 807 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 808 domain = bo->allowed_domains; 809 goto retry; 810 } 811 812 return r; 813 } 814 815 static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p, 816 struct list_head *validated) 817 { 818 struct ttm_operation_ctx ctx = { true, false }; 819 struct amdgpu_bo_list_entry *lobj; 820 int r; 821 822 list_for_each_entry(lobj, validated, tv.head) { 823 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(lobj->tv.bo); 824 struct mm_struct *usermm; 825 826 #ifdef notyet 827 usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm); 828 if (usermm && usermm != current->mm) 829 return -EPERM; 830 #endif 831 832 if (amdgpu_ttm_tt_is_userptr(bo->tbo.ttm) && 833 lobj->user_invalidated && lobj->user_pages) { 834 amdgpu_bo_placement_from_domain(bo, 835 AMDGPU_GEM_DOMAIN_CPU); 836 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 837 if (r) 838 return r; 839 840 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, 841 lobj->user_pages); 842 } 843 844 r = amdgpu_cs_bo_validate(p, bo); 845 if (r) 846 return r; 847 848 kvfree(lobj->user_pages); 849 lobj->user_pages = NULL; 850 } 851 return 0; 852 } 853 854 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 855 union drm_amdgpu_cs *cs) 856 { 857 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 858 struct amdgpu_vm *vm = &fpriv->vm; 859 struct amdgpu_bo_list_entry *e; 860 struct list_head duplicates; 861 unsigned int i; 862 int r; 863 864 INIT_LIST_HEAD(&p->validated); 865 866 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 867 if (cs->in.bo_list_handle) { 868 if (p->bo_list) 869 return -EINVAL; 870 871 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 872 &p->bo_list); 873 if (r) 874 return r; 875 } else if (!p->bo_list) { 876 /* Create a empty bo_list when no handle is provided */ 877 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 878 &p->bo_list); 879 if (r) 880 return r; 881 } 882 883 mutex_lock(&p->bo_list->bo_list_mutex); 884 885 /* One for TTM and one for each CS job */ 886 amdgpu_bo_list_for_each_entry(e, p->bo_list) 887 e->tv.num_shared = 1 + p->gang_size; 888 p->uf_entry.tv.num_shared = 1 + p->gang_size; 889 890 amdgpu_bo_list_get_list(p->bo_list, &p->validated); 891 892 INIT_LIST_HEAD(&duplicates); 893 amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd); 894 895 /* Two for VM updates, one for TTM and one for each CS job */ 896 p->vm_pd.tv.num_shared = 3 + p->gang_size; 897 898 if (p->uf_entry.tv.bo && !ttm_to_amdgpu_bo(p->uf_entry.tv.bo)->parent) 899 list_add(&p->uf_entry.tv.head, &p->validated); 900 901 /* Get userptr backing pages. If pages are updated after registered 902 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 903 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 904 */ 905 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 906 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 907 bool userpage_invalidated = false; 908 int i; 909 910 e->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages, 911 sizeof(struct vm_page *), 912 GFP_KERNEL | __GFP_ZERO); 913 if (!e->user_pages) { 914 DRM_ERROR("kvmalloc_array failure\n"); 915 r = -ENOMEM; 916 goto out_free_user_pages; 917 } 918 919 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); 920 if (r) { 921 kvfree(e->user_pages); 922 e->user_pages = NULL; 923 goto out_free_user_pages; 924 } 925 926 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 927 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 928 userpage_invalidated = true; 929 break; 930 } 931 } 932 e->user_invalidated = userpage_invalidated; 933 } 934 935 r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, 936 &duplicates); 937 if (unlikely(r != 0)) { 938 if (r != -ERESTARTSYS) 939 DRM_ERROR("ttm_eu_reserve_buffers failed.\n"); 940 goto out_free_user_pages; 941 } 942 943 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 944 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 945 946 e->bo_va = amdgpu_vm_bo_find(vm, bo); 947 } 948 949 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 950 &p->bytes_moved_vis_threshold); 951 p->bytes_moved = 0; 952 p->bytes_moved_vis = 0; 953 954 r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm, 955 amdgpu_cs_bo_validate, p); 956 if (r) { 957 DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n"); 958 goto error_validate; 959 } 960 961 r = amdgpu_cs_list_validate(p, &duplicates); 962 if (r) 963 goto error_validate; 964 965 r = amdgpu_cs_list_validate(p, &p->validated); 966 if (r) 967 goto error_validate; 968 969 if (p->uf_entry.tv.bo) { 970 struct amdgpu_bo *uf = ttm_to_amdgpu_bo(p->uf_entry.tv.bo); 971 972 r = amdgpu_ttm_alloc_gart(&uf->tbo); 973 if (r) 974 goto error_validate; 975 976 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(uf); 977 } 978 979 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 980 p->bytes_moved_vis); 981 982 for (i = 0; i < p->gang_size; ++i) 983 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 984 p->bo_list->gws_obj, 985 p->bo_list->oa_obj); 986 return 0; 987 988 error_validate: 989 ttm_eu_backoff_reservation(&p->ticket, &p->validated); 990 991 out_free_user_pages: 992 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 993 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 994 995 if (!e->user_pages) 996 continue; 997 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 998 kvfree(e->user_pages); 999 e->user_pages = NULL; 1000 e->range = NULL; 1001 } 1002 mutex_unlock(&p->bo_list->bo_list_mutex); 1003 return r; 1004 } 1005 1006 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1007 { 1008 int i, j; 1009 1010 if (!trace_amdgpu_cs_enabled()) 1011 return; 1012 1013 for (i = 0; i < p->gang_size; ++i) { 1014 struct amdgpu_job *job = p->jobs[i]; 1015 1016 for (j = 0; j < job->num_ibs; ++j) 1017 trace_amdgpu_cs(p, job, &job->ibs[j]); 1018 } 1019 } 1020 1021 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1022 struct amdgpu_job *job) 1023 { 1024 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1025 unsigned int i; 1026 int r; 1027 1028 /* Only for UVD/VCE VM emulation */ 1029 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1030 return 0; 1031 1032 for (i = 0; i < job->num_ibs; ++i) { 1033 struct amdgpu_ib *ib = &job->ibs[i]; 1034 struct amdgpu_bo_va_mapping *m; 1035 struct amdgpu_bo *aobj; 1036 uint64_t va_start; 1037 uint8_t *kptr; 1038 1039 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1040 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1041 if (r) { 1042 DRM_ERROR("IB va_start is invalid\n"); 1043 return r; 1044 } 1045 1046 if ((va_start + ib->length_dw * 4) > 1047 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1048 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 1049 return -EINVAL; 1050 } 1051 1052 /* the IB should be reserved at this point */ 1053 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1054 if (r) { 1055 return r; 1056 } 1057 1058 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1059 1060 if (ring->funcs->parse_cs) { 1061 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1062 amdgpu_bo_kunmap(aobj); 1063 1064 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1065 if (r) 1066 return r; 1067 } else { 1068 ib->ptr = (uint32_t *)kptr; 1069 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1070 amdgpu_bo_kunmap(aobj); 1071 if (r) 1072 return r; 1073 } 1074 } 1075 1076 return 0; 1077 } 1078 1079 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1080 { 1081 unsigned int i; 1082 int r; 1083 1084 for (i = 0; i < p->gang_size; ++i) { 1085 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1086 if (r) 1087 return r; 1088 } 1089 return 0; 1090 } 1091 1092 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1093 { 1094 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1095 struct amdgpu_job *job = p->gang_leader; 1096 struct amdgpu_device *adev = p->adev; 1097 struct amdgpu_vm *vm = &fpriv->vm; 1098 struct amdgpu_bo_list_entry *e; 1099 struct amdgpu_bo_va *bo_va; 1100 struct amdgpu_bo *bo; 1101 unsigned int i; 1102 int r; 1103 1104 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1105 if (r) 1106 return r; 1107 1108 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1109 if (r) 1110 return r; 1111 1112 r = amdgpu_sync_fence(&job->sync, fpriv->prt_va->last_pt_update); 1113 if (r) 1114 return r; 1115 1116 if (fpriv->csa_va) { 1117 bo_va = fpriv->csa_va; 1118 BUG_ON(!bo_va); 1119 r = amdgpu_vm_bo_update(adev, bo_va, false); 1120 if (r) 1121 return r; 1122 1123 r = amdgpu_sync_fence(&job->sync, bo_va->last_pt_update); 1124 if (r) 1125 return r; 1126 } 1127 1128 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1129 /* ignore duplicates */ 1130 bo = ttm_to_amdgpu_bo(e->tv.bo); 1131 if (!bo) 1132 continue; 1133 1134 bo_va = e->bo_va; 1135 if (bo_va == NULL) 1136 continue; 1137 1138 r = amdgpu_vm_bo_update(adev, bo_va, false); 1139 if (r) 1140 return r; 1141 1142 r = amdgpu_sync_fence(&job->sync, bo_va->last_pt_update); 1143 if (r) 1144 return r; 1145 } 1146 1147 r = amdgpu_vm_handle_moved(adev, vm); 1148 if (r) 1149 return r; 1150 1151 r = amdgpu_vm_update_pdes(adev, vm, false); 1152 if (r) 1153 return r; 1154 1155 r = amdgpu_sync_fence(&job->sync, vm->last_update); 1156 if (r) 1157 return r; 1158 1159 for (i = 0; i < p->gang_size; ++i) { 1160 job = p->jobs[i]; 1161 1162 if (!job->vm) 1163 continue; 1164 1165 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1166 } 1167 1168 if (amdgpu_vm_debug) { 1169 /* Invalidate all BOs to test for userspace bugs */ 1170 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1171 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1172 1173 /* ignore duplicates */ 1174 if (!bo) 1175 continue; 1176 1177 amdgpu_vm_bo_invalidate(adev, bo, false); 1178 } 1179 } 1180 1181 return 0; 1182 } 1183 1184 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1185 { 1186 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1187 struct amdgpu_job *leader = p->gang_leader; 1188 struct amdgpu_bo_list_entry *e; 1189 unsigned int i; 1190 int r; 1191 1192 list_for_each_entry(e, &p->validated, tv.head) { 1193 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1194 struct dma_resv *resv = bo->tbo.base.resv; 1195 enum amdgpu_sync_mode sync_mode; 1196 1197 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1198 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1199 r = amdgpu_sync_resv(p->adev, &leader->sync, resv, sync_mode, 1200 &fpriv->vm); 1201 if (r) 1202 return r; 1203 } 1204 1205 for (i = 0; i < p->gang_size; ++i) { 1206 if (p->jobs[i] == leader) 1207 continue; 1208 1209 r = amdgpu_sync_clone(&leader->sync, &p->jobs[i]->sync); 1210 if (r) 1211 return r; 1212 } 1213 1214 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1215 if (r && r != -ERESTARTSYS) 1216 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 1217 return r; 1218 } 1219 1220 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1221 { 1222 int i; 1223 1224 for (i = 0; i < p->num_post_deps; ++i) { 1225 if (p->post_deps[i].chain && p->post_deps[i].point) { 1226 drm_syncobj_add_point(p->post_deps[i].syncobj, 1227 p->post_deps[i].chain, 1228 p->fence, p->post_deps[i].point); 1229 p->post_deps[i].chain = NULL; 1230 } else { 1231 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1232 p->fence); 1233 } 1234 } 1235 } 1236 1237 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1238 union drm_amdgpu_cs *cs) 1239 { 1240 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1241 struct amdgpu_job *leader = p->gang_leader; 1242 struct amdgpu_bo_list_entry *e; 1243 unsigned int i; 1244 uint64_t seq; 1245 int r; 1246 1247 for (i = 0; i < p->gang_size; ++i) 1248 drm_sched_job_arm(&p->jobs[i]->base); 1249 1250 for (i = 0; i < p->gang_size; ++i) { 1251 struct dma_fence *fence; 1252 1253 if (p->jobs[i] == leader) 1254 continue; 1255 1256 fence = &p->jobs[i]->base.s_fence->scheduled; 1257 r = amdgpu_sync_fence(&leader->sync, fence); 1258 if (r) 1259 goto error_cleanup; 1260 } 1261 1262 if (p->gang_size > 1) { 1263 for (i = 0; i < p->gang_size; ++i) 1264 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1265 } 1266 1267 /* No memory allocation is allowed while holding the notifier lock. 1268 * The lock is held until amdgpu_cs_submit is finished and fence is 1269 * added to BOs. 1270 */ 1271 mutex_lock(&p->adev->notifier_lock); 1272 1273 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1274 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1275 */ 1276 r = 0; 1277 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1278 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1279 1280 r |= !amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 1281 e->range = NULL; 1282 } 1283 if (r) { 1284 r = -EAGAIN; 1285 goto error_unlock; 1286 } 1287 1288 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1289 list_for_each_entry(e, &p->validated, tv.head) { 1290 1291 /* Everybody except for the gang leader uses READ */ 1292 for (i = 0; i < p->gang_size; ++i) { 1293 if (p->jobs[i] == leader) 1294 continue; 1295 1296 dma_resv_add_fence(e->tv.bo->base.resv, 1297 &p->jobs[i]->base.s_fence->finished, 1298 DMA_RESV_USAGE_READ); 1299 } 1300 1301 /* The gang leader is remembered as writer */ 1302 e->tv.num_shared = 0; 1303 } 1304 1305 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1306 p->fence); 1307 amdgpu_cs_post_dependencies(p); 1308 1309 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1310 !p->ctx->preamble_presented) { 1311 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1312 p->ctx->preamble_presented = true; 1313 } 1314 1315 cs->out.handle = seq; 1316 leader->uf_sequence = seq; 1317 1318 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->ticket); 1319 for (i = 0; i < p->gang_size; ++i) { 1320 amdgpu_job_free_resources(p->jobs[i]); 1321 trace_amdgpu_cs_ioctl(p->jobs[i]); 1322 drm_sched_entity_push_job(&p->jobs[i]->base); 1323 p->jobs[i] = NULL; 1324 } 1325 1326 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1327 ttm_eu_fence_buffer_objects(&p->ticket, &p->validated, p->fence); 1328 1329 mutex_unlock(&p->adev->notifier_lock); 1330 mutex_unlock(&p->bo_list->bo_list_mutex); 1331 return 0; 1332 1333 error_unlock: 1334 mutex_unlock(&p->adev->notifier_lock); 1335 1336 error_cleanup: 1337 for (i = 0; i < p->gang_size; ++i) 1338 drm_sched_job_cleanup(&p->jobs[i]->base); 1339 return r; 1340 } 1341 1342 /* Cleanup the parser structure */ 1343 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1344 { 1345 unsigned i; 1346 1347 for (i = 0; i < parser->num_post_deps; i++) { 1348 drm_syncobj_put(parser->post_deps[i].syncobj); 1349 kfree(parser->post_deps[i].chain); 1350 } 1351 kfree(parser->post_deps); 1352 1353 dma_fence_put(parser->fence); 1354 1355 if (parser->ctx) 1356 amdgpu_ctx_put(parser->ctx); 1357 if (parser->bo_list) 1358 amdgpu_bo_list_put(parser->bo_list); 1359 1360 for (i = 0; i < parser->nchunks; i++) 1361 kvfree(parser->chunks[i].kdata); 1362 kvfree(parser->chunks); 1363 for (i = 0; i < parser->gang_size; ++i) { 1364 if (parser->jobs[i]) 1365 amdgpu_job_free(parser->jobs[i]); 1366 } 1367 if (parser->uf_entry.tv.bo) { 1368 struct amdgpu_bo *uf = ttm_to_amdgpu_bo(parser->uf_entry.tv.bo); 1369 1370 amdgpu_bo_unref(&uf); 1371 } 1372 } 1373 1374 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1375 { 1376 struct amdgpu_device *adev = drm_to_adev(dev); 1377 struct amdgpu_cs_parser parser; 1378 int r; 1379 1380 if (amdgpu_ras_intr_triggered()) 1381 return -EHWPOISON; 1382 1383 if (!adev->accel_working) 1384 return -EBUSY; 1385 1386 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1387 if (r) { 1388 if (printk_ratelimit()) 1389 DRM_ERROR("Failed to initialize parser %d!\n", r); 1390 return r; 1391 } 1392 1393 r = amdgpu_cs_pass1(&parser, data); 1394 if (r) 1395 goto error_fini; 1396 1397 r = amdgpu_cs_pass2(&parser); 1398 if (r) 1399 goto error_fini; 1400 1401 r = amdgpu_cs_parser_bos(&parser, data); 1402 if (r) { 1403 if (r == -ENOMEM) 1404 DRM_ERROR("Not enough memory for command submission!\n"); 1405 else if (r != -ERESTARTSYS && r != -EAGAIN) 1406 DRM_ERROR("Failed to process the buffer list %d!\n", r); 1407 goto error_fini; 1408 } 1409 1410 r = amdgpu_cs_patch_jobs(&parser); 1411 if (r) 1412 goto error_backoff; 1413 1414 r = amdgpu_cs_vm_handling(&parser); 1415 if (r) 1416 goto error_backoff; 1417 1418 r = amdgpu_cs_sync_rings(&parser); 1419 if (r) 1420 goto error_backoff; 1421 1422 trace_amdgpu_cs_ibs(&parser); 1423 1424 r = amdgpu_cs_submit(&parser, data); 1425 if (r) 1426 goto error_backoff; 1427 1428 amdgpu_cs_parser_fini(&parser); 1429 return 0; 1430 1431 error_backoff: 1432 ttm_eu_backoff_reservation(&parser.ticket, &parser.validated); 1433 mutex_unlock(&parser.bo_list->bo_list_mutex); 1434 1435 error_fini: 1436 amdgpu_cs_parser_fini(&parser); 1437 return r; 1438 } 1439 1440 /** 1441 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1442 * 1443 * @dev: drm device 1444 * @data: data from userspace 1445 * @filp: file private 1446 * 1447 * Wait for the command submission identified by handle to finish. 1448 */ 1449 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1450 struct drm_file *filp) 1451 { 1452 union drm_amdgpu_wait_cs *wait = data; 1453 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1454 struct drm_sched_entity *entity; 1455 struct amdgpu_ctx *ctx; 1456 struct dma_fence *fence; 1457 long r; 1458 1459 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1460 if (ctx == NULL) 1461 return -EINVAL; 1462 1463 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1464 wait->in.ring, &entity); 1465 if (r) { 1466 amdgpu_ctx_put(ctx); 1467 return r; 1468 } 1469 1470 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1471 if (IS_ERR(fence)) 1472 r = PTR_ERR(fence); 1473 else if (fence) { 1474 r = dma_fence_wait_timeout(fence, true, timeout); 1475 if (r > 0 && fence->error) 1476 r = fence->error; 1477 dma_fence_put(fence); 1478 } else 1479 r = 1; 1480 1481 amdgpu_ctx_put(ctx); 1482 if (r < 0) 1483 return r; 1484 1485 memset(wait, 0, sizeof(*wait)); 1486 wait->out.status = (r == 0); 1487 1488 return 0; 1489 } 1490 1491 /** 1492 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1493 * 1494 * @adev: amdgpu device 1495 * @filp: file private 1496 * @user: drm_amdgpu_fence copied from user space 1497 */ 1498 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1499 struct drm_file *filp, 1500 struct drm_amdgpu_fence *user) 1501 { 1502 struct drm_sched_entity *entity; 1503 struct amdgpu_ctx *ctx; 1504 struct dma_fence *fence; 1505 int r; 1506 1507 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1508 if (ctx == NULL) 1509 return ERR_PTR(-EINVAL); 1510 1511 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1512 user->ring, &entity); 1513 if (r) { 1514 amdgpu_ctx_put(ctx); 1515 return ERR_PTR(r); 1516 } 1517 1518 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1519 amdgpu_ctx_put(ctx); 1520 1521 return fence; 1522 } 1523 1524 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1525 struct drm_file *filp) 1526 { 1527 struct amdgpu_device *adev = drm_to_adev(dev); 1528 union drm_amdgpu_fence_to_handle *info = data; 1529 struct dma_fence *fence; 1530 struct drm_syncobj *syncobj; 1531 struct sync_file *sync_file; 1532 int fd, r; 1533 1534 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1535 if (IS_ERR(fence)) 1536 return PTR_ERR(fence); 1537 1538 if (!fence) 1539 fence = dma_fence_get_stub(); 1540 1541 switch (info->in.what) { 1542 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1543 r = drm_syncobj_create(&syncobj, 0, fence); 1544 dma_fence_put(fence); 1545 if (r) 1546 return r; 1547 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1548 drm_syncobj_put(syncobj); 1549 return r; 1550 1551 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1552 r = drm_syncobj_create(&syncobj, 0, fence); 1553 dma_fence_put(fence); 1554 if (r) 1555 return r; 1556 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1557 drm_syncobj_put(syncobj); 1558 return r; 1559 1560 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1561 fd = get_unused_fd_flags(O_CLOEXEC); 1562 if (fd < 0) { 1563 dma_fence_put(fence); 1564 return fd; 1565 } 1566 1567 sync_file = sync_file_create(fence); 1568 dma_fence_put(fence); 1569 if (!sync_file) { 1570 put_unused_fd(fd); 1571 return -ENOMEM; 1572 } 1573 1574 fd_install(fd, sync_file->file); 1575 info->out.handle = fd; 1576 return 0; 1577 1578 default: 1579 dma_fence_put(fence); 1580 return -EINVAL; 1581 } 1582 } 1583 1584 /** 1585 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1586 * 1587 * @adev: amdgpu device 1588 * @filp: file private 1589 * @wait: wait parameters 1590 * @fences: array of drm_amdgpu_fence 1591 */ 1592 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1593 struct drm_file *filp, 1594 union drm_amdgpu_wait_fences *wait, 1595 struct drm_amdgpu_fence *fences) 1596 { 1597 uint32_t fence_count = wait->in.fence_count; 1598 unsigned int i; 1599 long r = 1; 1600 1601 for (i = 0; i < fence_count; i++) { 1602 struct dma_fence *fence; 1603 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1604 1605 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1606 if (IS_ERR(fence)) 1607 return PTR_ERR(fence); 1608 else if (!fence) 1609 continue; 1610 1611 r = dma_fence_wait_timeout(fence, true, timeout); 1612 if (r > 0 && fence->error) 1613 r = fence->error; 1614 1615 dma_fence_put(fence); 1616 if (r < 0) 1617 return r; 1618 1619 if (r == 0) 1620 break; 1621 } 1622 1623 memset(wait, 0, sizeof(*wait)); 1624 wait->out.status = (r > 0); 1625 1626 return 0; 1627 } 1628 1629 /** 1630 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1631 * 1632 * @adev: amdgpu device 1633 * @filp: file private 1634 * @wait: wait parameters 1635 * @fences: array of drm_amdgpu_fence 1636 */ 1637 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1638 struct drm_file *filp, 1639 union drm_amdgpu_wait_fences *wait, 1640 struct drm_amdgpu_fence *fences) 1641 { 1642 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1643 uint32_t fence_count = wait->in.fence_count; 1644 uint32_t first = ~0; 1645 struct dma_fence **array; 1646 unsigned int i; 1647 long r; 1648 1649 /* Prepare the fence array */ 1650 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1651 1652 if (array == NULL) 1653 return -ENOMEM; 1654 1655 for (i = 0; i < fence_count; i++) { 1656 struct dma_fence *fence; 1657 1658 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1659 if (IS_ERR(fence)) { 1660 r = PTR_ERR(fence); 1661 goto err_free_fence_array; 1662 } else if (fence) { 1663 array[i] = fence; 1664 } else { /* NULL, the fence has been already signaled */ 1665 r = 1; 1666 first = i; 1667 goto out; 1668 } 1669 } 1670 1671 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1672 &first); 1673 if (r < 0) 1674 goto err_free_fence_array; 1675 1676 out: 1677 memset(wait, 0, sizeof(*wait)); 1678 wait->out.status = (r > 0); 1679 wait->out.first_signaled = first; 1680 1681 if (first < fence_count && array[first]) 1682 r = array[first]->error; 1683 else 1684 r = 0; 1685 1686 err_free_fence_array: 1687 for (i = 0; i < fence_count; i++) 1688 dma_fence_put(array[i]); 1689 kfree(array); 1690 1691 return r; 1692 } 1693 1694 /** 1695 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1696 * 1697 * @dev: drm device 1698 * @data: data from userspace 1699 * @filp: file private 1700 */ 1701 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1702 struct drm_file *filp) 1703 { 1704 struct amdgpu_device *adev = drm_to_adev(dev); 1705 union drm_amdgpu_wait_fences *wait = data; 1706 uint32_t fence_count = wait->in.fence_count; 1707 struct drm_amdgpu_fence *fences_user; 1708 struct drm_amdgpu_fence *fences; 1709 int r; 1710 1711 /* Get the fences from userspace */ 1712 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1713 GFP_KERNEL); 1714 if (fences == NULL) 1715 return -ENOMEM; 1716 1717 fences_user = u64_to_user_ptr(wait->in.fences); 1718 if (copy_from_user(fences, fences_user, 1719 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1720 r = -EFAULT; 1721 goto err_free_fences; 1722 } 1723 1724 if (wait->in.wait_all) 1725 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1726 else 1727 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1728 1729 err_free_fences: 1730 kfree(fences); 1731 1732 return r; 1733 } 1734 1735 /** 1736 * amdgpu_cs_find_mapping - find bo_va for VM address 1737 * 1738 * @parser: command submission parser context 1739 * @addr: VM address 1740 * @bo: resulting BO of the mapping found 1741 * @map: Placeholder to return found BO mapping 1742 * 1743 * Search the buffer objects in the command submission context for a certain 1744 * virtual memory address. Returns allocation structure when found, NULL 1745 * otherwise. 1746 */ 1747 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1748 uint64_t addr, struct amdgpu_bo **bo, 1749 struct amdgpu_bo_va_mapping **map) 1750 { 1751 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1752 struct ttm_operation_ctx ctx = { false, false }; 1753 struct amdgpu_vm *vm = &fpriv->vm; 1754 struct amdgpu_bo_va_mapping *mapping; 1755 int r; 1756 1757 addr /= AMDGPU_GPU_PAGE_SIZE; 1758 1759 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1760 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1761 return -EINVAL; 1762 1763 *bo = mapping->bo_va->base.bo; 1764 *map = mapping; 1765 1766 /* Double check that the BO is reserved by this CS */ 1767 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->ticket) 1768 return -EINVAL; 1769 1770 if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) { 1771 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1772 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1773 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1774 if (r) 1775 return r; 1776 } 1777 1778 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1779 } 1780