1 /* $OpenBSD: sbdsp.c,v 1.27 2008/01/14 01:25:50 jakemsr Exp $ */ 2 3 /* 4 * Copyright (c) 1991-1993 Regents of the University of California. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the Computer Systems 18 * Engineering Group at Lawrence Berkeley Laboratory. 19 * 4. Neither the name of the University nor of the Laboratory may be used 20 * to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 */ 36 37 /* 38 * SoundBlaster Pro code provided by John Kohl, based on lots of 39 * information he gleaned from Steve Haehnichen <steve@vigra.com>'s 40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs 41 * <sachs@meibm15.cen.uiuc.edu>. 42 * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se> 43 * with information from SB "Hardware Programming Guide" and the 44 * Linux drivers. 45 */ 46 47 #include "midi.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/errno.h> 52 #include <sys/ioctl.h> 53 #include <sys/syslog.h> 54 #include <sys/device.h> 55 #include <sys/proc.h> 56 #include <sys/buf.h> 57 58 #include <machine/cpu.h> 59 #include <machine/intr.h> 60 #include <machine/bus.h> 61 62 #include <sys/audioio.h> 63 #include <dev/audio_if.h> 64 #include <dev/midi_if.h> 65 #include <dev/mulaw.h> 66 #include <dev/auconv.h> 67 68 #include <dev/isa/isavar.h> 69 #include <dev/isa/isadmavar.h> 70 71 #include <dev/isa/sbreg.h> 72 #include <dev/isa/sbdspvar.h> 73 74 75 #ifdef AUDIO_DEBUG 76 #define DPRINTF(x) if (sbdspdebug) printf x 77 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x 78 int sbdspdebug = 0; 79 #else 80 #define DPRINTF(x) 81 #define DPRINTFN(n,x) 82 #endif 83 84 #ifndef SBDSP_NPOLL 85 #define SBDSP_NPOLL 3000 86 #endif 87 88 struct { 89 int wdsp; 90 int rdsp; 91 int wmidi; 92 } sberr; 93 94 /* 95 * Time constant routines follow. See SBK, section 12. 96 * Although they don't come out and say it (in the docs), 97 * the card clearly uses a 1MHz countdown timer, as the 98 * low-speed formula (p. 12-4) is: 99 * tc = 256 - 10^6 / sr 100 * In high-speed mode, the constant is the upper byte of a 16-bit counter, 101 * and a 256MHz clock is used: 102 * tc = 65536 - 256 * 10^ 6 / sr 103 * Since we can only use the upper byte of the HS TC, the two formulae 104 * are equivalent. (Why didn't they say so?) E.g., 105 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x 106 * 107 * The crossover point (from low- to high-speed modes) is different 108 * for the SBPRO and SB20. The table on p. 12-5 gives the following data: 109 * 110 * SBPRO SB20 111 * ----- -------- 112 * input ls min 4 KHz 4 KHz 113 * input ls max 23 KHz 13 KHz 114 * input hs max 44.1 KHz 15 KHz 115 * output ls min 4 KHz 4 KHz 116 * output ls max 23 KHz 23 KHz 117 * output hs max 44.1 KHz 44.1 KHz 118 */ 119 /* XXX Should we round the tc? 120 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8) 121 */ 122 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x)) 123 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc))) 124 125 struct sbmode { 126 short model; 127 u_char channels; 128 u_char precision; 129 u_short lowrate, highrate; 130 u_char cmd; 131 u_char cmdchan; 132 }; 133 static struct sbmode sbpmodes[] = { 134 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA }, 135 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP }, 136 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP }, 137 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT }, 138 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP }, 139 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT }, 140 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT }, 141 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */ 142 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO }, 143 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO }, 144 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO }, 145 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO }, 146 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO }, 147 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO }, 148 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 }, 149 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 }, 150 #define PLAY16 15 /* must be the index of the next entry in the table */ 151 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 }, 152 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 }, 153 { -1 } 154 }; 155 static struct sbmode sbrmodes[] = { 156 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA }, 157 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP }, 158 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP }, 159 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT }, 160 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO }, 161 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO }, 162 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO }, 163 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO }, 164 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO }, 165 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO }, 166 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO }, 167 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO }, 168 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO }, 169 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 }, 170 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 }, 171 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 }, 172 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 }, 173 { -1 } 174 }; 175 176 void sbversion(struct sbdsp_softc *); 177 void sbdsp_jazz16_probe(struct sbdsp_softc *); 178 void sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port); 179 void sbdsp_to(void *); 180 void sbdsp_pause(struct sbdsp_softc *); 181 int sbdsp_set_timeconst(struct sbdsp_softc *, int); 182 int sbdsp16_set_rate(struct sbdsp_softc *, int, int); 183 int sbdsp_set_in_ports(struct sbdsp_softc *, int); 184 void sbdsp_set_ifilter(void *, int); 185 int sbdsp_get_ifilter(void *); 186 187 int sbdsp_block_output(void *); 188 int sbdsp_block_input(void *); 189 static int sbdsp_adjust(int, int); 190 191 int sbdsp_midi_intr(void *); 192 193 #ifdef AUDIO_DEBUG 194 void sb_printsc(struct sbdsp_softc *); 195 196 void 197 sb_printsc(sc) 198 struct sbdsp_softc *sc; 199 { 200 int i; 201 202 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n", 203 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run, 204 sc->sc_drq8, sc->sc_drq16, 205 sc->sc_iobase, sc->sc_irq); 206 printf("irate %d itc %x orate %d otc %x\n", 207 sc->sc_i.rate, sc->sc_i.tc, 208 sc->sc_o.rate, sc->sc_o.tc); 209 printf("spkron %u nintr %lu\n", 210 sc->spkr_state, sc->sc_interrupts); 211 printf("intr8 %p arg8 %p\n", 212 sc->sc_intr8, sc->sc_arg16); 213 printf("intr16 %p arg16 %p\n", 214 sc->sc_intr8, sc->sc_arg16); 215 printf("gain:"); 216 for (i = 0; i < SB_NDEVS; i++) 217 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]); 218 printf("\n"); 219 } 220 #endif /* AUDIO_DEBUG */ 221 222 /* 223 * Probe / attach routines. 224 */ 225 226 /* 227 * Probe for the soundblaster hardware. 228 */ 229 int 230 sbdsp_probe(sc) 231 struct sbdsp_softc *sc; 232 { 233 234 if (sbdsp_reset(sc) < 0) { 235 DPRINTF(("sbdsp: couldn't reset card\n")); 236 return 0; 237 } 238 /* if flags set, go and probe the jazz16 stuff */ 239 if (sc->sc_dev.dv_cfdata->cf_flags & 1) 240 sbdsp_jazz16_probe(sc); 241 else 242 sbversion(sc); 243 if (sc->sc_model == SB_UNK) { 244 /* Unknown SB model found. */ 245 DPRINTF(("sbdsp: unknown SB model found\n")); 246 return 0; 247 } 248 return 1; 249 } 250 251 /* 252 * Try add-on stuff for Jazz16. 253 */ 254 void 255 sbdsp_jazz16_probe(sc) 256 struct sbdsp_softc *sc; 257 { 258 static u_char jazz16_irq_conf[16] = { 259 -1, -1, 0x02, 0x03, 260 -1, 0x01, -1, 0x04, 261 -1, 0x02, 0x05, -1, 262 -1, -1, -1, 0x06}; 263 static u_char jazz16_drq_conf[8] = { 264 -1, 0x01, -1, 0x02, 265 -1, 0x03, -1, 0x04}; 266 267 bus_space_tag_t iot = sc->sc_iot; 268 bus_space_handle_t ioh; 269 270 sbversion(sc); 271 272 DPRINTF(("jazz16 probe\n")); 273 274 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) { 275 DPRINTF(("bus map failed\n")); 276 return; 277 } 278 279 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 || 280 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) { 281 DPRINTF(("drq/irq check failed\n")); 282 goto done; /* give up, we can't do it. */ 283 } 284 285 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP); 286 delay(10000); /* delay 10 ms */ 287 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE); 288 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70); 289 290 if (sbdsp_reset(sc) < 0) { 291 DPRINTF(("sbdsp_reset check failed\n")); 292 goto done; /* XXX? what else could we do? */ 293 } 294 295 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) { 296 DPRINTF(("read16 setup failed\n")); 297 goto done; 298 } 299 300 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) { 301 DPRINTF(("read16 failed\n")); 302 goto done; 303 } 304 305 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */ 306 sc->sc_drq16 = sc->sc_drq8; 307 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) || 308 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) | 309 jazz16_drq_conf[sc->sc_drq8]) || 310 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) { 311 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n")); 312 } else { 313 DPRINTF(("jazz16 detected!\n")); 314 sc->sc_model = SB_JAZZ; 315 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */ 316 } 317 318 done: 319 bus_space_unmap(iot, ioh, 1); 320 } 321 322 /* 323 * Attach hardware to driver, attach hardware driver to audio 324 * pseudo-device driver . 325 */ 326 void 327 sbdsp_attach(sc) 328 struct sbdsp_softc *sc; 329 { 330 struct audio_params pparams, rparams; 331 int i; 332 u_int v; 333 334 /* 335 * Create our DMA maps. 336 */ 337 if (sc->sc_drq8 != -1) { 338 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8, 339 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 340 printf("%s: can't create map for drq %d\n", 341 sc->sc_dev.dv_xname, sc->sc_drq8); 342 return; 343 } 344 } 345 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) { 346 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16, 347 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 348 printf("%s: can't create map for drq %d\n", 349 sc->sc_dev.dv_xname, sc->sc_drq16); 350 return; 351 } 352 } 353 354 pparams = audio_default; 355 rparams = audio_default; 356 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); 357 358 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL); 359 360 if (sc->sc_mixer_model != SBM_NONE) { 361 /* Reset the mixer.*/ 362 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET); 363 /* And set our own default values */ 364 for (i = 0; i < SB_NDEVS; i++) { 365 switch(i) { 366 case SB_MIC_VOL: 367 case SB_LINE_IN_VOL: 368 v = 0; 369 break; 370 case SB_BASS: 371 case SB_TREBLE: 372 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2); 373 break; 374 case SB_CD_IN_MUTE: 375 case SB_MIC_IN_MUTE: 376 case SB_LINE_IN_MUTE: 377 case SB_MIDI_IN_MUTE: 378 case SB_CD_SWAP: 379 case SB_MIC_SWAP: 380 case SB_LINE_SWAP: 381 case SB_MIDI_SWAP: 382 case SB_CD_OUT_MUTE: 383 case SB_MIC_OUT_MUTE: 384 case SB_LINE_OUT_MUTE: 385 v = 0; 386 break; 387 default: 388 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2); 389 break; 390 } 391 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v; 392 sbdsp_set_mixer_gain(sc, i); 393 } 394 sc->in_filter = 0; /* no filters turned on, please */ 395 } 396 397 printf(": dsp v%d.%02d%s\n", 398 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version), 399 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : ""); 400 401 timeout_set(&sc->sc_tmo, sbdsp_to, sbdsp_to); 402 sc->sc_fullduplex = ISSB16CLASS(sc) && 403 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 && 404 sc->sc_drq8 != sc->sc_drq16; 405 } 406 407 void 408 sbdsp_mix_write(sc, mixerport, val) 409 struct sbdsp_softc *sc; 410 int mixerport; 411 int val; 412 { 413 bus_space_tag_t iot = sc->sc_iot; 414 bus_space_handle_t ioh = sc->sc_ioh; 415 int s; 416 417 s = splaudio(); 418 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 419 delay(20); 420 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val); 421 delay(30); 422 splx(s); 423 } 424 425 int 426 sbdsp_mix_read(sc, mixerport) 427 struct sbdsp_softc *sc; 428 int mixerport; 429 { 430 bus_space_tag_t iot = sc->sc_iot; 431 bus_space_handle_t ioh = sc->sc_ioh; 432 int val; 433 int s; 434 435 s = splaudio(); 436 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 437 delay(20); 438 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA); 439 delay(30); 440 splx(s); 441 return val; 442 } 443 444 /* 445 * Various routines to interface to higher level audio driver 446 */ 447 448 int 449 sbdsp_query_encoding(addr, fp) 450 void *addr; 451 struct audio_encoding *fp; 452 { 453 struct sbdsp_softc *sc = addr; 454 int emul; 455 456 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED; 457 458 switch (fp->index) { 459 case 0: 460 strlcpy(fp->name, AudioEulinear, sizeof fp->name); 461 fp->encoding = AUDIO_ENCODING_ULINEAR; 462 fp->precision = 8; 463 fp->flags = 0; 464 return 0; 465 case 1: 466 strlcpy(fp->name, AudioEmulaw, sizeof fp->name); 467 fp->encoding = AUDIO_ENCODING_ULAW; 468 fp->precision = 8; 469 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 470 return 0; 471 case 2: 472 strlcpy(fp->name, AudioEalaw, sizeof fp->name); 473 fp->encoding = AUDIO_ENCODING_ALAW; 474 fp->precision = 8; 475 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 476 return 0; 477 case 3: 478 strlcpy(fp->name, AudioEslinear, sizeof fp->name); 479 fp->encoding = AUDIO_ENCODING_SLINEAR; 480 fp->precision = 8; 481 fp->flags = emul; 482 return 0; 483 } 484 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ) 485 return EINVAL; 486 487 switch(fp->index) { 488 case 4: 489 strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); 490 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 491 fp->precision = 16; 492 fp->flags = 0; 493 return 0; 494 case 5: 495 strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); 496 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 497 fp->precision = 16; 498 fp->flags = emul; 499 return 0; 500 case 6: 501 strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); 502 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 503 fp->precision = 16; 504 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 505 return 0; 506 case 7: 507 strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); 508 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 509 fp->precision = 16; 510 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 511 return 0; 512 default: 513 return EINVAL; 514 } 515 return 0; 516 } 517 518 int 519 sbdsp_set_params(addr, setmode, usemode, play, rec) 520 void *addr; 521 int setmode, usemode; 522 struct audio_params *play, *rec; 523 { 524 struct sbdsp_softc *sc = addr; 525 struct sbmode *m; 526 u_int rate, tc, bmode; 527 void (*swcode)(void *, u_char *buf, int cnt); 528 int factor; 529 int model; 530 int chan; 531 struct audio_params *p; 532 int mode; 533 534 if (sc->sc_open == SB_OPEN_MIDI) 535 return EBUSY; 536 537 model = sc->sc_model; 538 if (model > SB_16) 539 model = SB_16; /* later models work like SB16 */ 540 541 /* 542 * Prior to the SB16, we have only one clock, so make the sample 543 * rates match. 544 */ 545 if (!ISSB16CLASS(sc) && 546 play->sample_rate != rec->sample_rate && 547 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 548 if (setmode == AUMODE_PLAY) { 549 rec->sample_rate = play->sample_rate; 550 setmode |= AUMODE_RECORD; 551 } else if (setmode == AUMODE_RECORD) { 552 play->sample_rate = rec->sample_rate; 553 setmode |= AUMODE_PLAY; 554 } else 555 return (EINVAL); 556 } 557 558 /* Set first record info, then play info */ 559 for (mode = AUMODE_RECORD; mode != -1; 560 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 561 if ((setmode & mode) == 0) 562 continue; 563 564 p = mode == AUMODE_PLAY ? play : rec; 565 /* Locate proper commands */ 566 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes; 567 m->model != -1; m++) { 568 if (model == m->model && 569 p->channels == m->channels && 570 p->precision == m->precision && 571 p->sample_rate >= m->lowrate && 572 p->sample_rate <= m->highrate) 573 break; 574 } 575 if (m->model == -1) 576 return EINVAL; 577 rate = p->sample_rate; 578 swcode = 0; 579 factor = 1; 580 tc = 1; 581 bmode = -1; 582 if (model == SB_16) { 583 switch (p->encoding) { 584 case AUDIO_ENCODING_SLINEAR_BE: 585 if (p->precision == 16) 586 swcode = swap_bytes; 587 /* fall into */ 588 case AUDIO_ENCODING_SLINEAR_LE: 589 bmode = SB_BMODE_SIGNED; 590 break; 591 case AUDIO_ENCODING_ULINEAR_BE: 592 if (p->precision == 16) 593 swcode = swap_bytes; 594 /* fall into */ 595 case AUDIO_ENCODING_ULINEAR_LE: 596 bmode = SB_BMODE_UNSIGNED; 597 break; 598 case AUDIO_ENCODING_ULAW: 599 if (mode == AUMODE_PLAY) { 600 swcode = mulaw_to_ulinear16_le; 601 factor = 2; 602 m = &sbpmodes[PLAY16]; 603 } else 604 swcode = ulinear8_to_mulaw; 605 bmode = SB_BMODE_UNSIGNED; 606 break; 607 case AUDIO_ENCODING_ALAW: 608 if (mode == AUMODE_PLAY) { 609 swcode = alaw_to_ulinear16_le; 610 factor = 2; 611 m = &sbpmodes[PLAY16]; 612 } else 613 swcode = ulinear8_to_alaw; 614 bmode = SB_BMODE_UNSIGNED; 615 break; 616 default: 617 return EINVAL; 618 } 619 if (p->channels == 2) 620 bmode |= SB_BMODE_STEREO; 621 } else if (m->model == SB_JAZZ && m->precision == 16) { 622 switch (p->encoding) { 623 case AUDIO_ENCODING_SLINEAR_LE: 624 break; 625 case AUDIO_ENCODING_ULINEAR_LE: 626 swcode = change_sign16_le; 627 break; 628 case AUDIO_ENCODING_SLINEAR_BE: 629 swcode = swap_bytes; 630 break; 631 case AUDIO_ENCODING_ULINEAR_BE: 632 swcode = mode == AUMODE_PLAY ? 633 swap_bytes_change_sign16_le : change_sign16_swap_bytes_le; 634 break; 635 case AUDIO_ENCODING_ULAW: 636 swcode = mode == AUMODE_PLAY ? 637 mulaw_to_ulinear8 : ulinear8_to_mulaw; 638 break; 639 case AUDIO_ENCODING_ALAW: 640 swcode = mode == AUMODE_PLAY ? 641 alaw_to_ulinear8 : ulinear8_to_alaw; 642 break; 643 default: 644 return EINVAL; 645 } 646 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 647 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 648 } else { 649 switch (p->encoding) { 650 case AUDIO_ENCODING_SLINEAR_BE: 651 case AUDIO_ENCODING_SLINEAR_LE: 652 swcode = change_sign8; 653 break; 654 case AUDIO_ENCODING_ULINEAR_BE: 655 case AUDIO_ENCODING_ULINEAR_LE: 656 break; 657 case AUDIO_ENCODING_ULAW: 658 swcode = mode == AUMODE_PLAY ? 659 mulaw_to_ulinear8 : ulinear8_to_mulaw; 660 break; 661 case AUDIO_ENCODING_ALAW: 662 swcode = mode == AUMODE_PLAY ? 663 alaw_to_ulinear8 : ulinear8_to_alaw; 664 break; 665 default: 666 return EINVAL; 667 } 668 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 669 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 670 } 671 672 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8; 673 if (mode == AUMODE_PLAY) { 674 sc->sc_o.rate = rate; 675 sc->sc_o.tc = tc; 676 sc->sc_o.modep = m; 677 sc->sc_o.bmode = bmode; 678 sc->sc_o.dmachan = chan; 679 } else { 680 sc->sc_i.rate = rate; 681 sc->sc_i.tc = tc; 682 sc->sc_i.modep = m; 683 sc->sc_i.bmode = bmode; 684 sc->sc_i.dmachan = chan; 685 } 686 687 p->sw_code = swcode; 688 p->factor = factor; 689 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n", 690 sc->sc_model, mode, p->sample_rate, p->precision, p->channels, 691 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor)); 692 693 } 694 695 /* 696 * XXX 697 * Should wait for chip to be idle. 698 */ 699 sc->sc_i.run = SB_NOTRUNNING; 700 sc->sc_o.run = SB_NOTRUNNING; 701 702 if (sc->sc_fullduplex && 703 usemode == (AUMODE_PLAY | AUMODE_RECORD) && 704 sc->sc_i.dmachan == sc->sc_o.dmachan) { 705 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan)); 706 if (sc->sc_o.dmachan == sc->sc_drq8) { 707 /* Use 16 bit DMA for playing by expanding the samples. */ 708 play->sw_code = linear8_to_linear16_le; 709 play->factor = 2; 710 sc->sc_o.modep = &sbpmodes[PLAY16]; 711 sc->sc_o.dmachan = sc->sc_drq16; 712 } else { 713 return EINVAL; 714 } 715 } 716 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n", 717 sc->sc_i.dmachan, sc->sc_o.dmachan)); 718 719 return 0; 720 } 721 722 void 723 sbdsp_set_ifilter(addr, which) 724 void *addr; 725 int which; 726 { 727 struct sbdsp_softc *sc = addr; 728 int mixval; 729 730 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK; 731 switch (which) { 732 case 0: 733 mixval |= SBP_FILTER_OFF; 734 break; 735 case SB_TREBLE: 736 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH; 737 break; 738 case SB_BASS: 739 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW; 740 break; 741 default: 742 return; 743 } 744 sc->in_filter = mixval & SBP_IFILTER_MASK; 745 sbdsp_mix_write(sc, SBP_INFILTER, mixval); 746 } 747 748 int 749 sbdsp_get_ifilter(addr) 750 void *addr; 751 { 752 struct sbdsp_softc *sc = addr; 753 754 sc->in_filter = 755 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK; 756 switch (sc->in_filter) { 757 case SBP_FILTER_ON|SBP_IFILTER_HIGH: 758 return SB_TREBLE; 759 case SBP_FILTER_ON|SBP_IFILTER_LOW: 760 return SB_BASS; 761 default: 762 return 0; 763 } 764 } 765 766 int 767 sbdsp_set_in_ports(sc, mask) 768 struct sbdsp_softc *sc; 769 int mask; 770 { 771 int bitsl, bitsr; 772 int sbport; 773 774 if (sc->sc_open == SB_OPEN_MIDI) 775 return EBUSY; 776 777 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n", 778 sc->sc_mixer_model, mask)); 779 780 switch(sc->sc_mixer_model) { 781 case SBM_NONE: 782 return EINVAL; 783 case SBM_CT1335: 784 if (mask != (1 << SB_MIC_VOL)) 785 return EINVAL; 786 break; 787 case SBM_CT1345: 788 switch (mask) { 789 case 1 << SB_MIC_VOL: 790 sbport = SBP_FROM_MIC; 791 break; 792 case 1 << SB_LINE_IN_VOL: 793 sbport = SBP_FROM_LINE; 794 break; 795 case 1 << SB_CD_VOL: 796 sbport = SBP_FROM_CD; 797 break; 798 default: 799 return (EINVAL); 800 } 801 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter); 802 break; 803 case SBM_CT1XX5: 804 case SBM_CT1745: 805 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) | 806 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL))) 807 return EINVAL; 808 bitsr = 0; 809 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R; 810 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R; 811 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R; 812 bitsl = SB_SRC_R_TO_L(bitsr); 813 if (mask & (1<<SB_MIC_VOL)) { 814 bitsl |= SBP_MIC_SRC; 815 bitsr |= SBP_MIC_SRC; 816 } 817 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl); 818 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr); 819 break; 820 } 821 sc->in_mask = mask; 822 823 return 0; 824 } 825 826 int 827 sbdsp_speaker_ctl(addr, newstate) 828 void *addr; 829 int newstate; 830 { 831 struct sbdsp_softc *sc = addr; 832 833 if (sc->sc_open == SB_OPEN_MIDI) 834 return EBUSY; 835 836 if ((newstate == SPKR_ON) && 837 (sc->spkr_state == SPKR_OFF)) { 838 sbdsp_spkron(sc); 839 sc->spkr_state = SPKR_ON; 840 } 841 if ((newstate == SPKR_OFF) && 842 (sc->spkr_state == SPKR_ON)) { 843 sbdsp_spkroff(sc); 844 sc->spkr_state = SPKR_OFF; 845 } 846 return 0; 847 } 848 849 int 850 sbdsp_round_blocksize(addr, blk) 851 void *addr; 852 int blk; 853 { 854 return (blk + 3) & -4; /* round to biggest sample size */ 855 } 856 857 int 858 sbdsp_open(addr, flags) 859 void *addr; 860 int flags; 861 { 862 struct sbdsp_softc *sc = addr; 863 864 DPRINTF(("sbdsp_open: sc=%p\n", sc)); 865 866 if (sc->sc_open != SB_CLOSED) 867 return EBUSY; 868 if (sbdsp_reset(sc) != 0) 869 return EIO; 870 871 sc->sc_open = SB_OPEN_AUDIO; 872 sc->sc_openflags = flags; 873 sc->sc_intrm = 0; 874 if (ISSBPRO(sc) && 875 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) { 876 DPRINTF(("sbdsp_open: can't set mono mode\n")); 877 /* we'll readjust when it's time for DMA. */ 878 } 879 880 /* 881 * Leave most things as they were; users must change things if 882 * the previous process didn't leave it they way they wanted. 883 * Looked at another way, it's easy to set up a configuration 884 * in one program and leave it for another to inherit. 885 */ 886 DPRINTF(("sbdsp_open: opened\n")); 887 888 return 0; 889 } 890 891 void 892 sbdsp_close(addr) 893 void *addr; 894 { 895 struct sbdsp_softc *sc = addr; 896 897 DPRINTF(("sbdsp_close: sc=%p\n", sc)); 898 899 sc->sc_open = SB_CLOSED; 900 sbdsp_spkroff(sc); 901 sc->spkr_state = SPKR_OFF; 902 sc->sc_intr8 = 0; 903 sc->sc_intr16 = 0; 904 sc->sc_intrm = 0; 905 sbdsp_haltdma(sc); 906 907 DPRINTF(("sbdsp_close: closed\n")); 908 } 909 910 /* 911 * Lower-level routines 912 */ 913 914 /* 915 * Reset the card. 916 * Return non-zero if the card isn't detected. 917 */ 918 int 919 sbdsp_reset(sc) 920 struct sbdsp_softc *sc; 921 { 922 bus_space_tag_t iot = sc->sc_iot; 923 bus_space_handle_t ioh = sc->sc_ioh; 924 925 sc->sc_intr8 = 0; 926 sc->sc_intr16 = 0; 927 if (sc->sc_i.run != SB_NOTRUNNING) { 928 isa_dmaabort(sc->sc_isa, sc->sc_i.dmachan); 929 sc->sc_i.run = SB_NOTRUNNING; 930 } 931 if (sc->sc_o.run != SB_NOTRUNNING) { 932 isa_dmaabort(sc->sc_isa, sc->sc_o.dmachan); 933 sc->sc_o.run = SB_NOTRUNNING; 934 } 935 936 /* 937 * See SBK, section 11.3. 938 * We pulse a reset signal into the card. 939 * Gee, what a brilliant hardware design. 940 */ 941 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1); 942 delay(10); 943 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0); 944 delay(30); 945 if (sbdsp_rdsp(sc) != SB_MAGIC) 946 return -1; 947 948 return 0; 949 } 950 951 /* 952 * Write a byte to the dsp. 953 * We are at the mercy of the card as we use a 954 * polling loop and wait until it can take the byte. 955 */ 956 int 957 sbdsp_wdsp(sc, v) 958 struct sbdsp_softc *sc; 959 int v; 960 { 961 bus_space_tag_t iot = sc->sc_iot; 962 bus_space_handle_t ioh = sc->sc_ioh; 963 int i; 964 u_char x; 965 966 for (i = SBDSP_NPOLL; --i >= 0; ) { 967 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT); 968 delay(10); 969 if ((x & SB_DSP_BUSY) == 0) { 970 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v); 971 delay(10); 972 return 0; 973 } 974 } 975 ++sberr.wdsp; 976 return -1; 977 } 978 979 /* 980 * Read a byte from the DSP, using polling. 981 */ 982 int 983 sbdsp_rdsp(sc) 984 struct sbdsp_softc *sc; 985 { 986 bus_space_tag_t iot = sc->sc_iot; 987 bus_space_handle_t ioh = sc->sc_ioh; 988 int i; 989 u_char x; 990 991 for (i = SBDSP_NPOLL; --i >= 0; ) { 992 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT); 993 delay(10); 994 if (x & SB_DSP_READY) { 995 x = bus_space_read_1(iot, ioh, SBP_DSP_READ); 996 delay(10); 997 return x; 998 } 999 } 1000 ++sberr.rdsp; 1001 return -1; 1002 } 1003 1004 /* 1005 * Doing certain things (like toggling the speaker) make 1006 * the SB hardware go away for a while, so pause a little. 1007 */ 1008 void 1009 sbdsp_to(arg) 1010 void *arg; 1011 { 1012 wakeup(arg); 1013 } 1014 1015 void 1016 sbdsp_pause(sc) 1017 struct sbdsp_softc *sc; 1018 { 1019 extern int hz; 1020 1021 timeout_add(&sc->sc_tmo, hz/8); 1022 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0); 1023 } 1024 1025 /* 1026 * Turn on the speaker. The SBK documention says this operation 1027 * can take up to 1/10 of a second. Higher level layers should 1028 * probably let the task sleep for this amount of time after 1029 * calling here. Otherwise, things might not work (because 1030 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.) 1031 * 1032 * These engineers had their heads up their ass when 1033 * they designed this card. 1034 */ 1035 void 1036 sbdsp_spkron(sc) 1037 struct sbdsp_softc *sc; 1038 { 1039 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON); 1040 sbdsp_pause(sc); 1041 } 1042 1043 /* 1044 * Turn off the speaker; see comment above. 1045 */ 1046 void 1047 sbdsp_spkroff(sc) 1048 struct sbdsp_softc *sc; 1049 { 1050 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF); 1051 sbdsp_pause(sc); 1052 } 1053 1054 /* 1055 * Read the version number out of the card. 1056 * Store version information in the softc. 1057 */ 1058 void 1059 sbversion(sc) 1060 struct sbdsp_softc *sc; 1061 { 1062 int v; 1063 1064 sc->sc_model = SB_UNK; 1065 sc->sc_version = 0; 1066 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0) 1067 return; 1068 v = sbdsp_rdsp(sc) << 8; 1069 v |= sbdsp_rdsp(sc); 1070 if (v < 0) 1071 return; 1072 sc->sc_version = v; 1073 switch(SBVER_MAJOR(v)) { 1074 case 1: 1075 sc->sc_mixer_model = SBM_NONE; 1076 sc->sc_model = SB_1; 1077 break; 1078 case 2: 1079 /* Some SB2 have a mixer, some don't. */ 1080 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04); 1081 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06); 1082 /* Check if we can read back the mixer values. */ 1083 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 && 1084 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06) 1085 sc->sc_mixer_model = SBM_CT1335; 1086 else 1087 sc->sc_mixer_model = SBM_NONE; 1088 if (SBVER_MINOR(v) == 0) 1089 sc->sc_model = SB_20; 1090 else 1091 sc->sc_model = SB_2x; 1092 break; 1093 case 3: 1094 sc->sc_mixer_model = SBM_CT1345; 1095 sc->sc_model = SB_PRO; 1096 break; 1097 case 4: 1098 #if 0 1099 /* XXX This does not work */ 1100 /* Most SB16 have a tone controls, but some don't. */ 1101 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80); 1102 /* Check if we can read back the mixer value. */ 1103 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80) 1104 sc->sc_mixer_model = SBM_CT1745; 1105 else 1106 sc->sc_mixer_model = SBM_CT1XX5; 1107 #else 1108 sc->sc_mixer_model = SBM_CT1745; 1109 #endif 1110 #if 0 1111 /* XXX figure out a good way of determining the model */ 1112 /* XXX what about SB_32 */ 1113 if (SBVER_MINOR(v) == 16) 1114 sc->sc_model = SB_64; 1115 else 1116 #endif 1117 sc->sc_model = SB_16; 1118 break; 1119 } 1120 } 1121 1122 /* 1123 * Halt a DMA in progress. 1124 */ 1125 int 1126 sbdsp_haltdma(addr) 1127 void *addr; 1128 { 1129 struct sbdsp_softc *sc = addr; 1130 1131 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc)); 1132 1133 sbdsp_reset(sc); 1134 return 0; 1135 } 1136 1137 int 1138 sbdsp_set_timeconst(sc, tc) 1139 struct sbdsp_softc *sc; 1140 int tc; 1141 { 1142 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc)); 1143 1144 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 || 1145 sbdsp_wdsp(sc, tc) < 0) 1146 return EIO; 1147 1148 return 0; 1149 } 1150 1151 int 1152 sbdsp16_set_rate(sc, cmd, rate) 1153 struct sbdsp_softc *sc; 1154 int cmd, rate; 1155 { 1156 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate)); 1157 1158 if (sbdsp_wdsp(sc, cmd) < 0 || 1159 sbdsp_wdsp(sc, rate >> 8) < 0 || 1160 sbdsp_wdsp(sc, rate) < 0) 1161 return EIO; 1162 return 0; 1163 } 1164 1165 int 1166 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param) 1167 void *addr; 1168 void *start, *end; 1169 int blksize; 1170 void (*intr)(void *); 1171 void *arg; 1172 struct audio_params *param; 1173 { 1174 struct sbdsp_softc *sc = addr; 1175 int stereo = param->channels == 2; 1176 int width = param->precision * param->factor; 1177 int filter; 1178 1179 #ifdef DIAGNOSTIC 1180 if (stereo && (blksize & 1)) { 1181 DPRINTF(("stereo record odd bytes (%d)\n", blksize)); 1182 return (EIO); 1183 } 1184 #endif 1185 1186 sc->sc_intrr = intr; 1187 sc->sc_argr = arg; 1188 1189 if (width == 8) { 1190 #ifdef DIAGNOSTIC 1191 if (sc->sc_i.dmachan != sc->sc_drq8) { 1192 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1193 width, sc->sc_i.dmachan); 1194 return (EIO); 1195 } 1196 #endif 1197 sc->sc_intr8 = sbdsp_block_input; 1198 sc->sc_arg8 = addr; 1199 } else { 1200 #ifdef DIAGNOSTIC 1201 if (sc->sc_i.dmachan != sc->sc_drq16) { 1202 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1203 width, sc->sc_i.dmachan); 1204 return (EIO); 1205 } 1206 #endif 1207 sc->sc_intr16 = sbdsp_block_input; 1208 sc->sc_arg16 = addr; 1209 } 1210 1211 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16)) 1212 blksize >>= 1; 1213 --blksize; 1214 sc->sc_i.blksize = blksize; 1215 1216 if (ISSBPRO(sc)) { 1217 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0) 1218 return (EIO); 1219 filter = stereo ? SBP_FILTER_OFF : sc->in_filter; 1220 sbdsp_mix_write(sc, SBP_INFILTER, 1221 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) | 1222 filter); 1223 } 1224 1225 if (ISSB16CLASS(sc)) { 1226 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) { 1227 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n", 1228 sc->sc_i.rate)); 1229 return (EIO); 1230 } 1231 } else { 1232 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) { 1233 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n", 1234 sc->sc_i.rate)); 1235 return (EIO); 1236 } 1237 } 1238 1239 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n", 1240 start, end, sc->sc_i.dmachan)); 1241 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, start, (char *)end - 1242 (char *)start, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1243 1244 return sbdsp_block_input(addr); 1245 } 1246 1247 int 1248 sbdsp_block_input(addr) 1249 void *addr; 1250 { 1251 struct sbdsp_softc *sc = addr; 1252 int cc = sc->sc_i.blksize; 1253 1254 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc)); 1255 1256 if (sc->sc_i.run != SB_NOTRUNNING) 1257 sc->sc_intrr(sc->sc_argr); 1258 1259 if (sc->sc_model == SB_1) { 1260 /* Non-looping mode, start DMA */ 1261 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1262 sbdsp_wdsp(sc, cc) < 0 || 1263 sbdsp_wdsp(sc, cc >> 8) < 0) { 1264 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n")); 1265 return (EIO); 1266 } 1267 sc->sc_i.run = SB_RUNNING; 1268 } else if (sc->sc_i.run == SB_NOTRUNNING) { 1269 /* Initialize looping PCM */ 1270 if (ISSB16CLASS(sc)) { 1271 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n", 1272 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc)); 1273 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1274 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 || 1275 sbdsp_wdsp(sc, cc) < 0 || 1276 sbdsp_wdsp(sc, cc >> 8) < 0) { 1277 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n")); 1278 return (EIO); 1279 } 1280 } else { 1281 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc)); 1282 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1283 sbdsp_wdsp(sc, cc) < 0 || 1284 sbdsp_wdsp(sc, cc >> 8) < 0) { 1285 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n")); 1286 return (EIO); 1287 } 1288 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) { 1289 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n")); 1290 return (EIO); 1291 } 1292 } 1293 sc->sc_i.run = SB_LOOPING; 1294 } 1295 1296 return (0); 1297 } 1298 1299 int 1300 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param) 1301 void *addr; 1302 void *start, *end; 1303 int blksize; 1304 void (*intr)(void *); 1305 void *arg; 1306 struct audio_params *param; 1307 { 1308 struct sbdsp_softc *sc = addr; 1309 int stereo = param->channels == 2; 1310 int width = param->precision * param->factor; 1311 int cmd; 1312 1313 #ifdef DIAGNOSTIC 1314 if (stereo && (blksize & 1)) { 1315 DPRINTF(("stereo playback odd bytes (%d)\n", blksize)); 1316 return (EIO); 1317 } 1318 #endif 1319 1320 sc->sc_intrp = intr; 1321 sc->sc_argp = arg; 1322 1323 if (width == 8) { 1324 #ifdef DIAGNOSTIC 1325 if (sc->sc_o.dmachan != sc->sc_drq8) { 1326 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1327 width, sc->sc_o.dmachan); 1328 return (EIO); 1329 } 1330 #endif 1331 sc->sc_intr8 = sbdsp_block_output; 1332 sc->sc_arg8 = addr; 1333 } else { 1334 #ifdef DIAGNOSTIC 1335 if (sc->sc_o.dmachan != sc->sc_drq16) { 1336 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1337 width, sc->sc_o.dmachan); 1338 return (EIO); 1339 } 1340 #endif 1341 sc->sc_intr16 = sbdsp_block_output; 1342 sc->sc_arg16 = addr; 1343 } 1344 1345 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16)) 1346 blksize >>= 1; 1347 --blksize; 1348 sc->sc_o.blksize = blksize; 1349 1350 if (ISSBPRO(sc)) { 1351 /* make sure we re-set stereo mixer bit when we start output. */ 1352 sbdsp_mix_write(sc, SBP_STEREO, 1353 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) | 1354 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO)); 1355 cmd = sc->sc_o.modep->cmdchan; 1356 if (cmd && sbdsp_wdsp(sc, cmd) < 0) 1357 return (EIO); 1358 } 1359 1360 if (ISSB16CLASS(sc)) { 1361 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) { 1362 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n", 1363 sc->sc_o.rate)); 1364 return (EIO); 1365 } 1366 } else { 1367 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) { 1368 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n", 1369 sc->sc_o.rate)); 1370 return (EIO); 1371 } 1372 } 1373 1374 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n", 1375 start, end, sc->sc_o.dmachan)); 1376 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, start, (char *)end - 1377 (char *)start, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1378 1379 return sbdsp_block_output(addr); 1380 } 1381 1382 int 1383 sbdsp_block_output(addr) 1384 void *addr; 1385 { 1386 struct sbdsp_softc *sc = addr; 1387 int cc = sc->sc_o.blksize; 1388 1389 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc)); 1390 1391 if (sc->sc_o.run != SB_NOTRUNNING) 1392 sc->sc_intrp(sc->sc_argp); 1393 1394 if (sc->sc_model == SB_1) { 1395 /* Non-looping mode, initialized. Start DMA and PCM */ 1396 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1397 sbdsp_wdsp(sc, cc) < 0 || 1398 sbdsp_wdsp(sc, cc >> 8) < 0) { 1399 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n")); 1400 return (EIO); 1401 } 1402 sc->sc_o.run = SB_RUNNING; 1403 } else if (sc->sc_o.run == SB_NOTRUNNING) { 1404 /* Initialize looping PCM */ 1405 if (ISSB16CLASS(sc)) { 1406 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n", 1407 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc)); 1408 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1409 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 || 1410 sbdsp_wdsp(sc, cc) < 0 || 1411 sbdsp_wdsp(sc, cc >> 8) < 0) { 1412 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n")); 1413 return (EIO); 1414 } 1415 } else { 1416 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc)); 1417 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1418 sbdsp_wdsp(sc, cc) < 0 || 1419 sbdsp_wdsp(sc, cc >> 8) < 0) { 1420 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n")); 1421 return (EIO); 1422 } 1423 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) { 1424 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n")); 1425 return (EIO); 1426 } 1427 } 1428 sc->sc_o.run = SB_LOOPING; 1429 } 1430 1431 return (0); 1432 } 1433 1434 /* 1435 * Only the DSP unit on the sound blaster generates interrupts. 1436 * There are three cases of interrupt: reception of a midi byte 1437 * (when mode is enabled), completion of dma transmission, or 1438 * completion of a dma reception. 1439 * 1440 * If there is interrupt sharing or a spurious interrupt occurs 1441 * there is no way to distinguish this on an SB2. So if you have 1442 * an SB2 and experience problems, buy an SB16 (it's only $40). 1443 */ 1444 int 1445 sbdsp_intr(arg) 1446 void *arg; 1447 { 1448 struct sbdsp_softc *sc = arg; 1449 u_char irq; 1450 1451 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n", 1452 sc->sc_intr8, sc->sc_intr16)); 1453 if (ISSB16CLASS(sc)) { 1454 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS); 1455 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) { 1456 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq)); 1457 return 0; 1458 } 1459 } else { 1460 /* XXXX CHECK FOR INTERRUPT */ 1461 irq = SBP_IRQ_DMA8; 1462 } 1463 1464 sc->sc_interrupts++; 1465 delay(10); /* XXX why? */ 1466 1467 /* clear interrupt */ 1468 if (irq & SBP_IRQ_DMA8) { 1469 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8); 1470 if (sc->sc_intr8) 1471 sc->sc_intr8(sc->sc_arg8); 1472 } 1473 if (irq & SBP_IRQ_DMA16) { 1474 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16); 1475 if (sc->sc_intr16) 1476 sc->sc_intr16(sc->sc_arg16); 1477 } 1478 #if NMIDI > 0 1479 if ((irq & SBP_IRQ_MPU401) && sc->sc_hasmpu) { 1480 mpu_intr(&sc->sc_mpu_sc); 1481 } 1482 #endif 1483 return 1; 1484 } 1485 1486 /* Like val & mask, but make sure the result is correctly rounded. */ 1487 #define MAXVAL 256 1488 static int 1489 sbdsp_adjust(val, mask) 1490 int val, mask; 1491 { 1492 val += (MAXVAL - mask) >> 1; 1493 if (val >= MAXVAL) 1494 val = MAXVAL-1; 1495 return val & mask; 1496 } 1497 1498 void 1499 sbdsp_set_mixer_gain(sc, port) 1500 struct sbdsp_softc *sc; 1501 int port; 1502 { 1503 int src, gain; 1504 1505 switch(sc->sc_mixer_model) { 1506 case SBM_NONE: 1507 return; 1508 case SBM_CT1335: 1509 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]); 1510 switch(port) { 1511 case SB_MASTER_VOL: 1512 src = SBP_1335_MASTER_VOL; 1513 break; 1514 case SB_MIDI_VOL: 1515 src = SBP_1335_MIDI_VOL; 1516 break; 1517 case SB_CD_VOL: 1518 src = SBP_1335_CD_VOL; 1519 break; 1520 case SB_VOICE_VOL: 1521 src = SBP_1335_VOICE_VOL; 1522 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]); 1523 break; 1524 default: 1525 return; 1526 } 1527 sbdsp_mix_write(sc, src, gain); 1528 break; 1529 case SBM_CT1345: 1530 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT], 1531 sc->gain[port][SB_RIGHT]); 1532 switch (port) { 1533 case SB_MIC_VOL: 1534 src = SBP_MIC_VOL; 1535 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]); 1536 break; 1537 case SB_MASTER_VOL: 1538 src = SBP_MASTER_VOL; 1539 break; 1540 case SB_LINE_IN_VOL: 1541 src = SBP_LINE_VOL; 1542 break; 1543 case SB_VOICE_VOL: 1544 src = SBP_VOICE_VOL; 1545 break; 1546 case SB_MIDI_VOL: 1547 src = SBP_MIDI_VOL; 1548 break; 1549 case SB_CD_VOL: 1550 src = SBP_CD_VOL; 1551 break; 1552 default: 1553 return; 1554 } 1555 sbdsp_mix_write(sc, src, gain); 1556 break; 1557 case SBM_CT1XX5: 1558 case SBM_CT1745: 1559 switch (port) { 1560 case SB_MIC_VOL: 1561 src = SB16P_MIC_L; 1562 break; 1563 case SB_MASTER_VOL: 1564 src = SB16P_MASTER_L; 1565 break; 1566 case SB_LINE_IN_VOL: 1567 src = SB16P_LINE_L; 1568 break; 1569 case SB_VOICE_VOL: 1570 src = SB16P_VOICE_L; 1571 break; 1572 case SB_MIDI_VOL: 1573 src = SB16P_MIDI_L; 1574 break; 1575 case SB_CD_VOL: 1576 src = SB16P_CD_L; 1577 break; 1578 case SB_INPUT_GAIN: 1579 src = SB16P_INPUT_GAIN_L; 1580 break; 1581 case SB_OUTPUT_GAIN: 1582 src = SB16P_OUTPUT_GAIN_L; 1583 break; 1584 case SB_TREBLE: 1585 src = SB16P_TREBLE_L; 1586 break; 1587 case SB_BASS: 1588 src = SB16P_BASS_L; 1589 break; 1590 case SB_PCSPEAKER: 1591 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]); 1592 return; 1593 default: 1594 return; 1595 } 1596 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]); 1597 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]); 1598 break; 1599 } 1600 } 1601 1602 int 1603 sbdsp_mixer_set_port(addr, cp) 1604 void *addr; 1605 mixer_ctrl_t *cp; 1606 { 1607 struct sbdsp_softc *sc = addr; 1608 int lgain, rgain; 1609 int mask, bits; 1610 int lmask, rmask, lbits, rbits; 1611 int mute, swap; 1612 1613 if (sc->sc_open == SB_OPEN_MIDI) 1614 return EBUSY; 1615 1616 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev, 1617 cp->un.value.num_channels)); 1618 1619 if (sc->sc_mixer_model == SBM_NONE) 1620 return EINVAL; 1621 1622 switch (cp->dev) { 1623 case SB_TREBLE: 1624 case SB_BASS: 1625 if (sc->sc_mixer_model == SBM_CT1345 || 1626 sc->sc_mixer_model == SBM_CT1XX5) { 1627 if (cp->type != AUDIO_MIXER_ENUM) 1628 return EINVAL; 1629 switch (cp->dev) { 1630 case SB_TREBLE: 1631 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0); 1632 return 0; 1633 case SB_BASS: 1634 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0); 1635 return 0; 1636 } 1637 } 1638 case SB_PCSPEAKER: 1639 case SB_INPUT_GAIN: 1640 case SB_OUTPUT_GAIN: 1641 if (!ISSBM1745(sc)) 1642 return EINVAL; 1643 case SB_MIC_VOL: 1644 case SB_LINE_IN_VOL: 1645 if (sc->sc_mixer_model == SBM_CT1335) 1646 return EINVAL; 1647 case SB_VOICE_VOL: 1648 case SB_MIDI_VOL: 1649 case SB_CD_VOL: 1650 case SB_MASTER_VOL: 1651 if (cp->type != AUDIO_MIXER_VALUE) 1652 return EINVAL; 1653 1654 /* 1655 * All the mixer ports are stereo except for the microphone. 1656 * If we get a single-channel gain value passed in, then we 1657 * duplicate it to both left and right channels. 1658 */ 1659 1660 switch (cp->dev) { 1661 case SB_MIC_VOL: 1662 if (cp->un.value.num_channels != 1) 1663 return EINVAL; 1664 1665 lgain = rgain = SB_ADJUST_MIC_GAIN(sc, 1666 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1667 break; 1668 case SB_PCSPEAKER: 1669 if (cp->un.value.num_channels != 1) 1670 return EINVAL; 1671 /* fall into */ 1672 case SB_INPUT_GAIN: 1673 case SB_OUTPUT_GAIN: 1674 lgain = rgain = SB_ADJUST_2_GAIN(sc, 1675 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1676 break; 1677 default: 1678 switch (cp->un.value.num_channels) { 1679 case 1: 1680 lgain = rgain = SB_ADJUST_GAIN(sc, 1681 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1682 break; 1683 case 2: 1684 if (sc->sc_mixer_model == SBM_CT1335) 1685 return EINVAL; 1686 lgain = SB_ADJUST_GAIN(sc, 1687 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1688 rgain = SB_ADJUST_GAIN(sc, 1689 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1690 break; 1691 default: 1692 return EINVAL; 1693 } 1694 break; 1695 } 1696 sc->gain[cp->dev][SB_LEFT] = lgain; 1697 sc->gain[cp->dev][SB_RIGHT] = rgain; 1698 1699 sbdsp_set_mixer_gain(sc, cp->dev); 1700 break; 1701 1702 case SB_RECORD_SOURCE: 1703 if (ISSBM1745(sc)) { 1704 if (cp->type != AUDIO_MIXER_SET) 1705 return EINVAL; 1706 return sbdsp_set_in_ports(sc, cp->un.mask); 1707 } else { 1708 if (cp->type != AUDIO_MIXER_ENUM) 1709 return EINVAL; 1710 sc->in_port = cp->un.ord; 1711 return sbdsp_set_in_ports(sc, 1 << cp->un.ord); 1712 } 1713 break; 1714 1715 case SB_AGC: 1716 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM) 1717 return EINVAL; 1718 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1); 1719 break; 1720 1721 case SB_CD_OUT_MUTE: 1722 mask = SB16P_SW_CD; 1723 goto omute; 1724 case SB_MIC_OUT_MUTE: 1725 mask = SB16P_SW_MIC; 1726 goto omute; 1727 case SB_LINE_OUT_MUTE: 1728 mask = SB16P_SW_LINE; 1729 omute: 1730 if (cp->type != AUDIO_MIXER_ENUM) 1731 return EINVAL; 1732 bits = sbdsp_mix_read(sc, SB16P_OSWITCH); 1733 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1734 if (cp->un.ord) 1735 bits = bits & ~mask; 1736 else 1737 bits = bits | mask; 1738 sbdsp_mix_write(sc, SB16P_OSWITCH, bits); 1739 break; 1740 1741 case SB_MIC_IN_MUTE: 1742 case SB_MIC_SWAP: 1743 lmask = rmask = SB16P_SW_MIC; 1744 goto imute; 1745 case SB_CD_IN_MUTE: 1746 case SB_CD_SWAP: 1747 lmask = SB16P_SW_CD_L; 1748 rmask = SB16P_SW_CD_R; 1749 goto imute; 1750 case SB_LINE_IN_MUTE: 1751 case SB_LINE_SWAP: 1752 lmask = SB16P_SW_LINE_L; 1753 rmask = SB16P_SW_LINE_R; 1754 goto imute; 1755 case SB_MIDI_IN_MUTE: 1756 case SB_MIDI_SWAP: 1757 lmask = SB16P_SW_MIDI_L; 1758 rmask = SB16P_SW_MIDI_R; 1759 imute: 1760 if (cp->type != AUDIO_MIXER_ENUM) 1761 return EINVAL; 1762 mask = lmask | rmask; 1763 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask; 1764 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask; 1765 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1766 if (SB_IS_IN_MUTE(cp->dev)) { 1767 mute = cp->dev; 1768 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP; 1769 } else { 1770 swap = cp->dev; 1771 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP; 1772 } 1773 if (sc->gain[swap][SB_LR]) { 1774 mask = lmask; 1775 lmask = rmask; 1776 rmask = mask; 1777 } 1778 if (!sc->gain[mute][SB_LR]) { 1779 lbits = lbits | lmask; 1780 rbits = rbits | rmask; 1781 } 1782 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits); 1783 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits); 1784 break; 1785 1786 default: 1787 return EINVAL; 1788 } 1789 1790 return 0; 1791 } 1792 1793 int 1794 sbdsp_mixer_get_port(addr, cp) 1795 void *addr; 1796 mixer_ctrl_t *cp; 1797 { 1798 struct sbdsp_softc *sc = addr; 1799 1800 if (sc->sc_open == SB_OPEN_MIDI) 1801 return EBUSY; 1802 1803 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev)); 1804 1805 if (sc->sc_mixer_model == SBM_NONE) 1806 return EINVAL; 1807 1808 switch (cp->dev) { 1809 case SB_TREBLE: 1810 case SB_BASS: 1811 if (sc->sc_mixer_model == SBM_CT1345 || 1812 sc->sc_mixer_model == SBM_CT1XX5) { 1813 switch (cp->dev) { 1814 case SB_TREBLE: 1815 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE; 1816 return 0; 1817 case SB_BASS: 1818 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS; 1819 return 0; 1820 } 1821 } 1822 case SB_PCSPEAKER: 1823 case SB_INPUT_GAIN: 1824 case SB_OUTPUT_GAIN: 1825 if (!ISSBM1745(sc)) 1826 return EINVAL; 1827 case SB_MIC_VOL: 1828 case SB_LINE_IN_VOL: 1829 if (sc->sc_mixer_model == SBM_CT1335) 1830 return EINVAL; 1831 case SB_VOICE_VOL: 1832 case SB_MIDI_VOL: 1833 case SB_CD_VOL: 1834 case SB_MASTER_VOL: 1835 switch (cp->dev) { 1836 case SB_MIC_VOL: 1837 case SB_PCSPEAKER: 1838 if (cp->un.value.num_channels != 1) 1839 return EINVAL; 1840 /* fall into */ 1841 default: 1842 switch (cp->un.value.num_channels) { 1843 case 1: 1844 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1845 sc->gain[cp->dev][SB_LEFT]; 1846 break; 1847 case 2: 1848 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1849 sc->gain[cp->dev][SB_LEFT]; 1850 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1851 sc->gain[cp->dev][SB_RIGHT]; 1852 break; 1853 default: 1854 return EINVAL; 1855 } 1856 break; 1857 } 1858 break; 1859 1860 case SB_RECORD_SOURCE: 1861 if (ISSBM1745(sc)) 1862 cp->un.mask = sc->in_mask; 1863 else 1864 cp->un.ord = sc->in_port; 1865 break; 1866 1867 case SB_AGC: 1868 if (!ISSBM1745(sc)) 1869 return EINVAL; 1870 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC); 1871 break; 1872 1873 case SB_CD_IN_MUTE: 1874 case SB_MIC_IN_MUTE: 1875 case SB_LINE_IN_MUTE: 1876 case SB_MIDI_IN_MUTE: 1877 case SB_CD_SWAP: 1878 case SB_MIC_SWAP: 1879 case SB_LINE_SWAP: 1880 case SB_MIDI_SWAP: 1881 case SB_CD_OUT_MUTE: 1882 case SB_MIC_OUT_MUTE: 1883 case SB_LINE_OUT_MUTE: 1884 cp->un.ord = sc->gain[cp->dev][SB_LR]; 1885 break; 1886 1887 default: 1888 return EINVAL; 1889 } 1890 1891 return 0; 1892 } 1893 1894 int 1895 sbdsp_mixer_query_devinfo(addr, dip) 1896 void *addr; 1897 mixer_devinfo_t *dip; 1898 { 1899 struct sbdsp_softc *sc = addr; 1900 int chan, class, is1745; 1901 1902 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n", 1903 sc->sc_mixer_model, dip->index)); 1904 1905 if (dip->index < 0) 1906 return ENXIO; 1907 1908 if (sc->sc_mixer_model == SBM_NONE) 1909 return ENXIO; 1910 1911 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2; 1912 is1745 = ISSBM1745(sc); 1913 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS; 1914 1915 switch (dip->index) { 1916 case SB_MASTER_VOL: 1917 dip->type = AUDIO_MIXER_VALUE; 1918 dip->mixer_class = SB_OUTPUT_CLASS; 1919 dip->prev = dip->next = AUDIO_MIXER_LAST; 1920 strlcpy(dip->label.name, AudioNmaster, sizeof dip->label.name); 1921 dip->un.v.num_channels = chan; 1922 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1923 return 0; 1924 case SB_MIDI_VOL: 1925 dip->type = AUDIO_MIXER_VALUE; 1926 dip->mixer_class = class; 1927 dip->prev = AUDIO_MIXER_LAST; 1928 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST; 1929 strlcpy(dip->label.name, AudioNfmsynth, sizeof dip->label.name); 1930 dip->un.v.num_channels = chan; 1931 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1932 return 0; 1933 case SB_CD_VOL: 1934 dip->type = AUDIO_MIXER_VALUE; 1935 dip->mixer_class = class; 1936 dip->prev = AUDIO_MIXER_LAST; 1937 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST; 1938 strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); 1939 dip->un.v.num_channels = chan; 1940 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1941 return 0; 1942 case SB_VOICE_VOL: 1943 dip->type = AUDIO_MIXER_VALUE; 1944 dip->mixer_class = class; 1945 dip->prev = AUDIO_MIXER_LAST; 1946 dip->next = AUDIO_MIXER_LAST; 1947 strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); 1948 dip->un.v.num_channels = chan; 1949 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1950 return 0; 1951 case SB_OUTPUT_CLASS: 1952 dip->type = AUDIO_MIXER_CLASS; 1953 dip->mixer_class = SB_OUTPUT_CLASS; 1954 dip->next = dip->prev = AUDIO_MIXER_LAST; 1955 strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); 1956 return 0; 1957 } 1958 1959 if (sc->sc_mixer_model == SBM_CT1335) 1960 return ENXIO; 1961 1962 switch (dip->index) { 1963 case SB_MIC_VOL: 1964 dip->type = AUDIO_MIXER_VALUE; 1965 dip->mixer_class = class; 1966 dip->prev = AUDIO_MIXER_LAST; 1967 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST; 1968 strlcpy(dip->label.name, AudioNmicrophone, 1969 sizeof dip->label.name); 1970 dip->un.v.num_channels = 1; 1971 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1972 return 0; 1973 1974 case SB_LINE_IN_VOL: 1975 dip->type = AUDIO_MIXER_VALUE; 1976 dip->mixer_class = class; 1977 dip->prev = AUDIO_MIXER_LAST; 1978 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST; 1979 strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); 1980 dip->un.v.num_channels = 2; 1981 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1982 return 0; 1983 1984 case SB_RECORD_SOURCE: 1985 dip->mixer_class = SB_RECORD_CLASS; 1986 dip->prev = dip->next = AUDIO_MIXER_LAST; 1987 strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); 1988 if (ISSBM1745(sc)) { 1989 dip->type = AUDIO_MIXER_SET; 1990 dip->un.s.num_mem = 4; 1991 strlcpy(dip->un.s.member[0].label.name, 1992 AudioNmicrophone, 1993 sizeof dip->un.s.member[0].label.name); 1994 dip->un.s.member[0].mask = 1 << SB_MIC_VOL; 1995 strlcpy(dip->un.s.member[1].label.name, 1996 AudioNcd, sizeof dip->un.s.member[1].label.name); 1997 dip->un.s.member[1].mask = 1 << SB_CD_VOL; 1998 strlcpy(dip->un.s.member[2].label.name, 1999 AudioNline, sizeof dip->un.s.member[2].label.name); 2000 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL; 2001 strlcpy(dip->un.s.member[3].label.name, 2002 AudioNfmsynth, 2003 sizeof dip->un.s.member[3].label.name); 2004 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL; 2005 } else { 2006 dip->type = AUDIO_MIXER_ENUM; 2007 dip->un.e.num_mem = 3; 2008 strlcpy(dip->un.e.member[0].label.name, 2009 AudioNmicrophone, 2010 sizeof dip->un.e.member[0].label.name); 2011 dip->un.e.member[0].ord = SB_MIC_VOL; 2012 strlcpy(dip->un.e.member[1].label.name, AudioNcd, 2013 sizeof dip->un.e.member[1].label.name); 2014 dip->un.e.member[1].ord = SB_CD_VOL; 2015 strlcpy(dip->un.e.member[2].label.name, AudioNline, 2016 sizeof dip->un.e.member[2].label.name); 2017 dip->un.e.member[2].ord = SB_LINE_IN_VOL; 2018 } 2019 return 0; 2020 2021 case SB_BASS: 2022 dip->prev = dip->next = AUDIO_MIXER_LAST; 2023 strlcpy(dip->label.name, AudioNbass, sizeof dip->label.name); 2024 if (sc->sc_mixer_model == SBM_CT1745) { 2025 dip->type = AUDIO_MIXER_VALUE; 2026 dip->mixer_class = SB_EQUALIZATION_CLASS; 2027 dip->un.v.num_channels = 2; 2028 strlcpy(dip->un.v.units.name, AudioNbass, sizeof dip->un.v.units.name); 2029 } else { 2030 dip->type = AUDIO_MIXER_ENUM; 2031 dip->mixer_class = SB_INPUT_CLASS; 2032 dip->un.e.num_mem = 2; 2033 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2034 sizeof dip->un.e.member[0].label.name); 2035 dip->un.e.member[0].ord = 0; 2036 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2037 sizeof dip->un.e.member[1].label.name); 2038 dip->un.e.member[1].ord = 1; 2039 } 2040 return 0; 2041 2042 case SB_TREBLE: 2043 dip->prev = dip->next = AUDIO_MIXER_LAST; 2044 strlcpy(dip->label.name, AudioNtreble, sizeof dip->label.name); 2045 if (sc->sc_mixer_model == SBM_CT1745) { 2046 dip->type = AUDIO_MIXER_VALUE; 2047 dip->mixer_class = SB_EQUALIZATION_CLASS; 2048 dip->un.v.num_channels = 2; 2049 strlcpy(dip->un.v.units.name, AudioNtreble, sizeof dip->un.v.units.name); 2050 } else { 2051 dip->type = AUDIO_MIXER_ENUM; 2052 dip->mixer_class = SB_INPUT_CLASS; 2053 dip->un.e.num_mem = 2; 2054 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2055 sizeof dip->un.e.member[0].label.name); 2056 dip->un.e.member[0].ord = 0; 2057 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2058 sizeof dip->un.e.member[1].label.name); 2059 dip->un.e.member[1].ord = 1; 2060 } 2061 return 0; 2062 2063 case SB_RECORD_CLASS: /* record source class */ 2064 dip->type = AUDIO_MIXER_CLASS; 2065 dip->mixer_class = SB_RECORD_CLASS; 2066 dip->next = dip->prev = AUDIO_MIXER_LAST; 2067 strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); 2068 return 0; 2069 2070 case SB_INPUT_CLASS: 2071 dip->type = AUDIO_MIXER_CLASS; 2072 dip->mixer_class = SB_INPUT_CLASS; 2073 dip->next = dip->prev = AUDIO_MIXER_LAST; 2074 strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); 2075 return 0; 2076 2077 } 2078 2079 if (sc->sc_mixer_model == SBM_CT1345) 2080 return ENXIO; 2081 2082 switch(dip->index) { 2083 case SB_PCSPEAKER: 2084 dip->type = AUDIO_MIXER_VALUE; 2085 dip->mixer_class = SB_INPUT_CLASS; 2086 dip->prev = dip->next = AUDIO_MIXER_LAST; 2087 strlcpy(dip->label.name, "pc_speaker", sizeof dip->label.name); 2088 dip->un.v.num_channels = 1; 2089 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2090 return 0; 2091 2092 case SB_INPUT_GAIN: 2093 dip->type = AUDIO_MIXER_VALUE; 2094 dip->mixer_class = SB_INPUT_CLASS; 2095 dip->prev = dip->next = AUDIO_MIXER_LAST; 2096 strlcpy(dip->label.name, AudioNinput, sizeof dip->label.name); 2097 dip->un.v.num_channels = 2; 2098 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2099 return 0; 2100 2101 case SB_OUTPUT_GAIN: 2102 dip->type = AUDIO_MIXER_VALUE; 2103 dip->mixer_class = SB_OUTPUT_CLASS; 2104 dip->prev = dip->next = AUDIO_MIXER_LAST; 2105 strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); 2106 dip->un.v.num_channels = 2; 2107 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2108 return 0; 2109 2110 case SB_AGC: 2111 dip->type = AUDIO_MIXER_ENUM; 2112 dip->mixer_class = SB_INPUT_CLASS; 2113 dip->prev = dip->next = AUDIO_MIXER_LAST; 2114 strlcpy(dip->label.name, "agc", sizeof dip->label.name); 2115 dip->un.e.num_mem = 2; 2116 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2117 sizeof dip->un.e.member[0].label.name); 2118 dip->un.e.member[0].ord = 0; 2119 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2120 sizeof dip->un.e.member[1].label.name); 2121 dip->un.e.member[1].ord = 1; 2122 return 0; 2123 2124 case SB_EQUALIZATION_CLASS: 2125 dip->type = AUDIO_MIXER_CLASS; 2126 dip->mixer_class = SB_EQUALIZATION_CLASS; 2127 dip->next = dip->prev = AUDIO_MIXER_LAST; 2128 strlcpy(dip->label.name, AudioCequalization, sizeof dip->label.name); 2129 return 0; 2130 2131 case SB_CD_IN_MUTE: 2132 dip->prev = SB_CD_VOL; 2133 dip->next = SB_CD_SWAP; 2134 dip->mixer_class = SB_INPUT_CLASS; 2135 goto mute; 2136 2137 case SB_MIC_IN_MUTE: 2138 dip->prev = SB_MIC_VOL; 2139 dip->next = SB_MIC_SWAP; 2140 dip->mixer_class = SB_INPUT_CLASS; 2141 goto mute; 2142 2143 case SB_LINE_IN_MUTE: 2144 dip->prev = SB_LINE_IN_VOL; 2145 dip->next = SB_LINE_SWAP; 2146 dip->mixer_class = SB_INPUT_CLASS; 2147 goto mute; 2148 2149 case SB_MIDI_IN_MUTE: 2150 dip->prev = SB_MIDI_VOL; 2151 dip->next = SB_MIDI_SWAP; 2152 dip->mixer_class = SB_INPUT_CLASS; 2153 goto mute; 2154 2155 case SB_CD_SWAP: 2156 dip->prev = SB_CD_IN_MUTE; 2157 dip->next = SB_CD_OUT_MUTE; 2158 goto swap; 2159 2160 case SB_MIC_SWAP: 2161 dip->prev = SB_MIC_IN_MUTE; 2162 dip->next = SB_MIC_OUT_MUTE; 2163 goto swap; 2164 2165 case SB_LINE_SWAP: 2166 dip->prev = SB_LINE_IN_MUTE; 2167 dip->next = SB_LINE_OUT_MUTE; 2168 goto swap; 2169 2170 case SB_MIDI_SWAP: 2171 dip->prev = SB_MIDI_IN_MUTE; 2172 dip->next = AUDIO_MIXER_LAST; 2173 swap: 2174 dip->mixer_class = SB_INPUT_CLASS; 2175 strlcpy(dip->label.name, AudioNswap, sizeof dip->label.name); 2176 goto mute1; 2177 2178 case SB_CD_OUT_MUTE: 2179 dip->prev = SB_CD_SWAP; 2180 dip->next = AUDIO_MIXER_LAST; 2181 dip->mixer_class = SB_OUTPUT_CLASS; 2182 goto mute; 2183 2184 case SB_MIC_OUT_MUTE: 2185 dip->prev = SB_MIC_SWAP; 2186 dip->next = AUDIO_MIXER_LAST; 2187 dip->mixer_class = SB_OUTPUT_CLASS; 2188 goto mute; 2189 2190 case SB_LINE_OUT_MUTE: 2191 dip->prev = SB_LINE_SWAP; 2192 dip->next = AUDIO_MIXER_LAST; 2193 dip->mixer_class = SB_OUTPUT_CLASS; 2194 mute: 2195 strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); 2196 mute1: 2197 dip->type = AUDIO_MIXER_ENUM; 2198 dip->un.e.num_mem = 2; 2199 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2200 sizeof dip->un.e.member[0].label.name); 2201 dip->un.e.member[0].ord = 0; 2202 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2203 sizeof dip->un.e.member[1].label.name); 2204 dip->un.e.member[1].ord = 1; 2205 return 0; 2206 2207 } 2208 2209 return ENXIO; 2210 } 2211 2212 void * 2213 sb_malloc(addr, direction, size, pool, flags) 2214 void *addr; 2215 int direction; 2216 size_t size; 2217 int pool; 2218 int flags; 2219 { 2220 struct sbdsp_softc *sc = addr; 2221 int drq; 2222 2223 /* 8-bit has more restrictive alignment */ 2224 if (sc->sc_drq8 != -1) 2225 drq = sc->sc_drq8; 2226 else 2227 drq = sc->sc_drq16; 2228 2229 return isa_malloc(sc->sc_isa, drq, size, pool, flags); 2230 } 2231 2232 void 2233 sb_free(addr, ptr, pool) 2234 void *addr; 2235 void *ptr; 2236 int pool; 2237 { 2238 isa_free(ptr, pool); 2239 } 2240 2241 size_t 2242 sb_round(addr, direction, size) 2243 void *addr; 2244 int direction; 2245 size_t size; 2246 { 2247 if (size > MAX_ISADMA) 2248 size = MAX_ISADMA; 2249 return size; 2250 } 2251 2252 paddr_t 2253 sb_mappage(addr, mem, off, prot) 2254 void *addr; 2255 void *mem; 2256 off_t off; 2257 int prot; 2258 { 2259 return isa_mappage(mem, off, prot); 2260 } 2261 2262 int 2263 sbdsp_get_props(addr) 2264 void *addr; 2265 { 2266 struct sbdsp_softc *sc = addr; 2267 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 2268 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0); 2269 } 2270 2271 #if NMIDI > 0 2272 /* 2273 * MIDI related routines. 2274 */ 2275 2276 int 2277 sbdsp_midi_open(addr, flags, iintr, ointr, arg) 2278 void *addr; 2279 int flags; 2280 void (*iintr)(void *, int); 2281 void (*ointr)(void *); 2282 void *arg; 2283 { 2284 struct sbdsp_softc *sc = addr; 2285 2286 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc)); 2287 2288 if (sc->sc_open != SB_CLOSED) 2289 return EBUSY; 2290 if (sbdsp_reset(sc) != 0) 2291 return EIO; 2292 2293 if (sc->sc_model >= SB_20) 2294 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */ 2295 return EIO; 2296 sc->sc_open = SB_OPEN_MIDI; 2297 sc->sc_openflags = flags; 2298 sc->sc_intr8 = sbdsp_midi_intr; 2299 sc->sc_arg8 = addr; 2300 sc->sc_intrm = iintr; 2301 sc->sc_argm = arg; 2302 return 0; 2303 } 2304 2305 void 2306 sbdsp_midi_close(addr) 2307 void *addr; 2308 { 2309 struct sbdsp_softc *sc = addr; 2310 2311 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc)); 2312 2313 if (sc->sc_model >= SB_20) 2314 sbdsp_reset(sc); /* exit UART mode */ 2315 sc->sc_open = SB_CLOSED; 2316 sc->sc_intrm = 0; 2317 } 2318 2319 int 2320 sbdsp_midi_output(addr, d) 2321 void *addr; 2322 int d; 2323 { 2324 struct sbdsp_softc *sc = addr; 2325 2326 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE)) 2327 return EIO; 2328 if (sbdsp_wdsp(sc, d)) 2329 return EIO; 2330 return 0; 2331 } 2332 2333 void 2334 sbdsp_midi_getinfo(addr, mi) 2335 void *addr; 2336 struct midi_info *mi; 2337 { 2338 struct sbdsp_softc *sc = addr; 2339 2340 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART"; 2341 mi->props = MIDI_PROP_CAN_INPUT; 2342 } 2343 2344 int 2345 sbdsp_midi_intr(addr) 2346 void *addr; 2347 { 2348 struct sbdsp_softc *sc = addr; 2349 2350 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc)); 2351 return (0); 2352 } 2353 2354 #endif 2355