1 /* $OpenBSD: sbdsp.c,v 1.33 2013/05/15 08:29:24 ratchov Exp $ */ 2 3 /* 4 * Copyright (c) 1991-1993 Regents of the University of California. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the Computer Systems 18 * Engineering Group at Lawrence Berkeley Laboratory. 19 * 4. Neither the name of the University nor of the Laboratory may be used 20 * to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 */ 36 37 /* 38 * SoundBlaster Pro code provided by John Kohl, based on lots of 39 * information he gleaned from Steve Haehnichen <steve@vigra.com>'s 40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs 41 * <sachs@meibm15.cen.uiuc.edu>. 42 * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se> 43 * with information from SB "Hardware Programming Guide" and the 44 * Linux drivers. 45 */ 46 47 #include "midi.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/errno.h> 52 #include <sys/ioctl.h> 53 #include <sys/syslog.h> 54 #include <sys/device.h> 55 #include <sys/proc.h> 56 #include <sys/buf.h> 57 58 #include <machine/cpu.h> 59 #include <machine/intr.h> 60 #include <machine/bus.h> 61 62 #include <sys/audioio.h> 63 #include <dev/audio_if.h> 64 #include <dev/midi_if.h> 65 #include <dev/mulaw.h> 66 #include <dev/auconv.h> 67 68 #include <dev/isa/isavar.h> 69 #include <dev/isa/isadmavar.h> 70 71 #include <dev/isa/sbreg.h> 72 #include <dev/isa/sbdspvar.h> 73 74 75 #ifdef AUDIO_DEBUG 76 #define DPRINTF(x) if (sbdspdebug) printf x 77 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x 78 int sbdspdebug = 0; 79 #else 80 #define DPRINTF(x) 81 #define DPRINTFN(n,x) 82 #endif 83 84 #ifndef SBDSP_NPOLL 85 #define SBDSP_NPOLL 3000 86 #endif 87 88 struct { 89 int wdsp; 90 int rdsp; 91 int wmidi; 92 } sberr; 93 94 /* 95 * Time constant routines follow. See SBK, section 12. 96 * Although they don't come out and say it (in the docs), 97 * the card clearly uses a 1MHz countdown timer, as the 98 * low-speed formula (p. 12-4) is: 99 * tc = 256 - 10^6 / sr 100 * In high-speed mode, the constant is the upper byte of a 16-bit counter, 101 * and a 256MHz clock is used: 102 * tc = 65536 - 256 * 10^ 6 / sr 103 * Since we can only use the upper byte of the HS TC, the two formulae 104 * are equivalent. (Why didn't they say so?) E.g., 105 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x 106 * 107 * The crossover point (from low- to high-speed modes) is different 108 * for the SBPRO and SB20. The table on p. 12-5 gives the following data: 109 * 110 * SBPRO SB20 111 * ----- -------- 112 * input ls min 4 KHz 4 KHz 113 * input ls max 23 KHz 13 KHz 114 * input hs max 44.1 KHz 15 KHz 115 * output ls min 4 KHz 4 KHz 116 * output ls max 23 KHz 23 KHz 117 * output hs max 44.1 KHz 44.1 KHz 118 */ 119 /* XXX Should we round the tc? 120 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8) 121 */ 122 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x)) 123 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc))) 124 125 struct sbmode { 126 short model; 127 u_char channels; 128 u_char precision; 129 u_short lowrate, highrate; 130 u_char cmd; 131 u_char cmdchan; 132 }; 133 static struct sbmode sbpmodes[] = { 134 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA }, 135 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP }, 136 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP }, 137 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT }, 138 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP }, 139 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT }, 140 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT }, 141 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */ 142 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO }, 143 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO }, 144 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO }, 145 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO }, 146 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO }, 147 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO }, 148 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 }, 149 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 }, 150 #define PLAY16 15 /* must be the index of the next entry in the table */ 151 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 }, 152 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 }, 153 { -1 } 154 }; 155 static struct sbmode sbrmodes[] = { 156 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA }, 157 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP }, 158 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP }, 159 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT }, 160 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO }, 161 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO }, 162 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO }, 163 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO }, 164 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO }, 165 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO }, 166 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO }, 167 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO }, 168 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO }, 169 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 }, 170 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 }, 171 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 }, 172 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 }, 173 { -1 } 174 }; 175 176 void sbversion(struct sbdsp_softc *); 177 void sbdsp_jazz16_probe(struct sbdsp_softc *); 178 void sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port); 179 void sbdsp_to(void *); 180 void sbdsp_pause(struct sbdsp_softc *); 181 int sbdsp_set_timeconst(struct sbdsp_softc *, int); 182 int sbdsp16_set_rate(struct sbdsp_softc *, int, int); 183 int sbdsp_set_in_ports(struct sbdsp_softc *, int); 184 void sbdsp_set_ifilter(void *, int); 185 int sbdsp_get_ifilter(void *); 186 187 int sbdsp_block_output(void *); 188 int sbdsp_block_input(void *); 189 static int sbdsp_adjust(int, int); 190 191 int sbdsp_midi_intr(void *); 192 193 #ifdef AUDIO_DEBUG 194 void sb_printsc(struct sbdsp_softc *); 195 196 void 197 sb_printsc(sc) 198 struct sbdsp_softc *sc; 199 { 200 int i; 201 202 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n", 203 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run, 204 sc->sc_drq8, sc->sc_drq16, 205 sc->sc_iobase, sc->sc_irq); 206 printf("irate %d itc %x orate %d otc %x\n", 207 sc->sc_i.rate, sc->sc_i.tc, 208 sc->sc_o.rate, sc->sc_o.tc); 209 printf("spkron %u nintr %lu\n", 210 sc->spkr_state, sc->sc_interrupts); 211 printf("intr8 %p arg8 %p\n", 212 sc->sc_intr8, sc->sc_arg16); 213 printf("intr16 %p arg16 %p\n", 214 sc->sc_intr8, sc->sc_arg16); 215 printf("gain:"); 216 for (i = 0; i < SB_NDEVS; i++) 217 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]); 218 printf("\n"); 219 } 220 #endif /* AUDIO_DEBUG */ 221 222 /* 223 * Probe / attach routines. 224 */ 225 226 /* 227 * Probe for the soundblaster hardware. 228 */ 229 int 230 sbdsp_probe(sc) 231 struct sbdsp_softc *sc; 232 { 233 234 if (sbdsp_reset(sc) < 0) { 235 DPRINTF(("sbdsp: couldn't reset card\n")); 236 return 0; 237 } 238 /* if flags set, go and probe the jazz16 stuff */ 239 if (sc->sc_dev.dv_cfdata->cf_flags & 1) 240 sbdsp_jazz16_probe(sc); 241 else 242 sbversion(sc); 243 if (sc->sc_model == SB_UNK) { 244 /* Unknown SB model found. */ 245 DPRINTF(("sbdsp: unknown SB model found\n")); 246 return 0; 247 } 248 return 1; 249 } 250 251 /* 252 * Try add-on stuff for Jazz16. 253 */ 254 void 255 sbdsp_jazz16_probe(sc) 256 struct sbdsp_softc *sc; 257 { 258 static u_char jazz16_irq_conf[16] = { 259 -1, -1, 0x02, 0x03, 260 -1, 0x01, -1, 0x04, 261 -1, 0x02, 0x05, -1, 262 -1, -1, -1, 0x06}; 263 static u_char jazz16_drq_conf[8] = { 264 -1, 0x01, -1, 0x02, 265 -1, 0x03, -1, 0x04}; 266 267 bus_space_tag_t iot = sc->sc_iot; 268 bus_space_handle_t ioh; 269 270 sbversion(sc); 271 272 DPRINTF(("jazz16 probe\n")); 273 274 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) { 275 DPRINTF(("bus map failed\n")); 276 return; 277 } 278 279 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 || 280 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) { 281 DPRINTF(("drq/irq check failed\n")); 282 goto done; /* give up, we can't do it. */ 283 } 284 285 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP); 286 delay(10000); /* delay 10 ms */ 287 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE); 288 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70); 289 290 if (sbdsp_reset(sc) < 0) { 291 DPRINTF(("sbdsp_reset check failed\n")); 292 goto done; /* XXX? what else could we do? */ 293 } 294 295 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) { 296 DPRINTF(("read16 setup failed\n")); 297 goto done; 298 } 299 300 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) { 301 DPRINTF(("read16 failed\n")); 302 goto done; 303 } 304 305 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */ 306 sc->sc_drq16 = sc->sc_drq8; 307 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) || 308 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) | 309 jazz16_drq_conf[sc->sc_drq8]) || 310 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) { 311 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n")); 312 } else { 313 DPRINTF(("jazz16 detected!\n")); 314 sc->sc_model = SB_JAZZ; 315 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */ 316 } 317 318 done: 319 bus_space_unmap(iot, ioh, 1); 320 } 321 322 /* 323 * Attach hardware to driver, attach hardware driver to audio 324 * pseudo-device driver . 325 */ 326 void 327 sbdsp_attach(sc) 328 struct sbdsp_softc *sc; 329 { 330 struct audio_params pparams, rparams; 331 int i; 332 u_int v; 333 334 /* 335 * Create our DMA maps. 336 */ 337 if (sc->sc_drq8 != -1) { 338 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8, 339 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 340 printf("%s: can't create map for drq %d\n", 341 sc->sc_dev.dv_xname, sc->sc_drq8); 342 return; 343 } 344 } 345 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) { 346 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16, 347 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 348 printf("%s: can't create map for drq %d\n", 349 sc->sc_dev.dv_xname, sc->sc_drq16); 350 return; 351 } 352 } 353 354 pparams = audio_default; 355 rparams = audio_default; 356 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); 357 358 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL); 359 360 if (sc->sc_mixer_model != SBM_NONE) { 361 /* Reset the mixer.*/ 362 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET); 363 /* And set our own default values */ 364 for (i = 0; i < SB_NDEVS; i++) { 365 switch(i) { 366 case SB_MIC_VOL: 367 case SB_LINE_IN_VOL: 368 v = 0; 369 break; 370 case SB_BASS: 371 case SB_TREBLE: 372 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2); 373 break; 374 case SB_CD_IN_MUTE: 375 case SB_MIC_IN_MUTE: 376 case SB_LINE_IN_MUTE: 377 case SB_MIDI_IN_MUTE: 378 case SB_CD_SWAP: 379 case SB_MIC_SWAP: 380 case SB_LINE_SWAP: 381 case SB_MIDI_SWAP: 382 case SB_CD_OUT_MUTE: 383 case SB_MIC_OUT_MUTE: 384 case SB_LINE_OUT_MUTE: 385 v = 0; 386 break; 387 default: 388 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2); 389 break; 390 } 391 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v; 392 sbdsp_set_mixer_gain(sc, i); 393 } 394 sc->in_filter = 0; /* no filters turned on, please */ 395 } 396 397 printf(": dsp v%d.%02d%s\n", 398 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version), 399 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : ""); 400 401 timeout_set(&sc->sc_tmo, sbdsp_to, sbdsp_to); 402 sc->sc_fullduplex = ISSB16CLASS(sc) && 403 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 && 404 sc->sc_drq8 != sc->sc_drq16; 405 } 406 407 void 408 sbdsp_mix_write(sc, mixerport, val) 409 struct sbdsp_softc *sc; 410 int mixerport; 411 int val; 412 { 413 bus_space_tag_t iot = sc->sc_iot; 414 bus_space_handle_t ioh = sc->sc_ioh; 415 416 mtx_enter(&audio_lock); 417 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 418 delay(20); 419 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val); 420 delay(30); 421 mtx_leave(&audio_lock); 422 } 423 424 int 425 sbdsp_mix_read(sc, mixerport) 426 struct sbdsp_softc *sc; 427 int mixerport; 428 { 429 bus_space_tag_t iot = sc->sc_iot; 430 bus_space_handle_t ioh = sc->sc_ioh; 431 int val; 432 433 mtx_enter(&audio_lock); 434 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 435 delay(20); 436 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA); 437 delay(30); 438 mtx_leave(&audio_lock); 439 return val; 440 } 441 442 /* 443 * Various routines to interface to higher level audio driver 444 */ 445 446 int 447 sbdsp_query_encoding(addr, fp) 448 void *addr; 449 struct audio_encoding *fp; 450 { 451 struct sbdsp_softc *sc = addr; 452 int emul, found = 0; 453 454 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED; 455 456 switch (fp->index) { 457 case 0: 458 strlcpy(fp->name, AudioEulinear, sizeof fp->name); 459 fp->encoding = AUDIO_ENCODING_ULINEAR; 460 fp->precision = 8; 461 fp->flags = 0; 462 found = 1; 463 break; 464 case 1: 465 strlcpy(fp->name, AudioEmulaw, sizeof fp->name); 466 fp->encoding = AUDIO_ENCODING_ULAW; 467 fp->precision = 8; 468 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 469 found = 1; 470 break; 471 case 2: 472 strlcpy(fp->name, AudioEalaw, sizeof fp->name); 473 fp->encoding = AUDIO_ENCODING_ALAW; 474 fp->precision = 8; 475 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 476 found = 1; 477 break; 478 case 3: 479 strlcpy(fp->name, AudioEslinear, sizeof fp->name); 480 fp->encoding = AUDIO_ENCODING_SLINEAR; 481 fp->precision = 8; 482 fp->flags = emul; 483 found = 1; 484 break; 485 } 486 if (found) { 487 fp->bps = 1; 488 fp->msb = 1; 489 return 0; 490 } else if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ) 491 return EINVAL; 492 493 switch(fp->index) { 494 case 4: 495 strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); 496 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 497 fp->precision = 16; 498 fp->flags = 0; 499 break; 500 case 5: 501 strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); 502 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 503 fp->precision = 16; 504 fp->flags = emul; 505 break; 506 case 6: 507 strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); 508 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 509 fp->precision = 16; 510 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 511 break; 512 case 7: 513 strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); 514 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 515 fp->precision = 16; 516 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 517 break; 518 default: 519 return EINVAL; 520 } 521 fp->bps = 2; 522 fp->msb = 1; 523 return 0; 524 } 525 526 int 527 sbdsp_set_params(addr, setmode, usemode, play, rec) 528 void *addr; 529 int setmode, usemode; 530 struct audio_params *play, *rec; 531 { 532 struct sbdsp_softc *sc = addr; 533 struct sbmode *m; 534 u_int rate, tc, bmode; 535 void (*swcode)(void *, u_char *buf, int cnt); 536 int factor; 537 int model; 538 int chan; 539 struct audio_params *p; 540 int mode; 541 542 if (sc->sc_open == SB_OPEN_MIDI) 543 return EBUSY; 544 545 model = sc->sc_model; 546 if (model > SB_16) 547 model = SB_16; /* later models work like SB16 */ 548 549 /* 550 * Prior to the SB16, we have only one clock, so make the sample 551 * rates match. 552 */ 553 if (!ISSB16CLASS(sc) && 554 play->sample_rate != rec->sample_rate && 555 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 556 if (setmode == AUMODE_PLAY) { 557 rec->sample_rate = play->sample_rate; 558 setmode |= AUMODE_RECORD; 559 } else if (setmode == AUMODE_RECORD) { 560 play->sample_rate = rec->sample_rate; 561 setmode |= AUMODE_PLAY; 562 } else 563 return (EINVAL); 564 } 565 566 /* Set first record info, then play info */ 567 for (mode = AUMODE_RECORD; mode != -1; 568 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 569 if ((setmode & mode) == 0) 570 continue; 571 572 p = mode == AUMODE_PLAY ? play : rec; 573 574 switch (model) { 575 case SB_1: 576 case SB_20: 577 if (mode == AUMODE_PLAY) { 578 if (p->sample_rate < 4000) 579 p->sample_rate = 4000; 580 else if (p->sample_rate > 22727) 581 p->sample_rate = 22727; /* 22050 ? */ 582 } else { 583 if (p->sample_rate < 4000) 584 p->sample_rate = 4000; 585 else if (p->sample_rate > 12987) 586 p->sample_rate = 12987; 587 } 588 break; 589 case SB_2x: 590 if (mode == AUMODE_PLAY) { 591 if (p->sample_rate < 4000) 592 p->sample_rate = 4000; 593 else if (p->sample_rate > 45454) 594 p->sample_rate = 45454; /* 44100 ? */ 595 } else { 596 if (p->sample_rate < 4000) 597 p->sample_rate = 4000; 598 else if (p->sample_rate > 14925) 599 p->sample_rate = 14925; /* ??? */ 600 } 601 break; 602 case SB_PRO: 603 case SB_JAZZ: 604 if (p->channels == 2) { 605 if (p->sample_rate < 11025) 606 p->sample_rate = 11025; 607 else if (p->sample_rate > 22727) 608 p->sample_rate = 22727; /* 22050 ? */ 609 } else { 610 if (p->sample_rate < 4000) 611 p->sample_rate = 4000; 612 else if (p->sample_rate > 45454) 613 p->sample_rate = 45454; /* 44100 ? */ 614 } 615 break; 616 case SB_16: 617 if (p->sample_rate < 5000) 618 p->sample_rate = 5000; 619 else if (p->sample_rate > 45000) 620 p->sample_rate = 45000; /* 44100 ? */ 621 break; 622 } 623 624 /* Locate proper commands */ 625 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes; 626 m->model != -1; m++) { 627 if (model == m->model && 628 p->channels == m->channels && 629 p->precision == m->precision && 630 p->sample_rate >= m->lowrate && 631 p->sample_rate <= m->highrate) 632 break; 633 } 634 if (m->model == -1) 635 return EINVAL; 636 rate = p->sample_rate; 637 swcode = 0; 638 factor = 1; 639 tc = 1; 640 bmode = -1; 641 if (model == SB_16) { 642 switch (p->encoding) { 643 case AUDIO_ENCODING_SLINEAR_BE: 644 if (p->precision == 16) 645 swcode = swap_bytes; 646 /* fall into */ 647 case AUDIO_ENCODING_SLINEAR_LE: 648 bmode = SB_BMODE_SIGNED; 649 break; 650 case AUDIO_ENCODING_ULINEAR_BE: 651 if (p->precision == 16) 652 swcode = swap_bytes; 653 /* fall into */ 654 case AUDIO_ENCODING_ULINEAR_LE: 655 bmode = SB_BMODE_UNSIGNED; 656 break; 657 case AUDIO_ENCODING_ULAW: 658 if (mode == AUMODE_PLAY) { 659 swcode = mulaw_to_ulinear16_le; 660 factor = 2; 661 m = &sbpmodes[PLAY16]; 662 } else 663 swcode = ulinear8_to_mulaw; 664 bmode = SB_BMODE_UNSIGNED; 665 break; 666 case AUDIO_ENCODING_ALAW: 667 if (mode == AUMODE_PLAY) { 668 swcode = alaw_to_ulinear16_le; 669 factor = 2; 670 m = &sbpmodes[PLAY16]; 671 } else 672 swcode = ulinear8_to_alaw; 673 bmode = SB_BMODE_UNSIGNED; 674 break; 675 default: 676 return EINVAL; 677 } 678 if (p->channels == 2) 679 bmode |= SB_BMODE_STEREO; 680 } else if (m->model == SB_JAZZ && m->precision == 16) { 681 switch (p->encoding) { 682 case AUDIO_ENCODING_SLINEAR_LE: 683 break; 684 case AUDIO_ENCODING_ULINEAR_LE: 685 swcode = change_sign16_le; 686 break; 687 case AUDIO_ENCODING_SLINEAR_BE: 688 swcode = swap_bytes; 689 break; 690 case AUDIO_ENCODING_ULINEAR_BE: 691 swcode = mode == AUMODE_PLAY ? 692 swap_bytes_change_sign16_le : change_sign16_swap_bytes_le; 693 break; 694 case AUDIO_ENCODING_ULAW: 695 swcode = mode == AUMODE_PLAY ? 696 mulaw_to_ulinear8 : ulinear8_to_mulaw; 697 break; 698 case AUDIO_ENCODING_ALAW: 699 swcode = mode == AUMODE_PLAY ? 700 alaw_to_ulinear8 : ulinear8_to_alaw; 701 break; 702 default: 703 return EINVAL; 704 } 705 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 706 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 707 } else { 708 switch (p->encoding) { 709 case AUDIO_ENCODING_SLINEAR_BE: 710 case AUDIO_ENCODING_SLINEAR_LE: 711 swcode = change_sign8; 712 break; 713 case AUDIO_ENCODING_ULINEAR_BE: 714 case AUDIO_ENCODING_ULINEAR_LE: 715 break; 716 case AUDIO_ENCODING_ULAW: 717 swcode = mode == AUMODE_PLAY ? 718 mulaw_to_ulinear8 : ulinear8_to_mulaw; 719 break; 720 case AUDIO_ENCODING_ALAW: 721 swcode = mode == AUMODE_PLAY ? 722 alaw_to_ulinear8 : ulinear8_to_alaw; 723 break; 724 default: 725 return EINVAL; 726 } 727 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 728 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 729 } 730 731 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8; 732 if (mode == AUMODE_PLAY) { 733 sc->sc_o.rate = rate; 734 sc->sc_o.tc = tc; 735 sc->sc_o.modep = m; 736 sc->sc_o.bmode = bmode; 737 sc->sc_o.dmachan = chan; 738 } else { 739 sc->sc_i.rate = rate; 740 sc->sc_i.tc = tc; 741 sc->sc_i.modep = m; 742 sc->sc_i.bmode = bmode; 743 sc->sc_i.dmachan = chan; 744 } 745 746 p->sw_code = swcode; 747 p->factor = factor; 748 p->bps = AUDIO_BPS(p->precision); 749 p->msb = 1; 750 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n", 751 sc->sc_model, mode, p->sample_rate, p->precision, p->channels, 752 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor)); 753 754 } 755 756 /* 757 * XXX 758 * Should wait for chip to be idle. 759 */ 760 sc->sc_i.run = SB_NOTRUNNING; 761 sc->sc_o.run = SB_NOTRUNNING; 762 763 if (sc->sc_fullduplex && 764 usemode == (AUMODE_PLAY | AUMODE_RECORD) && 765 sc->sc_i.dmachan == sc->sc_o.dmachan) { 766 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan)); 767 if (sc->sc_o.dmachan == sc->sc_drq8) { 768 /* Use 16 bit DMA for playing by expanding the samples. */ 769 play->sw_code = linear8_to_linear16_le; 770 play->factor = 2; 771 sc->sc_o.modep = &sbpmodes[PLAY16]; 772 sc->sc_o.dmachan = sc->sc_drq16; 773 } else { 774 return EINVAL; 775 } 776 } 777 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n", 778 sc->sc_i.dmachan, sc->sc_o.dmachan)); 779 780 return 0; 781 } 782 783 void 784 sbdsp_set_ifilter(addr, which) 785 void *addr; 786 int which; 787 { 788 struct sbdsp_softc *sc = addr; 789 int mixval; 790 791 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK; 792 switch (which) { 793 case 0: 794 mixval |= SBP_FILTER_OFF; 795 break; 796 case SB_TREBLE: 797 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH; 798 break; 799 case SB_BASS: 800 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW; 801 break; 802 default: 803 return; 804 } 805 sc->in_filter = mixval & SBP_IFILTER_MASK; 806 sbdsp_mix_write(sc, SBP_INFILTER, mixval); 807 } 808 809 int 810 sbdsp_get_ifilter(addr) 811 void *addr; 812 { 813 struct sbdsp_softc *sc = addr; 814 815 sc->in_filter = 816 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK; 817 switch (sc->in_filter) { 818 case SBP_FILTER_ON|SBP_IFILTER_HIGH: 819 return SB_TREBLE; 820 case SBP_FILTER_ON|SBP_IFILTER_LOW: 821 return SB_BASS; 822 default: 823 return 0; 824 } 825 } 826 827 int 828 sbdsp_set_in_ports(sc, mask) 829 struct sbdsp_softc *sc; 830 int mask; 831 { 832 int bitsl, bitsr; 833 int sbport; 834 835 if (sc->sc_open == SB_OPEN_MIDI) 836 return EBUSY; 837 838 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n", 839 sc->sc_mixer_model, mask)); 840 841 switch(sc->sc_mixer_model) { 842 case SBM_NONE: 843 return EINVAL; 844 case SBM_CT1335: 845 if (mask != (1 << SB_MIC_VOL)) 846 return EINVAL; 847 break; 848 case SBM_CT1345: 849 switch (mask) { 850 case 1 << SB_MIC_VOL: 851 sbport = SBP_FROM_MIC; 852 break; 853 case 1 << SB_LINE_IN_VOL: 854 sbport = SBP_FROM_LINE; 855 break; 856 case 1 << SB_CD_VOL: 857 sbport = SBP_FROM_CD; 858 break; 859 default: 860 return (EINVAL); 861 } 862 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter); 863 break; 864 case SBM_CT1XX5: 865 case SBM_CT1745: 866 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) | 867 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL))) 868 return EINVAL; 869 bitsr = 0; 870 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R; 871 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R; 872 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R; 873 bitsl = SB_SRC_R_TO_L(bitsr); 874 if (mask & (1<<SB_MIC_VOL)) { 875 bitsl |= SBP_MIC_SRC; 876 bitsr |= SBP_MIC_SRC; 877 } 878 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl); 879 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr); 880 break; 881 } 882 sc->in_mask = mask; 883 884 return 0; 885 } 886 887 int 888 sbdsp_speaker_ctl(addr, newstate) 889 void *addr; 890 int newstate; 891 { 892 struct sbdsp_softc *sc = addr; 893 894 if (sc->sc_open == SB_OPEN_MIDI) 895 return EBUSY; 896 897 if ((newstate == SPKR_ON) && 898 (sc->spkr_state == SPKR_OFF)) { 899 sbdsp_spkron(sc); 900 sc->spkr_state = SPKR_ON; 901 } 902 if ((newstate == SPKR_OFF) && 903 (sc->spkr_state == SPKR_ON)) { 904 sbdsp_spkroff(sc); 905 sc->spkr_state = SPKR_OFF; 906 } 907 return 0; 908 } 909 910 int 911 sbdsp_round_blocksize(addr, blk) 912 void *addr; 913 int blk; 914 { 915 return (blk + 3) & -4; /* round to biggest sample size */ 916 } 917 918 int 919 sbdsp_open(addr, flags) 920 void *addr; 921 int flags; 922 { 923 struct sbdsp_softc *sc = addr; 924 925 DPRINTF(("sbdsp_open: sc=%p\n", sc)); 926 927 if (sc->sc_open != SB_CLOSED) 928 return EBUSY; 929 if (sbdsp_reset(sc) != 0) 930 return EIO; 931 932 sc->sc_open = SB_OPEN_AUDIO; 933 sc->sc_openflags = flags; 934 sc->sc_intrm = 0; 935 if (ISSBPRO(sc) && 936 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) { 937 DPRINTF(("sbdsp_open: can't set mono mode\n")); 938 /* we'll readjust when it's time for DMA. */ 939 } 940 941 /* 942 * Leave most things as they were; users must change things if 943 * the previous process didn't leave it they way they wanted. 944 * Looked at another way, it's easy to set up a configuration 945 * in one program and leave it for another to inherit. 946 */ 947 DPRINTF(("sbdsp_open: opened\n")); 948 949 return 0; 950 } 951 952 void 953 sbdsp_close(addr) 954 void *addr; 955 { 956 struct sbdsp_softc *sc = addr; 957 958 DPRINTF(("sbdsp_close: sc=%p\n", sc)); 959 960 sc->sc_open = SB_CLOSED; 961 sbdsp_spkroff(sc); 962 sc->spkr_state = SPKR_OFF; 963 sc->sc_intr8 = 0; 964 sc->sc_intr16 = 0; 965 sc->sc_intrm = 0; 966 sbdsp_haltdma(sc); 967 968 DPRINTF(("sbdsp_close: closed\n")); 969 } 970 971 /* 972 * Lower-level routines 973 */ 974 975 /* 976 * Reset the card. 977 * Return non-zero if the card isn't detected. 978 */ 979 int 980 sbdsp_reset(sc) 981 struct sbdsp_softc *sc; 982 { 983 bus_space_tag_t iot = sc->sc_iot; 984 bus_space_handle_t ioh = sc->sc_ioh; 985 986 sc->sc_intr8 = 0; 987 sc->sc_intr16 = 0; 988 if (sc->sc_i.run != SB_NOTRUNNING) { 989 isa_dmaabort(sc->sc_isa, sc->sc_i.dmachan); 990 sc->sc_i.run = SB_NOTRUNNING; 991 } 992 if (sc->sc_o.run != SB_NOTRUNNING) { 993 isa_dmaabort(sc->sc_isa, sc->sc_o.dmachan); 994 sc->sc_o.run = SB_NOTRUNNING; 995 } 996 997 /* 998 * See SBK, section 11.3. 999 * We pulse a reset signal into the card. 1000 * Gee, what a brilliant hardware design. 1001 */ 1002 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1); 1003 delay(10); 1004 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0); 1005 delay(30); 1006 if (sbdsp_rdsp(sc) != SB_MAGIC) 1007 return -1; 1008 1009 return 0; 1010 } 1011 1012 /* 1013 * Write a byte to the dsp. 1014 * We are at the mercy of the card as we use a 1015 * polling loop and wait until it can take the byte. 1016 */ 1017 int 1018 sbdsp_wdsp(sc, v) 1019 struct sbdsp_softc *sc; 1020 int v; 1021 { 1022 bus_space_tag_t iot = sc->sc_iot; 1023 bus_space_handle_t ioh = sc->sc_ioh; 1024 int i; 1025 u_char x; 1026 1027 for (i = SBDSP_NPOLL; --i >= 0; ) { 1028 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT); 1029 delay(10); 1030 if ((x & SB_DSP_BUSY) == 0) { 1031 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v); 1032 delay(10); 1033 return 0; 1034 } 1035 } 1036 ++sberr.wdsp; 1037 return -1; 1038 } 1039 1040 /* 1041 * Read a byte from the DSP, using polling. 1042 */ 1043 int 1044 sbdsp_rdsp(sc) 1045 struct sbdsp_softc *sc; 1046 { 1047 bus_space_tag_t iot = sc->sc_iot; 1048 bus_space_handle_t ioh = sc->sc_ioh; 1049 int i; 1050 u_char x; 1051 1052 for (i = SBDSP_NPOLL; --i >= 0; ) { 1053 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT); 1054 delay(10); 1055 if (x & SB_DSP_READY) { 1056 x = bus_space_read_1(iot, ioh, SBP_DSP_READ); 1057 delay(10); 1058 return x; 1059 } 1060 } 1061 ++sberr.rdsp; 1062 return -1; 1063 } 1064 1065 /* 1066 * Doing certain things (like toggling the speaker) make 1067 * the SB hardware go away for a while, so pause a little. 1068 */ 1069 void 1070 sbdsp_to(arg) 1071 void *arg; 1072 { 1073 wakeup(arg); 1074 } 1075 1076 void 1077 sbdsp_pause(sc) 1078 struct sbdsp_softc *sc; 1079 { 1080 timeout_add_msec(&sc->sc_tmo, 125); /* 8x per second */ 1081 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0); 1082 } 1083 1084 /* 1085 * Turn on the speaker. The SBK documention says this operation 1086 * can take up to 1/10 of a second. Higher level layers should 1087 * probably let the task sleep for this amount of time after 1088 * calling here. Otherwise, things might not work (because 1089 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.) 1090 * 1091 * These engineers had their heads up their ass when 1092 * they designed this card. 1093 */ 1094 void 1095 sbdsp_spkron(sc) 1096 struct sbdsp_softc *sc; 1097 { 1098 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON); 1099 sbdsp_pause(sc); 1100 } 1101 1102 /* 1103 * Turn off the speaker; see comment above. 1104 */ 1105 void 1106 sbdsp_spkroff(sc) 1107 struct sbdsp_softc *sc; 1108 { 1109 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF); 1110 sbdsp_pause(sc); 1111 } 1112 1113 /* 1114 * Read the version number out of the card. 1115 * Store version information in the softc. 1116 */ 1117 void 1118 sbversion(sc) 1119 struct sbdsp_softc *sc; 1120 { 1121 int v; 1122 1123 sc->sc_model = SB_UNK; 1124 sc->sc_version = 0; 1125 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0) 1126 return; 1127 v = sbdsp_rdsp(sc) << 8; 1128 v |= sbdsp_rdsp(sc); 1129 if (v < 0) 1130 return; 1131 sc->sc_version = v; 1132 switch(SBVER_MAJOR(v)) { 1133 case 1: 1134 sc->sc_mixer_model = SBM_NONE; 1135 sc->sc_model = SB_1; 1136 break; 1137 case 2: 1138 /* Some SB2 have a mixer, some don't. */ 1139 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04); 1140 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06); 1141 /* Check if we can read back the mixer values. */ 1142 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 && 1143 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06) 1144 sc->sc_mixer_model = SBM_CT1335; 1145 else 1146 sc->sc_mixer_model = SBM_NONE; 1147 if (SBVER_MINOR(v) == 0) 1148 sc->sc_model = SB_20; 1149 else 1150 sc->sc_model = SB_2x; 1151 break; 1152 case 3: 1153 sc->sc_mixer_model = SBM_CT1345; 1154 sc->sc_model = SB_PRO; 1155 break; 1156 case 4: 1157 #if 0 1158 /* XXX This does not work */ 1159 /* Most SB16 have a tone controls, but some don't. */ 1160 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80); 1161 /* Check if we can read back the mixer value. */ 1162 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80) 1163 sc->sc_mixer_model = SBM_CT1745; 1164 else 1165 sc->sc_mixer_model = SBM_CT1XX5; 1166 #else 1167 sc->sc_mixer_model = SBM_CT1745; 1168 #endif 1169 #if 0 1170 /* XXX figure out a good way of determining the model */ 1171 /* XXX what about SB_32 */ 1172 if (SBVER_MINOR(v) == 16) 1173 sc->sc_model = SB_64; 1174 else 1175 #endif 1176 sc->sc_model = SB_16; 1177 break; 1178 } 1179 } 1180 1181 /* 1182 * Halt a DMA in progress. 1183 */ 1184 int 1185 sbdsp_haltdma(addr) 1186 void *addr; 1187 { 1188 struct sbdsp_softc *sc = addr; 1189 1190 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc)); 1191 1192 mtx_enter(&audio_lock); 1193 sbdsp_reset(sc); 1194 mtx_leave(&audio_lock); 1195 return 0; 1196 } 1197 1198 int 1199 sbdsp_set_timeconst(sc, tc) 1200 struct sbdsp_softc *sc; 1201 int tc; 1202 { 1203 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc)); 1204 1205 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 || 1206 sbdsp_wdsp(sc, tc) < 0) 1207 return EIO; 1208 1209 return 0; 1210 } 1211 1212 int 1213 sbdsp16_set_rate(sc, cmd, rate) 1214 struct sbdsp_softc *sc; 1215 int cmd, rate; 1216 { 1217 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate)); 1218 1219 if (sbdsp_wdsp(sc, cmd) < 0 || 1220 sbdsp_wdsp(sc, rate >> 8) < 0 || 1221 sbdsp_wdsp(sc, rate) < 0) 1222 return EIO; 1223 return 0; 1224 } 1225 1226 int 1227 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param) 1228 void *addr; 1229 void *start, *end; 1230 int blksize; 1231 void (*intr)(void *); 1232 void *arg; 1233 struct audio_params *param; 1234 { 1235 struct sbdsp_softc *sc = addr; 1236 int stereo = param->channels == 2; 1237 int width = param->precision * param->factor; 1238 int filter; 1239 int rc; 1240 1241 #ifdef DIAGNOSTIC 1242 if (stereo && (blksize & 1)) { 1243 DPRINTF(("stereo record odd bytes (%d)\n", blksize)); 1244 return (EIO); 1245 } 1246 #endif 1247 1248 sc->sc_intrr = intr; 1249 sc->sc_argr = arg; 1250 1251 if (width == 8) { 1252 #ifdef DIAGNOSTIC 1253 if (sc->sc_i.dmachan != sc->sc_drq8) { 1254 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1255 width, sc->sc_i.dmachan); 1256 return (EIO); 1257 } 1258 #endif 1259 sc->sc_intr8 = sbdsp_block_input; 1260 sc->sc_arg8 = addr; 1261 } else { 1262 #ifdef DIAGNOSTIC 1263 if (sc->sc_i.dmachan != sc->sc_drq16) { 1264 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1265 width, sc->sc_i.dmachan); 1266 return (EIO); 1267 } 1268 #endif 1269 sc->sc_intr16 = sbdsp_block_input; 1270 sc->sc_arg16 = addr; 1271 } 1272 1273 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16)) 1274 blksize >>= 1; 1275 --blksize; 1276 sc->sc_i.blksize = blksize; 1277 1278 if (ISSBPRO(sc)) { 1279 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0) 1280 return (EIO); 1281 filter = stereo ? SBP_FILTER_OFF : sc->in_filter; 1282 sbdsp_mix_write(sc, SBP_INFILTER, 1283 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) | 1284 filter); 1285 } 1286 1287 if (ISSB16CLASS(sc)) { 1288 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) { 1289 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n", 1290 sc->sc_i.rate)); 1291 return (EIO); 1292 } 1293 } else { 1294 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) { 1295 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n", 1296 sc->sc_i.rate)); 1297 return (EIO); 1298 } 1299 } 1300 1301 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n", 1302 start, end, sc->sc_i.dmachan)); 1303 mtx_enter(&audio_lock); 1304 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, start, (char *)end - 1305 (char *)start, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1306 rc = sbdsp_block_input(addr); 1307 mtx_leave(&audio_lock); 1308 return rc; 1309 } 1310 1311 int 1312 sbdsp_block_input(addr) 1313 void *addr; 1314 { 1315 struct sbdsp_softc *sc = addr; 1316 int cc = sc->sc_i.blksize; 1317 1318 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc)); 1319 1320 if (sc->sc_i.run != SB_NOTRUNNING) 1321 sc->sc_intrr(sc->sc_argr); 1322 1323 if (sc->sc_model == SB_1) { 1324 /* Non-looping mode, start DMA */ 1325 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1326 sbdsp_wdsp(sc, cc) < 0 || 1327 sbdsp_wdsp(sc, cc >> 8) < 0) { 1328 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n")); 1329 return (EIO); 1330 } 1331 sc->sc_i.run = SB_RUNNING; 1332 } else if (sc->sc_i.run == SB_NOTRUNNING) { 1333 /* Initialize looping PCM */ 1334 if (ISSB16CLASS(sc)) { 1335 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n", 1336 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc)); 1337 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1338 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 || 1339 sbdsp_wdsp(sc, cc) < 0 || 1340 sbdsp_wdsp(sc, cc >> 8) < 0) { 1341 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n")); 1342 return (EIO); 1343 } 1344 } else { 1345 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc)); 1346 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1347 sbdsp_wdsp(sc, cc) < 0 || 1348 sbdsp_wdsp(sc, cc >> 8) < 0) { 1349 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n")); 1350 return (EIO); 1351 } 1352 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) { 1353 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n")); 1354 return (EIO); 1355 } 1356 } 1357 sc->sc_i.run = SB_LOOPING; 1358 } 1359 1360 return (0); 1361 } 1362 1363 int 1364 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param) 1365 void *addr; 1366 void *start, *end; 1367 int blksize; 1368 void (*intr)(void *); 1369 void *arg; 1370 struct audio_params *param; 1371 { 1372 struct sbdsp_softc *sc = addr; 1373 int stereo = param->channels == 2; 1374 int width = param->precision * param->factor; 1375 int cmd; 1376 int rc; 1377 1378 #ifdef DIAGNOSTIC 1379 if (stereo && (blksize & 1)) { 1380 DPRINTF(("stereo playback odd bytes (%d)\n", blksize)); 1381 return (EIO); 1382 } 1383 #endif 1384 1385 sc->sc_intrp = intr; 1386 sc->sc_argp = arg; 1387 1388 if (width == 8) { 1389 #ifdef DIAGNOSTIC 1390 if (sc->sc_o.dmachan != sc->sc_drq8) { 1391 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1392 width, sc->sc_o.dmachan); 1393 return (EIO); 1394 } 1395 #endif 1396 sc->sc_intr8 = sbdsp_block_output; 1397 sc->sc_arg8 = addr; 1398 } else { 1399 #ifdef DIAGNOSTIC 1400 if (sc->sc_o.dmachan != sc->sc_drq16) { 1401 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1402 width, sc->sc_o.dmachan); 1403 return (EIO); 1404 } 1405 #endif 1406 sc->sc_intr16 = sbdsp_block_output; 1407 sc->sc_arg16 = addr; 1408 } 1409 1410 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16)) 1411 blksize >>= 1; 1412 --blksize; 1413 sc->sc_o.blksize = blksize; 1414 1415 if (ISSBPRO(sc)) { 1416 /* make sure we re-set stereo mixer bit when we start output. */ 1417 sbdsp_mix_write(sc, SBP_STEREO, 1418 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) | 1419 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO)); 1420 cmd = sc->sc_o.modep->cmdchan; 1421 if (cmd && sbdsp_wdsp(sc, cmd) < 0) 1422 return (EIO); 1423 } 1424 1425 if (ISSB16CLASS(sc)) { 1426 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) { 1427 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n", 1428 sc->sc_o.rate)); 1429 return (EIO); 1430 } 1431 } else { 1432 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) { 1433 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n", 1434 sc->sc_o.rate)); 1435 return (EIO); 1436 } 1437 } 1438 1439 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n", 1440 start, end, sc->sc_o.dmachan)); 1441 mtx_enter(&audio_lock); 1442 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, start, (char *)end - 1443 (char *)start, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1444 rc = sbdsp_block_output(addr); 1445 mtx_leave(&audio_lock); 1446 return rc; 1447 } 1448 1449 int 1450 sbdsp_block_output(addr) 1451 void *addr; 1452 { 1453 struct sbdsp_softc *sc = addr; 1454 int cc = sc->sc_o.blksize; 1455 1456 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc)); 1457 1458 if (sc->sc_o.run != SB_NOTRUNNING) 1459 sc->sc_intrp(sc->sc_argp); 1460 1461 if (sc->sc_model == SB_1) { 1462 /* Non-looping mode, initialized. Start DMA and PCM */ 1463 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1464 sbdsp_wdsp(sc, cc) < 0 || 1465 sbdsp_wdsp(sc, cc >> 8) < 0) { 1466 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n")); 1467 return (EIO); 1468 } 1469 sc->sc_o.run = SB_RUNNING; 1470 } else if (sc->sc_o.run == SB_NOTRUNNING) { 1471 /* Initialize looping PCM */ 1472 if (ISSB16CLASS(sc)) { 1473 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n", 1474 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc)); 1475 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1476 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 || 1477 sbdsp_wdsp(sc, cc) < 0 || 1478 sbdsp_wdsp(sc, cc >> 8) < 0) { 1479 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n")); 1480 return (EIO); 1481 } 1482 } else { 1483 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc)); 1484 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1485 sbdsp_wdsp(sc, cc) < 0 || 1486 sbdsp_wdsp(sc, cc >> 8) < 0) { 1487 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n")); 1488 return (EIO); 1489 } 1490 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) { 1491 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n")); 1492 return (EIO); 1493 } 1494 } 1495 sc->sc_o.run = SB_LOOPING; 1496 } 1497 1498 return (0); 1499 } 1500 1501 /* 1502 * Only the DSP unit on the sound blaster generates interrupts. 1503 * There are three cases of interrupt: reception of a midi byte 1504 * (when mode is enabled), completion of dma transmission, or 1505 * completion of a dma reception. 1506 * 1507 * If there is interrupt sharing or a spurious interrupt occurs 1508 * there is no way to distinguish this on an SB2. So if you have 1509 * an SB2 and experience problems, buy an SB16 (it's only $40). 1510 */ 1511 int 1512 sbdsp_intr(arg) 1513 void *arg; 1514 { 1515 struct sbdsp_softc *sc = arg; 1516 u_char irq; 1517 1518 mtx_enter(&audio_lock); 1519 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n", 1520 sc->sc_intr8, sc->sc_intr16)); 1521 if (ISSB16CLASS(sc)) { 1522 bus_space_write_1(sc->sc_iot, sc->sc_ioh, 1523 SBP_MIXER_ADDR, SBP_IRQ_STATUS); 1524 delay(20); 1525 irq = bus_space_read_1(sc->sc_iot, sc->sc_ioh, 1526 SBP_MIXER_DATA); 1527 delay(30); 1528 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) { 1529 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq)); 1530 mtx_leave(&audio_lock); 1531 return 0; 1532 } 1533 } else { 1534 /* XXXX CHECK FOR INTERRUPT */ 1535 irq = SBP_IRQ_DMA8; 1536 } 1537 1538 sc->sc_interrupts++; 1539 delay(10); /* XXX why? */ 1540 1541 /* clear interrupt */ 1542 if (irq & SBP_IRQ_DMA8) { 1543 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8); 1544 if (sc->sc_intr8) 1545 sc->sc_intr8(sc->sc_arg8); 1546 } 1547 if (irq & SBP_IRQ_DMA16) { 1548 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16); 1549 if (sc->sc_intr16) 1550 sc->sc_intr16(sc->sc_arg16); 1551 } 1552 #if NMIDI > 0 1553 if ((irq & SBP_IRQ_MPU401) && sc->sc_hasmpu) { 1554 mpu_intr(&sc->sc_mpu_sc); 1555 } 1556 #endif 1557 mtx_leave(&audio_lock); 1558 return 1; 1559 } 1560 1561 /* Like val & mask, but make sure the result is correctly rounded. */ 1562 #define MAXVAL 256 1563 static int 1564 sbdsp_adjust(val, mask) 1565 int val, mask; 1566 { 1567 val += (MAXVAL - mask) >> 1; 1568 if (val >= MAXVAL) 1569 val = MAXVAL-1; 1570 return val & mask; 1571 } 1572 1573 void 1574 sbdsp_set_mixer_gain(sc, port) 1575 struct sbdsp_softc *sc; 1576 int port; 1577 { 1578 int src, gain; 1579 1580 switch(sc->sc_mixer_model) { 1581 case SBM_NONE: 1582 return; 1583 case SBM_CT1335: 1584 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]); 1585 switch(port) { 1586 case SB_MASTER_VOL: 1587 src = SBP_1335_MASTER_VOL; 1588 break; 1589 case SB_MIDI_VOL: 1590 src = SBP_1335_MIDI_VOL; 1591 break; 1592 case SB_CD_VOL: 1593 src = SBP_1335_CD_VOL; 1594 break; 1595 case SB_VOICE_VOL: 1596 src = SBP_1335_VOICE_VOL; 1597 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]); 1598 break; 1599 default: 1600 return; 1601 } 1602 sbdsp_mix_write(sc, src, gain); 1603 break; 1604 case SBM_CT1345: 1605 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT], 1606 sc->gain[port][SB_RIGHT]); 1607 switch (port) { 1608 case SB_MIC_VOL: 1609 src = SBP_MIC_VOL; 1610 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]); 1611 break; 1612 case SB_MASTER_VOL: 1613 src = SBP_MASTER_VOL; 1614 break; 1615 case SB_LINE_IN_VOL: 1616 src = SBP_LINE_VOL; 1617 break; 1618 case SB_VOICE_VOL: 1619 src = SBP_VOICE_VOL; 1620 break; 1621 case SB_MIDI_VOL: 1622 src = SBP_MIDI_VOL; 1623 break; 1624 case SB_CD_VOL: 1625 src = SBP_CD_VOL; 1626 break; 1627 default: 1628 return; 1629 } 1630 sbdsp_mix_write(sc, src, gain); 1631 break; 1632 case SBM_CT1XX5: 1633 case SBM_CT1745: 1634 switch (port) { 1635 case SB_MIC_VOL: 1636 src = SB16P_MIC_L; 1637 break; 1638 case SB_MASTER_VOL: 1639 src = SB16P_MASTER_L; 1640 break; 1641 case SB_LINE_IN_VOL: 1642 src = SB16P_LINE_L; 1643 break; 1644 case SB_VOICE_VOL: 1645 src = SB16P_VOICE_L; 1646 break; 1647 case SB_MIDI_VOL: 1648 src = SB16P_MIDI_L; 1649 break; 1650 case SB_CD_VOL: 1651 src = SB16P_CD_L; 1652 break; 1653 case SB_INPUT_GAIN: 1654 src = SB16P_INPUT_GAIN_L; 1655 break; 1656 case SB_OUTPUT_GAIN: 1657 src = SB16P_OUTPUT_GAIN_L; 1658 break; 1659 case SB_TREBLE: 1660 src = SB16P_TREBLE_L; 1661 break; 1662 case SB_BASS: 1663 src = SB16P_BASS_L; 1664 break; 1665 case SB_PCSPEAKER: 1666 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]); 1667 return; 1668 default: 1669 return; 1670 } 1671 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]); 1672 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]); 1673 break; 1674 } 1675 } 1676 1677 int 1678 sbdsp_mixer_set_port(addr, cp) 1679 void *addr; 1680 mixer_ctrl_t *cp; 1681 { 1682 struct sbdsp_softc *sc = addr; 1683 int lgain, rgain; 1684 int mask, bits; 1685 int lmask, rmask, lbits, rbits; 1686 int mute, swap; 1687 1688 if (sc->sc_open == SB_OPEN_MIDI) 1689 return EBUSY; 1690 1691 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev, 1692 cp->un.value.num_channels)); 1693 1694 if (sc->sc_mixer_model == SBM_NONE) 1695 return EINVAL; 1696 1697 switch (cp->dev) { 1698 case SB_TREBLE: 1699 case SB_BASS: 1700 if (sc->sc_mixer_model == SBM_CT1345 || 1701 sc->sc_mixer_model == SBM_CT1XX5) { 1702 if (cp->type != AUDIO_MIXER_ENUM) 1703 return EINVAL; 1704 switch (cp->dev) { 1705 case SB_TREBLE: 1706 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0); 1707 return 0; 1708 case SB_BASS: 1709 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0); 1710 return 0; 1711 } 1712 } 1713 case SB_PCSPEAKER: 1714 case SB_INPUT_GAIN: 1715 case SB_OUTPUT_GAIN: 1716 if (!ISSBM1745(sc)) 1717 return EINVAL; 1718 case SB_MIC_VOL: 1719 case SB_LINE_IN_VOL: 1720 if (sc->sc_mixer_model == SBM_CT1335) 1721 return EINVAL; 1722 case SB_VOICE_VOL: 1723 case SB_MIDI_VOL: 1724 case SB_CD_VOL: 1725 case SB_MASTER_VOL: 1726 if (cp->type != AUDIO_MIXER_VALUE) 1727 return EINVAL; 1728 1729 /* 1730 * All the mixer ports are stereo except for the microphone. 1731 * If we get a single-channel gain value passed in, then we 1732 * duplicate it to both left and right channels. 1733 */ 1734 1735 switch (cp->dev) { 1736 case SB_MIC_VOL: 1737 if (cp->un.value.num_channels != 1) 1738 return EINVAL; 1739 1740 lgain = rgain = SB_ADJUST_MIC_GAIN(sc, 1741 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1742 break; 1743 case SB_PCSPEAKER: 1744 if (cp->un.value.num_channels != 1) 1745 return EINVAL; 1746 /* fall into */ 1747 case SB_INPUT_GAIN: 1748 case SB_OUTPUT_GAIN: 1749 lgain = rgain = SB_ADJUST_2_GAIN(sc, 1750 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1751 break; 1752 default: 1753 switch (cp->un.value.num_channels) { 1754 case 1: 1755 lgain = rgain = SB_ADJUST_GAIN(sc, 1756 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1757 break; 1758 case 2: 1759 if (sc->sc_mixer_model == SBM_CT1335) 1760 return EINVAL; 1761 lgain = SB_ADJUST_GAIN(sc, 1762 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1763 rgain = SB_ADJUST_GAIN(sc, 1764 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1765 break; 1766 default: 1767 return EINVAL; 1768 } 1769 break; 1770 } 1771 sc->gain[cp->dev][SB_LEFT] = lgain; 1772 sc->gain[cp->dev][SB_RIGHT] = rgain; 1773 1774 sbdsp_set_mixer_gain(sc, cp->dev); 1775 break; 1776 1777 case SB_RECORD_SOURCE: 1778 if (ISSBM1745(sc)) { 1779 if (cp->type != AUDIO_MIXER_SET) 1780 return EINVAL; 1781 return sbdsp_set_in_ports(sc, cp->un.mask); 1782 } else { 1783 if (cp->type != AUDIO_MIXER_ENUM) 1784 return EINVAL; 1785 sc->in_port = cp->un.ord; 1786 return sbdsp_set_in_ports(sc, 1 << cp->un.ord); 1787 } 1788 break; 1789 1790 case SB_AGC: 1791 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM) 1792 return EINVAL; 1793 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1); 1794 break; 1795 1796 case SB_CD_OUT_MUTE: 1797 mask = SB16P_SW_CD; 1798 goto omute; 1799 case SB_MIC_OUT_MUTE: 1800 mask = SB16P_SW_MIC; 1801 goto omute; 1802 case SB_LINE_OUT_MUTE: 1803 mask = SB16P_SW_LINE; 1804 omute: 1805 if (cp->type != AUDIO_MIXER_ENUM) 1806 return EINVAL; 1807 bits = sbdsp_mix_read(sc, SB16P_OSWITCH); 1808 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1809 if (cp->un.ord) 1810 bits = bits & ~mask; 1811 else 1812 bits = bits | mask; 1813 sbdsp_mix_write(sc, SB16P_OSWITCH, bits); 1814 break; 1815 1816 case SB_MIC_IN_MUTE: 1817 case SB_MIC_SWAP: 1818 lmask = rmask = SB16P_SW_MIC; 1819 goto imute; 1820 case SB_CD_IN_MUTE: 1821 case SB_CD_SWAP: 1822 lmask = SB16P_SW_CD_L; 1823 rmask = SB16P_SW_CD_R; 1824 goto imute; 1825 case SB_LINE_IN_MUTE: 1826 case SB_LINE_SWAP: 1827 lmask = SB16P_SW_LINE_L; 1828 rmask = SB16P_SW_LINE_R; 1829 goto imute; 1830 case SB_MIDI_IN_MUTE: 1831 case SB_MIDI_SWAP: 1832 lmask = SB16P_SW_MIDI_L; 1833 rmask = SB16P_SW_MIDI_R; 1834 imute: 1835 if (cp->type != AUDIO_MIXER_ENUM) 1836 return EINVAL; 1837 mask = lmask | rmask; 1838 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask; 1839 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask; 1840 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1841 if (SB_IS_IN_MUTE(cp->dev)) { 1842 mute = cp->dev; 1843 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP; 1844 } else { 1845 swap = cp->dev; 1846 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP; 1847 } 1848 if (sc->gain[swap][SB_LR]) { 1849 mask = lmask; 1850 lmask = rmask; 1851 rmask = mask; 1852 } 1853 if (!sc->gain[mute][SB_LR]) { 1854 lbits = lbits | lmask; 1855 rbits = rbits | rmask; 1856 } 1857 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits); 1858 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits); 1859 break; 1860 1861 default: 1862 return EINVAL; 1863 } 1864 1865 return 0; 1866 } 1867 1868 int 1869 sbdsp_mixer_get_port(addr, cp) 1870 void *addr; 1871 mixer_ctrl_t *cp; 1872 { 1873 struct sbdsp_softc *sc = addr; 1874 1875 if (sc->sc_open == SB_OPEN_MIDI) 1876 return EBUSY; 1877 1878 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev)); 1879 1880 if (sc->sc_mixer_model == SBM_NONE) 1881 return EINVAL; 1882 1883 switch (cp->dev) { 1884 case SB_TREBLE: 1885 case SB_BASS: 1886 if (sc->sc_mixer_model == SBM_CT1345 || 1887 sc->sc_mixer_model == SBM_CT1XX5) { 1888 switch (cp->dev) { 1889 case SB_TREBLE: 1890 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE; 1891 return 0; 1892 case SB_BASS: 1893 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS; 1894 return 0; 1895 } 1896 } 1897 case SB_PCSPEAKER: 1898 case SB_INPUT_GAIN: 1899 case SB_OUTPUT_GAIN: 1900 if (!ISSBM1745(sc)) 1901 return EINVAL; 1902 case SB_MIC_VOL: 1903 case SB_LINE_IN_VOL: 1904 if (sc->sc_mixer_model == SBM_CT1335) 1905 return EINVAL; 1906 case SB_VOICE_VOL: 1907 case SB_MIDI_VOL: 1908 case SB_CD_VOL: 1909 case SB_MASTER_VOL: 1910 switch (cp->dev) { 1911 case SB_MIC_VOL: 1912 case SB_PCSPEAKER: 1913 if (cp->un.value.num_channels != 1) 1914 return EINVAL; 1915 /* fall into */ 1916 default: 1917 switch (cp->un.value.num_channels) { 1918 case 1: 1919 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1920 sc->gain[cp->dev][SB_LEFT]; 1921 break; 1922 case 2: 1923 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1924 sc->gain[cp->dev][SB_LEFT]; 1925 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1926 sc->gain[cp->dev][SB_RIGHT]; 1927 break; 1928 default: 1929 return EINVAL; 1930 } 1931 break; 1932 } 1933 break; 1934 1935 case SB_RECORD_SOURCE: 1936 if (ISSBM1745(sc)) 1937 cp->un.mask = sc->in_mask; 1938 else 1939 cp->un.ord = sc->in_port; 1940 break; 1941 1942 case SB_AGC: 1943 if (!ISSBM1745(sc)) 1944 return EINVAL; 1945 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC); 1946 break; 1947 1948 case SB_CD_IN_MUTE: 1949 case SB_MIC_IN_MUTE: 1950 case SB_LINE_IN_MUTE: 1951 case SB_MIDI_IN_MUTE: 1952 case SB_CD_SWAP: 1953 case SB_MIC_SWAP: 1954 case SB_LINE_SWAP: 1955 case SB_MIDI_SWAP: 1956 case SB_CD_OUT_MUTE: 1957 case SB_MIC_OUT_MUTE: 1958 case SB_LINE_OUT_MUTE: 1959 cp->un.ord = sc->gain[cp->dev][SB_LR]; 1960 break; 1961 1962 default: 1963 return EINVAL; 1964 } 1965 1966 return 0; 1967 } 1968 1969 int 1970 sbdsp_mixer_query_devinfo(addr, dip) 1971 void *addr; 1972 mixer_devinfo_t *dip; 1973 { 1974 struct sbdsp_softc *sc = addr; 1975 int chan, class, is1745; 1976 1977 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n", 1978 sc->sc_mixer_model, dip->index)); 1979 1980 if (dip->index < 0) 1981 return ENXIO; 1982 1983 if (sc->sc_mixer_model == SBM_NONE) 1984 return ENXIO; 1985 1986 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2; 1987 is1745 = ISSBM1745(sc); 1988 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS; 1989 1990 switch (dip->index) { 1991 case SB_MASTER_VOL: 1992 dip->type = AUDIO_MIXER_VALUE; 1993 dip->mixer_class = SB_OUTPUT_CLASS; 1994 dip->prev = dip->next = AUDIO_MIXER_LAST; 1995 strlcpy(dip->label.name, AudioNmaster, sizeof dip->label.name); 1996 dip->un.v.num_channels = chan; 1997 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 1998 return 0; 1999 case SB_MIDI_VOL: 2000 dip->type = AUDIO_MIXER_VALUE; 2001 dip->mixer_class = class; 2002 dip->prev = AUDIO_MIXER_LAST; 2003 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST; 2004 strlcpy(dip->label.name, AudioNfmsynth, sizeof dip->label.name); 2005 dip->un.v.num_channels = chan; 2006 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2007 return 0; 2008 case SB_CD_VOL: 2009 dip->type = AUDIO_MIXER_VALUE; 2010 dip->mixer_class = class; 2011 dip->prev = AUDIO_MIXER_LAST; 2012 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST; 2013 strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); 2014 dip->un.v.num_channels = chan; 2015 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2016 return 0; 2017 case SB_VOICE_VOL: 2018 dip->type = AUDIO_MIXER_VALUE; 2019 dip->mixer_class = class; 2020 dip->prev = AUDIO_MIXER_LAST; 2021 dip->next = AUDIO_MIXER_LAST; 2022 strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); 2023 dip->un.v.num_channels = chan; 2024 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2025 return 0; 2026 case SB_OUTPUT_CLASS: 2027 dip->type = AUDIO_MIXER_CLASS; 2028 dip->mixer_class = SB_OUTPUT_CLASS; 2029 dip->next = dip->prev = AUDIO_MIXER_LAST; 2030 strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); 2031 return 0; 2032 } 2033 2034 if (sc->sc_mixer_model == SBM_CT1335) 2035 return ENXIO; 2036 2037 switch (dip->index) { 2038 case SB_MIC_VOL: 2039 dip->type = AUDIO_MIXER_VALUE; 2040 dip->mixer_class = class; 2041 dip->prev = AUDIO_MIXER_LAST; 2042 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST; 2043 strlcpy(dip->label.name, AudioNmicrophone, 2044 sizeof dip->label.name); 2045 dip->un.v.num_channels = 1; 2046 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2047 return 0; 2048 2049 case SB_LINE_IN_VOL: 2050 dip->type = AUDIO_MIXER_VALUE; 2051 dip->mixer_class = class; 2052 dip->prev = AUDIO_MIXER_LAST; 2053 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST; 2054 strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); 2055 dip->un.v.num_channels = 2; 2056 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2057 return 0; 2058 2059 case SB_RECORD_SOURCE: 2060 dip->mixer_class = SB_RECORD_CLASS; 2061 dip->prev = dip->next = AUDIO_MIXER_LAST; 2062 strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); 2063 if (ISSBM1745(sc)) { 2064 dip->type = AUDIO_MIXER_SET; 2065 dip->un.s.num_mem = 4; 2066 strlcpy(dip->un.s.member[0].label.name, 2067 AudioNmicrophone, 2068 sizeof dip->un.s.member[0].label.name); 2069 dip->un.s.member[0].mask = 1 << SB_MIC_VOL; 2070 strlcpy(dip->un.s.member[1].label.name, 2071 AudioNcd, sizeof dip->un.s.member[1].label.name); 2072 dip->un.s.member[1].mask = 1 << SB_CD_VOL; 2073 strlcpy(dip->un.s.member[2].label.name, 2074 AudioNline, sizeof dip->un.s.member[2].label.name); 2075 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL; 2076 strlcpy(dip->un.s.member[3].label.name, 2077 AudioNfmsynth, 2078 sizeof dip->un.s.member[3].label.name); 2079 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL; 2080 } else { 2081 dip->type = AUDIO_MIXER_ENUM; 2082 dip->un.e.num_mem = 3; 2083 strlcpy(dip->un.e.member[0].label.name, 2084 AudioNmicrophone, 2085 sizeof dip->un.e.member[0].label.name); 2086 dip->un.e.member[0].ord = SB_MIC_VOL; 2087 strlcpy(dip->un.e.member[1].label.name, AudioNcd, 2088 sizeof dip->un.e.member[1].label.name); 2089 dip->un.e.member[1].ord = SB_CD_VOL; 2090 strlcpy(dip->un.e.member[2].label.name, AudioNline, 2091 sizeof dip->un.e.member[2].label.name); 2092 dip->un.e.member[2].ord = SB_LINE_IN_VOL; 2093 } 2094 return 0; 2095 2096 case SB_BASS: 2097 dip->prev = dip->next = AUDIO_MIXER_LAST; 2098 strlcpy(dip->label.name, AudioNbass, sizeof dip->label.name); 2099 if (sc->sc_mixer_model == SBM_CT1745) { 2100 dip->type = AUDIO_MIXER_VALUE; 2101 dip->mixer_class = SB_EQUALIZATION_CLASS; 2102 dip->un.v.num_channels = 2; 2103 strlcpy(dip->un.v.units.name, AudioNbass, sizeof dip->un.v.units.name); 2104 } else { 2105 dip->type = AUDIO_MIXER_ENUM; 2106 dip->mixer_class = SB_INPUT_CLASS; 2107 dip->un.e.num_mem = 2; 2108 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2109 sizeof dip->un.e.member[0].label.name); 2110 dip->un.e.member[0].ord = 0; 2111 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2112 sizeof dip->un.e.member[1].label.name); 2113 dip->un.e.member[1].ord = 1; 2114 } 2115 return 0; 2116 2117 case SB_TREBLE: 2118 dip->prev = dip->next = AUDIO_MIXER_LAST; 2119 strlcpy(dip->label.name, AudioNtreble, sizeof dip->label.name); 2120 if (sc->sc_mixer_model == SBM_CT1745) { 2121 dip->type = AUDIO_MIXER_VALUE; 2122 dip->mixer_class = SB_EQUALIZATION_CLASS; 2123 dip->un.v.num_channels = 2; 2124 strlcpy(dip->un.v.units.name, AudioNtreble, sizeof dip->un.v.units.name); 2125 } else { 2126 dip->type = AUDIO_MIXER_ENUM; 2127 dip->mixer_class = SB_INPUT_CLASS; 2128 dip->un.e.num_mem = 2; 2129 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2130 sizeof dip->un.e.member[0].label.name); 2131 dip->un.e.member[0].ord = 0; 2132 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2133 sizeof dip->un.e.member[1].label.name); 2134 dip->un.e.member[1].ord = 1; 2135 } 2136 return 0; 2137 2138 case SB_RECORD_CLASS: /* record source class */ 2139 dip->type = AUDIO_MIXER_CLASS; 2140 dip->mixer_class = SB_RECORD_CLASS; 2141 dip->next = dip->prev = AUDIO_MIXER_LAST; 2142 strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); 2143 return 0; 2144 2145 case SB_INPUT_CLASS: 2146 dip->type = AUDIO_MIXER_CLASS; 2147 dip->mixer_class = SB_INPUT_CLASS; 2148 dip->next = dip->prev = AUDIO_MIXER_LAST; 2149 strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); 2150 return 0; 2151 2152 } 2153 2154 if (sc->sc_mixer_model == SBM_CT1345) 2155 return ENXIO; 2156 2157 switch(dip->index) { 2158 case SB_PCSPEAKER: 2159 dip->type = AUDIO_MIXER_VALUE; 2160 dip->mixer_class = SB_INPUT_CLASS; 2161 dip->prev = dip->next = AUDIO_MIXER_LAST; 2162 strlcpy(dip->label.name, "pc_speaker", sizeof dip->label.name); 2163 dip->un.v.num_channels = 1; 2164 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2165 return 0; 2166 2167 case SB_INPUT_GAIN: 2168 dip->type = AUDIO_MIXER_VALUE; 2169 dip->mixer_class = SB_INPUT_CLASS; 2170 dip->prev = dip->next = AUDIO_MIXER_LAST; 2171 strlcpy(dip->label.name, AudioNinput, sizeof dip->label.name); 2172 dip->un.v.num_channels = 2; 2173 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2174 return 0; 2175 2176 case SB_OUTPUT_GAIN: 2177 dip->type = AUDIO_MIXER_VALUE; 2178 dip->mixer_class = SB_OUTPUT_CLASS; 2179 dip->prev = dip->next = AUDIO_MIXER_LAST; 2180 strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); 2181 dip->un.v.num_channels = 2; 2182 strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); 2183 return 0; 2184 2185 case SB_AGC: 2186 dip->type = AUDIO_MIXER_ENUM; 2187 dip->mixer_class = SB_INPUT_CLASS; 2188 dip->prev = dip->next = AUDIO_MIXER_LAST; 2189 strlcpy(dip->label.name, "agc", sizeof dip->label.name); 2190 dip->un.e.num_mem = 2; 2191 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2192 sizeof dip->un.e.member[0].label.name); 2193 dip->un.e.member[0].ord = 0; 2194 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2195 sizeof dip->un.e.member[1].label.name); 2196 dip->un.e.member[1].ord = 1; 2197 return 0; 2198 2199 case SB_EQUALIZATION_CLASS: 2200 dip->type = AUDIO_MIXER_CLASS; 2201 dip->mixer_class = SB_EQUALIZATION_CLASS; 2202 dip->next = dip->prev = AUDIO_MIXER_LAST; 2203 strlcpy(dip->label.name, AudioCequalization, sizeof dip->label.name); 2204 return 0; 2205 2206 case SB_CD_IN_MUTE: 2207 dip->prev = SB_CD_VOL; 2208 dip->next = SB_CD_SWAP; 2209 dip->mixer_class = SB_INPUT_CLASS; 2210 goto mute; 2211 2212 case SB_MIC_IN_MUTE: 2213 dip->prev = SB_MIC_VOL; 2214 dip->next = SB_MIC_SWAP; 2215 dip->mixer_class = SB_INPUT_CLASS; 2216 goto mute; 2217 2218 case SB_LINE_IN_MUTE: 2219 dip->prev = SB_LINE_IN_VOL; 2220 dip->next = SB_LINE_SWAP; 2221 dip->mixer_class = SB_INPUT_CLASS; 2222 goto mute; 2223 2224 case SB_MIDI_IN_MUTE: 2225 dip->prev = SB_MIDI_VOL; 2226 dip->next = SB_MIDI_SWAP; 2227 dip->mixer_class = SB_INPUT_CLASS; 2228 goto mute; 2229 2230 case SB_CD_SWAP: 2231 dip->prev = SB_CD_IN_MUTE; 2232 dip->next = SB_CD_OUT_MUTE; 2233 goto swap; 2234 2235 case SB_MIC_SWAP: 2236 dip->prev = SB_MIC_IN_MUTE; 2237 dip->next = SB_MIC_OUT_MUTE; 2238 goto swap; 2239 2240 case SB_LINE_SWAP: 2241 dip->prev = SB_LINE_IN_MUTE; 2242 dip->next = SB_LINE_OUT_MUTE; 2243 goto swap; 2244 2245 case SB_MIDI_SWAP: 2246 dip->prev = SB_MIDI_IN_MUTE; 2247 dip->next = AUDIO_MIXER_LAST; 2248 swap: 2249 dip->mixer_class = SB_INPUT_CLASS; 2250 strlcpy(dip->label.name, AudioNswap, sizeof dip->label.name); 2251 goto mute1; 2252 2253 case SB_CD_OUT_MUTE: 2254 dip->prev = SB_CD_SWAP; 2255 dip->next = AUDIO_MIXER_LAST; 2256 dip->mixer_class = SB_OUTPUT_CLASS; 2257 goto mute; 2258 2259 case SB_MIC_OUT_MUTE: 2260 dip->prev = SB_MIC_SWAP; 2261 dip->next = AUDIO_MIXER_LAST; 2262 dip->mixer_class = SB_OUTPUT_CLASS; 2263 goto mute; 2264 2265 case SB_LINE_OUT_MUTE: 2266 dip->prev = SB_LINE_SWAP; 2267 dip->next = AUDIO_MIXER_LAST; 2268 dip->mixer_class = SB_OUTPUT_CLASS; 2269 mute: 2270 strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); 2271 mute1: 2272 dip->type = AUDIO_MIXER_ENUM; 2273 dip->un.e.num_mem = 2; 2274 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2275 sizeof dip->un.e.member[0].label.name); 2276 dip->un.e.member[0].ord = 0; 2277 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2278 sizeof dip->un.e.member[1].label.name); 2279 dip->un.e.member[1].ord = 1; 2280 return 0; 2281 2282 } 2283 2284 return ENXIO; 2285 } 2286 2287 void * 2288 sb_malloc(addr, direction, size, pool, flags) 2289 void *addr; 2290 int direction; 2291 size_t size; 2292 int pool; 2293 int flags; 2294 { 2295 struct sbdsp_softc *sc = addr; 2296 int drq; 2297 2298 /* 8-bit has more restrictive alignment */ 2299 if (sc->sc_drq8 != -1) 2300 drq = sc->sc_drq8; 2301 else 2302 drq = sc->sc_drq16; 2303 2304 return isa_malloc(sc->sc_isa, drq, size, pool, flags); 2305 } 2306 2307 void 2308 sb_free(addr, ptr, pool) 2309 void *addr; 2310 void *ptr; 2311 int pool; 2312 { 2313 isa_free(ptr, pool); 2314 } 2315 2316 size_t 2317 sb_round(addr, direction, size) 2318 void *addr; 2319 int direction; 2320 size_t size; 2321 { 2322 if (size > MAX_ISADMA) 2323 size = MAX_ISADMA; 2324 return size; 2325 } 2326 2327 paddr_t 2328 sb_mappage(addr, mem, off, prot) 2329 void *addr; 2330 void *mem; 2331 off_t off; 2332 int prot; 2333 { 2334 return isa_mappage(mem, off, prot); 2335 } 2336 2337 int 2338 sbdsp_get_props(addr) 2339 void *addr; 2340 { 2341 struct sbdsp_softc *sc = addr; 2342 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 2343 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0); 2344 } 2345 2346 #if NMIDI > 0 2347 /* 2348 * MIDI related routines. 2349 */ 2350 2351 int 2352 sbdsp_midi_open(addr, flags, iintr, ointr, arg) 2353 void *addr; 2354 int flags; 2355 void (*iintr)(void *, int); 2356 void (*ointr)(void *); 2357 void *arg; 2358 { 2359 struct sbdsp_softc *sc = addr; 2360 2361 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc)); 2362 2363 if (sc->sc_open != SB_CLOSED) 2364 return EBUSY; 2365 if (sbdsp_reset(sc) != 0) 2366 return EIO; 2367 2368 if (sc->sc_model >= SB_20) 2369 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */ 2370 return EIO; 2371 sc->sc_open = SB_OPEN_MIDI; 2372 sc->sc_openflags = flags; 2373 sc->sc_intr8 = sbdsp_midi_intr; 2374 sc->sc_arg8 = addr; 2375 sc->sc_intrm = iintr; 2376 sc->sc_argm = arg; 2377 return 0; 2378 } 2379 2380 void 2381 sbdsp_midi_close(addr) 2382 void *addr; 2383 { 2384 struct sbdsp_softc *sc = addr; 2385 2386 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc)); 2387 2388 if (sc->sc_model >= SB_20) 2389 sbdsp_reset(sc); /* exit UART mode */ 2390 sc->sc_open = SB_CLOSED; 2391 sc->sc_intrm = 0; 2392 } 2393 2394 int 2395 sbdsp_midi_output(addr, d) 2396 void *addr; 2397 int d; 2398 { 2399 struct sbdsp_softc *sc = addr; 2400 2401 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE)) 2402 return 1; 2403 (void)sbdsp_wdsp(sc, d); 2404 return 1; 2405 } 2406 2407 void 2408 sbdsp_midi_getinfo(addr, mi) 2409 void *addr; 2410 struct midi_info *mi; 2411 { 2412 struct sbdsp_softc *sc = addr; 2413 2414 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART"; 2415 mi->props = MIDI_PROP_CAN_INPUT; 2416 } 2417 2418 int 2419 sbdsp_midi_intr(addr) 2420 void *addr; 2421 { 2422 struct sbdsp_softc *sc = addr; 2423 2424 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc)); 2425 return (0); 2426 } 2427 2428 #endif 2429