1 /* $OpenBSD: ess.c,v 1.14 2008/10/25 22:30:43 jakemsr Exp $ */ 2 /* $NetBSD: ess.c,v 1.44.4.1 1999/06/21 01:18:00 thorpej Exp $ */ 3 4 /* 5 * Copyright 1997 6 * Digital Equipment Corporation. All rights reserved. 7 * 8 * This software is furnished under license and may be used and 9 * copied only in accordance with the following terms and conditions. 10 * Subject to these conditions, you may download, copy, install, 11 * use, modify and distribute this software in source and/or binary 12 * form. No title or ownership is transferred hereby. 13 * 14 * 1) Any source code used, modified or distributed must reproduce 15 * and retain this copyright notice and list of conditions as 16 * they appear in the source file. 17 * 18 * 2) No right is granted to use any trade name, trademark, or logo of 19 * Digital Equipment Corporation. Neither the "Digital Equipment 20 * Corporation" name nor any trademark or logo of Digital Equipment 21 * Corporation may be used to endorse or promote products derived 22 * from this software without the prior written permission of 23 * Digital Equipment Corporation. 24 * 25 * 3) This software is provided "AS-IS" and any express or implied 26 * warranties, including but not limited to, any implied warranties 27 * of merchantability, fitness for a particular purpose, or 28 * non-infringement are disclaimed. In no event shall DIGITAL be 29 * liable for any damages whatsoever, and in particular, DIGITAL 30 * shall not be liable for special, indirect, consequential, or 31 * incidental damages or damages for lost profits, loss of 32 * revenue or loss of use, whether such damages arise in contract, 33 * negligence, tort, under statute, in equity, at law or otherwise, 34 * even if advised of the possibility of such damage. 35 */ 36 37 /* 38 **++ 39 ** 40 ** ess.c 41 ** 42 ** FACILITY: 43 ** 44 ** DIGITAL Network Appliance Reference Design (DNARD) 45 ** 46 ** MODULE DESCRIPTION: 47 ** 48 ** This module contains the device driver for the ESS 49 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was 50 ** used as a reference point when implementing this driver. 51 ** 52 ** AUTHORS: 53 ** 54 ** Blair Fidler Software Engineering Australia 55 ** Gold Coast, Australia. 56 ** 57 ** CREATION DATE: 58 ** 59 ** March 10, 1997. 60 ** 61 ** MODIFICATION HISTORY: 62 ** 63 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for 64 ** bus_dma, changes to audio interface, and many bug fixes. 65 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum. 66 **-- 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/errno.h> 72 #include <sys/ioctl.h> 73 #include <sys/syslog.h> 74 #include <sys/device.h> 75 #include <sys/proc.h> 76 #include <sys/kernel.h> 77 #include <sys/timeout.h> 78 79 #include <machine/cpu.h> 80 #include <machine/intr.h> 81 #include <machine/bus.h> 82 83 #include <sys/audioio.h> 84 #include <dev/audio_if.h> 85 #include <dev/auconv.h> 86 #include <dev/mulaw.h> 87 88 #include <dev/isa/isavar.h> 89 #include <dev/isa/isadmavar.h> 90 91 #include <dev/isa/essvar.h> 92 #include <dev/isa/essreg.h> 93 94 #ifdef AUDIO_DEBUG 95 #define DPRINTF(x) if (essdebug) printf x 96 #define DPRINTFN(n,x) if (essdebug>(n)) printf x 97 int essdebug = 0; 98 #else 99 #define DPRINTF(x) 100 #define DPRINTFN(n,x) 101 #endif 102 103 #if 0 104 unsigned uuu; 105 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu) 106 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d)) 107 #else 108 #define EREAD1(t, h, a) bus_space_read_1(t, h, a) 109 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d) 110 #endif 111 112 struct cfdriver ess_cd = { 113 NULL, "ess", DV_DULL 114 }; 115 116 int ess_setup_sc(struct ess_softc *, int); 117 118 int ess_open(void *, int); 119 void ess_1788_close(void *); 120 void ess_1888_close(void *); 121 int ess_getdev(void *, struct audio_device *); 122 int ess_drain(void *); 123 124 int ess_query_encoding(void *, struct audio_encoding *); 125 126 int ess_set_params(void *, int, int, struct audio_params *, 127 struct audio_params *); 128 129 int ess_round_blocksize(void *, int); 130 131 int ess_audio1_trigger_output(void *, void *, void *, int, 132 void (*)(void *), void *, struct audio_params *); 133 int ess_audio2_trigger_output(void *, void *, void *, int, 134 void (*)(void *), void *, struct audio_params *); 135 int ess_audio1_trigger_input(void *, void *, void *, int, 136 void (*)(void *), void *, struct audio_params *); 137 int ess_audio1_halt(void *); 138 int ess_audio2_halt(void *); 139 int ess_audio1_intr(void *); 140 int ess_audio2_intr(void *); 141 void ess_audio1_poll(void *); 142 void ess_audio2_poll(void *); 143 144 int ess_speaker_ctl(void *, int); 145 146 int ess_getdev(void *, struct audio_device *); 147 148 int ess_set_port(void *, mixer_ctrl_t *); 149 int ess_get_port(void *, mixer_ctrl_t *); 150 151 void *ess_malloc(void *, int, size_t, int, int); 152 void ess_free(void *, void *, int); 153 size_t ess_round_buffersize(void *, int, size_t); 154 paddr_t ess_mappage(void *, void *, off_t, int); 155 156 157 int ess_query_devinfo(void *, mixer_devinfo_t *); 158 int ess_1788_get_props(void *); 159 int ess_1888_get_props(void *); 160 161 void ess_speaker_on(struct ess_softc *); 162 void ess_speaker_off(struct ess_softc *); 163 164 int ess_config_addr(struct ess_softc *); 165 void ess_config_irq(struct ess_softc *); 166 void ess_config_drq(struct ess_softc *); 167 void ess_setup(struct ess_softc *); 168 int ess_identify(struct ess_softc *); 169 170 int ess_reset(struct ess_softc *); 171 void ess_set_gain(struct ess_softc *, int, int); 172 int ess_set_in_port(struct ess_softc *, int); 173 int ess_set_in_ports(struct ess_softc *, int); 174 u_int ess_srtotc(u_int); 175 u_int ess_srtofc(u_int); 176 u_char ess_get_dsp_status(struct ess_softc *); 177 u_char ess_dsp_read_ready(struct ess_softc *); 178 u_char ess_dsp_write_ready(struct ess_softc *); 179 int ess_rdsp(struct ess_softc *); 180 int ess_wdsp(struct ess_softc *, u_char); 181 u_char ess_read_x_reg(struct ess_softc *, u_char); 182 int ess_write_x_reg(struct ess_softc *, u_char, u_char); 183 void ess_clear_xreg_bits(struct ess_softc *, u_char, u_char); 184 void ess_set_xreg_bits(struct ess_softc *, u_char, u_char); 185 u_char ess_read_mix_reg(struct ess_softc *, u_char); 186 void ess_write_mix_reg(struct ess_softc *, u_char, u_char); 187 void ess_clear_mreg_bits(struct ess_softc *, u_char, u_char); 188 void ess_set_mreg_bits(struct ess_softc *, u_char, u_char); 189 void ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *, bus_size_t); 190 191 static char *essmodel[] = { 192 "unsupported", 193 "1888", 194 "1887", 195 "888", 196 "1788", 197 "1869", 198 "1879", 199 "1868", 200 "1878", 201 }; 202 203 struct audio_device ess_device = { 204 "ESS Technology", 205 "x", 206 "ess" 207 }; 208 209 /* 210 * Define our interface to the higher level audio driver. 211 */ 212 213 struct audio_hw_if ess_1788_hw_if = { 214 ess_open, 215 ess_1788_close, 216 ess_drain, 217 ess_query_encoding, 218 ess_set_params, 219 ess_round_blocksize, 220 NULL, 221 NULL, 222 NULL, 223 NULL, 224 NULL, 225 ess_audio1_halt, 226 ess_audio1_halt, 227 ess_speaker_ctl, 228 ess_getdev, 229 NULL, 230 ess_set_port, 231 ess_get_port, 232 ess_query_devinfo, 233 ess_malloc, 234 ess_free, 235 ess_round_buffersize, 236 ess_mappage, 237 ess_1788_get_props, 238 ess_audio1_trigger_output, 239 ess_audio1_trigger_input, 240 NULL 241 }; 242 243 struct audio_hw_if ess_1888_hw_if = { 244 ess_open, 245 ess_1888_close, 246 ess_drain, 247 ess_query_encoding, 248 ess_set_params, 249 ess_round_blocksize, 250 NULL, 251 NULL, 252 NULL, 253 NULL, 254 NULL, 255 ess_audio2_halt, 256 ess_audio1_halt, 257 ess_speaker_ctl, 258 ess_getdev, 259 NULL, 260 ess_set_port, 261 ess_get_port, 262 ess_query_devinfo, 263 ess_malloc, 264 ess_free, 265 ess_round_buffersize, 266 ess_mappage, 267 ess_1888_get_props, 268 ess_audio2_trigger_output, 269 ess_audio1_trigger_input, 270 NULL 271 }; 272 273 #ifdef AUDIO_DEBUG 274 void ess_printsc(struct ess_softc *); 275 void ess_dump_mixer(struct ess_softc *); 276 277 void 278 ess_printsc(sc) 279 struct ess_softc *sc; 280 { 281 int i; 282 283 printf("open %d iobase 0x%x outport %u inport %u speaker %s\n", 284 (int)sc->sc_open, sc->sc_iobase, sc->out_port, 285 sc->in_port, sc->spkr_state ? "on" : "off"); 286 287 printf("audio1: dmachan %d irq %d nintr %lu intr %p arg %p\n", 288 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr, 289 sc->sc_audio1.intr, sc->sc_audio1.arg); 290 291 if (!ESS_USE_AUDIO1(sc->sc_model)) { 292 printf("audio2: dmachan %d irq %d nintr %lu intr %p arg %p\n", 293 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr, 294 sc->sc_audio2.intr, sc->sc_audio2.arg); 295 } 296 297 printf("gain:"); 298 for (i = 0; i < sc->ndevs; i++) 299 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]); 300 printf("\n"); 301 } 302 303 void 304 ess_dump_mixer(sc) 305 struct ess_softc *sc; 306 { 307 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 308 0x7C, ess_read_mix_reg(sc, 0x7C)); 309 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 310 0x1A, ess_read_mix_reg(sc, 0x1A)); 311 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 312 0x3E, ess_read_mix_reg(sc, 0x3E)); 313 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 314 0x36, ess_read_mix_reg(sc, 0x36)); 315 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 316 0x38, ess_read_mix_reg(sc, 0x38)); 317 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 318 0x3A, ess_read_mix_reg(sc, 0x3A)); 319 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n", 320 0x32, ess_read_mix_reg(sc, 0x32)); 321 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n", 322 0x3C, ess_read_mix_reg(sc, 0x3C)); 323 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n", 324 0x69, ess_read_mix_reg(sc, 0x69)); 325 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n", 326 0x68, ess_read_mix_reg(sc, 0x68)); 327 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n", 328 0x6E, ess_read_mix_reg(sc, 0x6E)); 329 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n", 330 0x6B, ess_read_mix_reg(sc, 0x6B)); 331 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n", 332 0x6A, ess_read_mix_reg(sc, 0x6A)); 333 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n", 334 0x6C, ess_read_mix_reg(sc, 0x6C)); 335 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n", 336 0xB4, ess_read_x_reg(sc, 0xB4)); 337 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n", 338 0x14, ess_read_mix_reg(sc, 0x14)); 339 340 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n", 341 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL)); 342 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n", 343 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL)); 344 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n", 345 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE), 346 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2)); 347 } 348 349 #endif 350 351 /* 352 * Configure the ESS chip for the desired audio base address. 353 */ 354 int 355 ess_config_addr(sc) 356 struct ess_softc *sc; 357 { 358 int iobase = sc->sc_iobase; 359 bus_space_tag_t iot = sc->sc_iot; 360 361 /* 362 * Configure using the System Control Register method. This 363 * method is used when the AMODE line is tied high, which is 364 * the case for the Shark, but not for the evaluation board. 365 */ 366 367 bus_space_handle_t scr_access_ioh; 368 bus_space_handle_t scr_ioh; 369 u_short scr_value; 370 371 /* 372 * Set the SCR bit to enable audio. 373 */ 374 scr_value = ESS_SCR_AUDIO_ENABLE; 375 376 /* 377 * Set the SCR bits necessary to select the specified audio 378 * base address. 379 */ 380 switch(iobase) { 381 case 0x220: 382 scr_value |= ESS_SCR_AUDIO_220; 383 break; 384 case 0x230: 385 scr_value |= ESS_SCR_AUDIO_230; 386 break; 387 case 0x240: 388 scr_value |= ESS_SCR_AUDIO_240; 389 break; 390 case 0x250: 391 scr_value |= ESS_SCR_AUDIO_250; 392 break; 393 default: 394 printf("ess: configured iobase 0x%x invalid\n", iobase); 395 return (1); 396 break; 397 } 398 399 /* 400 * Get a mapping for the System Control Register (SCR) access 401 * registers and the SCR data registers. 402 */ 403 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS, 404 0, &scr_access_ioh)) { 405 printf("ess: can't map SCR access registers\n"); 406 return (1); 407 } 408 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS, 409 0, &scr_ioh)) { 410 printf("ess: can't map SCR registers\n"); 411 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 412 return (1); 413 } 414 415 /* Unlock the SCR. */ 416 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0); 417 418 /* Write the base address information into SCR[0]. */ 419 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0); 420 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value); 421 422 /* Lock the SCR. */ 423 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0); 424 425 /* Unmap the SCR access ports and the SCR data ports. */ 426 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 427 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS); 428 429 return 0; 430 } 431 432 433 /* 434 * Configure the ESS chip for the desired IRQ and DMA channels. 435 * ESS ISA 436 * -------- 437 * IRQA irq9 438 * IRQB irq5 439 * IRQC irq7 440 * IRQD irq10 441 * IRQE irq15 442 * 443 * DRQA drq0 444 * DRQB drq1 445 * DRQC drq3 446 * DRQD drq5 447 */ 448 void 449 ess_config_irq(sc) 450 struct ess_softc *sc; 451 { 452 int v; 453 454 DPRINTFN(2,("ess_config_irq\n")); 455 456 if (sc->sc_model == ESS_1887 && 457 sc->sc_audio1.irq == sc->sc_audio2.irq && 458 sc->sc_audio1.irq != -1) { 459 /* Use new method, both interrupts are the same. */ 460 v = ESS_IS_SELECT_IRQ; /* enable intrs */ 461 switch (sc->sc_audio1.irq) { 462 case 5: 463 v |= ESS_IS_INTRB; 464 break; 465 case 7: 466 v |= ESS_IS_INTRC; 467 break; 468 case 9: 469 v |= ESS_IS_INTRA; 470 break; 471 case 10: 472 v |= ESS_IS_INTRD; 473 break; 474 case 15: 475 v |= ESS_IS_INTRE; 476 break; 477 #ifdef DIAGNOSTIC 478 default: 479 printf("ess_config_irq: configured irq %d not supported for Audio 1\n", 480 sc->sc_audio1.irq); 481 return; 482 #endif 483 } 484 /* Set the IRQ */ 485 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v); 486 return; 487 } 488 489 if (sc->sc_model == ESS_1887) { 490 /* Tell the 1887 to use the old interrupt method. */ 491 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888); 492 } 493 494 if (sc->sc_audio1.polled) { 495 /* Turn off Audio1 interrupts. */ 496 v = 0; 497 } else { 498 /* Configure Audio 1 for the appropriate IRQ line. */ 499 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */ 500 switch (sc->sc_audio1.irq) { 501 case 5: 502 v |= ESS_IRQ_CTRL_INTRB; 503 break; 504 case 7: 505 v |= ESS_IRQ_CTRL_INTRC; 506 break; 507 case 9: 508 v |= ESS_IRQ_CTRL_INTRA; 509 break; 510 case 10: 511 v |= ESS_IRQ_CTRL_INTRD; 512 break; 513 #ifdef DIAGNOSTIC 514 default: 515 printf("ess: configured irq %d not supported for Audio 1\n", 516 sc->sc_audio1.irq); 517 return; 518 #endif 519 } 520 } 521 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v); 522 523 if (ESS_USE_AUDIO1(sc->sc_model)) 524 return; 525 526 if (sc->sc_audio2.polled) { 527 /* Turn off Audio2 interrupts. */ 528 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 529 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 530 } else { 531 /* Audio2 is hardwired to INTRE in this mode. */ 532 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 533 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 534 } 535 } 536 537 538 void 539 ess_config_drq(sc) 540 struct ess_softc *sc; 541 { 542 int v; 543 544 DPRINTFN(2,("ess_config_drq\n")); 545 546 /* Configure Audio 1 (record) for DMA on the appropriate channel. */ 547 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT; 548 switch (sc->sc_audio1.drq) { 549 case 0: 550 v |= ESS_DRQ_CTRL_DRQA; 551 break; 552 case 1: 553 v |= ESS_DRQ_CTRL_DRQB; 554 break; 555 case 3: 556 v |= ESS_DRQ_CTRL_DRQC; 557 break; 558 #ifdef DIAGNOSTIC 559 default: 560 printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n", 561 sc->sc_audio1.drq); 562 return; 563 #endif 564 } 565 /* Set DRQ1 */ 566 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v); 567 568 if (ESS_USE_AUDIO1(sc->sc_model)) 569 return; 570 571 /* Configure DRQ2 */ 572 v = ESS_AUDIO2_CTRL3_DRQ_PD; 573 switch (sc->sc_audio2.drq) { 574 case 0: 575 v |= ESS_AUDIO2_CTRL3_DRQA; 576 break; 577 case 1: 578 v |= ESS_AUDIO2_CTRL3_DRQB; 579 break; 580 case 3: 581 v |= ESS_AUDIO2_CTRL3_DRQC; 582 break; 583 case 5: 584 v |= ESS_AUDIO2_CTRL3_DRQD; 585 break; 586 #ifdef DIAGNOSTIC 587 default: 588 printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n", 589 sc->sc_audio2.drq); 590 return; 591 #endif 592 } 593 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v); 594 /* Enable DMA 2 */ 595 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 596 ESS_AUDIO2_CTRL2_DMA_ENABLE); 597 } 598 599 /* 600 * Set up registers after a reset. 601 */ 602 void 603 ess_setup(sc) 604 struct ess_softc *sc; 605 { 606 607 ess_config_irq(sc); 608 ess_config_drq(sc); 609 610 DPRINTFN(2,("ess_setup: done\n")); 611 } 612 613 /* 614 * Determine the model of ESS chip we are talking to. Currently we 615 * only support ES1888, ES1887 and ES888. The method of determining 616 * the chip is based on the information on page 27 of the ES1887 data 617 * sheet. 618 * 619 * This routine sets the values of sc->sc_model and sc->sc_version. 620 */ 621 int 622 ess_identify(sc) 623 struct ess_softc *sc; 624 { 625 u_char reg1; 626 u_char reg2; 627 u_char reg3; 628 u_int8_t ident[4]; 629 630 sc->sc_model = ESS_UNSUPPORTED; 631 sc->sc_version = 0; 632 633 memset(ident, 0, sizeof(ident)); 634 635 /* 636 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where 637 * n >= 8 for an ES1887 or an ES888. Other values indicate 638 * earlier (unsupported) chips. 639 */ 640 ess_wdsp(sc, ESS_ACMD_LEGACY_ID); 641 642 if ((reg1 = ess_rdsp(sc)) != 0x68) { 643 printf("ess: First ID byte wrong (0x%02x)\n", reg1); 644 return 1; 645 } 646 647 reg2 = ess_rdsp(sc); 648 if (((reg2 & 0xf0) != 0x80) || 649 ((reg2 & 0x0f) < 8)) { 650 printf("ess: Second ID byte wrong (0x%02x)\n", reg2); 651 return 1; 652 } 653 654 /* 655 * Store the ID bytes as the version. 656 */ 657 sc->sc_version = (reg1 << 8) + reg2; 658 659 660 /* 661 * 2. Verify we can change bit 2 in mixer register 0x64. This 662 * should be possible on all supported chips. 663 */ 664 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 665 reg2 = reg1 ^ 0x04; /* toggle bit 2 */ 666 667 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 668 669 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) { 670 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n"); 671 return 1; 672 } 673 674 /* 675 * Restore the original value of mixer register 0x64. 676 */ 677 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 678 679 680 /* 681 * 3. Verify we can change the value of mixer register 682 * ESS_MREG_SAMPLE_RATE. 683 * This is possible on the 1888/1887/888, but not on the 1788. 684 * It is not necessary to restore the value of this mixer register. 685 */ 686 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE); 687 reg2 = reg1 ^ 0xff; /* toggle all bits */ 688 689 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2); 690 691 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) { 692 /* If we got this far before failing, it's a 1788. */ 693 sc->sc_model = ESS_1788; 694 695 /* 696 * Identify ESS model for ES18[67]8. 697 */ 698 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 699 if(ident[0] == 0x18) { 700 switch(ident[1]) { 701 case 0x68: 702 sc->sc_model = ESS_1868; 703 break; 704 case 0x78: 705 sc->sc_model = ESS_1878; 706 break; 707 } 708 } 709 } else { 710 /* 711 * 4. Determine if we can change bit 5 in mixer register 0x64. 712 * This determines whether we have an ES1887: 713 * 714 * - can change indicates ES1887 715 * - can't change indicates ES1888 or ES888 716 */ 717 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 718 reg2 = reg1 ^ 0x20; /* toggle bit 5 */ 719 720 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 721 722 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) { 723 sc->sc_model = ESS_1887; 724 725 /* 726 * Restore the original value of mixer register 0x64. 727 */ 728 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 729 730 /* 731 * Identify ESS model for ES18[67]9. 732 */ 733 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 734 if(ident[0] == 0x18) { 735 switch(ident[1]) { 736 case 0x69: 737 sc->sc_model = ESS_1869; 738 break; 739 case 0x79: 740 sc->sc_model = ESS_1879; 741 break; 742 } 743 } 744 } else { 745 /* 746 * 5. Determine if we can change the value of mixer 747 * register 0x69 independently of mixer register 748 * 0x68. This determines which chip we have: 749 * 750 * - can modify idependently indicates ES888 751 * - register 0x69 is an alias of 0x68 indicates ES1888 752 */ 753 reg1 = ess_read_mix_reg(sc, 0x68); 754 reg2 = ess_read_mix_reg(sc, 0x69); 755 reg3 = reg2 ^ 0xff; /* toggle all bits */ 756 757 /* 758 * Write different values to each register. 759 */ 760 ess_write_mix_reg(sc, 0x68, reg2); 761 ess_write_mix_reg(sc, 0x69, reg3); 762 763 if (ess_read_mix_reg(sc, 0x68) == reg2 && 764 ess_read_mix_reg(sc, 0x69) == reg3) 765 sc->sc_model = ESS_888; 766 else 767 sc->sc_model = ESS_1888; 768 769 /* 770 * Restore the original value of the registers. 771 */ 772 ess_write_mix_reg(sc, 0x68, reg1); 773 ess_write_mix_reg(sc, 0x69, reg2); 774 } 775 } 776 777 return 0; 778 } 779 780 781 int 782 ess_setup_sc(sc, doinit) 783 struct ess_softc *sc; 784 int doinit; 785 { 786 /* Reset the chip. */ 787 if (ess_reset(sc) != 0) { 788 DPRINTF(("ess_setup_sc: couldn't reset chip\n")); 789 return (1); 790 } 791 792 /* Identify the ESS chip, and check that it is supported. */ 793 if (ess_identify(sc)) { 794 DPRINTF(("ess_setup_sc: couldn't identify\n")); 795 return (1); 796 } 797 798 return (0); 799 } 800 801 /* 802 * Probe for the ESS hardware. 803 */ 804 int 805 essmatch(sc) 806 struct ess_softc *sc; 807 { 808 if (!ESS_BASE_VALID(sc->sc_iobase)) { 809 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase); 810 return (0); 811 } 812 813 /* Configure the ESS chip for the desired audio base address. */ 814 if (ess_config_addr(sc)) 815 return (0); 816 817 if (ess_setup_sc(sc, 1)) 818 return (0); 819 820 if (sc->sc_model == ESS_UNSUPPORTED) { 821 DPRINTF(("ess: Unsupported model\n")); 822 return (0); 823 } 824 825 /* Check that requested DMA channels are valid and different. */ 826 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) { 827 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq); 828 return (0); 829 } 830 if (!isa_drq_isfree(sc->sc_isa, sc->sc_audio1.drq)) 831 return (0); 832 if (!ESS_USE_AUDIO1(sc->sc_model)) { 833 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) { 834 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq); 835 return (0); 836 } 837 if (sc->sc_audio1.drq == sc->sc_audio2.drq) { 838 printf("ess: play and record drq both %d\n", 839 sc->sc_audio1.drq); 840 return (0); 841 } 842 if (!isa_drq_isfree(sc->sc_isa, sc->sc_audio2.drq)) 843 return (0); 844 } 845 846 /* 847 * The 1887 has an additional IRQ mode where both channels are mapped 848 * to the same IRQ. 849 */ 850 if (sc->sc_model == ESS_1887 && 851 sc->sc_audio1.irq == sc->sc_audio2.irq && 852 sc->sc_audio1.irq != -1 && 853 ESS_IRQ12_VALID(sc->sc_audio1.irq)) 854 goto irq_not1888; 855 856 /* Check that requested IRQ lines are valid and different. */ 857 if (sc->sc_audio1.irq != -1 && 858 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) { 859 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq); 860 return (0); 861 } 862 if (!ESS_USE_AUDIO1(sc->sc_model)) { 863 if (sc->sc_audio2.irq != -1 && 864 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) { 865 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq); 866 return (0); 867 } 868 if (sc->sc_audio1.irq == sc->sc_audio2.irq && 869 sc->sc_audio1.irq != -1) { 870 printf("ess: play and record irq both %d\n", 871 sc->sc_audio1.irq); 872 return (0); 873 } 874 } 875 876 irq_not1888: 877 /* XXX should we check IRQs as well? */ 878 879 return (1); 880 } 881 882 883 /* 884 * Attach hardware to driver, attach hardware driver to audio 885 * pseudo-device driver. 886 */ 887 void 888 essattach(sc) 889 struct ess_softc *sc; 890 { 891 struct audio_attach_args arg; 892 struct audio_params pparams, rparams; 893 int i; 894 u_int v; 895 896 if (ess_setup_sc(sc, 0)) { 897 printf(": setup failed\n"); 898 return; 899 } 900 901 printf(": ESS Technology ES%s [version 0x%04x]\n", 902 essmodel[sc->sc_model], sc->sc_version); 903 904 sc->sc_audio1.polled = sc->sc_audio1.irq == -1; 905 if (!sc->sc_audio1.polled) { 906 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic, 907 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO, 908 ess_audio1_intr, sc, sc->sc_dev.dv_xname); 909 printf("%s: audio1 interrupting at irq %d\n", 910 sc->sc_dev.dv_xname, sc->sc_audio1.irq); 911 } else 912 printf("%s: audio1 polled\n", sc->sc_dev.dv_xname); 913 if (isa_dmamap_create(sc->sc_isa, sc->sc_audio1.drq, 914 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 915 printf("%s: can't create map for drq %d\n", 916 sc->sc_dev.dv_xname, sc->sc_audio1.drq); 917 return; 918 } 919 920 if (!ESS_USE_AUDIO1(sc->sc_model)) { 921 sc->sc_audio2.polled = sc->sc_audio2.irq == -1; 922 if (!sc->sc_audio2.polled) { 923 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic, 924 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO, 925 ess_audio2_intr, sc, sc->sc_dev.dv_xname); 926 printf("%s: audio2 interrupting at irq %d\n", 927 sc->sc_dev.dv_xname, sc->sc_audio2.irq); 928 } else 929 printf("%s: audio2 polled\n", sc->sc_dev.dv_xname); 930 if (isa_dmamap_create(sc->sc_isa, sc->sc_audio2.drq, 931 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 932 printf("%s: can't create map for drq %d\n", 933 sc->sc_dev.dv_xname, sc->sc_audio2.drq); 934 return; 935 } 936 } 937 938 timeout_set(&sc->sc_tmo1, ess_audio1_poll, sc); 939 timeout_set(&sc->sc_tmo2, ess_audio2_poll, sc); 940 941 /* 942 * Set record and play parameters to default values defined in 943 * generic audio driver. 944 */ 945 pparams = audio_default; 946 rparams = audio_default; 947 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); 948 949 /* Do a hardware reset on the mixer. */ 950 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET); 951 952 /* 953 * Set volume of Audio 1 to zero and disable Audio 1 DAC input 954 * to playback mixer, since playback is always through Audio 2. 955 */ 956 if (!ESS_USE_AUDIO1(sc->sc_model)) 957 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0); 958 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 959 960 if (ESS_USE_AUDIO1(sc->sc_model)) { 961 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC); 962 sc->in_port = ESS_SOURCE_MIC; 963 sc->ndevs = ESS_1788_NDEVS; 964 } else { 965 /* 966 * Set hardware record source to use output of the record 967 * mixer. We do the selection of record source in software by 968 * setting the gain of the unused sources to zero. (See 969 * ess_set_in_ports.) 970 */ 971 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER); 972 sc->in_mask = 1 << ESS_MIC_REC_VOL; 973 sc->ndevs = ESS_1888_NDEVS; 974 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10); 975 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08); 976 } 977 978 /* 979 * Set gain on each mixer device to a sensible value. 980 * Devices not normally used are turned off, and other devices 981 * are set to 50% volume. 982 */ 983 for (i = 0; i < sc->ndevs; i++) { 984 switch (i) { 985 case ESS_MIC_PLAY_VOL: 986 case ESS_LINE_PLAY_VOL: 987 case ESS_CD_PLAY_VOL: 988 case ESS_AUXB_PLAY_VOL: 989 case ESS_DAC_REC_VOL: 990 case ESS_LINE_REC_VOL: 991 case ESS_SYNTH_REC_VOL: 992 case ESS_CD_REC_VOL: 993 case ESS_AUXB_REC_VOL: 994 v = 0; 995 break; 996 default: 997 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2); 998 break; 999 } 1000 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v; 1001 ess_set_gain(sc, i, 1); 1002 } 1003 1004 ess_setup(sc); 1005 1006 /* Disable the speaker until the device is opened. */ 1007 ess_speaker_off(sc); 1008 sc->spkr_state = SPKR_OFF; 1009 1010 snprintf(ess_device.name, sizeof ess_device.name, "ES%s", 1011 essmodel[sc->sc_model]); 1012 snprintf(ess_device.version, sizeof ess_device.version, "0x%04x", 1013 sc->sc_version); 1014 1015 if (ESS_USE_AUDIO1(sc->sc_model)) 1016 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev); 1017 else 1018 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev); 1019 1020 arg.type = AUDIODEV_TYPE_OPL; 1021 arg.hwif = 0; 1022 arg.hdl = 0; 1023 (void)config_found(&sc->sc_dev, &arg, audioprint); 1024 1025 #ifdef AUDIO_DEBUG 1026 if (essdebug > 0) 1027 ess_printsc(sc); 1028 #endif 1029 } 1030 1031 /* 1032 * Various routines to interface to higher level audio driver 1033 */ 1034 1035 int 1036 ess_open(addr, flags) 1037 void *addr; 1038 int flags; 1039 { 1040 struct ess_softc *sc = addr; 1041 1042 DPRINTF(("ess_open: sc=%p\n", sc)); 1043 1044 if (sc->sc_open != 0 || ess_reset(sc) != 0) 1045 return ENXIO; 1046 1047 ess_setup(sc); /* because we did a reset */ 1048 1049 sc->sc_open = 1; 1050 1051 DPRINTF(("ess_open: opened\n")); 1052 1053 return (0); 1054 } 1055 1056 void 1057 ess_1788_close(addr) 1058 void *addr; 1059 { 1060 struct ess_softc *sc = addr; 1061 1062 DPRINTF(("ess_1788_close: sc=%p\n", sc)); 1063 1064 ess_speaker_off(sc); 1065 sc->spkr_state = SPKR_OFF; 1066 1067 ess_audio1_halt(sc); 1068 1069 sc->sc_open = 0; 1070 DPRINTF(("ess_1788_close: closed\n")); 1071 } 1072 1073 void 1074 ess_1888_close(addr) 1075 void *addr; 1076 { 1077 struct ess_softc *sc = addr; 1078 1079 DPRINTF(("ess_1888_close: sc=%p\n", sc)); 1080 1081 ess_speaker_off(sc); 1082 sc->spkr_state = SPKR_OFF; 1083 1084 ess_audio1_halt(sc); 1085 ess_audio2_halt(sc); 1086 1087 sc->sc_open = 0; 1088 DPRINTF(("ess_1888_close: closed\n")); 1089 } 1090 1091 /* 1092 * Wait for FIFO to drain, and analog section to settle. 1093 * XXX should check FIFO empty bit. 1094 */ 1095 int 1096 ess_drain(addr) 1097 void *addr; 1098 { 1099 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */ 1100 return (0); 1101 } 1102 1103 /* XXX should use reference count */ 1104 int 1105 ess_speaker_ctl(addr, newstate) 1106 void *addr; 1107 int newstate; 1108 { 1109 struct ess_softc *sc = addr; 1110 1111 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) { 1112 ess_speaker_on(sc); 1113 sc->spkr_state = SPKR_ON; 1114 } 1115 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) { 1116 ess_speaker_off(sc); 1117 sc->spkr_state = SPKR_OFF; 1118 } 1119 return (0); 1120 } 1121 1122 int 1123 ess_getdev(addr, retp) 1124 void *addr; 1125 struct audio_device *retp; 1126 { 1127 *retp = ess_device; 1128 return (0); 1129 } 1130 1131 int 1132 ess_query_encoding(addr, fp) 1133 void *addr; 1134 struct audio_encoding *fp; 1135 { 1136 /*struct ess_softc *sc = addr;*/ 1137 1138 switch (fp->index) { 1139 case 0: 1140 strlcpy(fp->name, AudioEulinear, sizeof fp->name); 1141 fp->encoding = AUDIO_ENCODING_ULINEAR; 1142 fp->precision = 8; 1143 fp->flags = 0; 1144 return (0); 1145 case 1: 1146 strlcpy(fp->name, AudioEmulaw, sizeof fp->name); 1147 fp->encoding = AUDIO_ENCODING_ULAW; 1148 fp->precision = 8; 1149 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1150 return (0); 1151 case 2: 1152 strlcpy(fp->name, AudioEalaw, sizeof fp->name); 1153 fp->encoding = AUDIO_ENCODING_ALAW; 1154 fp->precision = 8; 1155 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1156 return (0); 1157 case 3: 1158 strlcpy(fp->name, AudioEslinear, sizeof fp->name); 1159 fp->encoding = AUDIO_ENCODING_SLINEAR; 1160 fp->precision = 8; 1161 fp->flags = 0; 1162 return (0); 1163 case 4: 1164 strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); 1165 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 1166 fp->precision = 16; 1167 fp->flags = 0; 1168 return (0); 1169 case 5: 1170 strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); 1171 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 1172 fp->precision = 16; 1173 fp->flags = 0; 1174 return (0); 1175 case 6: 1176 strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); 1177 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 1178 fp->precision = 16; 1179 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1180 return (0); 1181 case 7: 1182 strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); 1183 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 1184 fp->precision = 16; 1185 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1186 return (0); 1187 default: 1188 return EINVAL; 1189 } 1190 return (0); 1191 } 1192 1193 int 1194 ess_set_params(addr, setmode, usemode, play, rec) 1195 void *addr; 1196 int setmode, usemode; 1197 struct audio_params *play, *rec; 1198 { 1199 struct ess_softc *sc = addr; 1200 struct audio_params *p; 1201 int mode; 1202 int rate; 1203 1204 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode)); 1205 1206 /* 1207 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in 1208 * full-duplex operation the sample rates must be the same for both 1209 * channels. This appears to be false; the only bit in common is the 1210 * clock source selection. However, we'll be conservative here. 1211 * - mycroft 1212 */ 1213 if (play->sample_rate != rec->sample_rate && 1214 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 1215 if (setmode == AUMODE_PLAY) { 1216 rec->sample_rate = play->sample_rate; 1217 setmode |= AUMODE_RECORD; 1218 } else if (setmode == AUMODE_RECORD) { 1219 play->sample_rate = rec->sample_rate; 1220 setmode |= AUMODE_PLAY; 1221 } else 1222 return (EINVAL); 1223 } 1224 1225 for (mode = AUMODE_RECORD; mode != -1; 1226 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 1227 if ((setmode & mode) == 0) 1228 continue; 1229 1230 p = mode == AUMODE_PLAY ? play : rec; 1231 1232 if (p->sample_rate < ESS_MINRATE) 1233 p->sample_rate = ESS_MINRATE; 1234 if (p->sample_rate > ESS_MAXRATE) 1235 p->sample_rate = ESS_MAXRATE; 1236 if (p->precision > 16) 1237 p->precision = 16; 1238 if (p->channels > 2) 1239 p->channels = 2; 1240 1241 p->factor = 1; 1242 p->sw_code = 0; 1243 switch (p->encoding) { 1244 case AUDIO_ENCODING_SLINEAR_BE: 1245 case AUDIO_ENCODING_ULINEAR_BE: 1246 if (p->precision == 16) 1247 p->sw_code = swap_bytes; 1248 break; 1249 case AUDIO_ENCODING_SLINEAR_LE: 1250 case AUDIO_ENCODING_ULINEAR_LE: 1251 break; 1252 case AUDIO_ENCODING_ULAW: 1253 if (mode == AUMODE_PLAY) { 1254 p->factor = 2; 1255 p->sw_code = mulaw_to_ulinear16_le; 1256 } else 1257 p->sw_code = ulinear8_to_mulaw; 1258 break; 1259 case AUDIO_ENCODING_ALAW: 1260 if (mode == AUMODE_PLAY) { 1261 p->factor = 2; 1262 p->sw_code = alaw_to_ulinear16_le; 1263 } else 1264 p->sw_code = ulinear8_to_alaw; 1265 break; 1266 default: 1267 return (EINVAL); 1268 } 1269 } 1270 1271 if (usemode == AUMODE_RECORD) 1272 rate = rec->sample_rate; 1273 else 1274 rate = play->sample_rate; 1275 1276 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate)); 1277 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate)); 1278 1279 if (!ESS_USE_AUDIO1(sc->sc_model)) { 1280 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate)); 1281 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate)); 1282 } 1283 1284 return (0); 1285 } 1286 1287 int 1288 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param) 1289 void *addr; 1290 void *start, *end; 1291 int blksize; 1292 void (*intr)(void *); 1293 void *arg; 1294 struct audio_params *param; 1295 { 1296 struct ess_softc *sc = addr; 1297 u_int8_t reg; 1298 1299 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1300 addr, start, end, blksize, intr, arg)); 1301 1302 if (sc->sc_audio1.active) 1303 panic("ess_audio1_trigger_output: already running"); 1304 1305 sc->sc_audio1.active = 1; 1306 sc->sc_audio1.intr = intr; 1307 sc->sc_audio1.arg = arg; 1308 if (sc->sc_audio1.polled) { 1309 sc->sc_audio1.dmapos = 0; 1310 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1311 sc->sc_audio1.dmacount = 0; 1312 sc->sc_audio1.blksize = blksize; 1313 timeout_add(&sc->sc_tmo1, hz/30); 1314 } 1315 1316 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1317 if (param->channels == 2) { 1318 reg &= ~ESS_AUDIO_CTRL_MONO; 1319 reg |= ESS_AUDIO_CTRL_STEREO; 1320 } else { 1321 reg |= ESS_AUDIO_CTRL_MONO; 1322 reg &= ~ESS_AUDIO_CTRL_STEREO; 1323 } 1324 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1325 1326 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1327 if (param->precision * param->factor == 16) 1328 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1329 else 1330 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1331 if (param->channels == 2) 1332 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1333 else 1334 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1335 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1336 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1337 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1338 else 1339 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1340 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1341 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1342 1343 isa_dmastart(sc->sc_isa, sc->sc_audio1.drq, start, 1344 (char *)end - (char *)start, NULL, 1345 DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1346 1347 /* Program transfer count registers with 2's complement of count. */ 1348 blksize = -blksize; 1349 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1350 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1351 1352 /* Use 4 bytes per output DMA. */ 1353 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1354 1355 /* Start auto-init DMA */ 1356 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR); 1357 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1358 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE); 1359 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1360 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1361 1362 return (0); 1363 } 1364 1365 int 1366 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param) 1367 void *addr; 1368 void *start, *end; 1369 int blksize; 1370 void (*intr)(void *); 1371 void *arg; 1372 struct audio_params *param; 1373 { 1374 struct ess_softc *sc = addr; 1375 u_int8_t reg; 1376 1377 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1378 addr, start, end, blksize, intr, arg)); 1379 1380 if (sc->sc_audio2.active) 1381 panic("ess_audio2_trigger_output: already running"); 1382 1383 sc->sc_audio2.active = 1; 1384 sc->sc_audio2.intr = intr; 1385 sc->sc_audio2.arg = arg; 1386 if (sc->sc_audio2.polled) { 1387 sc->sc_audio2.dmapos = 0; 1388 sc->sc_audio2.buffersize = (char *)end - (char *)start; 1389 sc->sc_audio2.dmacount = 0; 1390 sc->sc_audio2.blksize = blksize; 1391 timeout_add(&sc->sc_tmo2, hz/30); 1392 } 1393 1394 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1395 if (param->precision * param->factor == 16) 1396 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE; 1397 else 1398 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE; 1399 if (param->channels == 2) 1400 reg |= ESS_AUDIO2_CTRL2_CHANNELS; 1401 else 1402 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS; 1403 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1404 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1405 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1406 else 1407 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1408 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1409 1410 isa_dmastart(sc->sc_isa, sc->sc_audio2.drq, start, 1411 (char *)end - (char *)start, NULL, 1412 DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1413 1414 if (IS16BITDRQ(sc->sc_audio2.drq)) 1415 blksize >>= 1; /* use word count for 16 bit DMA */ 1416 /* Program transfer count registers with 2's complement of count. */ 1417 blksize = -blksize; 1418 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize); 1419 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8); 1420 1421 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1); 1422 if (IS16BITDRQ(sc->sc_audio2.drq)) 1423 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE; 1424 else 1425 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE; 1426 reg |= ESS_AUDIO2_CTRL1_DEMAND_8; 1427 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE | 1428 ESS_AUDIO2_CTRL1_AUTO_INIT; 1429 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg); 1430 1431 return (0); 1432 } 1433 1434 int 1435 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param) 1436 void *addr; 1437 void *start, *end; 1438 int blksize; 1439 void (*intr)(void *); 1440 void *arg; 1441 struct audio_params *param; 1442 { 1443 struct ess_softc *sc = addr; 1444 u_int8_t reg; 1445 1446 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1447 addr, start, end, blksize, intr, arg)); 1448 1449 if (sc->sc_audio1.active) 1450 panic("ess_audio1_trigger_input: already running"); 1451 1452 sc->sc_audio1.active = 1; 1453 sc->sc_audio1.intr = intr; 1454 sc->sc_audio1.arg = arg; 1455 if (sc->sc_audio1.polled) { 1456 sc->sc_audio1.dmapos = 0; 1457 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1458 sc->sc_audio1.dmacount = 0; 1459 sc->sc_audio1.blksize = blksize; 1460 timeout_add(&sc->sc_tmo1, hz/30); 1461 } 1462 1463 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1464 if (param->channels == 2) { 1465 reg &= ~ESS_AUDIO_CTRL_MONO; 1466 reg |= ESS_AUDIO_CTRL_STEREO; 1467 } else { 1468 reg |= ESS_AUDIO_CTRL_MONO; 1469 reg &= ~ESS_AUDIO_CTRL_STEREO; 1470 } 1471 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1472 1473 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1474 if (param->precision * param->factor == 16) 1475 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1476 else 1477 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1478 if (param->channels == 2) 1479 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1480 else 1481 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1482 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1483 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1484 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1485 else 1486 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1487 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1488 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1489 1490 isa_dmastart(sc->sc_isa, sc->sc_audio1.drq, start, 1491 (char *)end - (char *)start, NULL, 1492 DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1493 1494 /* Program transfer count registers with 2's complement of count. */ 1495 blksize = -blksize; 1496 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1497 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1498 1499 /* Use 4 bytes per input DMA. */ 1500 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1501 1502 /* Start auto-init DMA */ 1503 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 1504 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1505 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE; 1506 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1507 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1508 1509 return (0); 1510 } 1511 1512 int 1513 ess_audio1_halt(addr) 1514 void *addr; 1515 { 1516 struct ess_softc *sc = addr; 1517 1518 DPRINTF(("ess_audio1_halt: sc=%p\n", sc)); 1519 1520 if (sc->sc_audio1.active) { 1521 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2, 1522 ESS_AUDIO1_CTRL2_FIFO_ENABLE); 1523 isa_dmaabort(sc->sc_isa, sc->sc_audio1.drq); 1524 if (sc->sc_audio1.polled) 1525 timeout_del(&sc->sc_tmo1); 1526 sc->sc_audio1.active = 0; 1527 } 1528 1529 return (0); 1530 } 1531 1532 int 1533 ess_audio2_halt(addr) 1534 void *addr; 1535 { 1536 struct ess_softc *sc = addr; 1537 1538 DPRINTF(("ess_audio2_halt: sc=%p\n", sc)); 1539 1540 if (sc->sc_audio2.active) { 1541 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1, 1542 ESS_AUDIO2_CTRL1_DAC_ENABLE | 1543 ESS_AUDIO2_CTRL1_FIFO_ENABLE); 1544 isa_dmaabort(sc->sc_isa, sc->sc_audio2.drq); 1545 if (sc->sc_audio2.polled) 1546 timeout_del(&sc->sc_tmo2); 1547 sc->sc_audio2.active = 0; 1548 } 1549 1550 return (0); 1551 } 1552 1553 int 1554 ess_audio1_intr(arg) 1555 void *arg; 1556 { 1557 struct ess_softc *sc = arg; 1558 u_int8_t reg; 1559 1560 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr)); 1561 1562 /* Check and clear interrupt on Audio1. */ 1563 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS); 1564 if ((reg & ESS_DSP_READ_OFLOW) == 0) 1565 return (0); 1566 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR); 1567 1568 sc->sc_audio1.nintr++; 1569 1570 if (sc->sc_audio1.active) { 1571 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1572 return (1); 1573 } else 1574 return (0); 1575 } 1576 1577 int 1578 ess_audio2_intr(arg) 1579 void *arg; 1580 { 1581 struct ess_softc *sc = arg; 1582 u_int8_t reg; 1583 1584 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr)); 1585 1586 /* Check and clear interrupt on Audio2. */ 1587 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1588 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0) 1589 return (0); 1590 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH; 1591 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1592 1593 sc->sc_audio2.nintr++; 1594 1595 if (sc->sc_audio2.active) { 1596 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1597 return (1); 1598 } else 1599 return (0); 1600 } 1601 1602 void 1603 ess_audio1_poll(addr) 1604 void *addr; 1605 { 1606 struct ess_softc *sc = addr; 1607 int dmapos, dmacount; 1608 1609 if (!sc->sc_audio1.active) 1610 return; 1611 1612 sc->sc_audio1.nintr++; 1613 1614 dmapos = isa_dmacount(sc->sc_isa, sc->sc_audio1.drq); 1615 dmacount = sc->sc_audio1.dmapos - dmapos; 1616 if (dmacount < 0) 1617 dmacount += sc->sc_audio1.buffersize; 1618 sc->sc_audio1.dmapos = dmapos; 1619 #if 1 1620 dmacount += sc->sc_audio1.dmacount; 1621 while (dmacount > sc->sc_audio1.blksize) { 1622 dmacount -= sc->sc_audio1.blksize; 1623 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1624 } 1625 sc->sc_audio1.dmacount = dmacount; 1626 #else 1627 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount); 1628 #endif 1629 1630 timeout_add(&sc->sc_tmo1, hz/30); 1631 } 1632 1633 void 1634 ess_audio2_poll(addr) 1635 void *addr; 1636 { 1637 struct ess_softc *sc = addr; 1638 int dmapos, dmacount; 1639 1640 if (!sc->sc_audio2.active) 1641 return; 1642 1643 sc->sc_audio2.nintr++; 1644 1645 dmapos = isa_dmacount(sc->sc_isa, sc->sc_audio2.drq); 1646 dmacount = sc->sc_audio2.dmapos - dmapos; 1647 if (dmacount < 0) 1648 dmacount += sc->sc_audio2.buffersize; 1649 sc->sc_audio2.dmapos = dmapos; 1650 #if 1 1651 dmacount += sc->sc_audio2.dmacount; 1652 while (dmacount > sc->sc_audio2.blksize) { 1653 dmacount -= sc->sc_audio2.blksize; 1654 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1655 } 1656 sc->sc_audio2.dmacount = dmacount; 1657 #else 1658 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount); 1659 #endif 1660 1661 timeout_add(&sc->sc_tmo2, hz/30); 1662 } 1663 1664 int 1665 ess_round_blocksize(addr, blk) 1666 void *addr; 1667 int blk; 1668 { 1669 return ((blk + 7) & -8); /* round for max DMA size */ 1670 } 1671 1672 int 1673 ess_set_port(addr, cp) 1674 void *addr; 1675 mixer_ctrl_t *cp; 1676 { 1677 struct ess_softc *sc = addr; 1678 int lgain, rgain; 1679 1680 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n", 1681 cp->dev, cp->un.value.num_channels)); 1682 1683 switch (cp->dev) { 1684 /* 1685 * The following mixer ports are all stereo. If we get a 1686 * single-channel gain value passed in, then we duplicate it 1687 * to both left and right channels. 1688 */ 1689 case ESS_MASTER_VOL: 1690 case ESS_DAC_PLAY_VOL: 1691 case ESS_MIC_PLAY_VOL: 1692 case ESS_LINE_PLAY_VOL: 1693 case ESS_SYNTH_PLAY_VOL: 1694 case ESS_CD_PLAY_VOL: 1695 case ESS_AUXB_PLAY_VOL: 1696 case ESS_RECORD_VOL: 1697 if (cp->type != AUDIO_MIXER_VALUE) 1698 return EINVAL; 1699 1700 switch (cp->un.value.num_channels) { 1701 case 1: 1702 lgain = rgain = ESS_4BIT_GAIN( 1703 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1704 break; 1705 case 2: 1706 lgain = ESS_4BIT_GAIN( 1707 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1708 rgain = ESS_4BIT_GAIN( 1709 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1710 break; 1711 default: 1712 return EINVAL; 1713 } 1714 1715 sc->gain[cp->dev][ESS_LEFT] = lgain; 1716 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1717 ess_set_gain(sc, cp->dev, 1); 1718 return (0); 1719 1720 /* 1721 * The PC speaker port is mono. If we get a stereo gain value 1722 * passed in, then we return EINVAL. 1723 */ 1724 case ESS_PCSPEAKER_VOL: 1725 if (cp->un.value.num_channels != 1) 1726 return EINVAL; 1727 1728 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] = 1729 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1730 ess_set_gain(sc, cp->dev, 1); 1731 return (0); 1732 1733 case ESS_RECORD_SOURCE: 1734 if (ESS_USE_AUDIO1(sc->sc_model)) { 1735 if (cp->type == AUDIO_MIXER_ENUM) 1736 return (ess_set_in_port(sc, cp->un.ord)); 1737 else 1738 return (EINVAL); 1739 } else { 1740 if (cp->type == AUDIO_MIXER_SET) 1741 return (ess_set_in_ports(sc, cp->un.mask)); 1742 else 1743 return (EINVAL); 1744 } 1745 return (0); 1746 1747 case ESS_RECORD_MONITOR: 1748 if (cp->type != AUDIO_MIXER_ENUM) 1749 return EINVAL; 1750 1751 if (cp->un.ord) 1752 /* Enable monitor */ 1753 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1754 ESS_AUDIO_CTRL_MONITOR); 1755 else 1756 /* Disable monitor */ 1757 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1758 ESS_AUDIO_CTRL_MONITOR); 1759 return (0); 1760 } 1761 1762 if (ESS_USE_AUDIO1(sc->sc_model)) 1763 return (EINVAL); 1764 1765 switch (cp->dev) { 1766 case ESS_DAC_REC_VOL: 1767 case ESS_MIC_REC_VOL: 1768 case ESS_LINE_REC_VOL: 1769 case ESS_SYNTH_REC_VOL: 1770 case ESS_CD_REC_VOL: 1771 case ESS_AUXB_REC_VOL: 1772 if (cp->type != AUDIO_MIXER_VALUE) 1773 return EINVAL; 1774 1775 switch (cp->un.value.num_channels) { 1776 case 1: 1777 lgain = rgain = ESS_4BIT_GAIN( 1778 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1779 break; 1780 case 2: 1781 lgain = ESS_4BIT_GAIN( 1782 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1783 rgain = ESS_4BIT_GAIN( 1784 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1785 break; 1786 default: 1787 return EINVAL; 1788 } 1789 1790 sc->gain[cp->dev][ESS_LEFT] = lgain; 1791 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1792 ess_set_gain(sc, cp->dev, 1); 1793 return (0); 1794 1795 case ESS_MIC_PREAMP: 1796 if (cp->type != AUDIO_MIXER_ENUM) 1797 return EINVAL; 1798 1799 if (cp->un.ord) 1800 /* Enable microphone preamp */ 1801 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1802 ESS_PREAMP_CTRL_ENABLE); 1803 else 1804 /* Disable microphone preamp */ 1805 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1806 ESS_PREAMP_CTRL_ENABLE); 1807 return (0); 1808 } 1809 1810 return (EINVAL); 1811 } 1812 1813 int 1814 ess_get_port(addr, cp) 1815 void *addr; 1816 mixer_ctrl_t *cp; 1817 { 1818 struct ess_softc *sc = addr; 1819 1820 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev)); 1821 1822 switch (cp->dev) { 1823 case ESS_MASTER_VOL: 1824 case ESS_DAC_PLAY_VOL: 1825 case ESS_MIC_PLAY_VOL: 1826 case ESS_LINE_PLAY_VOL: 1827 case ESS_SYNTH_PLAY_VOL: 1828 case ESS_CD_PLAY_VOL: 1829 case ESS_AUXB_PLAY_VOL: 1830 case ESS_RECORD_VOL: 1831 switch (cp->un.value.num_channels) { 1832 case 1: 1833 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1834 sc->gain[cp->dev][ESS_LEFT]; 1835 break; 1836 case 2: 1837 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1838 sc->gain[cp->dev][ESS_LEFT]; 1839 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1840 sc->gain[cp->dev][ESS_RIGHT]; 1841 break; 1842 default: 1843 return EINVAL; 1844 } 1845 return (0); 1846 1847 case ESS_PCSPEAKER_VOL: 1848 if (cp->un.value.num_channels != 1) 1849 return EINVAL; 1850 1851 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1852 sc->gain[cp->dev][ESS_LEFT]; 1853 return (0); 1854 1855 case ESS_RECORD_SOURCE: 1856 if (ESS_USE_AUDIO1(sc->sc_model)) 1857 cp->un.ord = sc->in_port; 1858 else 1859 cp->un.mask = sc->in_mask; 1860 return (0); 1861 1862 case ESS_RECORD_MONITOR: 1863 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) & 1864 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0; 1865 return (0); 1866 } 1867 1868 if (ESS_USE_AUDIO1(sc->sc_model)) 1869 return (EINVAL); 1870 1871 switch (cp->dev) { 1872 case ESS_DAC_REC_VOL: 1873 case ESS_MIC_REC_VOL: 1874 case ESS_LINE_REC_VOL: 1875 case ESS_SYNTH_REC_VOL: 1876 case ESS_CD_REC_VOL: 1877 case ESS_AUXB_REC_VOL: 1878 switch (cp->un.value.num_channels) { 1879 case 1: 1880 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1881 sc->gain[cp->dev][ESS_LEFT]; 1882 break; 1883 case 2: 1884 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1885 sc->gain[cp->dev][ESS_LEFT]; 1886 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1887 sc->gain[cp->dev][ESS_RIGHT]; 1888 break; 1889 default: 1890 return EINVAL; 1891 } 1892 return (0); 1893 1894 case ESS_MIC_PREAMP: 1895 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) & 1896 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0; 1897 return (0); 1898 } 1899 1900 return (EINVAL); 1901 } 1902 1903 int 1904 ess_query_devinfo(addr, dip) 1905 void *addr; 1906 mixer_devinfo_t *dip; 1907 { 1908 struct ess_softc *sc = addr; 1909 1910 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n", 1911 sc->sc_model, dip->index)); 1912 1913 /* 1914 * REVISIT: There are some slight differences between the 1915 * mixers on the different ESS chips, which can 1916 * be sorted out using the chip model rather than a 1917 * separate mixer model. 1918 * This is currently coded assuming an ES1887; we 1919 * need to work out which bits are not applicable to 1920 * the other models (1888 and 888). 1921 */ 1922 switch (dip->index) { 1923 case ESS_DAC_PLAY_VOL: 1924 dip->mixer_class = ESS_INPUT_CLASS; 1925 dip->next = dip->prev = AUDIO_MIXER_LAST; 1926 strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); 1927 dip->type = AUDIO_MIXER_VALUE; 1928 dip->un.v.num_channels = 2; 1929 strlcpy(dip->un.v.units.name, AudioNvolume, 1930 sizeof dip->un.v.units.name); 1931 return (0); 1932 1933 case ESS_MIC_PLAY_VOL: 1934 dip->mixer_class = ESS_INPUT_CLASS; 1935 dip->prev = AUDIO_MIXER_LAST; 1936 if (ESS_USE_AUDIO1(sc->sc_model)) 1937 dip->next = AUDIO_MIXER_LAST; 1938 else 1939 dip->next = ESS_MIC_PREAMP; 1940 strlcpy(dip->label.name, AudioNmicrophone, 1941 sizeof dip->label.name); 1942 dip->type = AUDIO_MIXER_VALUE; 1943 dip->un.v.num_channels = 2; 1944 strlcpy(dip->un.v.units.name, AudioNvolume, 1945 sizeof dip->un.v.units.name); 1946 return (0); 1947 1948 case ESS_LINE_PLAY_VOL: 1949 dip->mixer_class = ESS_INPUT_CLASS; 1950 dip->next = dip->prev = AUDIO_MIXER_LAST; 1951 strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); 1952 dip->type = AUDIO_MIXER_VALUE; 1953 dip->un.v.num_channels = 2; 1954 strlcpy(dip->un.v.units.name, AudioNvolume, 1955 sizeof dip->un.v.units.name); 1956 return (0); 1957 1958 case ESS_SYNTH_PLAY_VOL: 1959 dip->mixer_class = ESS_INPUT_CLASS; 1960 dip->next = dip->prev = AUDIO_MIXER_LAST; 1961 strlcpy(dip->label.name, AudioNfmsynth, 1962 sizeof dip->label.name); 1963 dip->type = AUDIO_MIXER_VALUE; 1964 dip->un.v.num_channels = 2; 1965 strlcpy(dip->un.v.units.name, AudioNvolume, 1966 sizeof dip->un.v.units.name); 1967 return (0); 1968 1969 case ESS_CD_PLAY_VOL: 1970 dip->mixer_class = ESS_INPUT_CLASS; 1971 dip->next = dip->prev = AUDIO_MIXER_LAST; 1972 strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); 1973 dip->type = AUDIO_MIXER_VALUE; 1974 dip->un.v.num_channels = 2; 1975 strlcpy(dip->un.v.units.name, AudioNvolume, 1976 sizeof dip->un.v.units.name); 1977 return (0); 1978 1979 case ESS_AUXB_PLAY_VOL: 1980 dip->mixer_class = ESS_INPUT_CLASS; 1981 dip->next = dip->prev = AUDIO_MIXER_LAST; 1982 strlcpy(dip->label.name, "auxb", sizeof dip->label.name); 1983 dip->type = AUDIO_MIXER_VALUE; 1984 dip->un.v.num_channels = 2; 1985 strlcpy(dip->un.v.units.name, AudioNvolume, 1986 sizeof dip->un.v.units.name); 1987 return (0); 1988 1989 case ESS_INPUT_CLASS: 1990 dip->mixer_class = ESS_INPUT_CLASS; 1991 dip->next = dip->prev = AUDIO_MIXER_LAST; 1992 strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); 1993 dip->type = AUDIO_MIXER_CLASS; 1994 return (0); 1995 1996 case ESS_MASTER_VOL: 1997 dip->mixer_class = ESS_OUTPUT_CLASS; 1998 dip->next = dip->prev = AUDIO_MIXER_LAST; 1999 strlcpy(dip->label.name, AudioNmaster, sizeof dip->label.name); 2000 dip->type = AUDIO_MIXER_VALUE; 2001 dip->un.v.num_channels = 2; 2002 strlcpy(dip->un.v.units.name, AudioNvolume, 2003 sizeof dip->un.v.units.name); 2004 return (0); 2005 2006 case ESS_PCSPEAKER_VOL: 2007 dip->mixer_class = ESS_OUTPUT_CLASS; 2008 dip->next = dip->prev = AUDIO_MIXER_LAST; 2009 strlcpy(dip->label.name, "pc_speaker", sizeof dip->label.name); 2010 dip->type = AUDIO_MIXER_VALUE; 2011 dip->un.v.num_channels = 1; 2012 strlcpy(dip->un.v.units.name, AudioNvolume, 2013 sizeof dip->un.v.units.name); 2014 return (0); 2015 2016 case ESS_OUTPUT_CLASS: 2017 dip->mixer_class = ESS_OUTPUT_CLASS; 2018 dip->next = dip->prev = AUDIO_MIXER_LAST; 2019 strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); 2020 dip->type = AUDIO_MIXER_CLASS; 2021 return (0); 2022 2023 case ESS_RECORD_VOL: 2024 dip->mixer_class = ESS_RECORD_CLASS; 2025 dip->next = dip->prev = AUDIO_MIXER_LAST; 2026 strlcpy(dip->label.name, AudioNrecord, sizeof dip->label.name); 2027 dip->type = AUDIO_MIXER_VALUE; 2028 dip->un.v.num_channels = 2; 2029 strlcpy(dip->un.v.units.name, AudioNvolume, 2030 sizeof dip->un.v.units.name); 2031 return (0); 2032 2033 case ESS_RECORD_SOURCE: 2034 dip->mixer_class = ESS_RECORD_CLASS; 2035 dip->next = dip->prev = AUDIO_MIXER_LAST; 2036 strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); 2037 if (ESS_USE_AUDIO1(sc->sc_model)) { 2038 /* 2039 * The 1788 doesn't use the input mixer control that 2040 * the 1888 uses, because it's a pain when you only 2041 * have one mixer. 2042 * Perhaps it could be emulated by keeping both sets of 2043 * gain values, and doing a `context switch' of the 2044 * mixer registers when shifting from playing to 2045 * recording. 2046 */ 2047 dip->type = AUDIO_MIXER_ENUM; 2048 dip->un.e.num_mem = 4; 2049 strlcpy(dip->un.e.member[0].label.name, 2050 AudioNmicrophone, 2051 sizeof dip->un.e.member[0].label.name); 2052 dip->un.e.member[0].ord = ESS_SOURCE_MIC; 2053 strlcpy(dip->un.e.member[1].label.name, AudioNline, 2054 sizeof dip->un.e.member[1].label.name); 2055 dip->un.e.member[1].ord = ESS_SOURCE_LINE; 2056 strlcpy(dip->un.e.member[2].label.name, AudioNcd, 2057 sizeof dip->un.e.member[2].label.name); 2058 dip->un.e.member[2].ord = ESS_SOURCE_CD; 2059 strlcpy(dip->un.e.member[3].label.name, AudioNmixerout, 2060 sizeof dip->un.e.member[3].label.name); 2061 dip->un.e.member[3].ord = ESS_SOURCE_MIXER; 2062 } else { 2063 dip->type = AUDIO_MIXER_SET; 2064 dip->un.s.num_mem = 6; 2065 strlcpy(dip->un.s.member[0].label.name, AudioNdac, 2066 sizeof dip->un.e.member[0].label.name); 2067 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL; 2068 strlcpy(dip->un.s.member[1].label.name, 2069 AudioNmicrophone, 2070 sizeof dip->un.e.member[1].label.name); 2071 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL; 2072 strlcpy(dip->un.s.member[2].label.name, AudioNline, 2073 sizeof dip->un.e.member[2].label.name); 2074 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL; 2075 strlcpy(dip->un.s.member[3].label.name, AudioNfmsynth, 2076 sizeof dip->un.e.member[3].label.name); 2077 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL; 2078 strlcpy(dip->un.s.member[4].label.name, AudioNcd, 2079 sizeof dip->un.e.member[4].label.name); 2080 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL; 2081 strlcpy(dip->un.s.member[5].label.name, "auxb", 2082 sizeof dip->un.e.member[5].label.name); 2083 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL; 2084 } 2085 return (0); 2086 2087 case ESS_RECORD_CLASS: 2088 dip->mixer_class = ESS_RECORD_CLASS; 2089 dip->next = dip->prev = AUDIO_MIXER_LAST; 2090 strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); 2091 dip->type = AUDIO_MIXER_CLASS; 2092 return (0); 2093 2094 case ESS_RECORD_MONITOR: 2095 dip->prev = dip->next = AUDIO_MIXER_LAST; 2096 strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); 2097 dip->type = AUDIO_MIXER_ENUM; 2098 dip->mixer_class = ESS_MONITOR_CLASS; 2099 dip->un.e.num_mem = 2; 2100 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2101 sizeof dip->un.e.member[0].label.name); 2102 dip->un.e.member[0].ord = 0; 2103 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2104 sizeof dip->un.e.member[1].label.name); 2105 dip->un.e.member[1].ord = 1; 2106 return (0); 2107 2108 case ESS_MONITOR_CLASS: 2109 dip->mixer_class = ESS_MONITOR_CLASS; 2110 dip->next = dip->prev = AUDIO_MIXER_LAST; 2111 strlcpy(dip->label.name, AudioCmonitor, 2112 sizeof dip->label.name); 2113 dip->type = AUDIO_MIXER_CLASS; 2114 return (0); 2115 } 2116 2117 if (ESS_USE_AUDIO1(sc->sc_model)) 2118 return (ENXIO); 2119 2120 switch (dip->index) { 2121 case ESS_DAC_REC_VOL: 2122 dip->mixer_class = ESS_RECORD_CLASS; 2123 dip->next = dip->prev = AUDIO_MIXER_LAST; 2124 strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); 2125 dip->type = AUDIO_MIXER_VALUE; 2126 dip->un.v.num_channels = 2; 2127 strlcpy(dip->un.v.units.name, AudioNvolume, 2128 sizeof dip->un.v.units.name); 2129 return (0); 2130 2131 case ESS_MIC_REC_VOL: 2132 dip->mixer_class = ESS_RECORD_CLASS; 2133 dip->next = dip->prev = AUDIO_MIXER_LAST; 2134 strlcpy(dip->label.name, AudioNmicrophone, 2135 sizeof dip->label.name); 2136 dip->type = AUDIO_MIXER_VALUE; 2137 dip->un.v.num_channels = 2; 2138 strlcpy(dip->un.v.units.name, AudioNvolume, 2139 sizeof dip->un.v.units.name); 2140 return (0); 2141 2142 case ESS_LINE_REC_VOL: 2143 dip->mixer_class = ESS_RECORD_CLASS; 2144 dip->next = dip->prev = AUDIO_MIXER_LAST; 2145 strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); 2146 dip->type = AUDIO_MIXER_VALUE; 2147 dip->un.v.num_channels = 2; 2148 strlcpy(dip->un.v.units.name, AudioNvolume, 2149 sizeof dip->un.v.units.name); 2150 return (0); 2151 2152 case ESS_SYNTH_REC_VOL: 2153 dip->mixer_class = ESS_RECORD_CLASS; 2154 dip->next = dip->prev = AUDIO_MIXER_LAST; 2155 strlcpy(dip->label.name, AudioNfmsynth, 2156 sizeof dip->label.name); 2157 dip->type = AUDIO_MIXER_VALUE; 2158 dip->un.v.num_channels = 2; 2159 strlcpy(dip->un.v.units.name, AudioNvolume, 2160 sizeof dip->un.v.units.name); 2161 return (0); 2162 2163 case ESS_CD_REC_VOL: 2164 dip->mixer_class = ESS_RECORD_CLASS; 2165 dip->next = dip->prev = AUDIO_MIXER_LAST; 2166 strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); 2167 dip->type = AUDIO_MIXER_VALUE; 2168 dip->un.v.num_channels = 2; 2169 strlcpy(dip->un.v.units.name, AudioNvolume, 2170 sizeof dip->un.v.units.name); 2171 return (0); 2172 2173 case ESS_AUXB_REC_VOL: 2174 dip->mixer_class = ESS_RECORD_CLASS; 2175 dip->next = dip->prev = AUDIO_MIXER_LAST; 2176 strlcpy(dip->label.name, "auxb", sizeof dip->label.name); 2177 dip->type = AUDIO_MIXER_VALUE; 2178 dip->un.v.num_channels = 2; 2179 strlcpy(dip->un.v.units.name, AudioNvolume, 2180 sizeof dip->un.v.units.name); 2181 return (0); 2182 2183 case ESS_MIC_PREAMP: 2184 dip->mixer_class = ESS_INPUT_CLASS; 2185 dip->prev = ESS_MIC_PLAY_VOL; 2186 dip->next = AUDIO_MIXER_LAST; 2187 strlcpy(dip->label.name, AudioNpreamp, sizeof dip->label.name); 2188 dip->type = AUDIO_MIXER_ENUM; 2189 dip->un.e.num_mem = 2; 2190 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2191 sizeof dip->un.e.member[0].label.name); 2192 dip->un.e.member[0].ord = 0; 2193 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2194 sizeof dip->un.e.member[1].label.name); 2195 dip->un.e.member[1].ord = 1; 2196 return (0); 2197 } 2198 2199 return (ENXIO); 2200 } 2201 2202 void * 2203 ess_malloc(addr, direction, size, pool, flags) 2204 void *addr; 2205 int direction; 2206 size_t size; 2207 int pool, flags; 2208 { 2209 struct ess_softc *sc = addr; 2210 int drq; 2211 2212 if (!ESS_USE_AUDIO1(sc->sc_model)) 2213 drq = sc->sc_audio2.drq; 2214 else 2215 drq = sc->sc_audio1.drq; 2216 return (isa_malloc(sc->sc_isa, drq, size, pool, flags)); 2217 } 2218 2219 void 2220 ess_free(addr, ptr, pool) 2221 void *addr; 2222 void *ptr; 2223 int pool; 2224 { 2225 isa_free(ptr, pool); 2226 } 2227 2228 size_t 2229 ess_round_buffersize(addr, direction, size) 2230 void *addr; 2231 int direction; 2232 size_t size; 2233 { 2234 if (size > MAX_ISADMA) 2235 size = MAX_ISADMA; 2236 return (size); 2237 } 2238 2239 paddr_t 2240 ess_mappage(addr, mem, off, prot) 2241 void *addr; 2242 void *mem; 2243 off_t off; 2244 int prot; 2245 { 2246 return (isa_mappage(mem, off, prot)); 2247 } 2248 2249 int 2250 ess_1788_get_props(addr) 2251 void *addr; 2252 { 2253 2254 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT); 2255 } 2256 2257 int 2258 ess_1888_get_props(addr) 2259 void *addr; 2260 { 2261 2262 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); 2263 } 2264 2265 /* ============================================ 2266 * Generic functions for ess, not used by audio h/w i/f 2267 * ============================================= 2268 */ 2269 2270 /* 2271 * Reset the chip. 2272 * Return non-zero if the chip isn't detected. 2273 */ 2274 int 2275 ess_reset(sc) 2276 struct ess_softc *sc; 2277 { 2278 bus_space_tag_t iot = sc->sc_iot; 2279 bus_space_handle_t ioh = sc->sc_ioh; 2280 2281 sc->sc_audio1.active = 0; 2282 sc->sc_audio2.active = 0; 2283 2284 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT); 2285 delay(10000); 2286 EWRITE1(iot, ioh, ESS_DSP_RESET, 0); 2287 if (ess_rdsp(sc) != ESS_MAGIC) 2288 return (1); 2289 2290 /* Enable access to the ESS extension commands. */ 2291 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT); 2292 2293 return (0); 2294 } 2295 2296 void 2297 ess_set_gain(sc, port, on) 2298 struct ess_softc *sc; 2299 int port; 2300 int on; 2301 { 2302 int gain, left, right; 2303 int mix; 2304 int src; 2305 int stereo; 2306 2307 /* 2308 * Most gain controls are found in the mixer registers and 2309 * are stereo. Any that are not, must set mix and stereo as 2310 * required. 2311 */ 2312 mix = 1; 2313 stereo = 1; 2314 2315 switch (port) { 2316 case ESS_MASTER_VOL: 2317 src = ESS_MREG_VOLUME_MASTER; 2318 break; 2319 case ESS_DAC_PLAY_VOL: 2320 if (ESS_USE_AUDIO1(sc->sc_model)) 2321 src = ESS_MREG_VOLUME_VOICE; 2322 else 2323 src = 0x7C; 2324 break; 2325 case ESS_MIC_PLAY_VOL: 2326 src = ESS_MREG_VOLUME_MIC; 2327 break; 2328 case ESS_LINE_PLAY_VOL: 2329 src = ESS_MREG_VOLUME_LINE; 2330 break; 2331 case ESS_SYNTH_PLAY_VOL: 2332 src = ESS_MREG_VOLUME_SYNTH; 2333 break; 2334 case ESS_CD_PLAY_VOL: 2335 src = ESS_MREG_VOLUME_CD; 2336 break; 2337 case ESS_AUXB_PLAY_VOL: 2338 src = ESS_MREG_VOLUME_AUXB; 2339 break; 2340 case ESS_PCSPEAKER_VOL: 2341 src = ESS_MREG_VOLUME_PCSPKR; 2342 stereo = 0; 2343 break; 2344 case ESS_DAC_REC_VOL: 2345 src = 0x69; 2346 break; 2347 case ESS_MIC_REC_VOL: 2348 src = 0x68; 2349 break; 2350 case ESS_LINE_REC_VOL: 2351 src = 0x6E; 2352 break; 2353 case ESS_SYNTH_REC_VOL: 2354 src = 0x6B; 2355 break; 2356 case ESS_CD_REC_VOL: 2357 src = 0x6A; 2358 break; 2359 case ESS_AUXB_REC_VOL: 2360 src = 0x6C; 2361 break; 2362 case ESS_RECORD_VOL: 2363 src = ESS_XCMD_VOLIN_CTRL; 2364 mix = 0; 2365 break; 2366 default: 2367 return; 2368 } 2369 2370 /* 1788 doesn't have a separate recording mixer */ 2371 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62) 2372 return; 2373 2374 if (on) { 2375 left = sc->gain[port][ESS_LEFT]; 2376 right = sc->gain[port][ESS_RIGHT]; 2377 } else { 2378 left = right = 0; 2379 } 2380 2381 if (stereo) 2382 gain = ESS_STEREO_GAIN(left, right); 2383 else 2384 gain = ESS_MONO_GAIN(left); 2385 2386 if (mix) 2387 ess_write_mix_reg(sc, src, gain); 2388 else 2389 ess_write_x_reg(sc, src, gain); 2390 } 2391 2392 /* Set the input device on devices without an input mixer. */ 2393 int 2394 ess_set_in_port(sc, ord) 2395 struct ess_softc *sc; 2396 int ord; 2397 { 2398 mixer_devinfo_t di; 2399 int i; 2400 2401 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord)); 2402 2403 /* 2404 * Get the device info for the record source control, 2405 * including the list of available sources. 2406 */ 2407 di.index = ESS_RECORD_SOURCE; 2408 if (ess_query_devinfo(sc, &di)) 2409 return EINVAL; 2410 2411 /* See if the given ord value was anywhere in the list. */ 2412 for (i = 0; i < di.un.e.num_mem; i++) { 2413 if (ord == di.un.e.member[i].ord) 2414 break; 2415 } 2416 if (i == di.un.e.num_mem) 2417 return EINVAL; 2418 2419 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord); 2420 2421 sc->in_port = ord; 2422 return (0); 2423 } 2424 2425 /* Set the input device levels on input-mixer-enabled devices. */ 2426 int 2427 ess_set_in_ports(sc, mask) 2428 struct ess_softc *sc; 2429 int mask; 2430 { 2431 mixer_devinfo_t di; 2432 int i, port; 2433 2434 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask)); 2435 2436 /* 2437 * Get the device info for the record source control, 2438 * including the list of available sources. 2439 */ 2440 di.index = ESS_RECORD_SOURCE; 2441 if (ess_query_devinfo(sc, &di)) 2442 return EINVAL; 2443 2444 /* 2445 * Set or disable the record volume control for each of the 2446 * possible sources. 2447 */ 2448 for (i = 0; i < di.un.s.num_mem; i++) { 2449 /* 2450 * Calculate the source port number from its mask. 2451 */ 2452 port = ffs(di.un.s.member[i].mask); 2453 2454 /* 2455 * Set the source gain: 2456 * to the current value if source is enabled 2457 * to zero if source is disabled 2458 */ 2459 ess_set_gain(sc, port, mask & di.un.s.member[i].mask); 2460 } 2461 2462 sc->in_mask = mask; 2463 return (0); 2464 } 2465 2466 void 2467 ess_speaker_on(sc) 2468 struct ess_softc *sc; 2469 { 2470 /* Unmute the DAC. */ 2471 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1); 2472 } 2473 2474 void 2475 ess_speaker_off(sc) 2476 struct ess_softc *sc; 2477 { 2478 /* Mute the DAC. */ 2479 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0); 2480 } 2481 2482 /* 2483 * Calculate the time constant for the requested sampling rate. 2484 */ 2485 u_int 2486 ess_srtotc(rate) 2487 u_int rate; 2488 { 2489 u_int tc; 2490 2491 /* The following formulae are from the ESS data sheet. */ 2492 if (rate <= 22050) 2493 tc = 128 - 397700L / rate; 2494 else 2495 tc = 256 - 795500L / rate; 2496 2497 return (tc); 2498 } 2499 2500 2501 /* 2502 * Calculate the filter constant for the reuqested sampling rate. 2503 */ 2504 u_int 2505 ess_srtofc(rate) 2506 u_int rate; 2507 { 2508 /* 2509 * The following formula is derived from the information in 2510 * the ES1887 data sheet, based on a roll-off frequency of 2511 * 87%. 2512 */ 2513 return (256 - 200279L / rate); 2514 } 2515 2516 2517 /* 2518 * Return the status of the DSP. 2519 */ 2520 u_char 2521 ess_get_dsp_status(sc) 2522 struct ess_softc *sc; 2523 { 2524 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS)); 2525 } 2526 2527 2528 /* 2529 * Return the read status of the DSP: 1 -> DSP ready for reading 2530 * 0 -> DSP not ready for reading 2531 */ 2532 u_char 2533 ess_dsp_read_ready(sc) 2534 struct ess_softc *sc; 2535 { 2536 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0); 2537 } 2538 2539 2540 /* 2541 * Return the write status of the DSP: 1 -> DSP ready for writing 2542 * 0 -> DSP not ready for writing 2543 */ 2544 u_char 2545 ess_dsp_write_ready(sc) 2546 struct ess_softc *sc; 2547 { 2548 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1); 2549 } 2550 2551 2552 /* 2553 * Read a byte from the DSP. 2554 */ 2555 int 2556 ess_rdsp(sc) 2557 struct ess_softc *sc; 2558 { 2559 bus_space_tag_t iot = sc->sc_iot; 2560 bus_space_handle_t ioh = sc->sc_ioh; 2561 int i; 2562 2563 for (i = ESS_READ_TIMEOUT; i > 0; --i) { 2564 if (ess_dsp_read_ready(sc)) { 2565 i = EREAD1(iot, ioh, ESS_DSP_READ); 2566 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i)); 2567 return i; 2568 } else 2569 delay(10); 2570 } 2571 2572 DPRINTF(("ess_rdsp: timed out\n")); 2573 return (-1); 2574 } 2575 2576 /* 2577 * Write a byte to the DSP. 2578 */ 2579 int 2580 ess_wdsp(sc, v) 2581 struct ess_softc *sc; 2582 u_char v; 2583 { 2584 bus_space_tag_t iot = sc->sc_iot; 2585 bus_space_handle_t ioh = sc->sc_ioh; 2586 int i; 2587 2588 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v)); 2589 2590 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) { 2591 if (ess_dsp_write_ready(sc)) { 2592 EWRITE1(iot, ioh, ESS_DSP_WRITE, v); 2593 return (0); 2594 } else 2595 delay(10); 2596 } 2597 2598 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v)); 2599 return (-1); 2600 } 2601 2602 /* 2603 * Write a value to one of the ESS extended registers. 2604 */ 2605 int 2606 ess_write_x_reg(sc, reg, val) 2607 struct ess_softc *sc; 2608 u_char reg; 2609 u_char val; 2610 { 2611 int error; 2612 2613 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val)); 2614 if ((error = ess_wdsp(sc, reg)) == 0) 2615 error = ess_wdsp(sc, val); 2616 2617 return error; 2618 } 2619 2620 /* 2621 * Read the value of one of the ESS extended registers. 2622 */ 2623 u_char 2624 ess_read_x_reg(sc, reg) 2625 struct ess_softc *sc; 2626 u_char reg; 2627 { 2628 int error; 2629 int val; 2630 2631 if ((error = ess_wdsp(sc, 0xC0)) == 0) 2632 error = ess_wdsp(sc, reg); 2633 if (error) 2634 DPRINTF(("Error reading extended register 0x%02x\n", reg)); 2635 /* REVISIT: what if an error is returned above? */ 2636 val = ess_rdsp(sc); 2637 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val)); 2638 return val; 2639 } 2640 2641 void 2642 ess_clear_xreg_bits(sc, reg, mask) 2643 struct ess_softc *sc; 2644 u_char reg; 2645 u_char mask; 2646 { 2647 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) 2648 DPRINTF(("Error clearing bits in extended register 0x%02x\n", 2649 reg)); 2650 } 2651 2652 void 2653 ess_set_xreg_bits(sc, reg, mask) 2654 struct ess_softc *sc; 2655 u_char reg; 2656 u_char mask; 2657 { 2658 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) 2659 DPRINTF(("Error setting bits in extended register 0x%02x\n", 2660 reg)); 2661 } 2662 2663 2664 /* 2665 * Write a value to one of the ESS mixer registers. 2666 */ 2667 void 2668 ess_write_mix_reg(sc, reg, val) 2669 struct ess_softc *sc; 2670 u_char reg; 2671 u_char val; 2672 { 2673 bus_space_tag_t iot = sc->sc_iot; 2674 bus_space_handle_t ioh = sc->sc_ioh; 2675 int s; 2676 2677 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val)); 2678 2679 s = splaudio(); 2680 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2681 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val); 2682 splx(s); 2683 } 2684 2685 /* 2686 * Read the value of one of the ESS mixer registers. 2687 */ 2688 u_char 2689 ess_read_mix_reg(sc, reg) 2690 struct ess_softc *sc; 2691 u_char reg; 2692 { 2693 bus_space_tag_t iot = sc->sc_iot; 2694 bus_space_handle_t ioh = sc->sc_ioh; 2695 int s; 2696 u_char val; 2697 2698 s = splaudio(); 2699 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2700 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA); 2701 splx(s); 2702 2703 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val)); 2704 return val; 2705 } 2706 2707 void 2708 ess_clear_mreg_bits(sc, reg, mask) 2709 struct ess_softc *sc; 2710 u_char reg; 2711 u_char mask; 2712 { 2713 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask); 2714 } 2715 2716 void 2717 ess_set_mreg_bits(sc, reg, mask) 2718 struct ess_softc *sc; 2719 u_char reg; 2720 u_char mask; 2721 { 2722 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask); 2723 } 2724 2725 void 2726 ess_read_multi_mix_reg(sc, reg, datap, count) 2727 struct ess_softc *sc; 2728 u_char reg; 2729 u_int8_t *datap; 2730 bus_size_t count; 2731 { 2732 bus_space_tag_t iot = sc->sc_iot; 2733 bus_space_handle_t ioh = sc->sc_ioh; 2734 int s; 2735 2736 s = splaudio(); 2737 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2738 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count); 2739 splx(s); 2740 } 2741