1 /* $OpenBSD: ess.c,v 1.13 2008/04/21 00:32:42 jakemsr Exp $ */ 2 /* $NetBSD: ess.c,v 1.44.4.1 1999/06/21 01:18:00 thorpej Exp $ */ 3 4 /* 5 * Copyright 1997 6 * Digital Equipment Corporation. All rights reserved. 7 * 8 * This software is furnished under license and may be used and 9 * copied only in accordance with the following terms and conditions. 10 * Subject to these conditions, you may download, copy, install, 11 * use, modify and distribute this software in source and/or binary 12 * form. No title or ownership is transferred hereby. 13 * 14 * 1) Any source code used, modified or distributed must reproduce 15 * and retain this copyright notice and list of conditions as 16 * they appear in the source file. 17 * 18 * 2) No right is granted to use any trade name, trademark, or logo of 19 * Digital Equipment Corporation. Neither the "Digital Equipment 20 * Corporation" name nor any trademark or logo of Digital Equipment 21 * Corporation may be used to endorse or promote products derived 22 * from this software without the prior written permission of 23 * Digital Equipment Corporation. 24 * 25 * 3) This software is provided "AS-IS" and any express or implied 26 * warranties, including but not limited to, any implied warranties 27 * of merchantability, fitness for a particular purpose, or 28 * non-infringement are disclaimed. In no event shall DIGITAL be 29 * liable for any damages whatsoever, and in particular, DIGITAL 30 * shall not be liable for special, indirect, consequential, or 31 * incidental damages or damages for lost profits, loss of 32 * revenue or loss of use, whether such damages arise in contract, 33 * negligence, tort, under statute, in equity, at law or otherwise, 34 * even if advised of the possibility of such damage. 35 */ 36 37 /* 38 **++ 39 ** 40 ** ess.c 41 ** 42 ** FACILITY: 43 ** 44 ** DIGITAL Network Appliance Reference Design (DNARD) 45 ** 46 ** MODULE DESCRIPTION: 47 ** 48 ** This module contains the device driver for the ESS 49 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was 50 ** used as a reference point when implementing this driver. 51 ** 52 ** AUTHORS: 53 ** 54 ** Blair Fidler Software Engineering Australia 55 ** Gold Coast, Australia. 56 ** 57 ** CREATION DATE: 58 ** 59 ** March 10, 1997. 60 ** 61 ** MODIFICATION HISTORY: 62 ** 63 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for 64 ** bus_dma, changes to audio interface, and many bug fixes. 65 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum. 66 **-- 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/errno.h> 72 #include <sys/ioctl.h> 73 #include <sys/syslog.h> 74 #include <sys/device.h> 75 #include <sys/proc.h> 76 #include <sys/kernel.h> 77 #include <sys/timeout.h> 78 79 #include <machine/cpu.h> 80 #include <machine/intr.h> 81 #include <machine/bus.h> 82 83 #include <sys/audioio.h> 84 #include <dev/audio_if.h> 85 #include <dev/auconv.h> 86 #include <dev/mulaw.h> 87 88 #include <dev/isa/isavar.h> 89 #include <dev/isa/isadmavar.h> 90 91 #include <dev/isa/essvar.h> 92 #include <dev/isa/essreg.h> 93 94 #ifdef AUDIO_DEBUG 95 #define DPRINTF(x) if (essdebug) printf x 96 #define DPRINTFN(n,x) if (essdebug>(n)) printf x 97 int essdebug = 0; 98 #else 99 #define DPRINTF(x) 100 #define DPRINTFN(n,x) 101 #endif 102 103 #if 0 104 unsigned uuu; 105 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu) 106 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d)) 107 #else 108 #define EREAD1(t, h, a) bus_space_read_1(t, h, a) 109 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d) 110 #endif 111 112 struct cfdriver ess_cd = { 113 NULL, "ess", DV_DULL 114 }; 115 116 int ess_setup_sc(struct ess_softc *, int); 117 118 int ess_open(void *, int); 119 void ess_1788_close(void *); 120 void ess_1888_close(void *); 121 int ess_getdev(void *, struct audio_device *); 122 int ess_drain(void *); 123 124 int ess_query_encoding(void *, struct audio_encoding *); 125 126 int ess_set_params(void *, int, int, struct audio_params *, 127 struct audio_params *); 128 129 int ess_round_blocksize(void *, int); 130 131 int ess_audio1_trigger_output(void *, void *, void *, int, 132 void (*)(void *), void *, struct audio_params *); 133 int ess_audio2_trigger_output(void *, void *, void *, int, 134 void (*)(void *), void *, struct audio_params *); 135 int ess_audio1_trigger_input(void *, void *, void *, int, 136 void (*)(void *), void *, struct audio_params *); 137 int ess_audio1_halt(void *); 138 int ess_audio2_halt(void *); 139 int ess_audio1_intr(void *); 140 int ess_audio2_intr(void *); 141 void ess_audio1_poll(void *); 142 void ess_audio2_poll(void *); 143 144 int ess_speaker_ctl(void *, int); 145 146 int ess_getdev(void *, struct audio_device *); 147 148 int ess_set_port(void *, mixer_ctrl_t *); 149 int ess_get_port(void *, mixer_ctrl_t *); 150 151 void *ess_malloc(void *, int, size_t, int, int); 152 void ess_free(void *, void *, int); 153 size_t ess_round_buffersize(void *, int, size_t); 154 paddr_t ess_mappage(void *, void *, off_t, int); 155 156 157 int ess_query_devinfo(void *, mixer_devinfo_t *); 158 int ess_1788_get_props(void *); 159 int ess_1888_get_props(void *); 160 161 void ess_speaker_on(struct ess_softc *); 162 void ess_speaker_off(struct ess_softc *); 163 164 int ess_config_addr(struct ess_softc *); 165 void ess_config_irq(struct ess_softc *); 166 void ess_config_drq(struct ess_softc *); 167 void ess_setup(struct ess_softc *); 168 int ess_identify(struct ess_softc *); 169 170 int ess_reset(struct ess_softc *); 171 void ess_set_gain(struct ess_softc *, int, int); 172 int ess_set_in_port(struct ess_softc *, int); 173 int ess_set_in_ports(struct ess_softc *, int); 174 u_int ess_srtotc(u_int); 175 u_int ess_srtofc(u_int); 176 u_char ess_get_dsp_status(struct ess_softc *); 177 u_char ess_dsp_read_ready(struct ess_softc *); 178 u_char ess_dsp_write_ready(struct ess_softc *); 179 int ess_rdsp(struct ess_softc *); 180 int ess_wdsp(struct ess_softc *, u_char); 181 u_char ess_read_x_reg(struct ess_softc *, u_char); 182 int ess_write_x_reg(struct ess_softc *, u_char, u_char); 183 void ess_clear_xreg_bits(struct ess_softc *, u_char, u_char); 184 void ess_set_xreg_bits(struct ess_softc *, u_char, u_char); 185 u_char ess_read_mix_reg(struct ess_softc *, u_char); 186 void ess_write_mix_reg(struct ess_softc *, u_char, u_char); 187 void ess_clear_mreg_bits(struct ess_softc *, u_char, u_char); 188 void ess_set_mreg_bits(struct ess_softc *, u_char, u_char); 189 void ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *, bus_size_t); 190 191 static char *essmodel[] = { 192 "unsupported", 193 "1888", 194 "1887", 195 "888", 196 "1788", 197 "1869", 198 "1879", 199 "1868", 200 "1878", 201 }; 202 203 struct audio_device ess_device = { 204 "ESS Technology", 205 "x", 206 "ess" 207 }; 208 209 /* 210 * Define our interface to the higher level audio driver. 211 */ 212 213 struct audio_hw_if ess_1788_hw_if = { 214 ess_open, 215 ess_1788_close, 216 ess_drain, 217 ess_query_encoding, 218 ess_set_params, 219 ess_round_blocksize, 220 NULL, 221 NULL, 222 NULL, 223 NULL, 224 NULL, 225 ess_audio1_halt, 226 ess_audio1_halt, 227 ess_speaker_ctl, 228 ess_getdev, 229 NULL, 230 ess_set_port, 231 ess_get_port, 232 ess_query_devinfo, 233 ess_malloc, 234 ess_free, 235 ess_round_buffersize, 236 ess_mappage, 237 ess_1788_get_props, 238 ess_audio1_trigger_output, 239 ess_audio1_trigger_input, 240 NULL 241 }; 242 243 struct audio_hw_if ess_1888_hw_if = { 244 ess_open, 245 ess_1888_close, 246 ess_drain, 247 ess_query_encoding, 248 ess_set_params, 249 ess_round_blocksize, 250 NULL, 251 NULL, 252 NULL, 253 NULL, 254 NULL, 255 ess_audio2_halt, 256 ess_audio1_halt, 257 ess_speaker_ctl, 258 ess_getdev, 259 NULL, 260 ess_set_port, 261 ess_get_port, 262 ess_query_devinfo, 263 ess_malloc, 264 ess_free, 265 ess_round_buffersize, 266 ess_mappage, 267 ess_1888_get_props, 268 ess_audio2_trigger_output, 269 ess_audio1_trigger_input, 270 NULL 271 }; 272 273 #ifdef AUDIO_DEBUG 274 void ess_printsc(struct ess_softc *); 275 void ess_dump_mixer(struct ess_softc *); 276 277 void 278 ess_printsc(sc) 279 struct ess_softc *sc; 280 { 281 int i; 282 283 printf("open %d iobase 0x%x outport %u inport %u speaker %s\n", 284 (int)sc->sc_open, sc->sc_iobase, sc->out_port, 285 sc->in_port, sc->spkr_state ? "on" : "off"); 286 287 printf("audio1: dmachan %d irq %d nintr %lu intr %p arg %p\n", 288 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr, 289 sc->sc_audio1.intr, sc->sc_audio1.arg); 290 291 if (!ESS_USE_AUDIO1(sc->sc_model)) { 292 printf("audio2: dmachan %d irq %d nintr %lu intr %p arg %p\n", 293 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr, 294 sc->sc_audio2.intr, sc->sc_audio2.arg); 295 } 296 297 printf("gain:"); 298 for (i = 0; i < sc->ndevs; i++) 299 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]); 300 printf("\n"); 301 } 302 303 void 304 ess_dump_mixer(sc) 305 struct ess_softc *sc; 306 { 307 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 308 0x7C, ess_read_mix_reg(sc, 0x7C)); 309 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 310 0x1A, ess_read_mix_reg(sc, 0x1A)); 311 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 312 0x3E, ess_read_mix_reg(sc, 0x3E)); 313 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 314 0x36, ess_read_mix_reg(sc, 0x36)); 315 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 316 0x38, ess_read_mix_reg(sc, 0x38)); 317 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 318 0x3A, ess_read_mix_reg(sc, 0x3A)); 319 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n", 320 0x32, ess_read_mix_reg(sc, 0x32)); 321 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n", 322 0x3C, ess_read_mix_reg(sc, 0x3C)); 323 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n", 324 0x69, ess_read_mix_reg(sc, 0x69)); 325 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n", 326 0x68, ess_read_mix_reg(sc, 0x68)); 327 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n", 328 0x6E, ess_read_mix_reg(sc, 0x6E)); 329 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n", 330 0x6B, ess_read_mix_reg(sc, 0x6B)); 331 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n", 332 0x6A, ess_read_mix_reg(sc, 0x6A)); 333 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n", 334 0x6C, ess_read_mix_reg(sc, 0x6C)); 335 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n", 336 0xB4, ess_read_x_reg(sc, 0xB4)); 337 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n", 338 0x14, ess_read_mix_reg(sc, 0x14)); 339 340 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n", 341 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL)); 342 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n", 343 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL)); 344 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n", 345 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE), 346 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2)); 347 } 348 349 #endif 350 351 /* 352 * Configure the ESS chip for the desired audio base address. 353 */ 354 int 355 ess_config_addr(sc) 356 struct ess_softc *sc; 357 { 358 int iobase = sc->sc_iobase; 359 bus_space_tag_t iot = sc->sc_iot; 360 361 /* 362 * Configure using the System Control Register method. This 363 * method is used when the AMODE line is tied high, which is 364 * the case for the Shark, but not for the evaluation board. 365 */ 366 367 bus_space_handle_t scr_access_ioh; 368 bus_space_handle_t scr_ioh; 369 u_short scr_value; 370 371 /* 372 * Set the SCR bit to enable audio. 373 */ 374 scr_value = ESS_SCR_AUDIO_ENABLE; 375 376 /* 377 * Set the SCR bits necessary to select the specified audio 378 * base address. 379 */ 380 switch(iobase) { 381 case 0x220: 382 scr_value |= ESS_SCR_AUDIO_220; 383 break; 384 case 0x230: 385 scr_value |= ESS_SCR_AUDIO_230; 386 break; 387 case 0x240: 388 scr_value |= ESS_SCR_AUDIO_240; 389 break; 390 case 0x250: 391 scr_value |= ESS_SCR_AUDIO_250; 392 break; 393 default: 394 printf("ess: configured iobase 0x%x invalid\n", iobase); 395 return (1); 396 break; 397 } 398 399 /* 400 * Get a mapping for the System Control Register (SCR) access 401 * registers and the SCR data registers. 402 */ 403 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS, 404 0, &scr_access_ioh)) { 405 printf("ess: can't map SCR access registers\n"); 406 return (1); 407 } 408 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS, 409 0, &scr_ioh)) { 410 printf("ess: can't map SCR registers\n"); 411 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 412 return (1); 413 } 414 415 /* Unlock the SCR. */ 416 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0); 417 418 /* Write the base address information into SCR[0]. */ 419 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0); 420 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value); 421 422 /* Lock the SCR. */ 423 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0); 424 425 /* Unmap the SCR access ports and the SCR data ports. */ 426 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 427 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS); 428 429 return 0; 430 } 431 432 433 /* 434 * Configure the ESS chip for the desired IRQ and DMA channels. 435 * ESS ISA 436 * -------- 437 * IRQA irq9 438 * IRQB irq5 439 * IRQC irq7 440 * IRQD irq10 441 * IRQE irq15 442 * 443 * DRQA drq0 444 * DRQB drq1 445 * DRQC drq3 446 * DRQD drq5 447 */ 448 void 449 ess_config_irq(sc) 450 struct ess_softc *sc; 451 { 452 int v; 453 454 DPRINTFN(2,("ess_config_irq\n")); 455 456 if (sc->sc_model == ESS_1887 && 457 sc->sc_audio1.irq == sc->sc_audio2.irq && 458 sc->sc_audio1.irq != -1) { 459 /* Use new method, both interrupts are the same. */ 460 v = ESS_IS_SELECT_IRQ; /* enable intrs */ 461 switch (sc->sc_audio1.irq) { 462 case 5: 463 v |= ESS_IS_INTRB; 464 break; 465 case 7: 466 v |= ESS_IS_INTRC; 467 break; 468 case 9: 469 v |= ESS_IS_INTRA; 470 break; 471 case 10: 472 v |= ESS_IS_INTRD; 473 break; 474 case 15: 475 v |= ESS_IS_INTRE; 476 break; 477 #ifdef DIAGNOSTIC 478 default: 479 printf("ess_config_irq: configured irq %d not supported for Audio 1\n", 480 sc->sc_audio1.irq); 481 return; 482 #endif 483 } 484 /* Set the IRQ */ 485 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v); 486 return; 487 } 488 489 if (sc->sc_model == ESS_1887) { 490 /* Tell the 1887 to use the old interrupt method. */ 491 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888); 492 } 493 494 if (sc->sc_audio1.polled) { 495 /* Turn off Audio1 interrupts. */ 496 v = 0; 497 } else { 498 /* Configure Audio 1 for the appropriate IRQ line. */ 499 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */ 500 switch (sc->sc_audio1.irq) { 501 case 5: 502 v |= ESS_IRQ_CTRL_INTRB; 503 break; 504 case 7: 505 v |= ESS_IRQ_CTRL_INTRC; 506 break; 507 case 9: 508 v |= ESS_IRQ_CTRL_INTRA; 509 break; 510 case 10: 511 v |= ESS_IRQ_CTRL_INTRD; 512 break; 513 #ifdef DIAGNOSTIC 514 default: 515 printf("ess: configured irq %d not supported for Audio 1\n", 516 sc->sc_audio1.irq); 517 return; 518 #endif 519 } 520 } 521 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v); 522 523 if (ESS_USE_AUDIO1(sc->sc_model)) 524 return; 525 526 if (sc->sc_audio2.polled) { 527 /* Turn off Audio2 interrupts. */ 528 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 529 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 530 } else { 531 /* Audio2 is hardwired to INTRE in this mode. */ 532 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 533 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 534 } 535 } 536 537 538 void 539 ess_config_drq(sc) 540 struct ess_softc *sc; 541 { 542 int v; 543 544 DPRINTFN(2,("ess_config_drq\n")); 545 546 /* Configure Audio 1 (record) for DMA on the appropriate channel. */ 547 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT; 548 switch (sc->sc_audio1.drq) { 549 case 0: 550 v |= ESS_DRQ_CTRL_DRQA; 551 break; 552 case 1: 553 v |= ESS_DRQ_CTRL_DRQB; 554 break; 555 case 3: 556 v |= ESS_DRQ_CTRL_DRQC; 557 break; 558 #ifdef DIAGNOSTIC 559 default: 560 printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n", 561 sc->sc_audio1.drq); 562 return; 563 #endif 564 } 565 /* Set DRQ1 */ 566 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v); 567 568 if (ESS_USE_AUDIO1(sc->sc_model)) 569 return; 570 571 /* Configure DRQ2 */ 572 v = ESS_AUDIO2_CTRL3_DRQ_PD; 573 switch (sc->sc_audio2.drq) { 574 case 0: 575 v |= ESS_AUDIO2_CTRL3_DRQA; 576 break; 577 case 1: 578 v |= ESS_AUDIO2_CTRL3_DRQB; 579 break; 580 case 3: 581 v |= ESS_AUDIO2_CTRL3_DRQC; 582 break; 583 case 5: 584 v |= ESS_AUDIO2_CTRL3_DRQD; 585 break; 586 #ifdef DIAGNOSTIC 587 default: 588 printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n", 589 sc->sc_audio2.drq); 590 return; 591 #endif 592 } 593 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v); 594 /* Enable DMA 2 */ 595 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 596 ESS_AUDIO2_CTRL2_DMA_ENABLE); 597 } 598 599 /* 600 * Set up registers after a reset. 601 */ 602 void 603 ess_setup(sc) 604 struct ess_softc *sc; 605 { 606 607 ess_config_irq(sc); 608 ess_config_drq(sc); 609 610 DPRINTFN(2,("ess_setup: done\n")); 611 } 612 613 /* 614 * Determine the model of ESS chip we are talking to. Currently we 615 * only support ES1888, ES1887 and ES888. The method of determining 616 * the chip is based on the information on page 27 of the ES1887 data 617 * sheet. 618 * 619 * This routine sets the values of sc->sc_model and sc->sc_version. 620 */ 621 int 622 ess_identify(sc) 623 struct ess_softc *sc; 624 { 625 u_char reg1; 626 u_char reg2; 627 u_char reg3; 628 u_int8_t ident[4]; 629 630 sc->sc_model = ESS_UNSUPPORTED; 631 sc->sc_version = 0; 632 633 memset(ident, 0, sizeof(ident)); 634 635 /* 636 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where 637 * n >= 8 for an ES1887 or an ES888. Other values indicate 638 * earlier (unsupported) chips. 639 */ 640 ess_wdsp(sc, ESS_ACMD_LEGACY_ID); 641 642 if ((reg1 = ess_rdsp(sc)) != 0x68) { 643 printf("ess: First ID byte wrong (0x%02x)\n", reg1); 644 return 1; 645 } 646 647 reg2 = ess_rdsp(sc); 648 if (((reg2 & 0xf0) != 0x80) || 649 ((reg2 & 0x0f) < 8)) { 650 printf("ess: Second ID byte wrong (0x%02x)\n", reg2); 651 return 1; 652 } 653 654 /* 655 * Store the ID bytes as the version. 656 */ 657 sc->sc_version = (reg1 << 8) + reg2; 658 659 660 /* 661 * 2. Verify we can change bit 2 in mixer register 0x64. This 662 * should be possible on all supported chips. 663 */ 664 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 665 reg2 = reg1 ^ 0x04; /* toggle bit 2 */ 666 667 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 668 669 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) { 670 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n"); 671 return 1; 672 } 673 674 /* 675 * Restore the original value of mixer register 0x64. 676 */ 677 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 678 679 680 /* 681 * 3. Verify we can change the value of mixer register 682 * ESS_MREG_SAMPLE_RATE. 683 * This is possible on the 1888/1887/888, but not on the 1788. 684 * It is not necessary to restore the value of this mixer register. 685 */ 686 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE); 687 reg2 = reg1 ^ 0xff; /* toggle all bits */ 688 689 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2); 690 691 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) { 692 /* If we got this far before failing, it's a 1788. */ 693 sc->sc_model = ESS_1788; 694 695 /* 696 * Identify ESS model for ES18[67]8. 697 */ 698 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 699 if(ident[0] == 0x18) { 700 switch(ident[1]) { 701 case 0x68: 702 sc->sc_model = ESS_1868; 703 break; 704 case 0x78: 705 sc->sc_model = ESS_1878; 706 break; 707 } 708 } 709 } else { 710 /* 711 * 4. Determine if we can change bit 5 in mixer register 0x64. 712 * This determines whether we have an ES1887: 713 * 714 * - can change indicates ES1887 715 * - can't change indicates ES1888 or ES888 716 */ 717 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 718 reg2 = reg1 ^ 0x20; /* toggle bit 5 */ 719 720 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 721 722 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) { 723 sc->sc_model = ESS_1887; 724 725 /* 726 * Restore the original value of mixer register 0x64. 727 */ 728 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 729 730 /* 731 * Identify ESS model for ES18[67]9. 732 */ 733 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 734 if(ident[0] == 0x18) { 735 switch(ident[1]) { 736 case 0x69: 737 sc->sc_model = ESS_1869; 738 break; 739 case 0x79: 740 sc->sc_model = ESS_1879; 741 break; 742 } 743 } 744 } else { 745 /* 746 * 5. Determine if we can change the value of mixer 747 * register 0x69 independently of mixer register 748 * 0x68. This determines which chip we have: 749 * 750 * - can modify idependently indicates ES888 751 * - register 0x69 is an alias of 0x68 indicates ES1888 752 */ 753 reg1 = ess_read_mix_reg(sc, 0x68); 754 reg2 = ess_read_mix_reg(sc, 0x69); 755 reg3 = reg2 ^ 0xff; /* toggle all bits */ 756 757 /* 758 * Write different values to each register. 759 */ 760 ess_write_mix_reg(sc, 0x68, reg2); 761 ess_write_mix_reg(sc, 0x69, reg3); 762 763 if (ess_read_mix_reg(sc, 0x68) == reg2 && 764 ess_read_mix_reg(sc, 0x69) == reg3) 765 sc->sc_model = ESS_888; 766 else 767 sc->sc_model = ESS_1888; 768 769 /* 770 * Restore the original value of the registers. 771 */ 772 ess_write_mix_reg(sc, 0x68, reg1); 773 ess_write_mix_reg(sc, 0x69, reg2); 774 } 775 } 776 777 return 0; 778 } 779 780 781 int 782 ess_setup_sc(sc, doinit) 783 struct ess_softc *sc; 784 int doinit; 785 { 786 /* Reset the chip. */ 787 if (ess_reset(sc) != 0) { 788 DPRINTF(("ess_setup_sc: couldn't reset chip\n")); 789 return (1); 790 } 791 792 /* Identify the ESS chip, and check that it is supported. */ 793 if (ess_identify(sc)) { 794 DPRINTF(("ess_setup_sc: couldn't identify\n")); 795 return (1); 796 } 797 798 return (0); 799 } 800 801 /* 802 * Probe for the ESS hardware. 803 */ 804 int 805 essmatch(sc) 806 struct ess_softc *sc; 807 { 808 if (!ESS_BASE_VALID(sc->sc_iobase)) { 809 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase); 810 return (0); 811 } 812 813 /* Configure the ESS chip for the desired audio base address. */ 814 if (ess_config_addr(sc)) 815 return (0); 816 817 if (ess_setup_sc(sc, 1)) 818 return (0); 819 820 if (sc->sc_model == ESS_UNSUPPORTED) { 821 DPRINTF(("ess: Unsupported model\n")); 822 return (0); 823 } 824 825 /* Check that requested DMA channels are valid and different. */ 826 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) { 827 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq); 828 return (0); 829 } 830 if (!isa_drq_isfree(sc->sc_isa, sc->sc_audio1.drq)) 831 return (0); 832 if (!ESS_USE_AUDIO1(sc->sc_model)) { 833 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) { 834 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq); 835 return (0); 836 } 837 if (sc->sc_audio1.drq == sc->sc_audio2.drq) { 838 printf("ess: play and record drq both %d\n", 839 sc->sc_audio1.drq); 840 return (0); 841 } 842 if (!isa_drq_isfree(sc->sc_isa, sc->sc_audio2.drq)) 843 return (0); 844 } 845 846 /* 847 * The 1887 has an additional IRQ mode where both channels are mapped 848 * to the same IRQ. 849 */ 850 if (sc->sc_model == ESS_1887 && 851 sc->sc_audio1.irq == sc->sc_audio2.irq && 852 sc->sc_audio1.irq != -1 && 853 ESS_IRQ12_VALID(sc->sc_audio1.irq)) 854 goto irq_not1888; 855 856 /* Check that requested IRQ lines are valid and different. */ 857 if (sc->sc_audio1.irq != -1 && 858 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) { 859 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq); 860 return (0); 861 } 862 if (!ESS_USE_AUDIO1(sc->sc_model)) { 863 if (sc->sc_audio2.irq != -1 && 864 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) { 865 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq); 866 return (0); 867 } 868 if (sc->sc_audio1.irq == sc->sc_audio2.irq && 869 sc->sc_audio1.irq != -1) { 870 printf("ess: play and record irq both %d\n", 871 sc->sc_audio1.irq); 872 return (0); 873 } 874 } 875 876 irq_not1888: 877 /* XXX should we check IRQs as well? */ 878 879 return (1); 880 } 881 882 883 /* 884 * Attach hardware to driver, attach hardware driver to audio 885 * pseudo-device driver. 886 */ 887 void 888 essattach(sc) 889 struct ess_softc *sc; 890 { 891 struct audio_attach_args arg; 892 struct audio_params pparams, rparams; 893 int i; 894 u_int v; 895 896 if (ess_setup_sc(sc, 0)) { 897 printf(": setup failed\n"); 898 return; 899 } 900 901 printf(": ESS Technology ES%s [version 0x%04x]\n", 902 essmodel[sc->sc_model], sc->sc_version); 903 904 sc->sc_audio1.polled = sc->sc_audio1.irq == -1; 905 if (!sc->sc_audio1.polled) { 906 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic, 907 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO, 908 ess_audio1_intr, sc, sc->sc_dev.dv_xname); 909 printf("%s: audio1 interrupting at irq %d\n", 910 sc->sc_dev.dv_xname, sc->sc_audio1.irq); 911 } else 912 printf("%s: audio1 polled\n", sc->sc_dev.dv_xname); 913 if (isa_dmamap_create(sc->sc_isa, sc->sc_audio1.drq, 914 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 915 printf("%s: can't create map for drq %d\n", 916 sc->sc_dev.dv_xname, sc->sc_audio1.drq); 917 return; 918 } 919 920 if (!ESS_USE_AUDIO1(sc->sc_model)) { 921 sc->sc_audio2.polled = sc->sc_audio2.irq == -1; 922 if (!sc->sc_audio2.polled) { 923 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic, 924 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO, 925 ess_audio2_intr, sc, sc->sc_dev.dv_xname); 926 printf("%s: audio2 interrupting at irq %d\n", 927 sc->sc_dev.dv_xname, sc->sc_audio2.irq); 928 } else 929 printf("%s: audio2 polled\n", sc->sc_dev.dv_xname); 930 if (isa_dmamap_create(sc->sc_isa, sc->sc_audio2.drq, 931 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 932 printf("%s: can't create map for drq %d\n", 933 sc->sc_dev.dv_xname, sc->sc_audio2.drq); 934 return; 935 } 936 } 937 938 timeout_set(&sc->sc_tmo1, ess_audio1_poll, sc); 939 timeout_set(&sc->sc_tmo2, ess_audio2_poll, sc); 940 941 /* 942 * Set record and play parameters to default values defined in 943 * generic audio driver. 944 */ 945 pparams = audio_default; 946 rparams = audio_default; 947 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); 948 949 /* Do a hardware reset on the mixer. */ 950 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET); 951 952 /* 953 * Set volume of Audio 1 to zero and disable Audio 1 DAC input 954 * to playback mixer, since playback is always through Audio 2. 955 */ 956 if (!ESS_USE_AUDIO1(sc->sc_model)) 957 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0); 958 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 959 960 if (ESS_USE_AUDIO1(sc->sc_model)) { 961 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC); 962 sc->in_port = ESS_SOURCE_MIC; 963 sc->ndevs = ESS_1788_NDEVS; 964 } else { 965 /* 966 * Set hardware record source to use output of the record 967 * mixer. We do the selection of record source in software by 968 * setting the gain of the unused sources to zero. (See 969 * ess_set_in_ports.) 970 */ 971 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER); 972 sc->in_mask = 1 << ESS_MIC_REC_VOL; 973 sc->ndevs = ESS_1888_NDEVS; 974 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10); 975 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08); 976 } 977 978 /* 979 * Set gain on each mixer device to a sensible value. 980 * Devices not normally used are turned off, and other devices 981 * are set to 50% volume. 982 */ 983 for (i = 0; i < sc->ndevs; i++) { 984 switch (i) { 985 case ESS_MIC_PLAY_VOL: 986 case ESS_LINE_PLAY_VOL: 987 case ESS_CD_PLAY_VOL: 988 case ESS_AUXB_PLAY_VOL: 989 case ESS_DAC_REC_VOL: 990 case ESS_LINE_REC_VOL: 991 case ESS_SYNTH_REC_VOL: 992 case ESS_CD_REC_VOL: 993 case ESS_AUXB_REC_VOL: 994 v = 0; 995 break; 996 default: 997 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2); 998 break; 999 } 1000 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v; 1001 ess_set_gain(sc, i, 1); 1002 } 1003 1004 ess_setup(sc); 1005 1006 /* Disable the speaker until the device is opened. */ 1007 ess_speaker_off(sc); 1008 sc->spkr_state = SPKR_OFF; 1009 1010 snprintf(ess_device.name, sizeof ess_device.name, "ES%s", 1011 essmodel[sc->sc_model]); 1012 snprintf(ess_device.version, sizeof ess_device.version, "0x%04x", 1013 sc->sc_version); 1014 1015 if (ESS_USE_AUDIO1(sc->sc_model)) 1016 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev); 1017 else 1018 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev); 1019 1020 arg.type = AUDIODEV_TYPE_OPL; 1021 arg.hwif = 0; 1022 arg.hdl = 0; 1023 (void)config_found(&sc->sc_dev, &arg, audioprint); 1024 1025 #ifdef AUDIO_DEBUG 1026 if (essdebug > 0) 1027 ess_printsc(sc); 1028 #endif 1029 } 1030 1031 /* 1032 * Various routines to interface to higher level audio driver 1033 */ 1034 1035 int 1036 ess_open(addr, flags) 1037 void *addr; 1038 int flags; 1039 { 1040 struct ess_softc *sc = addr; 1041 1042 DPRINTF(("ess_open: sc=%p\n", sc)); 1043 1044 if (sc->sc_open != 0 || ess_reset(sc) != 0) 1045 return ENXIO; 1046 1047 ess_setup(sc); /* because we did a reset */ 1048 1049 sc->sc_open = 1; 1050 1051 DPRINTF(("ess_open: opened\n")); 1052 1053 return (0); 1054 } 1055 1056 void 1057 ess_1788_close(addr) 1058 void *addr; 1059 { 1060 struct ess_softc *sc = addr; 1061 1062 DPRINTF(("ess_1788_close: sc=%p\n", sc)); 1063 1064 ess_speaker_off(sc); 1065 sc->spkr_state = SPKR_OFF; 1066 1067 ess_audio1_halt(sc); 1068 1069 sc->sc_open = 0; 1070 DPRINTF(("ess_1788_close: closed\n")); 1071 } 1072 1073 void 1074 ess_1888_close(addr) 1075 void *addr; 1076 { 1077 struct ess_softc *sc = addr; 1078 1079 DPRINTF(("ess_1888_close: sc=%p\n", sc)); 1080 1081 ess_speaker_off(sc); 1082 sc->spkr_state = SPKR_OFF; 1083 1084 ess_audio1_halt(sc); 1085 ess_audio2_halt(sc); 1086 1087 sc->sc_open = 0; 1088 DPRINTF(("ess_1888_close: closed\n")); 1089 } 1090 1091 /* 1092 * Wait for FIFO to drain, and analog section to settle. 1093 * XXX should check FIFO empty bit. 1094 */ 1095 int 1096 ess_drain(addr) 1097 void *addr; 1098 { 1099 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */ 1100 return (0); 1101 } 1102 1103 /* XXX should use reference count */ 1104 int 1105 ess_speaker_ctl(addr, newstate) 1106 void *addr; 1107 int newstate; 1108 { 1109 struct ess_softc *sc = addr; 1110 1111 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) { 1112 ess_speaker_on(sc); 1113 sc->spkr_state = SPKR_ON; 1114 } 1115 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) { 1116 ess_speaker_off(sc); 1117 sc->spkr_state = SPKR_OFF; 1118 } 1119 return (0); 1120 } 1121 1122 int 1123 ess_getdev(addr, retp) 1124 void *addr; 1125 struct audio_device *retp; 1126 { 1127 *retp = ess_device; 1128 return (0); 1129 } 1130 1131 int 1132 ess_query_encoding(addr, fp) 1133 void *addr; 1134 struct audio_encoding *fp; 1135 { 1136 /*struct ess_softc *sc = addr;*/ 1137 1138 switch (fp->index) { 1139 case 0: 1140 strlcpy(fp->name, AudioEulinear, sizeof fp->name); 1141 fp->encoding = AUDIO_ENCODING_ULINEAR; 1142 fp->precision = 8; 1143 fp->flags = 0; 1144 return (0); 1145 case 1: 1146 strlcpy(fp->name, AudioEmulaw, sizeof fp->name); 1147 fp->encoding = AUDIO_ENCODING_ULAW; 1148 fp->precision = 8; 1149 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1150 return (0); 1151 case 2: 1152 strlcpy(fp->name, AudioEalaw, sizeof fp->name); 1153 fp->encoding = AUDIO_ENCODING_ALAW; 1154 fp->precision = 8; 1155 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1156 return (0); 1157 case 3: 1158 strlcpy(fp->name, AudioEslinear, sizeof fp->name); 1159 fp->encoding = AUDIO_ENCODING_SLINEAR; 1160 fp->precision = 8; 1161 fp->flags = 0; 1162 return (0); 1163 case 4: 1164 strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); 1165 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 1166 fp->precision = 16; 1167 fp->flags = 0; 1168 return (0); 1169 case 5: 1170 strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); 1171 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 1172 fp->precision = 16; 1173 fp->flags = 0; 1174 return (0); 1175 case 6: 1176 strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); 1177 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 1178 fp->precision = 16; 1179 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1180 return (0); 1181 case 7: 1182 strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); 1183 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 1184 fp->precision = 16; 1185 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1186 return (0); 1187 default: 1188 return EINVAL; 1189 } 1190 return (0); 1191 } 1192 1193 int 1194 ess_set_params(addr, setmode, usemode, play, rec) 1195 void *addr; 1196 int setmode, usemode; 1197 struct audio_params *play, *rec; 1198 { 1199 struct ess_softc *sc = addr; 1200 struct audio_params *p; 1201 int mode; 1202 int rate; 1203 1204 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode)); 1205 1206 /* 1207 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in 1208 * full-duplex operation the sample rates must be the same for both 1209 * channels. This appears to be false; the only bit in common is the 1210 * clock source selection. However, we'll be conservative here. 1211 * - mycroft 1212 */ 1213 if (play->sample_rate != rec->sample_rate && 1214 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 1215 if (setmode == AUMODE_PLAY) { 1216 rec->sample_rate = play->sample_rate; 1217 setmode |= AUMODE_RECORD; 1218 } else if (setmode == AUMODE_RECORD) { 1219 play->sample_rate = rec->sample_rate; 1220 setmode |= AUMODE_PLAY; 1221 } else 1222 return (EINVAL); 1223 } 1224 1225 for (mode = AUMODE_RECORD; mode != -1; 1226 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 1227 if ((setmode & mode) == 0) 1228 continue; 1229 1230 p = mode == AUMODE_PLAY ? play : rec; 1231 1232 if (p->sample_rate < ESS_MINRATE || 1233 p->sample_rate > ESS_MAXRATE || 1234 (p->precision != 8 && p->precision != 16) || 1235 (p->channels != 1 && p->channels != 2)) 1236 return (EINVAL); 1237 1238 p->factor = 1; 1239 p->sw_code = 0; 1240 switch (p->encoding) { 1241 case AUDIO_ENCODING_SLINEAR_BE: 1242 case AUDIO_ENCODING_ULINEAR_BE: 1243 if (p->precision == 16) 1244 p->sw_code = swap_bytes; 1245 break; 1246 case AUDIO_ENCODING_SLINEAR_LE: 1247 case AUDIO_ENCODING_ULINEAR_LE: 1248 break; 1249 case AUDIO_ENCODING_ULAW: 1250 if (mode == AUMODE_PLAY) { 1251 p->factor = 2; 1252 p->sw_code = mulaw_to_ulinear16_le; 1253 } else 1254 p->sw_code = ulinear8_to_mulaw; 1255 break; 1256 case AUDIO_ENCODING_ALAW: 1257 if (mode == AUMODE_PLAY) { 1258 p->factor = 2; 1259 p->sw_code = alaw_to_ulinear16_le; 1260 } else 1261 p->sw_code = ulinear8_to_alaw; 1262 break; 1263 default: 1264 return (EINVAL); 1265 } 1266 } 1267 1268 if (usemode == AUMODE_RECORD) 1269 rate = rec->sample_rate; 1270 else 1271 rate = play->sample_rate; 1272 1273 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate)); 1274 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate)); 1275 1276 if (!ESS_USE_AUDIO1(sc->sc_model)) { 1277 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate)); 1278 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate)); 1279 } 1280 1281 return (0); 1282 } 1283 1284 int 1285 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param) 1286 void *addr; 1287 void *start, *end; 1288 int blksize; 1289 void (*intr)(void *); 1290 void *arg; 1291 struct audio_params *param; 1292 { 1293 struct ess_softc *sc = addr; 1294 u_int8_t reg; 1295 1296 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1297 addr, start, end, blksize, intr, arg)); 1298 1299 if (sc->sc_audio1.active) 1300 panic("ess_audio1_trigger_output: already running"); 1301 1302 sc->sc_audio1.active = 1; 1303 sc->sc_audio1.intr = intr; 1304 sc->sc_audio1.arg = arg; 1305 if (sc->sc_audio1.polled) { 1306 sc->sc_audio1.dmapos = 0; 1307 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1308 sc->sc_audio1.dmacount = 0; 1309 sc->sc_audio1.blksize = blksize; 1310 timeout_add(&sc->sc_tmo1, hz/30); 1311 } 1312 1313 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1314 if (param->channels == 2) { 1315 reg &= ~ESS_AUDIO_CTRL_MONO; 1316 reg |= ESS_AUDIO_CTRL_STEREO; 1317 } else { 1318 reg |= ESS_AUDIO_CTRL_MONO; 1319 reg &= ~ESS_AUDIO_CTRL_STEREO; 1320 } 1321 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1322 1323 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1324 if (param->precision * param->factor == 16) 1325 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1326 else 1327 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1328 if (param->channels == 2) 1329 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1330 else 1331 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1332 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1333 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1334 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1335 else 1336 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1337 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1338 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1339 1340 isa_dmastart(sc->sc_isa, sc->sc_audio1.drq, start, 1341 (char *)end - (char *)start, NULL, 1342 DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1343 1344 /* Program transfer count registers with 2's complement of count. */ 1345 blksize = -blksize; 1346 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1347 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1348 1349 /* Use 4 bytes per output DMA. */ 1350 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1351 1352 /* Start auto-init DMA */ 1353 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR); 1354 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1355 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE); 1356 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1357 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1358 1359 return (0); 1360 } 1361 1362 int 1363 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param) 1364 void *addr; 1365 void *start, *end; 1366 int blksize; 1367 void (*intr)(void *); 1368 void *arg; 1369 struct audio_params *param; 1370 { 1371 struct ess_softc *sc = addr; 1372 u_int8_t reg; 1373 1374 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1375 addr, start, end, blksize, intr, arg)); 1376 1377 if (sc->sc_audio2.active) 1378 panic("ess_audio2_trigger_output: already running"); 1379 1380 sc->sc_audio2.active = 1; 1381 sc->sc_audio2.intr = intr; 1382 sc->sc_audio2.arg = arg; 1383 if (sc->sc_audio2.polled) { 1384 sc->sc_audio2.dmapos = 0; 1385 sc->sc_audio2.buffersize = (char *)end - (char *)start; 1386 sc->sc_audio2.dmacount = 0; 1387 sc->sc_audio2.blksize = blksize; 1388 timeout_add(&sc->sc_tmo2, hz/30); 1389 } 1390 1391 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1392 if (param->precision * param->factor == 16) 1393 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE; 1394 else 1395 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE; 1396 if (param->channels == 2) 1397 reg |= ESS_AUDIO2_CTRL2_CHANNELS; 1398 else 1399 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS; 1400 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1401 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1402 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1403 else 1404 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1405 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1406 1407 isa_dmastart(sc->sc_isa, sc->sc_audio2.drq, start, 1408 (char *)end - (char *)start, NULL, 1409 DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1410 1411 if (IS16BITDRQ(sc->sc_audio2.drq)) 1412 blksize >>= 1; /* use word count for 16 bit DMA */ 1413 /* Program transfer count registers with 2's complement of count. */ 1414 blksize = -blksize; 1415 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize); 1416 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8); 1417 1418 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1); 1419 if (IS16BITDRQ(sc->sc_audio2.drq)) 1420 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE; 1421 else 1422 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE; 1423 reg |= ESS_AUDIO2_CTRL1_DEMAND_8; 1424 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE | 1425 ESS_AUDIO2_CTRL1_AUTO_INIT; 1426 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg); 1427 1428 return (0); 1429 } 1430 1431 int 1432 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param) 1433 void *addr; 1434 void *start, *end; 1435 int blksize; 1436 void (*intr)(void *); 1437 void *arg; 1438 struct audio_params *param; 1439 { 1440 struct ess_softc *sc = addr; 1441 u_int8_t reg; 1442 1443 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1444 addr, start, end, blksize, intr, arg)); 1445 1446 if (sc->sc_audio1.active) 1447 panic("ess_audio1_trigger_input: already running"); 1448 1449 sc->sc_audio1.active = 1; 1450 sc->sc_audio1.intr = intr; 1451 sc->sc_audio1.arg = arg; 1452 if (sc->sc_audio1.polled) { 1453 sc->sc_audio1.dmapos = 0; 1454 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1455 sc->sc_audio1.dmacount = 0; 1456 sc->sc_audio1.blksize = blksize; 1457 timeout_add(&sc->sc_tmo1, hz/30); 1458 } 1459 1460 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1461 if (param->channels == 2) { 1462 reg &= ~ESS_AUDIO_CTRL_MONO; 1463 reg |= ESS_AUDIO_CTRL_STEREO; 1464 } else { 1465 reg |= ESS_AUDIO_CTRL_MONO; 1466 reg &= ~ESS_AUDIO_CTRL_STEREO; 1467 } 1468 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1469 1470 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1471 if (param->precision * param->factor == 16) 1472 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1473 else 1474 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1475 if (param->channels == 2) 1476 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1477 else 1478 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1479 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1480 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1481 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1482 else 1483 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1484 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1485 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1486 1487 isa_dmastart(sc->sc_isa, sc->sc_audio1.drq, start, 1488 (char *)end - (char *)start, NULL, 1489 DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1490 1491 /* Program transfer count registers with 2's complement of count. */ 1492 blksize = -blksize; 1493 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1494 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1495 1496 /* Use 4 bytes per input DMA. */ 1497 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1498 1499 /* Start auto-init DMA */ 1500 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 1501 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1502 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE; 1503 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1504 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1505 1506 return (0); 1507 } 1508 1509 int 1510 ess_audio1_halt(addr) 1511 void *addr; 1512 { 1513 struct ess_softc *sc = addr; 1514 1515 DPRINTF(("ess_audio1_halt: sc=%p\n", sc)); 1516 1517 if (sc->sc_audio1.active) { 1518 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2, 1519 ESS_AUDIO1_CTRL2_FIFO_ENABLE); 1520 isa_dmaabort(sc->sc_isa, sc->sc_audio1.drq); 1521 if (sc->sc_audio1.polled) 1522 timeout_del(&sc->sc_tmo1); 1523 sc->sc_audio1.active = 0; 1524 } 1525 1526 return (0); 1527 } 1528 1529 int 1530 ess_audio2_halt(addr) 1531 void *addr; 1532 { 1533 struct ess_softc *sc = addr; 1534 1535 DPRINTF(("ess_audio2_halt: sc=%p\n", sc)); 1536 1537 if (sc->sc_audio2.active) { 1538 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1, 1539 ESS_AUDIO2_CTRL1_DAC_ENABLE | 1540 ESS_AUDIO2_CTRL1_FIFO_ENABLE); 1541 isa_dmaabort(sc->sc_isa, sc->sc_audio2.drq); 1542 if (sc->sc_audio2.polled) 1543 timeout_del(&sc->sc_tmo2); 1544 sc->sc_audio2.active = 0; 1545 } 1546 1547 return (0); 1548 } 1549 1550 int 1551 ess_audio1_intr(arg) 1552 void *arg; 1553 { 1554 struct ess_softc *sc = arg; 1555 u_int8_t reg; 1556 1557 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr)); 1558 1559 /* Check and clear interrupt on Audio1. */ 1560 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS); 1561 if ((reg & ESS_DSP_READ_OFLOW) == 0) 1562 return (0); 1563 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR); 1564 1565 sc->sc_audio1.nintr++; 1566 1567 if (sc->sc_audio1.active) { 1568 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1569 return (1); 1570 } else 1571 return (0); 1572 } 1573 1574 int 1575 ess_audio2_intr(arg) 1576 void *arg; 1577 { 1578 struct ess_softc *sc = arg; 1579 u_int8_t reg; 1580 1581 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr)); 1582 1583 /* Check and clear interrupt on Audio2. */ 1584 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1585 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0) 1586 return (0); 1587 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH; 1588 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1589 1590 sc->sc_audio2.nintr++; 1591 1592 if (sc->sc_audio2.active) { 1593 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1594 return (1); 1595 } else 1596 return (0); 1597 } 1598 1599 void 1600 ess_audio1_poll(addr) 1601 void *addr; 1602 { 1603 struct ess_softc *sc = addr; 1604 int dmapos, dmacount; 1605 1606 if (!sc->sc_audio1.active) 1607 return; 1608 1609 sc->sc_audio1.nintr++; 1610 1611 dmapos = isa_dmacount(sc->sc_isa, sc->sc_audio1.drq); 1612 dmacount = sc->sc_audio1.dmapos - dmapos; 1613 if (dmacount < 0) 1614 dmacount += sc->sc_audio1.buffersize; 1615 sc->sc_audio1.dmapos = dmapos; 1616 #if 1 1617 dmacount += sc->sc_audio1.dmacount; 1618 while (dmacount > sc->sc_audio1.blksize) { 1619 dmacount -= sc->sc_audio1.blksize; 1620 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1621 } 1622 sc->sc_audio1.dmacount = dmacount; 1623 #else 1624 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount); 1625 #endif 1626 1627 timeout_add(&sc->sc_tmo1, hz/30); 1628 } 1629 1630 void 1631 ess_audio2_poll(addr) 1632 void *addr; 1633 { 1634 struct ess_softc *sc = addr; 1635 int dmapos, dmacount; 1636 1637 if (!sc->sc_audio2.active) 1638 return; 1639 1640 sc->sc_audio2.nintr++; 1641 1642 dmapos = isa_dmacount(sc->sc_isa, sc->sc_audio2.drq); 1643 dmacount = sc->sc_audio2.dmapos - dmapos; 1644 if (dmacount < 0) 1645 dmacount += sc->sc_audio2.buffersize; 1646 sc->sc_audio2.dmapos = dmapos; 1647 #if 1 1648 dmacount += sc->sc_audio2.dmacount; 1649 while (dmacount > sc->sc_audio2.blksize) { 1650 dmacount -= sc->sc_audio2.blksize; 1651 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1652 } 1653 sc->sc_audio2.dmacount = dmacount; 1654 #else 1655 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount); 1656 #endif 1657 1658 timeout_add(&sc->sc_tmo2, hz/30); 1659 } 1660 1661 int 1662 ess_round_blocksize(addr, blk) 1663 void *addr; 1664 int blk; 1665 { 1666 return ((blk + 7) & -8); /* round for max DMA size */ 1667 } 1668 1669 int 1670 ess_set_port(addr, cp) 1671 void *addr; 1672 mixer_ctrl_t *cp; 1673 { 1674 struct ess_softc *sc = addr; 1675 int lgain, rgain; 1676 1677 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n", 1678 cp->dev, cp->un.value.num_channels)); 1679 1680 switch (cp->dev) { 1681 /* 1682 * The following mixer ports are all stereo. If we get a 1683 * single-channel gain value passed in, then we duplicate it 1684 * to both left and right channels. 1685 */ 1686 case ESS_MASTER_VOL: 1687 case ESS_DAC_PLAY_VOL: 1688 case ESS_MIC_PLAY_VOL: 1689 case ESS_LINE_PLAY_VOL: 1690 case ESS_SYNTH_PLAY_VOL: 1691 case ESS_CD_PLAY_VOL: 1692 case ESS_AUXB_PLAY_VOL: 1693 case ESS_RECORD_VOL: 1694 if (cp->type != AUDIO_MIXER_VALUE) 1695 return EINVAL; 1696 1697 switch (cp->un.value.num_channels) { 1698 case 1: 1699 lgain = rgain = ESS_4BIT_GAIN( 1700 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1701 break; 1702 case 2: 1703 lgain = ESS_4BIT_GAIN( 1704 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1705 rgain = ESS_4BIT_GAIN( 1706 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1707 break; 1708 default: 1709 return EINVAL; 1710 } 1711 1712 sc->gain[cp->dev][ESS_LEFT] = lgain; 1713 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1714 ess_set_gain(sc, cp->dev, 1); 1715 return (0); 1716 1717 /* 1718 * The PC speaker port is mono. If we get a stereo gain value 1719 * passed in, then we return EINVAL. 1720 */ 1721 case ESS_PCSPEAKER_VOL: 1722 if (cp->un.value.num_channels != 1) 1723 return EINVAL; 1724 1725 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] = 1726 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1727 ess_set_gain(sc, cp->dev, 1); 1728 return (0); 1729 1730 case ESS_RECORD_SOURCE: 1731 if (ESS_USE_AUDIO1(sc->sc_model)) { 1732 if (cp->type == AUDIO_MIXER_ENUM) 1733 return (ess_set_in_port(sc, cp->un.ord)); 1734 else 1735 return (EINVAL); 1736 } else { 1737 if (cp->type == AUDIO_MIXER_SET) 1738 return (ess_set_in_ports(sc, cp->un.mask)); 1739 else 1740 return (EINVAL); 1741 } 1742 return (0); 1743 1744 case ESS_RECORD_MONITOR: 1745 if (cp->type != AUDIO_MIXER_ENUM) 1746 return EINVAL; 1747 1748 if (cp->un.ord) 1749 /* Enable monitor */ 1750 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1751 ESS_AUDIO_CTRL_MONITOR); 1752 else 1753 /* Disable monitor */ 1754 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1755 ESS_AUDIO_CTRL_MONITOR); 1756 return (0); 1757 } 1758 1759 if (ESS_USE_AUDIO1(sc->sc_model)) 1760 return (EINVAL); 1761 1762 switch (cp->dev) { 1763 case ESS_DAC_REC_VOL: 1764 case ESS_MIC_REC_VOL: 1765 case ESS_LINE_REC_VOL: 1766 case ESS_SYNTH_REC_VOL: 1767 case ESS_CD_REC_VOL: 1768 case ESS_AUXB_REC_VOL: 1769 if (cp->type != AUDIO_MIXER_VALUE) 1770 return EINVAL; 1771 1772 switch (cp->un.value.num_channels) { 1773 case 1: 1774 lgain = rgain = ESS_4BIT_GAIN( 1775 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1776 break; 1777 case 2: 1778 lgain = ESS_4BIT_GAIN( 1779 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1780 rgain = ESS_4BIT_GAIN( 1781 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1782 break; 1783 default: 1784 return EINVAL; 1785 } 1786 1787 sc->gain[cp->dev][ESS_LEFT] = lgain; 1788 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1789 ess_set_gain(sc, cp->dev, 1); 1790 return (0); 1791 1792 case ESS_MIC_PREAMP: 1793 if (cp->type != AUDIO_MIXER_ENUM) 1794 return EINVAL; 1795 1796 if (cp->un.ord) 1797 /* Enable microphone preamp */ 1798 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1799 ESS_PREAMP_CTRL_ENABLE); 1800 else 1801 /* Disable microphone preamp */ 1802 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1803 ESS_PREAMP_CTRL_ENABLE); 1804 return (0); 1805 } 1806 1807 return (EINVAL); 1808 } 1809 1810 int 1811 ess_get_port(addr, cp) 1812 void *addr; 1813 mixer_ctrl_t *cp; 1814 { 1815 struct ess_softc *sc = addr; 1816 1817 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev)); 1818 1819 switch (cp->dev) { 1820 case ESS_MASTER_VOL: 1821 case ESS_DAC_PLAY_VOL: 1822 case ESS_MIC_PLAY_VOL: 1823 case ESS_LINE_PLAY_VOL: 1824 case ESS_SYNTH_PLAY_VOL: 1825 case ESS_CD_PLAY_VOL: 1826 case ESS_AUXB_PLAY_VOL: 1827 case ESS_RECORD_VOL: 1828 switch (cp->un.value.num_channels) { 1829 case 1: 1830 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1831 sc->gain[cp->dev][ESS_LEFT]; 1832 break; 1833 case 2: 1834 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1835 sc->gain[cp->dev][ESS_LEFT]; 1836 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1837 sc->gain[cp->dev][ESS_RIGHT]; 1838 break; 1839 default: 1840 return EINVAL; 1841 } 1842 return (0); 1843 1844 case ESS_PCSPEAKER_VOL: 1845 if (cp->un.value.num_channels != 1) 1846 return EINVAL; 1847 1848 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1849 sc->gain[cp->dev][ESS_LEFT]; 1850 return (0); 1851 1852 case ESS_RECORD_SOURCE: 1853 if (ESS_USE_AUDIO1(sc->sc_model)) 1854 cp->un.ord = sc->in_port; 1855 else 1856 cp->un.mask = sc->in_mask; 1857 return (0); 1858 1859 case ESS_RECORD_MONITOR: 1860 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) & 1861 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0; 1862 return (0); 1863 } 1864 1865 if (ESS_USE_AUDIO1(sc->sc_model)) 1866 return (EINVAL); 1867 1868 switch (cp->dev) { 1869 case ESS_DAC_REC_VOL: 1870 case ESS_MIC_REC_VOL: 1871 case ESS_LINE_REC_VOL: 1872 case ESS_SYNTH_REC_VOL: 1873 case ESS_CD_REC_VOL: 1874 case ESS_AUXB_REC_VOL: 1875 switch (cp->un.value.num_channels) { 1876 case 1: 1877 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1878 sc->gain[cp->dev][ESS_LEFT]; 1879 break; 1880 case 2: 1881 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1882 sc->gain[cp->dev][ESS_LEFT]; 1883 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1884 sc->gain[cp->dev][ESS_RIGHT]; 1885 break; 1886 default: 1887 return EINVAL; 1888 } 1889 return (0); 1890 1891 case ESS_MIC_PREAMP: 1892 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) & 1893 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0; 1894 return (0); 1895 } 1896 1897 return (EINVAL); 1898 } 1899 1900 int 1901 ess_query_devinfo(addr, dip) 1902 void *addr; 1903 mixer_devinfo_t *dip; 1904 { 1905 struct ess_softc *sc = addr; 1906 1907 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n", 1908 sc->sc_model, dip->index)); 1909 1910 /* 1911 * REVISIT: There are some slight differences between the 1912 * mixers on the different ESS chips, which can 1913 * be sorted out using the chip model rather than a 1914 * separate mixer model. 1915 * This is currently coded assuming an ES1887; we 1916 * need to work out which bits are not applicable to 1917 * the other models (1888 and 888). 1918 */ 1919 switch (dip->index) { 1920 case ESS_DAC_PLAY_VOL: 1921 dip->mixer_class = ESS_INPUT_CLASS; 1922 dip->next = dip->prev = AUDIO_MIXER_LAST; 1923 strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); 1924 dip->type = AUDIO_MIXER_VALUE; 1925 dip->un.v.num_channels = 2; 1926 strlcpy(dip->un.v.units.name, AudioNvolume, 1927 sizeof dip->un.v.units.name); 1928 return (0); 1929 1930 case ESS_MIC_PLAY_VOL: 1931 dip->mixer_class = ESS_INPUT_CLASS; 1932 dip->prev = AUDIO_MIXER_LAST; 1933 if (ESS_USE_AUDIO1(sc->sc_model)) 1934 dip->next = AUDIO_MIXER_LAST; 1935 else 1936 dip->next = ESS_MIC_PREAMP; 1937 strlcpy(dip->label.name, AudioNmicrophone, 1938 sizeof dip->label.name); 1939 dip->type = AUDIO_MIXER_VALUE; 1940 dip->un.v.num_channels = 2; 1941 strlcpy(dip->un.v.units.name, AudioNvolume, 1942 sizeof dip->un.v.units.name); 1943 return (0); 1944 1945 case ESS_LINE_PLAY_VOL: 1946 dip->mixer_class = ESS_INPUT_CLASS; 1947 dip->next = dip->prev = AUDIO_MIXER_LAST; 1948 strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); 1949 dip->type = AUDIO_MIXER_VALUE; 1950 dip->un.v.num_channels = 2; 1951 strlcpy(dip->un.v.units.name, AudioNvolume, 1952 sizeof dip->un.v.units.name); 1953 return (0); 1954 1955 case ESS_SYNTH_PLAY_VOL: 1956 dip->mixer_class = ESS_INPUT_CLASS; 1957 dip->next = dip->prev = AUDIO_MIXER_LAST; 1958 strlcpy(dip->label.name, AudioNfmsynth, 1959 sizeof dip->label.name); 1960 dip->type = AUDIO_MIXER_VALUE; 1961 dip->un.v.num_channels = 2; 1962 strlcpy(dip->un.v.units.name, AudioNvolume, 1963 sizeof dip->un.v.units.name); 1964 return (0); 1965 1966 case ESS_CD_PLAY_VOL: 1967 dip->mixer_class = ESS_INPUT_CLASS; 1968 dip->next = dip->prev = AUDIO_MIXER_LAST; 1969 strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); 1970 dip->type = AUDIO_MIXER_VALUE; 1971 dip->un.v.num_channels = 2; 1972 strlcpy(dip->un.v.units.name, AudioNvolume, 1973 sizeof dip->un.v.units.name); 1974 return (0); 1975 1976 case ESS_AUXB_PLAY_VOL: 1977 dip->mixer_class = ESS_INPUT_CLASS; 1978 dip->next = dip->prev = AUDIO_MIXER_LAST; 1979 strlcpy(dip->label.name, "auxb", sizeof dip->label.name); 1980 dip->type = AUDIO_MIXER_VALUE; 1981 dip->un.v.num_channels = 2; 1982 strlcpy(dip->un.v.units.name, AudioNvolume, 1983 sizeof dip->un.v.units.name); 1984 return (0); 1985 1986 case ESS_INPUT_CLASS: 1987 dip->mixer_class = ESS_INPUT_CLASS; 1988 dip->next = dip->prev = AUDIO_MIXER_LAST; 1989 strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); 1990 dip->type = AUDIO_MIXER_CLASS; 1991 return (0); 1992 1993 case ESS_MASTER_VOL: 1994 dip->mixer_class = ESS_OUTPUT_CLASS; 1995 dip->next = dip->prev = AUDIO_MIXER_LAST; 1996 strlcpy(dip->label.name, AudioNmaster, sizeof dip->label.name); 1997 dip->type = AUDIO_MIXER_VALUE; 1998 dip->un.v.num_channels = 2; 1999 strlcpy(dip->un.v.units.name, AudioNvolume, 2000 sizeof dip->un.v.units.name); 2001 return (0); 2002 2003 case ESS_PCSPEAKER_VOL: 2004 dip->mixer_class = ESS_OUTPUT_CLASS; 2005 dip->next = dip->prev = AUDIO_MIXER_LAST; 2006 strlcpy(dip->label.name, "pc_speaker", sizeof dip->label.name); 2007 dip->type = AUDIO_MIXER_VALUE; 2008 dip->un.v.num_channels = 1; 2009 strlcpy(dip->un.v.units.name, AudioNvolume, 2010 sizeof dip->un.v.units.name); 2011 return (0); 2012 2013 case ESS_OUTPUT_CLASS: 2014 dip->mixer_class = ESS_OUTPUT_CLASS; 2015 dip->next = dip->prev = AUDIO_MIXER_LAST; 2016 strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); 2017 dip->type = AUDIO_MIXER_CLASS; 2018 return (0); 2019 2020 case ESS_RECORD_VOL: 2021 dip->mixer_class = ESS_RECORD_CLASS; 2022 dip->next = dip->prev = AUDIO_MIXER_LAST; 2023 strlcpy(dip->label.name, AudioNrecord, sizeof dip->label.name); 2024 dip->type = AUDIO_MIXER_VALUE; 2025 dip->un.v.num_channels = 2; 2026 strlcpy(dip->un.v.units.name, AudioNvolume, 2027 sizeof dip->un.v.units.name); 2028 return (0); 2029 2030 case ESS_RECORD_SOURCE: 2031 dip->mixer_class = ESS_RECORD_CLASS; 2032 dip->next = dip->prev = AUDIO_MIXER_LAST; 2033 strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); 2034 if (ESS_USE_AUDIO1(sc->sc_model)) { 2035 /* 2036 * The 1788 doesn't use the input mixer control that 2037 * the 1888 uses, because it's a pain when you only 2038 * have one mixer. 2039 * Perhaps it could be emulated by keeping both sets of 2040 * gain values, and doing a `context switch' of the 2041 * mixer registers when shifting from playing to 2042 * recording. 2043 */ 2044 dip->type = AUDIO_MIXER_ENUM; 2045 dip->un.e.num_mem = 4; 2046 strlcpy(dip->un.e.member[0].label.name, 2047 AudioNmicrophone, 2048 sizeof dip->un.e.member[0].label.name); 2049 dip->un.e.member[0].ord = ESS_SOURCE_MIC; 2050 strlcpy(dip->un.e.member[1].label.name, AudioNline, 2051 sizeof dip->un.e.member[1].label.name); 2052 dip->un.e.member[1].ord = ESS_SOURCE_LINE; 2053 strlcpy(dip->un.e.member[2].label.name, AudioNcd, 2054 sizeof dip->un.e.member[2].label.name); 2055 dip->un.e.member[2].ord = ESS_SOURCE_CD; 2056 strlcpy(dip->un.e.member[3].label.name, AudioNmixerout, 2057 sizeof dip->un.e.member[3].label.name); 2058 dip->un.e.member[3].ord = ESS_SOURCE_MIXER; 2059 } else { 2060 dip->type = AUDIO_MIXER_SET; 2061 dip->un.s.num_mem = 6; 2062 strlcpy(dip->un.s.member[0].label.name, AudioNdac, 2063 sizeof dip->un.e.member[0].label.name); 2064 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL; 2065 strlcpy(dip->un.s.member[1].label.name, 2066 AudioNmicrophone, 2067 sizeof dip->un.e.member[1].label.name); 2068 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL; 2069 strlcpy(dip->un.s.member[2].label.name, AudioNline, 2070 sizeof dip->un.e.member[2].label.name); 2071 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL; 2072 strlcpy(dip->un.s.member[3].label.name, AudioNfmsynth, 2073 sizeof dip->un.e.member[3].label.name); 2074 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL; 2075 strlcpy(dip->un.s.member[4].label.name, AudioNcd, 2076 sizeof dip->un.e.member[4].label.name); 2077 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL; 2078 strlcpy(dip->un.s.member[5].label.name, "auxb", 2079 sizeof dip->un.e.member[5].label.name); 2080 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL; 2081 } 2082 return (0); 2083 2084 case ESS_RECORD_CLASS: 2085 dip->mixer_class = ESS_RECORD_CLASS; 2086 dip->next = dip->prev = AUDIO_MIXER_LAST; 2087 strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); 2088 dip->type = AUDIO_MIXER_CLASS; 2089 return (0); 2090 2091 case ESS_RECORD_MONITOR: 2092 dip->prev = dip->next = AUDIO_MIXER_LAST; 2093 strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); 2094 dip->type = AUDIO_MIXER_ENUM; 2095 dip->mixer_class = ESS_MONITOR_CLASS; 2096 dip->un.e.num_mem = 2; 2097 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2098 sizeof dip->un.e.member[0].label.name); 2099 dip->un.e.member[0].ord = 0; 2100 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2101 sizeof dip->un.e.member[1].label.name); 2102 dip->un.e.member[1].ord = 1; 2103 return (0); 2104 2105 case ESS_MONITOR_CLASS: 2106 dip->mixer_class = ESS_MONITOR_CLASS; 2107 dip->next = dip->prev = AUDIO_MIXER_LAST; 2108 strlcpy(dip->label.name, AudioCmonitor, 2109 sizeof dip->label.name); 2110 dip->type = AUDIO_MIXER_CLASS; 2111 return (0); 2112 } 2113 2114 if (ESS_USE_AUDIO1(sc->sc_model)) 2115 return (ENXIO); 2116 2117 switch (dip->index) { 2118 case ESS_DAC_REC_VOL: 2119 dip->mixer_class = ESS_RECORD_CLASS; 2120 dip->next = dip->prev = AUDIO_MIXER_LAST; 2121 strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); 2122 dip->type = AUDIO_MIXER_VALUE; 2123 dip->un.v.num_channels = 2; 2124 strlcpy(dip->un.v.units.name, AudioNvolume, 2125 sizeof dip->un.v.units.name); 2126 return (0); 2127 2128 case ESS_MIC_REC_VOL: 2129 dip->mixer_class = ESS_RECORD_CLASS; 2130 dip->next = dip->prev = AUDIO_MIXER_LAST; 2131 strlcpy(dip->label.name, AudioNmicrophone, 2132 sizeof dip->label.name); 2133 dip->type = AUDIO_MIXER_VALUE; 2134 dip->un.v.num_channels = 2; 2135 strlcpy(dip->un.v.units.name, AudioNvolume, 2136 sizeof dip->un.v.units.name); 2137 return (0); 2138 2139 case ESS_LINE_REC_VOL: 2140 dip->mixer_class = ESS_RECORD_CLASS; 2141 dip->next = dip->prev = AUDIO_MIXER_LAST; 2142 strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); 2143 dip->type = AUDIO_MIXER_VALUE; 2144 dip->un.v.num_channels = 2; 2145 strlcpy(dip->un.v.units.name, AudioNvolume, 2146 sizeof dip->un.v.units.name); 2147 return (0); 2148 2149 case ESS_SYNTH_REC_VOL: 2150 dip->mixer_class = ESS_RECORD_CLASS; 2151 dip->next = dip->prev = AUDIO_MIXER_LAST; 2152 strlcpy(dip->label.name, AudioNfmsynth, 2153 sizeof dip->label.name); 2154 dip->type = AUDIO_MIXER_VALUE; 2155 dip->un.v.num_channels = 2; 2156 strlcpy(dip->un.v.units.name, AudioNvolume, 2157 sizeof dip->un.v.units.name); 2158 return (0); 2159 2160 case ESS_CD_REC_VOL: 2161 dip->mixer_class = ESS_RECORD_CLASS; 2162 dip->next = dip->prev = AUDIO_MIXER_LAST; 2163 strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); 2164 dip->type = AUDIO_MIXER_VALUE; 2165 dip->un.v.num_channels = 2; 2166 strlcpy(dip->un.v.units.name, AudioNvolume, 2167 sizeof dip->un.v.units.name); 2168 return (0); 2169 2170 case ESS_AUXB_REC_VOL: 2171 dip->mixer_class = ESS_RECORD_CLASS; 2172 dip->next = dip->prev = AUDIO_MIXER_LAST; 2173 strlcpy(dip->label.name, "auxb", sizeof dip->label.name); 2174 dip->type = AUDIO_MIXER_VALUE; 2175 dip->un.v.num_channels = 2; 2176 strlcpy(dip->un.v.units.name, AudioNvolume, 2177 sizeof dip->un.v.units.name); 2178 return (0); 2179 2180 case ESS_MIC_PREAMP: 2181 dip->mixer_class = ESS_INPUT_CLASS; 2182 dip->prev = ESS_MIC_PLAY_VOL; 2183 dip->next = AUDIO_MIXER_LAST; 2184 strlcpy(dip->label.name, AudioNpreamp, sizeof dip->label.name); 2185 dip->type = AUDIO_MIXER_ENUM; 2186 dip->un.e.num_mem = 2; 2187 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 2188 sizeof dip->un.e.member[0].label.name); 2189 dip->un.e.member[0].ord = 0; 2190 strlcpy(dip->un.e.member[1].label.name, AudioNon, 2191 sizeof dip->un.e.member[1].label.name); 2192 dip->un.e.member[1].ord = 1; 2193 return (0); 2194 } 2195 2196 return (ENXIO); 2197 } 2198 2199 void * 2200 ess_malloc(addr, direction, size, pool, flags) 2201 void *addr; 2202 int direction; 2203 size_t size; 2204 int pool, flags; 2205 { 2206 struct ess_softc *sc = addr; 2207 int drq; 2208 2209 if (!ESS_USE_AUDIO1(sc->sc_model)) 2210 drq = sc->sc_audio2.drq; 2211 else 2212 drq = sc->sc_audio1.drq; 2213 return (isa_malloc(sc->sc_isa, drq, size, pool, flags)); 2214 } 2215 2216 void 2217 ess_free(addr, ptr, pool) 2218 void *addr; 2219 void *ptr; 2220 int pool; 2221 { 2222 isa_free(ptr, pool); 2223 } 2224 2225 size_t 2226 ess_round_buffersize(addr, direction, size) 2227 void *addr; 2228 int direction; 2229 size_t size; 2230 { 2231 if (size > MAX_ISADMA) 2232 size = MAX_ISADMA; 2233 return (size); 2234 } 2235 2236 paddr_t 2237 ess_mappage(addr, mem, off, prot) 2238 void *addr; 2239 void *mem; 2240 off_t off; 2241 int prot; 2242 { 2243 return (isa_mappage(mem, off, prot)); 2244 } 2245 2246 int 2247 ess_1788_get_props(addr) 2248 void *addr; 2249 { 2250 2251 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT); 2252 } 2253 2254 int 2255 ess_1888_get_props(addr) 2256 void *addr; 2257 { 2258 2259 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); 2260 } 2261 2262 /* ============================================ 2263 * Generic functions for ess, not used by audio h/w i/f 2264 * ============================================= 2265 */ 2266 2267 /* 2268 * Reset the chip. 2269 * Return non-zero if the chip isn't detected. 2270 */ 2271 int 2272 ess_reset(sc) 2273 struct ess_softc *sc; 2274 { 2275 bus_space_tag_t iot = sc->sc_iot; 2276 bus_space_handle_t ioh = sc->sc_ioh; 2277 2278 sc->sc_audio1.active = 0; 2279 sc->sc_audio2.active = 0; 2280 2281 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT); 2282 delay(10000); 2283 EWRITE1(iot, ioh, ESS_DSP_RESET, 0); 2284 if (ess_rdsp(sc) != ESS_MAGIC) 2285 return (1); 2286 2287 /* Enable access to the ESS extension commands. */ 2288 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT); 2289 2290 return (0); 2291 } 2292 2293 void 2294 ess_set_gain(sc, port, on) 2295 struct ess_softc *sc; 2296 int port; 2297 int on; 2298 { 2299 int gain, left, right; 2300 int mix; 2301 int src; 2302 int stereo; 2303 2304 /* 2305 * Most gain controls are found in the mixer registers and 2306 * are stereo. Any that are not, must set mix and stereo as 2307 * required. 2308 */ 2309 mix = 1; 2310 stereo = 1; 2311 2312 switch (port) { 2313 case ESS_MASTER_VOL: 2314 src = ESS_MREG_VOLUME_MASTER; 2315 break; 2316 case ESS_DAC_PLAY_VOL: 2317 if (ESS_USE_AUDIO1(sc->sc_model)) 2318 src = ESS_MREG_VOLUME_VOICE; 2319 else 2320 src = 0x7C; 2321 break; 2322 case ESS_MIC_PLAY_VOL: 2323 src = ESS_MREG_VOLUME_MIC; 2324 break; 2325 case ESS_LINE_PLAY_VOL: 2326 src = ESS_MREG_VOLUME_LINE; 2327 break; 2328 case ESS_SYNTH_PLAY_VOL: 2329 src = ESS_MREG_VOLUME_SYNTH; 2330 break; 2331 case ESS_CD_PLAY_VOL: 2332 src = ESS_MREG_VOLUME_CD; 2333 break; 2334 case ESS_AUXB_PLAY_VOL: 2335 src = ESS_MREG_VOLUME_AUXB; 2336 break; 2337 case ESS_PCSPEAKER_VOL: 2338 src = ESS_MREG_VOLUME_PCSPKR; 2339 stereo = 0; 2340 break; 2341 case ESS_DAC_REC_VOL: 2342 src = 0x69; 2343 break; 2344 case ESS_MIC_REC_VOL: 2345 src = 0x68; 2346 break; 2347 case ESS_LINE_REC_VOL: 2348 src = 0x6E; 2349 break; 2350 case ESS_SYNTH_REC_VOL: 2351 src = 0x6B; 2352 break; 2353 case ESS_CD_REC_VOL: 2354 src = 0x6A; 2355 break; 2356 case ESS_AUXB_REC_VOL: 2357 src = 0x6C; 2358 break; 2359 case ESS_RECORD_VOL: 2360 src = ESS_XCMD_VOLIN_CTRL; 2361 mix = 0; 2362 break; 2363 default: 2364 return; 2365 } 2366 2367 /* 1788 doesn't have a separate recording mixer */ 2368 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62) 2369 return; 2370 2371 if (on) { 2372 left = sc->gain[port][ESS_LEFT]; 2373 right = sc->gain[port][ESS_RIGHT]; 2374 } else { 2375 left = right = 0; 2376 } 2377 2378 if (stereo) 2379 gain = ESS_STEREO_GAIN(left, right); 2380 else 2381 gain = ESS_MONO_GAIN(left); 2382 2383 if (mix) 2384 ess_write_mix_reg(sc, src, gain); 2385 else 2386 ess_write_x_reg(sc, src, gain); 2387 } 2388 2389 /* Set the input device on devices without an input mixer. */ 2390 int 2391 ess_set_in_port(sc, ord) 2392 struct ess_softc *sc; 2393 int ord; 2394 { 2395 mixer_devinfo_t di; 2396 int i; 2397 2398 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord)); 2399 2400 /* 2401 * Get the device info for the record source control, 2402 * including the list of available sources. 2403 */ 2404 di.index = ESS_RECORD_SOURCE; 2405 if (ess_query_devinfo(sc, &di)) 2406 return EINVAL; 2407 2408 /* See if the given ord value was anywhere in the list. */ 2409 for (i = 0; i < di.un.e.num_mem; i++) { 2410 if (ord == di.un.e.member[i].ord) 2411 break; 2412 } 2413 if (i == di.un.e.num_mem) 2414 return EINVAL; 2415 2416 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord); 2417 2418 sc->in_port = ord; 2419 return (0); 2420 } 2421 2422 /* Set the input device levels on input-mixer-enabled devices. */ 2423 int 2424 ess_set_in_ports(sc, mask) 2425 struct ess_softc *sc; 2426 int mask; 2427 { 2428 mixer_devinfo_t di; 2429 int i, port; 2430 2431 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask)); 2432 2433 /* 2434 * Get the device info for the record source control, 2435 * including the list of available sources. 2436 */ 2437 di.index = ESS_RECORD_SOURCE; 2438 if (ess_query_devinfo(sc, &di)) 2439 return EINVAL; 2440 2441 /* 2442 * Set or disable the record volume control for each of the 2443 * possible sources. 2444 */ 2445 for (i = 0; i < di.un.s.num_mem; i++) { 2446 /* 2447 * Calculate the source port number from its mask. 2448 */ 2449 port = ffs(di.un.s.member[i].mask); 2450 2451 /* 2452 * Set the source gain: 2453 * to the current value if source is enabled 2454 * to zero if source is disabled 2455 */ 2456 ess_set_gain(sc, port, mask & di.un.s.member[i].mask); 2457 } 2458 2459 sc->in_mask = mask; 2460 return (0); 2461 } 2462 2463 void 2464 ess_speaker_on(sc) 2465 struct ess_softc *sc; 2466 { 2467 /* Unmute the DAC. */ 2468 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1); 2469 } 2470 2471 void 2472 ess_speaker_off(sc) 2473 struct ess_softc *sc; 2474 { 2475 /* Mute the DAC. */ 2476 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0); 2477 } 2478 2479 /* 2480 * Calculate the time constant for the requested sampling rate. 2481 */ 2482 u_int 2483 ess_srtotc(rate) 2484 u_int rate; 2485 { 2486 u_int tc; 2487 2488 /* The following formulae are from the ESS data sheet. */ 2489 if (rate <= 22050) 2490 tc = 128 - 397700L / rate; 2491 else 2492 tc = 256 - 795500L / rate; 2493 2494 return (tc); 2495 } 2496 2497 2498 /* 2499 * Calculate the filter constant for the reuqested sampling rate. 2500 */ 2501 u_int 2502 ess_srtofc(rate) 2503 u_int rate; 2504 { 2505 /* 2506 * The following formula is derived from the information in 2507 * the ES1887 data sheet, based on a roll-off frequency of 2508 * 87%. 2509 */ 2510 return (256 - 200279L / rate); 2511 } 2512 2513 2514 /* 2515 * Return the status of the DSP. 2516 */ 2517 u_char 2518 ess_get_dsp_status(sc) 2519 struct ess_softc *sc; 2520 { 2521 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS)); 2522 } 2523 2524 2525 /* 2526 * Return the read status of the DSP: 1 -> DSP ready for reading 2527 * 0 -> DSP not ready for reading 2528 */ 2529 u_char 2530 ess_dsp_read_ready(sc) 2531 struct ess_softc *sc; 2532 { 2533 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0); 2534 } 2535 2536 2537 /* 2538 * Return the write status of the DSP: 1 -> DSP ready for writing 2539 * 0 -> DSP not ready for writing 2540 */ 2541 u_char 2542 ess_dsp_write_ready(sc) 2543 struct ess_softc *sc; 2544 { 2545 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1); 2546 } 2547 2548 2549 /* 2550 * Read a byte from the DSP. 2551 */ 2552 int 2553 ess_rdsp(sc) 2554 struct ess_softc *sc; 2555 { 2556 bus_space_tag_t iot = sc->sc_iot; 2557 bus_space_handle_t ioh = sc->sc_ioh; 2558 int i; 2559 2560 for (i = ESS_READ_TIMEOUT; i > 0; --i) { 2561 if (ess_dsp_read_ready(sc)) { 2562 i = EREAD1(iot, ioh, ESS_DSP_READ); 2563 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i)); 2564 return i; 2565 } else 2566 delay(10); 2567 } 2568 2569 DPRINTF(("ess_rdsp: timed out\n")); 2570 return (-1); 2571 } 2572 2573 /* 2574 * Write a byte to the DSP. 2575 */ 2576 int 2577 ess_wdsp(sc, v) 2578 struct ess_softc *sc; 2579 u_char v; 2580 { 2581 bus_space_tag_t iot = sc->sc_iot; 2582 bus_space_handle_t ioh = sc->sc_ioh; 2583 int i; 2584 2585 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v)); 2586 2587 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) { 2588 if (ess_dsp_write_ready(sc)) { 2589 EWRITE1(iot, ioh, ESS_DSP_WRITE, v); 2590 return (0); 2591 } else 2592 delay(10); 2593 } 2594 2595 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v)); 2596 return (-1); 2597 } 2598 2599 /* 2600 * Write a value to one of the ESS extended registers. 2601 */ 2602 int 2603 ess_write_x_reg(sc, reg, val) 2604 struct ess_softc *sc; 2605 u_char reg; 2606 u_char val; 2607 { 2608 int error; 2609 2610 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val)); 2611 if ((error = ess_wdsp(sc, reg)) == 0) 2612 error = ess_wdsp(sc, val); 2613 2614 return error; 2615 } 2616 2617 /* 2618 * Read the value of one of the ESS extended registers. 2619 */ 2620 u_char 2621 ess_read_x_reg(sc, reg) 2622 struct ess_softc *sc; 2623 u_char reg; 2624 { 2625 int error; 2626 int val; 2627 2628 if ((error = ess_wdsp(sc, 0xC0)) == 0) 2629 error = ess_wdsp(sc, reg); 2630 if (error) 2631 DPRINTF(("Error reading extended register 0x%02x\n", reg)); 2632 /* REVISIT: what if an error is returned above? */ 2633 val = ess_rdsp(sc); 2634 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val)); 2635 return val; 2636 } 2637 2638 void 2639 ess_clear_xreg_bits(sc, reg, mask) 2640 struct ess_softc *sc; 2641 u_char reg; 2642 u_char mask; 2643 { 2644 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) 2645 DPRINTF(("Error clearing bits in extended register 0x%02x\n", 2646 reg)); 2647 } 2648 2649 void 2650 ess_set_xreg_bits(sc, reg, mask) 2651 struct ess_softc *sc; 2652 u_char reg; 2653 u_char mask; 2654 { 2655 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) 2656 DPRINTF(("Error setting bits in extended register 0x%02x\n", 2657 reg)); 2658 } 2659 2660 2661 /* 2662 * Write a value to one of the ESS mixer registers. 2663 */ 2664 void 2665 ess_write_mix_reg(sc, reg, val) 2666 struct ess_softc *sc; 2667 u_char reg; 2668 u_char val; 2669 { 2670 bus_space_tag_t iot = sc->sc_iot; 2671 bus_space_handle_t ioh = sc->sc_ioh; 2672 int s; 2673 2674 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val)); 2675 2676 s = splaudio(); 2677 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2678 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val); 2679 splx(s); 2680 } 2681 2682 /* 2683 * Read the value of one of the ESS mixer registers. 2684 */ 2685 u_char 2686 ess_read_mix_reg(sc, reg) 2687 struct ess_softc *sc; 2688 u_char reg; 2689 { 2690 bus_space_tag_t iot = sc->sc_iot; 2691 bus_space_handle_t ioh = sc->sc_ioh; 2692 int s; 2693 u_char val; 2694 2695 s = splaudio(); 2696 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2697 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA); 2698 splx(s); 2699 2700 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val)); 2701 return val; 2702 } 2703 2704 void 2705 ess_clear_mreg_bits(sc, reg, mask) 2706 struct ess_softc *sc; 2707 u_char reg; 2708 u_char mask; 2709 { 2710 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask); 2711 } 2712 2713 void 2714 ess_set_mreg_bits(sc, reg, mask) 2715 struct ess_softc *sc; 2716 u_char reg; 2717 u_char mask; 2718 { 2719 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask); 2720 } 2721 2722 void 2723 ess_read_multi_mix_reg(sc, reg, datap, count) 2724 struct ess_softc *sc; 2725 u_char reg; 2726 u_int8_t *datap; 2727 bus_size_t count; 2728 { 2729 bus_space_tag_t iot = sc->sc_iot; 2730 bus_space_handle_t ioh = sc->sc_ioh; 2731 int s; 2732 2733 s = splaudio(); 2734 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2735 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count); 2736 splx(s); 2737 } 2738