1 /* $OpenBSD: ess.c,v 1.5 2001/10/31 11:00:24 art Exp $ */ 2 /* $NetBSD: ess.c,v 1.44.4.1 1999/06/21 01:18:00 thorpej Exp $ */ 3 4 /* 5 * Copyright 1997 6 * Digital Equipment Corporation. All rights reserved. 7 * 8 * This software is furnished under license and may be used and 9 * copied only in accordance with the following terms and conditions. 10 * Subject to these conditions, you may download, copy, install, 11 * use, modify and distribute this software in source and/or binary 12 * form. No title or ownership is transferred hereby. 13 * 14 * 1) Any source code used, modified or distributed must reproduce 15 * and retain this copyright notice and list of conditions as 16 * they appear in the source file. 17 * 18 * 2) No right is granted to use any trade name, trademark, or logo of 19 * Digital Equipment Corporation. Neither the "Digital Equipment 20 * Corporation" name nor any trademark or logo of Digital Equipment 21 * Corporation may be used to endorse or promote products derived 22 * from this software without the prior written permission of 23 * Digital Equipment Corporation. 24 * 25 * 3) This software is provided "AS-IS" and any express or implied 26 * warranties, including but not limited to, any implied warranties 27 * of merchantability, fitness for a particular purpose, or 28 * non-infringement are disclaimed. In no event shall DIGITAL be 29 * liable for any damages whatsoever, and in particular, DIGITAL 30 * shall not be liable for special, indirect, consequential, or 31 * incidental damages or damages for lost profits, loss of 32 * revenue or loss of use, whether such damages arise in contract, 33 * negligence, tort, under statute, in equity, at law or otherwise, 34 * even if advised of the possibility of such damage. 35 */ 36 37 /* 38 **++ 39 ** 40 ** ess.c 41 ** 42 ** FACILITY: 43 ** 44 ** DIGITAL Network Appliance Reference Design (DNARD) 45 ** 46 ** MODULE DESCRIPTION: 47 ** 48 ** This module contains the device driver for the ESS 49 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was 50 ** used as a reference point when implementing this driver. 51 ** 52 ** AUTHORS: 53 ** 54 ** Blair Fidler Software Engineering Australia 55 ** Gold Coast, Australia. 56 ** 57 ** CREATION DATE: 58 ** 59 ** March 10, 1997. 60 ** 61 ** MODIFICATION HISTORY: 62 ** 63 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for 64 ** bus_dma, changes to audio interface, and many bug fixes. 65 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum. 66 **-- 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/errno.h> 72 #include <sys/ioctl.h> 73 #include <sys/syslog.h> 74 #include <sys/device.h> 75 #include <sys/proc.h> 76 #include <sys/kernel.h> 77 #include <sys/timeout.h> 78 79 #include <machine/cpu.h> 80 #include <machine/intr.h> 81 #include <machine/bus.h> 82 83 #include <sys/audioio.h> 84 #include <dev/audio_if.h> 85 #include <dev/auconv.h> 86 #include <dev/mulaw.h> 87 88 #include <dev/isa/isavar.h> 89 #include <dev/isa/isadmavar.h> 90 91 #include <dev/isa/essvar.h> 92 #include <dev/isa/essreg.h> 93 94 #ifdef AUDIO_DEBUG 95 #define DPRINTF(x) if (essdebug) printf x 96 #define DPRINTFN(n,x) if (essdebug>(n)) printf x 97 int essdebug = 0; 98 #else 99 #define DPRINTF(x) 100 #define DPRINTFN(n,x) 101 #endif 102 103 #if 0 104 unsigned uuu; 105 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu) 106 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d)) 107 #else 108 #define EREAD1(t, h, a) bus_space_read_1(t, h, a) 109 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d) 110 #endif 111 112 struct cfdriver ess_cd = { 113 NULL, "ess", DV_DULL 114 }; 115 116 int ess_setup_sc __P((struct ess_softc *, int)); 117 118 int ess_open __P((void *, int)); 119 void ess_1788_close __P((void *)); 120 void ess_1888_close __P((void *)); 121 int ess_getdev __P((void *, struct audio_device *)); 122 int ess_drain __P((void *)); 123 124 int ess_query_encoding __P((void *, struct audio_encoding *)); 125 126 int ess_set_params __P((void *, int, int, struct audio_params *, 127 struct audio_params *)); 128 129 int ess_round_blocksize __P((void *, int)); 130 131 int ess_audio1_trigger_output __P((void *, void *, void *, int, 132 void (*)(void *), void *, struct audio_params *)); 133 int ess_audio2_trigger_output __P((void *, void *, void *, int, 134 void (*)(void *), void *, struct audio_params *)); 135 int ess_audio1_trigger_input __P((void *, void *, void *, int, 136 void (*)(void *), void *, struct audio_params *)); 137 int ess_audio1_halt __P((void *)); 138 int ess_audio2_halt __P((void *)); 139 int ess_audio1_intr __P((void *)); 140 int ess_audio2_intr __P((void *)); 141 void ess_audio1_poll __P((void *)); 142 void ess_audio2_poll __P((void *)); 143 144 int ess_speaker_ctl __P((void *, int)); 145 146 int ess_getdev __P((void *, struct audio_device *)); 147 148 int ess_set_port __P((void *, mixer_ctrl_t *)); 149 int ess_get_port __P((void *, mixer_ctrl_t *)); 150 151 void *ess_malloc __P((void *, unsigned long, int, int)); 152 void ess_free __P((void *, void *, int)); 153 unsigned long ess_round_buffersize __P((void *, unsigned long)); 154 paddr_t ess_mappage __P((void *, void *, off_t, int)); 155 156 157 int ess_query_devinfo __P((void *, mixer_devinfo_t *)); 158 int ess_1788_get_props __P((void *)); 159 int ess_1888_get_props __P((void *)); 160 161 void ess_speaker_on __P((struct ess_softc *)); 162 void ess_speaker_off __P((struct ess_softc *)); 163 164 int ess_config_addr __P((struct ess_softc *)); 165 void ess_config_irq __P((struct ess_softc *)); 166 void ess_config_drq __P((struct ess_softc *)); 167 void ess_setup __P((struct ess_softc *)); 168 int ess_identify __P((struct ess_softc *)); 169 170 int ess_reset __P((struct ess_softc *)); 171 void ess_set_gain __P((struct ess_softc *, int, int)); 172 int ess_set_in_port __P((struct ess_softc *, int)); 173 int ess_set_in_ports __P((struct ess_softc *, int)); 174 u_int ess_srtotc __P((u_int)); 175 u_int ess_srtofc __P((u_int)); 176 u_char ess_get_dsp_status __P((struct ess_softc *)); 177 u_char ess_dsp_read_ready __P((struct ess_softc *)); 178 u_char ess_dsp_write_ready __P((struct ess_softc *)); 179 int ess_rdsp __P((struct ess_softc *)); 180 int ess_wdsp __P((struct ess_softc *, u_char)); 181 u_char ess_read_x_reg __P((struct ess_softc *, u_char)); 182 int ess_write_x_reg __P((struct ess_softc *, u_char, u_char)); 183 void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char)); 184 void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char)); 185 u_char ess_read_mix_reg __P((struct ess_softc *, u_char)); 186 void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char)); 187 void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char)); 188 void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char)); 189 void ess_read_multi_mix_reg __P((struct ess_softc *, u_char, u_int8_t *, bus_size_t)); 190 191 static char *essmodel[] = { 192 "unsupported", 193 "1888", 194 "1887", 195 "888", 196 "1788", 197 "1869", 198 "1879", 199 "1868", 200 "1878", 201 }; 202 203 struct audio_device ess_device = { 204 "ESS Technology", 205 "x", 206 "ess" 207 }; 208 209 /* 210 * Define our interface to the higher level audio driver. 211 */ 212 213 struct audio_hw_if ess_1788_hw_if = { 214 ess_open, 215 ess_1788_close, 216 ess_drain, 217 ess_query_encoding, 218 ess_set_params, 219 ess_round_blocksize, 220 NULL, 221 NULL, 222 NULL, 223 NULL, 224 NULL, 225 ess_audio1_halt, 226 ess_audio1_halt, 227 ess_speaker_ctl, 228 ess_getdev, 229 NULL, 230 ess_set_port, 231 ess_get_port, 232 ess_query_devinfo, 233 ess_malloc, 234 ess_free, 235 ess_round_buffersize, 236 ess_mappage, 237 ess_1788_get_props, 238 ess_audio1_trigger_output, 239 ess_audio1_trigger_input, 240 }; 241 242 struct audio_hw_if ess_1888_hw_if = { 243 ess_open, 244 ess_1888_close, 245 ess_drain, 246 ess_query_encoding, 247 ess_set_params, 248 ess_round_blocksize, 249 NULL, 250 NULL, 251 NULL, 252 NULL, 253 NULL, 254 ess_audio2_halt, 255 ess_audio1_halt, 256 ess_speaker_ctl, 257 ess_getdev, 258 NULL, 259 ess_set_port, 260 ess_get_port, 261 ess_query_devinfo, 262 ess_malloc, 263 ess_free, 264 ess_round_buffersize, 265 ess_mappage, 266 ess_1888_get_props, 267 ess_audio2_trigger_output, 268 ess_audio1_trigger_input, 269 }; 270 271 #ifdef AUDIO_DEBUG 272 void ess_printsc __P((struct ess_softc *)); 273 void ess_dump_mixer __P((struct ess_softc *)); 274 275 void 276 ess_printsc(sc) 277 struct ess_softc *sc; 278 { 279 int i; 280 281 printf("open %d iobase 0x%x outport %u inport %u speaker %s\n", 282 (int)sc->sc_open, sc->sc_iobase, sc->out_port, 283 sc->in_port, sc->spkr_state ? "on" : "off"); 284 285 printf("audio1: dmachan %d irq %d nintr %lu intr %p arg %p\n", 286 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr, 287 sc->sc_audio1.intr, sc->sc_audio1.arg); 288 289 if (!ESS_USE_AUDIO1(sc->sc_model)) { 290 printf("audio2: dmachan %d irq %d nintr %lu intr %p arg %p\n", 291 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr, 292 sc->sc_audio2.intr, sc->sc_audio2.arg); 293 } 294 295 printf("gain:"); 296 for (i = 0; i < sc->ndevs; i++) 297 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]); 298 printf("\n"); 299 } 300 301 void 302 ess_dump_mixer(sc) 303 struct ess_softc *sc; 304 { 305 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 306 0x7C, ess_read_mix_reg(sc, 0x7C)); 307 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 308 0x1A, ess_read_mix_reg(sc, 0x1A)); 309 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 310 0x3E, ess_read_mix_reg(sc, 0x3E)); 311 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 312 0x36, ess_read_mix_reg(sc, 0x36)); 313 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 314 0x38, ess_read_mix_reg(sc, 0x38)); 315 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 316 0x3A, ess_read_mix_reg(sc, 0x3A)); 317 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n", 318 0x32, ess_read_mix_reg(sc, 0x32)); 319 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n", 320 0x3C, ess_read_mix_reg(sc, 0x3C)); 321 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n", 322 0x69, ess_read_mix_reg(sc, 0x69)); 323 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n", 324 0x68, ess_read_mix_reg(sc, 0x68)); 325 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n", 326 0x6E, ess_read_mix_reg(sc, 0x6E)); 327 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n", 328 0x6B, ess_read_mix_reg(sc, 0x6B)); 329 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n", 330 0x6A, ess_read_mix_reg(sc, 0x6A)); 331 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n", 332 0x6C, ess_read_mix_reg(sc, 0x6C)); 333 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n", 334 0xB4, ess_read_x_reg(sc, 0xB4)); 335 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n", 336 0x14, ess_read_mix_reg(sc, 0x14)); 337 338 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n", 339 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL)); 340 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n", 341 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL)); 342 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n", 343 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE), 344 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2)); 345 } 346 347 #endif 348 349 /* 350 * Configure the ESS chip for the desired audio base address. 351 */ 352 int 353 ess_config_addr(sc) 354 struct ess_softc *sc; 355 { 356 int iobase = sc->sc_iobase; 357 bus_space_tag_t iot = sc->sc_iot; 358 359 /* 360 * Configure using the System Control Register method. This 361 * method is used when the AMODE line is tied high, which is 362 * the case for the Shark, but not for the evaluation board. 363 */ 364 365 bus_space_handle_t scr_access_ioh; 366 bus_space_handle_t scr_ioh; 367 u_short scr_value; 368 369 /* 370 * Set the SCR bit to enable audio. 371 */ 372 scr_value = ESS_SCR_AUDIO_ENABLE; 373 374 /* 375 * Set the SCR bits necessary to select the specified audio 376 * base address. 377 */ 378 switch(iobase) { 379 case 0x220: 380 scr_value |= ESS_SCR_AUDIO_220; 381 break; 382 case 0x230: 383 scr_value |= ESS_SCR_AUDIO_230; 384 break; 385 case 0x240: 386 scr_value |= ESS_SCR_AUDIO_240; 387 break; 388 case 0x250: 389 scr_value |= ESS_SCR_AUDIO_250; 390 break; 391 default: 392 printf("ess: configured iobase 0x%x invalid\n", iobase); 393 return (1); 394 break; 395 } 396 397 /* 398 * Get a mapping for the System Control Register (SCR) access 399 * registers and the SCR data registers. 400 */ 401 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS, 402 0, &scr_access_ioh)) { 403 printf("ess: can't map SCR access registers\n"); 404 return (1); 405 } 406 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS, 407 0, &scr_ioh)) { 408 printf("ess: can't map SCR registers\n"); 409 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 410 return (1); 411 } 412 413 /* Unlock the SCR. */ 414 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0); 415 416 /* Write the base address information into SCR[0]. */ 417 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0); 418 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value); 419 420 /* Lock the SCR. */ 421 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0); 422 423 /* Unmap the SCR access ports and the SCR data ports. */ 424 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 425 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS); 426 427 return 0; 428 } 429 430 431 /* 432 * Configure the ESS chip for the desired IRQ and DMA channels. 433 * ESS ISA 434 * -------- 435 * IRQA irq9 436 * IRQB irq5 437 * IRQC irq7 438 * IRQD irq10 439 * IRQE irq15 440 * 441 * DRQA drq0 442 * DRQB drq1 443 * DRQC drq3 444 * DRQD drq5 445 */ 446 void 447 ess_config_irq(sc) 448 struct ess_softc *sc; 449 { 450 int v; 451 452 DPRINTFN(2,("ess_config_irq\n")); 453 454 if (sc->sc_model == ESS_1887 && 455 sc->sc_audio1.irq == sc->sc_audio2.irq && 456 sc->sc_audio1.irq != -1) { 457 /* Use new method, both interrupts are the same. */ 458 v = ESS_IS_SELECT_IRQ; /* enable intrs */ 459 switch (sc->sc_audio1.irq) { 460 case 5: 461 v |= ESS_IS_INTRB; 462 break; 463 case 7: 464 v |= ESS_IS_INTRC; 465 break; 466 case 9: 467 v |= ESS_IS_INTRA; 468 break; 469 case 10: 470 v |= ESS_IS_INTRD; 471 break; 472 case 15: 473 v |= ESS_IS_INTRE; 474 break; 475 #ifdef DIAGNOSTIC 476 default: 477 printf("ess_config_irq: configured irq %d not supported for Audio 1\n", 478 sc->sc_audio1.irq); 479 return; 480 #endif 481 } 482 /* Set the IRQ */ 483 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v); 484 return; 485 } 486 487 if (sc->sc_model == ESS_1887) { 488 /* Tell the 1887 to use the old interrupt method. */ 489 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888); 490 } 491 492 if (sc->sc_audio1.polled) { 493 /* Turn off Audio1 interrupts. */ 494 v = 0; 495 } else { 496 /* Configure Audio 1 for the appropriate IRQ line. */ 497 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */ 498 switch (sc->sc_audio1.irq) { 499 case 5: 500 v |= ESS_IRQ_CTRL_INTRB; 501 break; 502 case 7: 503 v |= ESS_IRQ_CTRL_INTRC; 504 break; 505 case 9: 506 v |= ESS_IRQ_CTRL_INTRA; 507 break; 508 case 10: 509 v |= ESS_IRQ_CTRL_INTRD; 510 break; 511 #ifdef DIAGNOSTIC 512 default: 513 printf("ess: configured irq %d not supported for Audio 1\n", 514 sc->sc_audio1.irq); 515 return; 516 #endif 517 } 518 } 519 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v); 520 521 if (ESS_USE_AUDIO1(sc->sc_model)) 522 return; 523 524 if (sc->sc_audio2.polled) { 525 /* Turn off Audio2 interrupts. */ 526 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 527 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 528 } else { 529 /* Audio2 is hardwired to INTRE in this mode. */ 530 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 531 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 532 } 533 } 534 535 536 void 537 ess_config_drq(sc) 538 struct ess_softc *sc; 539 { 540 int v; 541 542 DPRINTFN(2,("ess_config_drq\n")); 543 544 /* Configure Audio 1 (record) for DMA on the appropriate channel. */ 545 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT; 546 switch (sc->sc_audio1.drq) { 547 case 0: 548 v |= ESS_DRQ_CTRL_DRQA; 549 break; 550 case 1: 551 v |= ESS_DRQ_CTRL_DRQB; 552 break; 553 case 3: 554 v |= ESS_DRQ_CTRL_DRQC; 555 break; 556 #ifdef DIAGNOSTIC 557 default: 558 printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n", 559 sc->sc_audio1.drq); 560 return; 561 #endif 562 } 563 /* Set DRQ1 */ 564 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v); 565 566 if (ESS_USE_AUDIO1(sc->sc_model)) 567 return; 568 569 /* Configure DRQ2 */ 570 v = ESS_AUDIO2_CTRL3_DRQ_PD; 571 switch (sc->sc_audio2.drq) { 572 case 0: 573 v |= ESS_AUDIO2_CTRL3_DRQA; 574 break; 575 case 1: 576 v |= ESS_AUDIO2_CTRL3_DRQB; 577 break; 578 case 3: 579 v |= ESS_AUDIO2_CTRL3_DRQC; 580 break; 581 case 5: 582 v |= ESS_AUDIO2_CTRL3_DRQD; 583 break; 584 #ifdef DIAGNOSTIC 585 default: 586 printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n", 587 sc->sc_audio2.drq); 588 return; 589 #endif 590 } 591 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v); 592 /* Enable DMA 2 */ 593 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 594 ESS_AUDIO2_CTRL2_DMA_ENABLE); 595 } 596 597 /* 598 * Set up registers after a reset. 599 */ 600 void 601 ess_setup(sc) 602 struct ess_softc *sc; 603 { 604 605 ess_config_irq(sc); 606 ess_config_drq(sc); 607 608 DPRINTFN(2,("ess_setup: done\n")); 609 } 610 611 /* 612 * Determine the model of ESS chip we are talking to. Currently we 613 * only support ES1888, ES1887 and ES888. The method of determining 614 * the chip is based on the information on page 27 of the ES1887 data 615 * sheet. 616 * 617 * This routine sets the values of sc->sc_model and sc->sc_version. 618 */ 619 int 620 ess_identify(sc) 621 struct ess_softc *sc; 622 { 623 u_char reg1; 624 u_char reg2; 625 u_char reg3; 626 u_int8_t ident[4]; 627 628 sc->sc_model = ESS_UNSUPPORTED; 629 sc->sc_version = 0; 630 631 memset(ident, 0, sizeof(ident)); 632 633 /* 634 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where 635 * n >= 8 for an ES1887 or an ES888. Other values indicate 636 * earlier (unsupported) chips. 637 */ 638 ess_wdsp(sc, ESS_ACMD_LEGACY_ID); 639 640 if ((reg1 = ess_rdsp(sc)) != 0x68) { 641 printf("ess: First ID byte wrong (0x%02x)\n", reg1); 642 return 1; 643 } 644 645 reg2 = ess_rdsp(sc); 646 if (((reg2 & 0xf0) != 0x80) || 647 ((reg2 & 0x0f) < 8)) { 648 printf("ess: Second ID byte wrong (0x%02x)\n", reg2); 649 return 1; 650 } 651 652 /* 653 * Store the ID bytes as the version. 654 */ 655 sc->sc_version = (reg1 << 8) + reg2; 656 657 658 /* 659 * 2. Verify we can change bit 2 in mixer register 0x64. This 660 * should be possible on all supported chips. 661 */ 662 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 663 reg2 = reg1 ^ 0x04; /* toggle bit 2 */ 664 665 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 666 667 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) { 668 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n"); 669 return 1; 670 } 671 672 /* 673 * Restore the original value of mixer register 0x64. 674 */ 675 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 676 677 678 /* 679 * 3. Verify we can change the value of mixer register 680 * ESS_MREG_SAMPLE_RATE. 681 * This is possible on the 1888/1887/888, but not on the 1788. 682 * It is not necessary to restore the value of this mixer register. 683 */ 684 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE); 685 reg2 = reg1 ^ 0xff; /* toggle all bits */ 686 687 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2); 688 689 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) { 690 /* If we got this far before failing, it's a 1788. */ 691 sc->sc_model = ESS_1788; 692 693 /* 694 * Identify ESS model for ES18[67]8. 695 */ 696 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 697 if(ident[0] == 0x18) { 698 switch(ident[1]) { 699 case 0x68: 700 sc->sc_model = ESS_1868; 701 break; 702 case 0x78: 703 sc->sc_model = ESS_1878; 704 break; 705 } 706 } 707 } else { 708 /* 709 * 4. Determine if we can change bit 5 in mixer register 0x64. 710 * This determines whether we have an ES1887: 711 * 712 * - can change indicates ES1887 713 * - can't change indicates ES1888 or ES888 714 */ 715 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 716 reg2 = reg1 ^ 0x20; /* toggle bit 5 */ 717 718 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 719 720 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) { 721 sc->sc_model = ESS_1887; 722 723 /* 724 * Restore the original value of mixer register 0x64. 725 */ 726 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 727 728 /* 729 * Identify ESS model for ES18[67]9. 730 */ 731 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 732 if(ident[0] == 0x18) { 733 switch(ident[1]) { 734 case 0x69: 735 sc->sc_model = ESS_1869; 736 break; 737 case 0x79: 738 sc->sc_model = ESS_1879; 739 break; 740 } 741 } 742 } else { 743 /* 744 * 5. Determine if we can change the value of mixer 745 * register 0x69 independently of mixer register 746 * 0x68. This determines which chip we have: 747 * 748 * - can modify idependently indicates ES888 749 * - register 0x69 is an alias of 0x68 indicates ES1888 750 */ 751 reg1 = ess_read_mix_reg(sc, 0x68); 752 reg2 = ess_read_mix_reg(sc, 0x69); 753 reg3 = reg2 ^ 0xff; /* toggle all bits */ 754 755 /* 756 * Write different values to each register. 757 */ 758 ess_write_mix_reg(sc, 0x68, reg2); 759 ess_write_mix_reg(sc, 0x69, reg3); 760 761 if (ess_read_mix_reg(sc, 0x68) == reg2 && 762 ess_read_mix_reg(sc, 0x69) == reg3) 763 sc->sc_model = ESS_888; 764 else 765 sc->sc_model = ESS_1888; 766 767 /* 768 * Restore the original value of the registers. 769 */ 770 ess_write_mix_reg(sc, 0x68, reg1); 771 ess_write_mix_reg(sc, 0x69, reg2); 772 } 773 } 774 775 return 0; 776 } 777 778 779 int 780 ess_setup_sc(sc, doinit) 781 struct ess_softc *sc; 782 int doinit; 783 { 784 /* Reset the chip. */ 785 if (ess_reset(sc) != 0) { 786 DPRINTF(("ess_setup_sc: couldn't reset chip\n")); 787 return (1); 788 } 789 790 /* Identify the ESS chip, and check that it is supported. */ 791 if (ess_identify(sc)) { 792 DPRINTF(("ess_setup_sc: couldn't identify\n")); 793 return (1); 794 } 795 796 return (0); 797 } 798 799 /* 800 * Probe for the ESS hardware. 801 */ 802 int 803 essmatch(sc) 804 struct ess_softc *sc; 805 { 806 if (!ESS_BASE_VALID(sc->sc_iobase)) { 807 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase); 808 return (0); 809 } 810 811 /* Configure the ESS chip for the desired audio base address. */ 812 if (ess_config_addr(sc)) 813 return (0); 814 815 if (ess_setup_sc(sc, 1)) 816 return (0); 817 818 if (sc->sc_model == ESS_UNSUPPORTED) { 819 DPRINTF(("ess: Unsupported model\n")); 820 return (0); 821 } 822 823 /* Check that requested DMA channels are valid and different. */ 824 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) { 825 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq); 826 return (0); 827 } 828 if (!isa_drq_isfree(sc->sc_isa, sc->sc_audio1.drq)) 829 return (0); 830 if (!ESS_USE_AUDIO1(sc->sc_model)) { 831 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) { 832 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq); 833 return (0); 834 } 835 if (sc->sc_audio1.drq == sc->sc_audio2.drq) { 836 printf("ess: play and record drq both %d\n", 837 sc->sc_audio1.drq); 838 return (0); 839 } 840 if (!isa_drq_isfree(sc->sc_isa, sc->sc_audio2.drq)) 841 return (0); 842 } 843 844 /* 845 * The 1887 has an additional IRQ mode where both channels are mapped 846 * to the same IRQ. 847 */ 848 if (sc->sc_model == ESS_1887 && 849 sc->sc_audio1.irq == sc->sc_audio2.irq && 850 sc->sc_audio1.irq != -1 && 851 ESS_IRQ12_VALID(sc->sc_audio1.irq)) 852 goto irq_not1888; 853 854 /* Check that requested IRQ lines are valid and different. */ 855 if (sc->sc_audio1.irq != -1 && 856 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) { 857 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq); 858 return (0); 859 } 860 if (!ESS_USE_AUDIO1(sc->sc_model)) { 861 if (sc->sc_audio2.irq != -1 && 862 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) { 863 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq); 864 return (0); 865 } 866 if (sc->sc_audio1.irq == sc->sc_audio2.irq && 867 sc->sc_audio1.irq != -1) { 868 printf("ess: play and record irq both %d\n", 869 sc->sc_audio1.irq); 870 return (0); 871 } 872 } 873 874 irq_not1888: 875 /* XXX should we check IRQs as well? */ 876 877 return (1); 878 } 879 880 881 /* 882 * Attach hardware to driver, attach hardware driver to audio 883 * pseudo-device driver. 884 */ 885 void 886 essattach(sc) 887 struct ess_softc *sc; 888 { 889 struct audio_attach_args arg; 890 struct audio_params pparams, rparams; 891 int i; 892 u_int v; 893 894 if (ess_setup_sc(sc, 0)) { 895 printf(": setup failed\n"); 896 return; 897 } 898 899 printf(": ESS Technology ES%s [version 0x%04x]\n", 900 essmodel[sc->sc_model], sc->sc_version); 901 902 sc->sc_audio1.polled = sc->sc_audio1.irq == -1; 903 if (!sc->sc_audio1.polled) { 904 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic, 905 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO, 906 ess_audio1_intr, sc, sc->sc_dev.dv_xname); 907 printf("%s: audio1 interrupting at irq %d\n", 908 sc->sc_dev.dv_xname, sc->sc_audio1.irq); 909 } else 910 printf("%s: audio1 polled\n", sc->sc_dev.dv_xname); 911 if (isa_dmamap_create(sc->sc_isa, sc->sc_audio1.drq, 912 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 913 printf("%s: can't create map for drq %d\n", 914 sc->sc_dev.dv_xname, sc->sc_audio1.drq); 915 return; 916 } 917 918 if (!ESS_USE_AUDIO1(sc->sc_model)) { 919 sc->sc_audio2.polled = sc->sc_audio2.irq == -1; 920 if (!sc->sc_audio2.polled) { 921 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic, 922 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO, 923 ess_audio2_intr, sc, sc->sc_dev.dv_xname); 924 printf("%s: audio2 interrupting at irq %d\n", 925 sc->sc_dev.dv_xname, sc->sc_audio2.irq); 926 } else 927 printf("%s: audio2 polled\n", sc->sc_dev.dv_xname); 928 if (isa_dmamap_create(sc->sc_isa, sc->sc_audio2.drq, 929 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 930 printf("%s: can't create map for drq %d\n", 931 sc->sc_dev.dv_xname, sc->sc_audio2.drq); 932 return; 933 } 934 } 935 936 timeout_set(&sc->sc_tmo1, ess_audio1_poll, sc); 937 timeout_set(&sc->sc_tmo2, ess_audio2_poll, sc); 938 939 /* 940 * Set record and play parameters to default values defined in 941 * generic audio driver. 942 */ 943 pparams = audio_default; 944 rparams = audio_default; 945 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); 946 947 /* Do a hardware reset on the mixer. */ 948 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET); 949 950 /* 951 * Set volume of Audio 1 to zero and disable Audio 1 DAC input 952 * to playback mixer, since playback is always through Audio 2. 953 */ 954 if (!ESS_USE_AUDIO1(sc->sc_model)) 955 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0); 956 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 957 958 if (ESS_USE_AUDIO1(sc->sc_model)) { 959 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC); 960 sc->in_port = ESS_SOURCE_MIC; 961 sc->ndevs = ESS_1788_NDEVS; 962 } else { 963 /* 964 * Set hardware record source to use output of the record 965 * mixer. We do the selection of record source in software by 966 * setting the gain of the unused sources to zero. (See 967 * ess_set_in_ports.) 968 */ 969 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER); 970 sc->in_mask = 1 << ESS_MIC_REC_VOL; 971 sc->ndevs = ESS_1888_NDEVS; 972 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10); 973 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08); 974 } 975 976 /* 977 * Set gain on each mixer device to a sensible value. 978 * Devices not normally used are turned off, and other devices 979 * are set to 50% volume. 980 */ 981 for (i = 0; i < sc->ndevs; i++) { 982 switch (i) { 983 case ESS_MIC_PLAY_VOL: 984 case ESS_LINE_PLAY_VOL: 985 case ESS_CD_PLAY_VOL: 986 case ESS_AUXB_PLAY_VOL: 987 case ESS_DAC_REC_VOL: 988 case ESS_LINE_REC_VOL: 989 case ESS_SYNTH_REC_VOL: 990 case ESS_CD_REC_VOL: 991 case ESS_AUXB_REC_VOL: 992 v = 0; 993 break; 994 default: 995 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2); 996 break; 997 } 998 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v; 999 ess_set_gain(sc, i, 1); 1000 } 1001 1002 ess_setup(sc); 1003 1004 /* Disable the speaker until the device is opened. */ 1005 ess_speaker_off(sc); 1006 sc->spkr_state = SPKR_OFF; 1007 1008 sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]); 1009 sprintf(ess_device.version, "0x%04x", sc->sc_version); 1010 1011 if (ESS_USE_AUDIO1(sc->sc_model)) 1012 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev); 1013 else 1014 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev); 1015 1016 arg.type = AUDIODEV_TYPE_OPL; 1017 arg.hwif = 0; 1018 arg.hdl = 0; 1019 (void)config_found(&sc->sc_dev, &arg, audioprint); 1020 1021 #ifdef AUDIO_DEBUG 1022 if (essdebug > 0) 1023 ess_printsc(sc); 1024 #endif 1025 } 1026 1027 /* 1028 * Various routines to interface to higher level audio driver 1029 */ 1030 1031 int 1032 ess_open(addr, flags) 1033 void *addr; 1034 int flags; 1035 { 1036 struct ess_softc *sc = addr; 1037 1038 DPRINTF(("ess_open: sc=%p\n", sc)); 1039 1040 if (sc->sc_open != 0 || ess_reset(sc) != 0) 1041 return ENXIO; 1042 1043 ess_setup(sc); /* because we did a reset */ 1044 1045 sc->sc_open = 1; 1046 1047 DPRINTF(("ess_open: opened\n")); 1048 1049 return (0); 1050 } 1051 1052 void 1053 ess_1788_close(addr) 1054 void *addr; 1055 { 1056 struct ess_softc *sc = addr; 1057 1058 DPRINTF(("ess_1788_close: sc=%p\n", sc)); 1059 1060 ess_speaker_off(sc); 1061 sc->spkr_state = SPKR_OFF; 1062 1063 ess_audio1_halt(sc); 1064 1065 sc->sc_open = 0; 1066 DPRINTF(("ess_1788_close: closed\n")); 1067 } 1068 1069 void 1070 ess_1888_close(addr) 1071 void *addr; 1072 { 1073 struct ess_softc *sc = addr; 1074 1075 DPRINTF(("ess_1888_close: sc=%p\n", sc)); 1076 1077 ess_speaker_off(sc); 1078 sc->spkr_state = SPKR_OFF; 1079 1080 ess_audio1_halt(sc); 1081 ess_audio2_halt(sc); 1082 1083 sc->sc_open = 0; 1084 DPRINTF(("ess_1888_close: closed\n")); 1085 } 1086 1087 /* 1088 * Wait for FIFO to drain, and analog section to settle. 1089 * XXX should check FIFO empty bit. 1090 */ 1091 int 1092 ess_drain(addr) 1093 void *addr; 1094 { 1095 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */ 1096 return (0); 1097 } 1098 1099 /* XXX should use reference count */ 1100 int 1101 ess_speaker_ctl(addr, newstate) 1102 void *addr; 1103 int newstate; 1104 { 1105 struct ess_softc *sc = addr; 1106 1107 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) { 1108 ess_speaker_on(sc); 1109 sc->spkr_state = SPKR_ON; 1110 } 1111 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) { 1112 ess_speaker_off(sc); 1113 sc->spkr_state = SPKR_OFF; 1114 } 1115 return (0); 1116 } 1117 1118 int 1119 ess_getdev(addr, retp) 1120 void *addr; 1121 struct audio_device *retp; 1122 { 1123 *retp = ess_device; 1124 return (0); 1125 } 1126 1127 int 1128 ess_query_encoding(addr, fp) 1129 void *addr; 1130 struct audio_encoding *fp; 1131 { 1132 /*struct ess_softc *sc = addr;*/ 1133 1134 switch (fp->index) { 1135 case 0: 1136 strcpy(fp->name, AudioEulinear); 1137 fp->encoding = AUDIO_ENCODING_ULINEAR; 1138 fp->precision = 8; 1139 fp->flags = 0; 1140 return (0); 1141 case 1: 1142 strcpy(fp->name, AudioEmulaw); 1143 fp->encoding = AUDIO_ENCODING_ULAW; 1144 fp->precision = 8; 1145 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1146 return (0); 1147 case 2: 1148 strcpy(fp->name, AudioEalaw); 1149 fp->encoding = AUDIO_ENCODING_ALAW; 1150 fp->precision = 8; 1151 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1152 return (0); 1153 case 3: 1154 strcpy(fp->name, AudioEslinear); 1155 fp->encoding = AUDIO_ENCODING_SLINEAR; 1156 fp->precision = 8; 1157 fp->flags = 0; 1158 return (0); 1159 case 4: 1160 strcpy(fp->name, AudioEslinear_le); 1161 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 1162 fp->precision = 16; 1163 fp->flags = 0; 1164 return (0); 1165 case 5: 1166 strcpy(fp->name, AudioEulinear_le); 1167 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 1168 fp->precision = 16; 1169 fp->flags = 0; 1170 return (0); 1171 case 6: 1172 strcpy(fp->name, AudioEslinear_be); 1173 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 1174 fp->precision = 16; 1175 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1176 return (0); 1177 case 7: 1178 strcpy(fp->name, AudioEulinear_be); 1179 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 1180 fp->precision = 16; 1181 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1182 return (0); 1183 default: 1184 return EINVAL; 1185 } 1186 return (0); 1187 } 1188 1189 int 1190 ess_set_params(addr, setmode, usemode, play, rec) 1191 void *addr; 1192 int setmode, usemode; 1193 struct audio_params *play, *rec; 1194 { 1195 struct ess_softc *sc = addr; 1196 struct audio_params *p; 1197 int mode; 1198 int rate; 1199 1200 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode)); 1201 1202 /* 1203 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in 1204 * full-duplex operation the sample rates must be the same for both 1205 * channels. This appears to be false; the only bit in common is the 1206 * clock source selection. However, we'll be conservative here. 1207 * - mycroft 1208 */ 1209 if (play->sample_rate != rec->sample_rate && 1210 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 1211 if (setmode == AUMODE_PLAY) { 1212 rec->sample_rate = play->sample_rate; 1213 setmode |= AUMODE_RECORD; 1214 } else if (setmode == AUMODE_RECORD) { 1215 play->sample_rate = rec->sample_rate; 1216 setmode |= AUMODE_PLAY; 1217 } else 1218 return (EINVAL); 1219 } 1220 1221 for (mode = AUMODE_RECORD; mode != -1; 1222 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 1223 if ((setmode & mode) == 0) 1224 continue; 1225 1226 p = mode == AUMODE_PLAY ? play : rec; 1227 1228 if (p->sample_rate < ESS_MINRATE || 1229 p->sample_rate > ESS_MAXRATE || 1230 (p->precision != 8 && p->precision != 16) || 1231 (p->channels != 1 && p->channels != 2)) 1232 return (EINVAL); 1233 1234 p->factor = 1; 1235 p->sw_code = 0; 1236 switch (p->encoding) { 1237 case AUDIO_ENCODING_SLINEAR_BE: 1238 case AUDIO_ENCODING_ULINEAR_BE: 1239 if (p->precision == 16) 1240 p->sw_code = swap_bytes; 1241 break; 1242 case AUDIO_ENCODING_SLINEAR_LE: 1243 case AUDIO_ENCODING_ULINEAR_LE: 1244 break; 1245 case AUDIO_ENCODING_ULAW: 1246 if (mode == AUMODE_PLAY) { 1247 p->factor = 2; 1248 p->sw_code = mulaw_to_ulinear16; 1249 } else 1250 p->sw_code = ulinear8_to_mulaw; 1251 break; 1252 case AUDIO_ENCODING_ALAW: 1253 if (mode == AUMODE_PLAY) { 1254 p->factor = 2; 1255 p->sw_code = alaw_to_ulinear16; 1256 } else 1257 p->sw_code = ulinear8_to_alaw; 1258 break; 1259 default: 1260 return (EINVAL); 1261 } 1262 } 1263 1264 if (usemode == AUMODE_RECORD) 1265 rate = rec->sample_rate; 1266 else 1267 rate = play->sample_rate; 1268 1269 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate)); 1270 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate)); 1271 1272 if (!ESS_USE_AUDIO1(sc->sc_model)) { 1273 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate)); 1274 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate)); 1275 } 1276 1277 return (0); 1278 } 1279 1280 int 1281 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param) 1282 void *addr; 1283 void *start, *end; 1284 int blksize; 1285 void (*intr) __P((void *)); 1286 void *arg; 1287 struct audio_params *param; 1288 { 1289 struct ess_softc *sc = addr; 1290 u_int8_t reg; 1291 1292 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1293 addr, start, end, blksize, intr, arg)); 1294 1295 if (sc->sc_audio1.active) 1296 panic("ess_audio1_trigger_output: already running"); 1297 1298 sc->sc_audio1.active = 1; 1299 sc->sc_audio1.intr = intr; 1300 sc->sc_audio1.arg = arg; 1301 if (sc->sc_audio1.polled) { 1302 sc->sc_audio1.dmapos = 0; 1303 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1304 sc->sc_audio1.dmacount = 0; 1305 sc->sc_audio1.blksize = blksize; 1306 timeout_add(&sc->sc_tmo1, hz/30); 1307 } 1308 1309 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1310 if (param->channels == 2) { 1311 reg &= ~ESS_AUDIO_CTRL_MONO; 1312 reg |= ESS_AUDIO_CTRL_STEREO; 1313 } else { 1314 reg |= ESS_AUDIO_CTRL_MONO; 1315 reg &= ~ESS_AUDIO_CTRL_STEREO; 1316 } 1317 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1318 1319 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1320 if (param->precision * param->factor == 16) 1321 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1322 else 1323 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1324 if (param->channels == 2) 1325 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1326 else 1327 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1328 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1329 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1330 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1331 else 1332 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1333 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1334 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1335 1336 isa_dmastart(sc->sc_isa, sc->sc_audio1.drq, start, 1337 (char *)end - (char *)start, NULL, 1338 DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1339 1340 /* Program transfer count registers with 2's complement of count. */ 1341 blksize = -blksize; 1342 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1343 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1344 1345 /* Use 4 bytes per output DMA. */ 1346 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1347 1348 /* Start auto-init DMA */ 1349 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR); 1350 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1351 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE); 1352 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1353 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1354 1355 return (0); 1356 } 1357 1358 int 1359 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param) 1360 void *addr; 1361 void *start, *end; 1362 int blksize; 1363 void (*intr) __P((void *)); 1364 void *arg; 1365 struct audio_params *param; 1366 { 1367 struct ess_softc *sc = addr; 1368 u_int8_t reg; 1369 1370 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1371 addr, start, end, blksize, intr, arg)); 1372 1373 if (sc->sc_audio2.active) 1374 panic("ess_audio2_trigger_output: already running"); 1375 1376 sc->sc_audio2.active = 1; 1377 sc->sc_audio2.intr = intr; 1378 sc->sc_audio2.arg = arg; 1379 if (sc->sc_audio2.polled) { 1380 sc->sc_audio2.dmapos = 0; 1381 sc->sc_audio2.buffersize = (char *)end - (char *)start; 1382 sc->sc_audio2.dmacount = 0; 1383 sc->sc_audio2.blksize = blksize; 1384 timeout_add(&sc->sc_tmo2, hz/30); 1385 } 1386 1387 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1388 if (param->precision * param->factor == 16) 1389 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE; 1390 else 1391 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE; 1392 if (param->channels == 2) 1393 reg |= ESS_AUDIO2_CTRL2_CHANNELS; 1394 else 1395 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS; 1396 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1397 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1398 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1399 else 1400 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1401 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1402 1403 isa_dmastart(sc->sc_isa, sc->sc_audio2.drq, start, 1404 (char *)end - (char *)start, NULL, 1405 DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1406 1407 if (IS16BITDRQ(sc->sc_audio2.drq)) 1408 blksize >>= 1; /* use word count for 16 bit DMA */ 1409 /* Program transfer count registers with 2's complement of count. */ 1410 blksize = -blksize; 1411 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize); 1412 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8); 1413 1414 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1); 1415 if (IS16BITDRQ(sc->sc_audio2.drq)) 1416 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE; 1417 else 1418 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE; 1419 reg |= ESS_AUDIO2_CTRL1_DEMAND_8; 1420 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE | 1421 ESS_AUDIO2_CTRL1_AUTO_INIT; 1422 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg); 1423 1424 return (0); 1425 } 1426 1427 int 1428 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param) 1429 void *addr; 1430 void *start, *end; 1431 int blksize; 1432 void (*intr) __P((void *)); 1433 void *arg; 1434 struct audio_params *param; 1435 { 1436 struct ess_softc *sc = addr; 1437 u_int8_t reg; 1438 1439 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1440 addr, start, end, blksize, intr, arg)); 1441 1442 if (sc->sc_audio1.active) 1443 panic("ess_audio1_trigger_input: already running"); 1444 1445 sc->sc_audio1.active = 1; 1446 sc->sc_audio1.intr = intr; 1447 sc->sc_audio1.arg = arg; 1448 if (sc->sc_audio1.polled) { 1449 sc->sc_audio1.dmapos = 0; 1450 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1451 sc->sc_audio1.dmacount = 0; 1452 sc->sc_audio1.blksize = blksize; 1453 timeout_add(&sc->sc_tmo1, hz/30); 1454 } 1455 1456 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1457 if (param->channels == 2) { 1458 reg &= ~ESS_AUDIO_CTRL_MONO; 1459 reg |= ESS_AUDIO_CTRL_STEREO; 1460 } else { 1461 reg |= ESS_AUDIO_CTRL_MONO; 1462 reg &= ~ESS_AUDIO_CTRL_STEREO; 1463 } 1464 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1465 1466 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1467 if (param->precision * param->factor == 16) 1468 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1469 else 1470 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1471 if (param->channels == 2) 1472 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1473 else 1474 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1475 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1476 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1477 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1478 else 1479 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1480 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1481 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1482 1483 isa_dmastart(sc->sc_isa, sc->sc_audio1.drq, start, 1484 (char *)end - (char *)start, NULL, 1485 DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT); 1486 1487 /* Program transfer count registers with 2's complement of count. */ 1488 blksize = -blksize; 1489 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1490 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1491 1492 /* Use 4 bytes per input DMA. */ 1493 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1494 1495 /* Start auto-init DMA */ 1496 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 1497 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1498 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE; 1499 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1500 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1501 1502 return (0); 1503 } 1504 1505 int 1506 ess_audio1_halt(addr) 1507 void *addr; 1508 { 1509 struct ess_softc *sc = addr; 1510 1511 DPRINTF(("ess_audio1_halt: sc=%p\n", sc)); 1512 1513 if (sc->sc_audio1.active) { 1514 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2, 1515 ESS_AUDIO1_CTRL2_FIFO_ENABLE); 1516 isa_dmaabort(sc->sc_isa, sc->sc_audio1.drq); 1517 if (sc->sc_audio1.polled) 1518 timeout_del(&sc->sc_tmo1); 1519 sc->sc_audio1.active = 0; 1520 } 1521 1522 return (0); 1523 } 1524 1525 int 1526 ess_audio2_halt(addr) 1527 void *addr; 1528 { 1529 struct ess_softc *sc = addr; 1530 1531 DPRINTF(("ess_audio2_halt: sc=%p\n", sc)); 1532 1533 if (sc->sc_audio2.active) { 1534 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1, 1535 ESS_AUDIO2_CTRL1_DAC_ENABLE | 1536 ESS_AUDIO2_CTRL1_FIFO_ENABLE); 1537 isa_dmaabort(sc->sc_isa, sc->sc_audio2.drq); 1538 if (sc->sc_audio2.polled) 1539 timeout_del(&sc->sc_tmo2); 1540 sc->sc_audio2.active = 0; 1541 } 1542 1543 return (0); 1544 } 1545 1546 int 1547 ess_audio1_intr(arg) 1548 void *arg; 1549 { 1550 struct ess_softc *sc = arg; 1551 u_int8_t reg; 1552 1553 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr)); 1554 1555 /* Check and clear interrupt on Audio1. */ 1556 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS); 1557 if ((reg & ESS_DSP_READ_OFLOW) == 0) 1558 return (0); 1559 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR); 1560 1561 sc->sc_audio1.nintr++; 1562 1563 if (sc->sc_audio1.active) { 1564 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1565 return (1); 1566 } else 1567 return (0); 1568 } 1569 1570 int 1571 ess_audio2_intr(arg) 1572 void *arg; 1573 { 1574 struct ess_softc *sc = arg; 1575 u_int8_t reg; 1576 1577 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr)); 1578 1579 /* Check and clear interrupt on Audio2. */ 1580 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1581 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0) 1582 return (0); 1583 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH; 1584 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1585 1586 sc->sc_audio2.nintr++; 1587 1588 if (sc->sc_audio2.active) { 1589 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1590 return (1); 1591 } else 1592 return (0); 1593 } 1594 1595 void 1596 ess_audio1_poll(addr) 1597 void *addr; 1598 { 1599 struct ess_softc *sc = addr; 1600 int dmapos, dmacount; 1601 1602 if (!sc->sc_audio1.active) 1603 return; 1604 1605 sc->sc_audio1.nintr++; 1606 1607 dmapos = isa_dmacount(sc->sc_isa, sc->sc_audio1.drq); 1608 dmacount = sc->sc_audio1.dmapos - dmapos; 1609 if (dmacount < 0) 1610 dmacount += sc->sc_audio1.buffersize; 1611 sc->sc_audio1.dmapos = dmapos; 1612 #if 1 1613 dmacount += sc->sc_audio1.dmacount; 1614 while (dmacount > sc->sc_audio1.blksize) { 1615 dmacount -= sc->sc_audio1.blksize; 1616 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1617 } 1618 sc->sc_audio1.dmacount = dmacount; 1619 #else 1620 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount); 1621 #endif 1622 1623 timeout_add(&sc->sc_tmo1, hz/30); 1624 } 1625 1626 void 1627 ess_audio2_poll(addr) 1628 void *addr; 1629 { 1630 struct ess_softc *sc = addr; 1631 int dmapos, dmacount; 1632 1633 if (!sc->sc_audio2.active) 1634 return; 1635 1636 sc->sc_audio2.nintr++; 1637 1638 dmapos = isa_dmacount(sc->sc_isa, sc->sc_audio2.drq); 1639 dmacount = sc->sc_audio2.dmapos - dmapos; 1640 if (dmacount < 0) 1641 dmacount += sc->sc_audio2.buffersize; 1642 sc->sc_audio2.dmapos = dmapos; 1643 #if 1 1644 dmacount += sc->sc_audio2.dmacount; 1645 while (dmacount > sc->sc_audio2.blksize) { 1646 dmacount -= sc->sc_audio2.blksize; 1647 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1648 } 1649 sc->sc_audio2.dmacount = dmacount; 1650 #else 1651 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount); 1652 #endif 1653 1654 timeout_add(&sc->sc_tmo2, hz/30); 1655 } 1656 1657 int 1658 ess_round_blocksize(addr, blk) 1659 void *addr; 1660 int blk; 1661 { 1662 return (blk & -8); /* round for max DMA size */ 1663 } 1664 1665 int 1666 ess_set_port(addr, cp) 1667 void *addr; 1668 mixer_ctrl_t *cp; 1669 { 1670 struct ess_softc *sc = addr; 1671 int lgain, rgain; 1672 1673 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n", 1674 cp->dev, cp->un.value.num_channels)); 1675 1676 switch (cp->dev) { 1677 /* 1678 * The following mixer ports are all stereo. If we get a 1679 * single-channel gain value passed in, then we duplicate it 1680 * to both left and right channels. 1681 */ 1682 case ESS_MASTER_VOL: 1683 case ESS_DAC_PLAY_VOL: 1684 case ESS_MIC_PLAY_VOL: 1685 case ESS_LINE_PLAY_VOL: 1686 case ESS_SYNTH_PLAY_VOL: 1687 case ESS_CD_PLAY_VOL: 1688 case ESS_AUXB_PLAY_VOL: 1689 case ESS_RECORD_VOL: 1690 if (cp->type != AUDIO_MIXER_VALUE) 1691 return EINVAL; 1692 1693 switch (cp->un.value.num_channels) { 1694 case 1: 1695 lgain = rgain = ESS_4BIT_GAIN( 1696 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1697 break; 1698 case 2: 1699 lgain = ESS_4BIT_GAIN( 1700 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1701 rgain = ESS_4BIT_GAIN( 1702 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1703 break; 1704 default: 1705 return EINVAL; 1706 } 1707 1708 sc->gain[cp->dev][ESS_LEFT] = lgain; 1709 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1710 ess_set_gain(sc, cp->dev, 1); 1711 return (0); 1712 1713 /* 1714 * The PC speaker port is mono. If we get a stereo gain value 1715 * passed in, then we return EINVAL. 1716 */ 1717 case ESS_PCSPEAKER_VOL: 1718 if (cp->un.value.num_channels != 1) 1719 return EINVAL; 1720 1721 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] = 1722 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1723 ess_set_gain(sc, cp->dev, 1); 1724 return (0); 1725 1726 case ESS_RECORD_SOURCE: 1727 if (ESS_USE_AUDIO1(sc->sc_model)) { 1728 if (cp->type == AUDIO_MIXER_ENUM) 1729 return (ess_set_in_port(sc, cp->un.ord)); 1730 else 1731 return (EINVAL); 1732 } else { 1733 if (cp->type == AUDIO_MIXER_SET) 1734 return (ess_set_in_ports(sc, cp->un.mask)); 1735 else 1736 return (EINVAL); 1737 } 1738 return (0); 1739 1740 case ESS_RECORD_MONITOR: 1741 if (cp->type != AUDIO_MIXER_ENUM) 1742 return EINVAL; 1743 1744 if (cp->un.ord) 1745 /* Enable monitor */ 1746 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1747 ESS_AUDIO_CTRL_MONITOR); 1748 else 1749 /* Disable monitor */ 1750 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1751 ESS_AUDIO_CTRL_MONITOR); 1752 return (0); 1753 } 1754 1755 if (ESS_USE_AUDIO1(sc->sc_model)) 1756 return (EINVAL); 1757 1758 switch (cp->dev) { 1759 case ESS_DAC_REC_VOL: 1760 case ESS_MIC_REC_VOL: 1761 case ESS_LINE_REC_VOL: 1762 case ESS_SYNTH_REC_VOL: 1763 case ESS_CD_REC_VOL: 1764 case ESS_AUXB_REC_VOL: 1765 if (cp->type != AUDIO_MIXER_VALUE) 1766 return EINVAL; 1767 1768 switch (cp->un.value.num_channels) { 1769 case 1: 1770 lgain = rgain = ESS_4BIT_GAIN( 1771 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1772 break; 1773 case 2: 1774 lgain = ESS_4BIT_GAIN( 1775 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1776 rgain = ESS_4BIT_GAIN( 1777 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1778 break; 1779 default: 1780 return EINVAL; 1781 } 1782 1783 sc->gain[cp->dev][ESS_LEFT] = lgain; 1784 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1785 ess_set_gain(sc, cp->dev, 1); 1786 return (0); 1787 1788 case ESS_MIC_PREAMP: 1789 if (cp->type != AUDIO_MIXER_ENUM) 1790 return EINVAL; 1791 1792 if (cp->un.ord) 1793 /* Enable microphone preamp */ 1794 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1795 ESS_PREAMP_CTRL_ENABLE); 1796 else 1797 /* Disable microphone preamp */ 1798 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1799 ESS_PREAMP_CTRL_ENABLE); 1800 return (0); 1801 } 1802 1803 return (EINVAL); 1804 } 1805 1806 int 1807 ess_get_port(addr, cp) 1808 void *addr; 1809 mixer_ctrl_t *cp; 1810 { 1811 struct ess_softc *sc = addr; 1812 1813 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev)); 1814 1815 switch (cp->dev) { 1816 case ESS_MASTER_VOL: 1817 case ESS_DAC_PLAY_VOL: 1818 case ESS_MIC_PLAY_VOL: 1819 case ESS_LINE_PLAY_VOL: 1820 case ESS_SYNTH_PLAY_VOL: 1821 case ESS_CD_PLAY_VOL: 1822 case ESS_AUXB_PLAY_VOL: 1823 case ESS_RECORD_VOL: 1824 switch (cp->un.value.num_channels) { 1825 case 1: 1826 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1827 sc->gain[cp->dev][ESS_LEFT]; 1828 break; 1829 case 2: 1830 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1831 sc->gain[cp->dev][ESS_LEFT]; 1832 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1833 sc->gain[cp->dev][ESS_RIGHT]; 1834 break; 1835 default: 1836 return EINVAL; 1837 } 1838 return (0); 1839 1840 case ESS_PCSPEAKER_VOL: 1841 if (cp->un.value.num_channels != 1) 1842 return EINVAL; 1843 1844 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1845 sc->gain[cp->dev][ESS_LEFT]; 1846 return (0); 1847 1848 case ESS_RECORD_SOURCE: 1849 if (ESS_USE_AUDIO1(sc->sc_model)) 1850 cp->un.ord = sc->in_port; 1851 else 1852 cp->un.mask = sc->in_mask; 1853 return (0); 1854 1855 case ESS_RECORD_MONITOR: 1856 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) & 1857 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0; 1858 return (0); 1859 } 1860 1861 if (ESS_USE_AUDIO1(sc->sc_model)) 1862 return (EINVAL); 1863 1864 switch (cp->dev) { 1865 case ESS_DAC_REC_VOL: 1866 case ESS_MIC_REC_VOL: 1867 case ESS_LINE_REC_VOL: 1868 case ESS_SYNTH_REC_VOL: 1869 case ESS_CD_REC_VOL: 1870 case ESS_AUXB_REC_VOL: 1871 switch (cp->un.value.num_channels) { 1872 case 1: 1873 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1874 sc->gain[cp->dev][ESS_LEFT]; 1875 break; 1876 case 2: 1877 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1878 sc->gain[cp->dev][ESS_LEFT]; 1879 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1880 sc->gain[cp->dev][ESS_RIGHT]; 1881 break; 1882 default: 1883 return EINVAL; 1884 } 1885 return (0); 1886 1887 case ESS_MIC_PREAMP: 1888 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) & 1889 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0; 1890 return (0); 1891 } 1892 1893 return (EINVAL); 1894 } 1895 1896 int 1897 ess_query_devinfo(addr, dip) 1898 void *addr; 1899 mixer_devinfo_t *dip; 1900 { 1901 struct ess_softc *sc = addr; 1902 1903 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n", 1904 sc->sc_model, dip->index)); 1905 1906 /* 1907 * REVISIT: There are some slight differences between the 1908 * mixers on the different ESS chips, which can 1909 * be sorted out using the chip model rather than a 1910 * separate mixer model. 1911 * This is currently coded assuming an ES1887; we 1912 * need to work out which bits are not applicable to 1913 * the other models (1888 and 888). 1914 */ 1915 switch (dip->index) { 1916 case ESS_DAC_PLAY_VOL: 1917 dip->mixer_class = ESS_INPUT_CLASS; 1918 dip->next = dip->prev = AUDIO_MIXER_LAST; 1919 strcpy(dip->label.name, AudioNdac); 1920 dip->type = AUDIO_MIXER_VALUE; 1921 dip->un.v.num_channels = 2; 1922 strcpy(dip->un.v.units.name, AudioNvolume); 1923 return (0); 1924 1925 case ESS_MIC_PLAY_VOL: 1926 dip->mixer_class = ESS_INPUT_CLASS; 1927 dip->prev = AUDIO_MIXER_LAST; 1928 if (ESS_USE_AUDIO1(sc->sc_model)) 1929 dip->next = AUDIO_MIXER_LAST; 1930 else 1931 dip->next = ESS_MIC_PREAMP; 1932 strcpy(dip->label.name, AudioNmicrophone); 1933 dip->type = AUDIO_MIXER_VALUE; 1934 dip->un.v.num_channels = 2; 1935 strcpy(dip->un.v.units.name, AudioNvolume); 1936 return (0); 1937 1938 case ESS_LINE_PLAY_VOL: 1939 dip->mixer_class = ESS_INPUT_CLASS; 1940 dip->next = dip->prev = AUDIO_MIXER_LAST; 1941 strcpy(dip->label.name, AudioNline); 1942 dip->type = AUDIO_MIXER_VALUE; 1943 dip->un.v.num_channels = 2; 1944 strcpy(dip->un.v.units.name, AudioNvolume); 1945 return (0); 1946 1947 case ESS_SYNTH_PLAY_VOL: 1948 dip->mixer_class = ESS_INPUT_CLASS; 1949 dip->next = dip->prev = AUDIO_MIXER_LAST; 1950 strcpy(dip->label.name, AudioNfmsynth); 1951 dip->type = AUDIO_MIXER_VALUE; 1952 dip->un.v.num_channels = 2; 1953 strcpy(dip->un.v.units.name, AudioNvolume); 1954 return (0); 1955 1956 case ESS_CD_PLAY_VOL: 1957 dip->mixer_class = ESS_INPUT_CLASS; 1958 dip->next = dip->prev = AUDIO_MIXER_LAST; 1959 strcpy(dip->label.name, AudioNcd); 1960 dip->type = AUDIO_MIXER_VALUE; 1961 dip->un.v.num_channels = 2; 1962 strcpy(dip->un.v.units.name, AudioNvolume); 1963 return (0); 1964 1965 case ESS_AUXB_PLAY_VOL: 1966 dip->mixer_class = ESS_INPUT_CLASS; 1967 dip->next = dip->prev = AUDIO_MIXER_LAST; 1968 strcpy(dip->label.name, "auxb"); 1969 dip->type = AUDIO_MIXER_VALUE; 1970 dip->un.v.num_channels = 2; 1971 strcpy(dip->un.v.units.name, AudioNvolume); 1972 return (0); 1973 1974 case ESS_INPUT_CLASS: 1975 dip->mixer_class = ESS_INPUT_CLASS; 1976 dip->next = dip->prev = AUDIO_MIXER_LAST; 1977 strcpy(dip->label.name, AudioCinputs); 1978 dip->type = AUDIO_MIXER_CLASS; 1979 return (0); 1980 1981 case ESS_MASTER_VOL: 1982 dip->mixer_class = ESS_OUTPUT_CLASS; 1983 dip->next = dip->prev = AUDIO_MIXER_LAST; 1984 strcpy(dip->label.name, AudioNmaster); 1985 dip->type = AUDIO_MIXER_VALUE; 1986 dip->un.v.num_channels = 2; 1987 strcpy(dip->un.v.units.name, AudioNvolume); 1988 return (0); 1989 1990 case ESS_PCSPEAKER_VOL: 1991 dip->mixer_class = ESS_OUTPUT_CLASS; 1992 dip->next = dip->prev = AUDIO_MIXER_LAST; 1993 strcpy(dip->label.name, "pc_speaker"); 1994 dip->type = AUDIO_MIXER_VALUE; 1995 dip->un.v.num_channels = 1; 1996 strcpy(dip->un.v.units.name, AudioNvolume); 1997 return (0); 1998 1999 case ESS_OUTPUT_CLASS: 2000 dip->mixer_class = ESS_OUTPUT_CLASS; 2001 dip->next = dip->prev = AUDIO_MIXER_LAST; 2002 strcpy(dip->label.name, AudioCoutputs); 2003 dip->type = AUDIO_MIXER_CLASS; 2004 return (0); 2005 2006 case ESS_RECORD_VOL: 2007 dip->mixer_class = ESS_RECORD_CLASS; 2008 dip->next = dip->prev = AUDIO_MIXER_LAST; 2009 strcpy(dip->label.name, AudioNrecord); 2010 dip->type = AUDIO_MIXER_VALUE; 2011 dip->un.v.num_channels = 2; 2012 strcpy(dip->un.v.units.name, AudioNvolume); 2013 return (0); 2014 2015 case ESS_RECORD_SOURCE: 2016 dip->mixer_class = ESS_RECORD_CLASS; 2017 dip->next = dip->prev = AUDIO_MIXER_LAST; 2018 strcpy(dip->label.name, AudioNsource); 2019 if (ESS_USE_AUDIO1(sc->sc_model)) { 2020 /* 2021 * The 1788 doesn't use the input mixer control that 2022 * the 1888 uses, because it's a pain when you only 2023 * have one mixer. 2024 * Perhaps it could be emulated by keeping both sets of 2025 * gain values, and doing a `context switch' of the 2026 * mixer registers when shifting from playing to 2027 * recording. 2028 */ 2029 dip->type = AUDIO_MIXER_ENUM; 2030 dip->un.e.num_mem = 4; 2031 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 2032 dip->un.e.member[0].ord = ESS_SOURCE_MIC; 2033 strcpy(dip->un.e.member[1].label.name, AudioNline); 2034 dip->un.e.member[1].ord = ESS_SOURCE_LINE; 2035 strcpy(dip->un.e.member[2].label.name, AudioNcd); 2036 dip->un.e.member[2].ord = ESS_SOURCE_CD; 2037 strcpy(dip->un.e.member[3].label.name, AudioNmixerout); 2038 dip->un.e.member[3].ord = ESS_SOURCE_MIXER; 2039 } else { 2040 dip->type = AUDIO_MIXER_SET; 2041 dip->un.s.num_mem = 6; 2042 strcpy(dip->un.s.member[0].label.name, AudioNdac); 2043 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL; 2044 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone); 2045 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL; 2046 strcpy(dip->un.s.member[2].label.name, AudioNline); 2047 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL; 2048 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth); 2049 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL; 2050 strcpy(dip->un.s.member[4].label.name, AudioNcd); 2051 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL; 2052 strcpy(dip->un.s.member[5].label.name, "auxb"); 2053 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL; 2054 } 2055 return (0); 2056 2057 case ESS_RECORD_CLASS: 2058 dip->mixer_class = ESS_RECORD_CLASS; 2059 dip->next = dip->prev = AUDIO_MIXER_LAST; 2060 strcpy(dip->label.name, AudioCrecord); 2061 dip->type = AUDIO_MIXER_CLASS; 2062 return (0); 2063 2064 case ESS_RECORD_MONITOR: 2065 dip->prev = dip->next = AUDIO_MIXER_LAST; 2066 strcpy(dip->label.name, AudioNmute); 2067 dip->type = AUDIO_MIXER_ENUM; 2068 dip->mixer_class = ESS_MONITOR_CLASS; 2069 dip->un.e.num_mem = 2; 2070 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2071 dip->un.e.member[0].ord = 0; 2072 strcpy(dip->un.e.member[1].label.name, AudioNon); 2073 dip->un.e.member[1].ord = 1; 2074 return (0); 2075 2076 case ESS_MONITOR_CLASS: 2077 dip->mixer_class = ESS_MONITOR_CLASS; 2078 dip->next = dip->prev = AUDIO_MIXER_LAST; 2079 strcpy(dip->label.name, AudioCmonitor); 2080 dip->type = AUDIO_MIXER_CLASS; 2081 return (0); 2082 } 2083 2084 if (ESS_USE_AUDIO1(sc->sc_model)) 2085 return (ENXIO); 2086 2087 switch (dip->index) { 2088 case ESS_DAC_REC_VOL: 2089 dip->mixer_class = ESS_RECORD_CLASS; 2090 dip->next = dip->prev = AUDIO_MIXER_LAST; 2091 strcpy(dip->label.name, AudioNdac); 2092 dip->type = AUDIO_MIXER_VALUE; 2093 dip->un.v.num_channels = 2; 2094 strcpy(dip->un.v.units.name, AudioNvolume); 2095 return (0); 2096 2097 case ESS_MIC_REC_VOL: 2098 dip->mixer_class = ESS_RECORD_CLASS; 2099 dip->next = dip->prev = AUDIO_MIXER_LAST; 2100 strcpy(dip->label.name, AudioNmicrophone); 2101 dip->type = AUDIO_MIXER_VALUE; 2102 dip->un.v.num_channels = 2; 2103 strcpy(dip->un.v.units.name, AudioNvolume); 2104 return (0); 2105 2106 case ESS_LINE_REC_VOL: 2107 dip->mixer_class = ESS_RECORD_CLASS; 2108 dip->next = dip->prev = AUDIO_MIXER_LAST; 2109 strcpy(dip->label.name, AudioNline); 2110 dip->type = AUDIO_MIXER_VALUE; 2111 dip->un.v.num_channels = 2; 2112 strcpy(dip->un.v.units.name, AudioNvolume); 2113 return (0); 2114 2115 case ESS_SYNTH_REC_VOL: 2116 dip->mixer_class = ESS_RECORD_CLASS; 2117 dip->next = dip->prev = AUDIO_MIXER_LAST; 2118 strcpy(dip->label.name, AudioNfmsynth); 2119 dip->type = AUDIO_MIXER_VALUE; 2120 dip->un.v.num_channels = 2; 2121 strcpy(dip->un.v.units.name, AudioNvolume); 2122 return (0); 2123 2124 case ESS_CD_REC_VOL: 2125 dip->mixer_class = ESS_RECORD_CLASS; 2126 dip->next = dip->prev = AUDIO_MIXER_LAST; 2127 strcpy(dip->label.name, AudioNcd); 2128 dip->type = AUDIO_MIXER_VALUE; 2129 dip->un.v.num_channels = 2; 2130 strcpy(dip->un.v.units.name, AudioNvolume); 2131 return (0); 2132 2133 case ESS_AUXB_REC_VOL: 2134 dip->mixer_class = ESS_RECORD_CLASS; 2135 dip->next = dip->prev = AUDIO_MIXER_LAST; 2136 strcpy(dip->label.name, "auxb"); 2137 dip->type = AUDIO_MIXER_VALUE; 2138 dip->un.v.num_channels = 2; 2139 strcpy(dip->un.v.units.name, AudioNvolume); 2140 return (0); 2141 2142 case ESS_MIC_PREAMP: 2143 dip->mixer_class = ESS_INPUT_CLASS; 2144 dip->prev = ESS_MIC_PLAY_VOL; 2145 dip->next = AUDIO_MIXER_LAST; 2146 strcpy(dip->label.name, AudioNpreamp); 2147 dip->type = AUDIO_MIXER_ENUM; 2148 dip->un.e.num_mem = 2; 2149 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2150 dip->un.e.member[0].ord = 0; 2151 strcpy(dip->un.e.member[1].label.name, AudioNon); 2152 dip->un.e.member[1].ord = 1; 2153 return (0); 2154 } 2155 2156 return (ENXIO); 2157 } 2158 2159 void * 2160 ess_malloc(addr, size, pool, flags) 2161 void *addr; 2162 unsigned long size; 2163 int pool, flags; 2164 { 2165 struct ess_softc *sc = addr; 2166 int drq; 2167 2168 if (!ESS_USE_AUDIO1(sc->sc_model)) 2169 drq = sc->sc_audio2.drq; 2170 else 2171 drq = sc->sc_audio1.drq; 2172 return (isa_malloc(sc->sc_isa, drq, size, pool, flags)); 2173 } 2174 2175 void 2176 ess_free(addr, ptr, pool) 2177 void *addr; 2178 void *ptr; 2179 int pool; 2180 { 2181 isa_free(ptr, pool); 2182 } 2183 2184 unsigned long 2185 ess_round_buffersize(addr, size) 2186 void *addr; 2187 unsigned long size; 2188 { 2189 if (size > MAX_ISADMA) 2190 size = MAX_ISADMA; 2191 return (size); 2192 } 2193 2194 paddr_t 2195 ess_mappage(addr, mem, off, prot) 2196 void *addr; 2197 void *mem; 2198 off_t off; 2199 int prot; 2200 { 2201 return (isa_mappage(mem, off, prot)); 2202 } 2203 2204 int 2205 ess_1788_get_props(addr) 2206 void *addr; 2207 { 2208 2209 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT); 2210 } 2211 2212 int 2213 ess_1888_get_props(addr) 2214 void *addr; 2215 { 2216 2217 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); 2218 } 2219 2220 /* ============================================ 2221 * Generic functions for ess, not used by audio h/w i/f 2222 * ============================================= 2223 */ 2224 2225 /* 2226 * Reset the chip. 2227 * Return non-zero if the chip isn't detected. 2228 */ 2229 int 2230 ess_reset(sc) 2231 struct ess_softc *sc; 2232 { 2233 bus_space_tag_t iot = sc->sc_iot; 2234 bus_space_handle_t ioh = sc->sc_ioh; 2235 2236 sc->sc_audio1.active = 0; 2237 sc->sc_audio2.active = 0; 2238 2239 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT); 2240 delay(10000); 2241 EWRITE1(iot, ioh, ESS_DSP_RESET, 0); 2242 if (ess_rdsp(sc) != ESS_MAGIC) 2243 return (1); 2244 2245 /* Enable access to the ESS extension commands. */ 2246 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT); 2247 2248 return (0); 2249 } 2250 2251 void 2252 ess_set_gain(sc, port, on) 2253 struct ess_softc *sc; 2254 int port; 2255 int on; 2256 { 2257 int gain, left, right; 2258 int mix; 2259 int src; 2260 int stereo; 2261 2262 /* 2263 * Most gain controls are found in the mixer registers and 2264 * are stereo. Any that are not, must set mix and stereo as 2265 * required. 2266 */ 2267 mix = 1; 2268 stereo = 1; 2269 2270 switch (port) { 2271 case ESS_MASTER_VOL: 2272 src = ESS_MREG_VOLUME_MASTER; 2273 break; 2274 case ESS_DAC_PLAY_VOL: 2275 if (ESS_USE_AUDIO1(sc->sc_model)) 2276 src = ESS_MREG_VOLUME_VOICE; 2277 else 2278 src = 0x7C; 2279 break; 2280 case ESS_MIC_PLAY_VOL: 2281 src = ESS_MREG_VOLUME_MIC; 2282 break; 2283 case ESS_LINE_PLAY_VOL: 2284 src = ESS_MREG_VOLUME_LINE; 2285 break; 2286 case ESS_SYNTH_PLAY_VOL: 2287 src = ESS_MREG_VOLUME_SYNTH; 2288 break; 2289 case ESS_CD_PLAY_VOL: 2290 src = ESS_MREG_VOLUME_CD; 2291 break; 2292 case ESS_AUXB_PLAY_VOL: 2293 src = ESS_MREG_VOLUME_AUXB; 2294 break; 2295 case ESS_PCSPEAKER_VOL: 2296 src = ESS_MREG_VOLUME_PCSPKR; 2297 stereo = 0; 2298 break; 2299 case ESS_DAC_REC_VOL: 2300 src = 0x69; 2301 break; 2302 case ESS_MIC_REC_VOL: 2303 src = 0x68; 2304 break; 2305 case ESS_LINE_REC_VOL: 2306 src = 0x6E; 2307 break; 2308 case ESS_SYNTH_REC_VOL: 2309 src = 0x6B; 2310 break; 2311 case ESS_CD_REC_VOL: 2312 src = 0x6A; 2313 break; 2314 case ESS_AUXB_REC_VOL: 2315 src = 0x6C; 2316 break; 2317 case ESS_RECORD_VOL: 2318 src = ESS_XCMD_VOLIN_CTRL; 2319 mix = 0; 2320 break; 2321 default: 2322 return; 2323 } 2324 2325 /* 1788 doesn't have a separate recording mixer */ 2326 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62) 2327 return; 2328 2329 if (on) { 2330 left = sc->gain[port][ESS_LEFT]; 2331 right = sc->gain[port][ESS_RIGHT]; 2332 } else { 2333 left = right = 0; 2334 } 2335 2336 if (stereo) 2337 gain = ESS_STEREO_GAIN(left, right); 2338 else 2339 gain = ESS_MONO_GAIN(left); 2340 2341 if (mix) 2342 ess_write_mix_reg(sc, src, gain); 2343 else 2344 ess_write_x_reg(sc, src, gain); 2345 } 2346 2347 /* Set the input device on devices without an input mixer. */ 2348 int 2349 ess_set_in_port(sc, ord) 2350 struct ess_softc *sc; 2351 int ord; 2352 { 2353 mixer_devinfo_t di; 2354 int i; 2355 2356 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord)); 2357 2358 /* 2359 * Get the device info for the record source control, 2360 * including the list of available sources. 2361 */ 2362 di.index = ESS_RECORD_SOURCE; 2363 if (ess_query_devinfo(sc, &di)) 2364 return EINVAL; 2365 2366 /* See if the given ord value was anywhere in the list. */ 2367 for (i = 0; i < di.un.e.num_mem; i++) { 2368 if (ord == di.un.e.member[i].ord) 2369 break; 2370 } 2371 if (i == di.un.e.num_mem) 2372 return EINVAL; 2373 2374 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord); 2375 2376 sc->in_port = ord; 2377 return (0); 2378 } 2379 2380 /* Set the input device levels on input-mixer-enabled devices. */ 2381 int 2382 ess_set_in_ports(sc, mask) 2383 struct ess_softc *sc; 2384 int mask; 2385 { 2386 mixer_devinfo_t di; 2387 int i, port; 2388 2389 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask)); 2390 2391 /* 2392 * Get the device info for the record source control, 2393 * including the list of available sources. 2394 */ 2395 di.index = ESS_RECORD_SOURCE; 2396 if (ess_query_devinfo(sc, &di)) 2397 return EINVAL; 2398 2399 /* 2400 * Set or disable the record volume control for each of the 2401 * possible sources. 2402 */ 2403 for (i = 0; i < di.un.s.num_mem; i++) { 2404 /* 2405 * Calculate the source port number from its mask. 2406 */ 2407 port = ffs(di.un.s.member[i].mask); 2408 2409 /* 2410 * Set the source gain: 2411 * to the current value if source is enabled 2412 * to zero if source is disabled 2413 */ 2414 ess_set_gain(sc, port, mask & di.un.s.member[i].mask); 2415 } 2416 2417 sc->in_mask = mask; 2418 return (0); 2419 } 2420 2421 void 2422 ess_speaker_on(sc) 2423 struct ess_softc *sc; 2424 { 2425 /* Unmute the DAC. */ 2426 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1); 2427 } 2428 2429 void 2430 ess_speaker_off(sc) 2431 struct ess_softc *sc; 2432 { 2433 /* Mute the DAC. */ 2434 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0); 2435 } 2436 2437 /* 2438 * Calculate the time constant for the requested sampling rate. 2439 */ 2440 u_int 2441 ess_srtotc(rate) 2442 u_int rate; 2443 { 2444 u_int tc; 2445 2446 /* The following formulae are from the ESS data sheet. */ 2447 if (rate <= 22050) 2448 tc = 128 - 397700L / rate; 2449 else 2450 tc = 256 - 795500L / rate; 2451 2452 return (tc); 2453 } 2454 2455 2456 /* 2457 * Calculate the filter constant for the reuqested sampling rate. 2458 */ 2459 u_int 2460 ess_srtofc(rate) 2461 u_int rate; 2462 { 2463 /* 2464 * The following formula is derived from the information in 2465 * the ES1887 data sheet, based on a roll-off frequency of 2466 * 87%. 2467 */ 2468 return (256 - 200279L / rate); 2469 } 2470 2471 2472 /* 2473 * Return the status of the DSP. 2474 */ 2475 u_char 2476 ess_get_dsp_status(sc) 2477 struct ess_softc *sc; 2478 { 2479 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS)); 2480 } 2481 2482 2483 /* 2484 * Return the read status of the DSP: 1 -> DSP ready for reading 2485 * 0 -> DSP not ready for reading 2486 */ 2487 u_char 2488 ess_dsp_read_ready(sc) 2489 struct ess_softc *sc; 2490 { 2491 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0); 2492 } 2493 2494 2495 /* 2496 * Return the write status of the DSP: 1 -> DSP ready for writing 2497 * 0 -> DSP not ready for writing 2498 */ 2499 u_char 2500 ess_dsp_write_ready(sc) 2501 struct ess_softc *sc; 2502 { 2503 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1); 2504 } 2505 2506 2507 /* 2508 * Read a byte from the DSP. 2509 */ 2510 int 2511 ess_rdsp(sc) 2512 struct ess_softc *sc; 2513 { 2514 bus_space_tag_t iot = sc->sc_iot; 2515 bus_space_handle_t ioh = sc->sc_ioh; 2516 int i; 2517 2518 for (i = ESS_READ_TIMEOUT; i > 0; --i) { 2519 if (ess_dsp_read_ready(sc)) { 2520 i = EREAD1(iot, ioh, ESS_DSP_READ); 2521 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i)); 2522 return i; 2523 } else 2524 delay(10); 2525 } 2526 2527 DPRINTF(("ess_rdsp: timed out\n")); 2528 return (-1); 2529 } 2530 2531 /* 2532 * Write a byte to the DSP. 2533 */ 2534 int 2535 ess_wdsp(sc, v) 2536 struct ess_softc *sc; 2537 u_char v; 2538 { 2539 bus_space_tag_t iot = sc->sc_iot; 2540 bus_space_handle_t ioh = sc->sc_ioh; 2541 int i; 2542 2543 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v)); 2544 2545 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) { 2546 if (ess_dsp_write_ready(sc)) { 2547 EWRITE1(iot, ioh, ESS_DSP_WRITE, v); 2548 return (0); 2549 } else 2550 delay(10); 2551 } 2552 2553 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v)); 2554 return (-1); 2555 } 2556 2557 /* 2558 * Write a value to one of the ESS extended registers. 2559 */ 2560 int 2561 ess_write_x_reg(sc, reg, val) 2562 struct ess_softc *sc; 2563 u_char reg; 2564 u_char val; 2565 { 2566 int error; 2567 2568 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val)); 2569 if ((error = ess_wdsp(sc, reg)) == 0) 2570 error = ess_wdsp(sc, val); 2571 2572 return error; 2573 } 2574 2575 /* 2576 * Read the value of one of the ESS extended registers. 2577 */ 2578 u_char 2579 ess_read_x_reg(sc, reg) 2580 struct ess_softc *sc; 2581 u_char reg; 2582 { 2583 int error; 2584 int val; 2585 2586 if ((error = ess_wdsp(sc, 0xC0)) == 0) 2587 error = ess_wdsp(sc, reg); 2588 if (error) 2589 DPRINTF(("Error reading extended register 0x%02x\n", reg)); 2590 /* REVISIT: what if an error is returned above? */ 2591 val = ess_rdsp(sc); 2592 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val)); 2593 return val; 2594 } 2595 2596 void 2597 ess_clear_xreg_bits(sc, reg, mask) 2598 struct ess_softc *sc; 2599 u_char reg; 2600 u_char mask; 2601 { 2602 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) 2603 DPRINTF(("Error clearing bits in extended register 0x%02x\n", 2604 reg)); 2605 } 2606 2607 void 2608 ess_set_xreg_bits(sc, reg, mask) 2609 struct ess_softc *sc; 2610 u_char reg; 2611 u_char mask; 2612 { 2613 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) 2614 DPRINTF(("Error setting bits in extended register 0x%02x\n", 2615 reg)); 2616 } 2617 2618 2619 /* 2620 * Write a value to one of the ESS mixer registers. 2621 */ 2622 void 2623 ess_write_mix_reg(sc, reg, val) 2624 struct ess_softc *sc; 2625 u_char reg; 2626 u_char val; 2627 { 2628 bus_space_tag_t iot = sc->sc_iot; 2629 bus_space_handle_t ioh = sc->sc_ioh; 2630 int s; 2631 2632 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val)); 2633 2634 s = splaudio(); 2635 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2636 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val); 2637 splx(s); 2638 } 2639 2640 /* 2641 * Read the value of one of the ESS mixer registers. 2642 */ 2643 u_char 2644 ess_read_mix_reg(sc, reg) 2645 struct ess_softc *sc; 2646 u_char reg; 2647 { 2648 bus_space_tag_t iot = sc->sc_iot; 2649 bus_space_handle_t ioh = sc->sc_ioh; 2650 int s; 2651 u_char val; 2652 2653 s = splaudio(); 2654 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2655 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA); 2656 splx(s); 2657 2658 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val)); 2659 return val; 2660 } 2661 2662 void 2663 ess_clear_mreg_bits(sc, reg, mask) 2664 struct ess_softc *sc; 2665 u_char reg; 2666 u_char mask; 2667 { 2668 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask); 2669 } 2670 2671 void 2672 ess_set_mreg_bits(sc, reg, mask) 2673 struct ess_softc *sc; 2674 u_char reg; 2675 u_char mask; 2676 { 2677 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask); 2678 } 2679 2680 void 2681 ess_read_multi_mix_reg(sc, reg, datap, count) 2682 struct ess_softc *sc; 2683 u_char reg; 2684 u_int8_t *datap; 2685 bus_size_t count; 2686 { 2687 bus_space_tag_t iot = sc->sc_iot; 2688 bus_space_handle_t ioh = sc->sc_ioh; 2689 int s; 2690 2691 s = splaudio(); 2692 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2693 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count); 2694 splx(s); 2695 } 2696