xref: /openbsd-src/sys/dev/ic/rtl81x9.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: rtl81x9.c,v 1.63 2009/02/04 19:54:44 claudio Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * RealTek 8129/8139 PCI NIC driver
37  *
38  * Supports several extremely cheap PCI 10/100 adapters based on
39  * the RealTek chipset. Datasheets can be obtained from
40  * www.realtek.com.tw.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49  * probably the worst PCI ethernet controller ever made, with the possible
50  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51  * DMA, but it has a terrible interface that nullifies any performance
52  * gains that bus-master DMA usually offers.
53  *
54  * For transmission, the chip offers a series of four TX descriptor
55  * registers. Each transmit frame must be in a contiguous buffer, aligned
56  * on a longword (32-bit) boundary. This means we almost always have to
57  * do mbuf copies in order to transmit a frame, except in the unlikely
58  * case where a) the packet fits into a single mbuf, and b) the packet
59  * is 32-bit aligned within the mbuf's data area. The presence of only
60  * four descriptor registers means that we can never have more than four
61  * packets queued for transmission at any one time.
62  *
63  * Reception is not much better. The driver has to allocate a single large
64  * buffer area (up to 64K in size) into which the chip will DMA received
65  * frames. Because we don't know where within this region received packets
66  * will begin or end, we have no choice but to copy data from the buffer
67  * area into mbufs in order to pass the packets up to the higher protocol
68  * levels.
69  *
70  * It's impossible given this rotten design to really achieve decent
71  * performance at 100Mbps, unless you happen to have a 400MHz PII or
72  * some equally overmuscled CPU to drive it.
73  *
74  * On the bright side, the 8139 does have a built-in PHY, although
75  * rather than using an MDIO serial interface like most other NICs, the
76  * PHY registers are directly accessible through the 8139's register
77  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78  * filter.
79  *
80  * The 8129 chip is an older version of the 8139 that uses an external PHY
81  * chip. The 8129 has a serial MDIO interface for accessing the MII where
82  * the 8139 lets you directly access the on-board PHY registers. We need
83  * to select which interface to use depending on the chip type.
84  */
85 
86 #include "bpfilter.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/device.h>
96 #include <sys/timeout.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_types.h>
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #include <netinet/if_ether.h>
108 #endif
109 
110 #include <net/if_media.h>
111 
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 
116 #include <machine/bus.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123 
124 #include <dev/ic/rtl81x9reg.h>
125 
126 /*
127  * Various supported PHY vendors/types and their names. Note that
128  * this driver will work with pretty much any MII-compliant PHY,
129  * so failure to positively identify the chip is not a fatal error.
130  */
131 
132 void rl_tick(void *);
133 void rl_shutdown(void *);
134 void rl_powerhook(int, void *);
135 
136 int rl_encap(struct rl_softc *, struct mbuf * );
137 
138 void rl_rxeof(struct rl_softc *);
139 void rl_txeof(struct rl_softc *);
140 void rl_start(struct ifnet *);
141 int rl_ioctl(struct ifnet *, u_long, caddr_t);
142 void rl_init(void *);
143 void rl_stop(struct rl_softc *);
144 void rl_watchdog(struct ifnet *);
145 int rl_ifmedia_upd(struct ifnet *);
146 void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
147 
148 void rl_eeprom_getword(struct rl_softc *, int, int, u_int16_t *);
149 void rl_eeprom_putbyte(struct rl_softc *, int, int);
150 void rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int, int);
151 
152 void rl_mii_sync(struct rl_softc *);
153 void rl_mii_send(struct rl_softc *, u_int32_t, int);
154 int rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
155 int rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
156 
157 int rl_miibus_readreg(struct device *, int, int);
158 void rl_miibus_writereg(struct device *, int, int, int);
159 void rl_miibus_statchg(struct device *);
160 
161 void rl_setmulti(struct rl_softc *);
162 void rl_reset(struct rl_softc *);
163 int rl_list_tx_init(struct rl_softc *);
164 
165 #define EE_SET(x)					\
166 	CSR_WRITE_1(sc, RL_EECMD,			\
167 		CSR_READ_1(sc, RL_EECMD) | x)
168 
169 #define EE_CLR(x)					\
170 	CSR_WRITE_1(sc, RL_EECMD,			\
171 		CSR_READ_1(sc, RL_EECMD) & ~x)
172 
173 /*
174  * Send a read command and address to the EEPROM, check for ACK.
175  */
176 void rl_eeprom_putbyte(sc, addr, addr_len)
177 	struct rl_softc		*sc;
178 	int			addr, addr_len;
179 {
180 	register int		d, i;
181 
182 	d = (RL_EECMD_READ << addr_len) | addr;
183 
184 	/*
185 	 * Feed in each bit and strobe the clock.
186 	 */
187 	for (i = RL_EECMD_LEN + addr_len; i; i--) {
188 		if (d & (1 << (i - 1)))
189 			EE_SET(RL_EE_DATAIN);
190 		else
191 			EE_CLR(RL_EE_DATAIN);
192 
193 		DELAY(100);
194 		EE_SET(RL_EE_CLK);
195 		DELAY(150);
196 		EE_CLR(RL_EE_CLK);
197 		DELAY(100);
198 	}
199 }
200 
201 /*
202  * Read a word of data stored in the EEPROM at address 'addr.'
203  */
204 void rl_eeprom_getword(sc, addr, addr_len, dest)
205 	struct rl_softc		*sc;
206 	int			addr, addr_len;
207 	u_int16_t		*dest;
208 {
209 	register int		i;
210 	u_int16_t		word = 0;
211 
212 	/* Enter EEPROM access mode. */
213 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
214 
215 	/*
216 	 * Send address of word we want to read.
217 	 */
218 	rl_eeprom_putbyte(sc, addr, addr_len);
219 
220 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
221 
222 	/*
223 	 * Start reading bits from EEPROM.
224 	 */
225 	for (i = 16; i > 0; i--) {
226 		EE_SET(RL_EE_CLK);
227 		DELAY(100);
228 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
229 			word |= 1 << (i - 1);
230 		EE_CLR(RL_EE_CLK);
231 		DELAY(100);
232 	}
233 
234 	/* Turn off EEPROM access mode. */
235 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
236 
237 	*dest = word;
238 }
239 
240 /*
241  * Read a sequence of words from the EEPROM.
242  */
243 void rl_read_eeprom(sc, dest, off, addr_len, cnt, swap)
244 	struct rl_softc		*sc;
245 	caddr_t			dest;
246 	int			off;
247 	int			addr_len;
248 	int			cnt;
249 	int			swap;
250 {
251 	int			i;
252 	u_int16_t		word = 0, *ptr;
253 
254 	for (i = 0; i < cnt; i++) {
255 		rl_eeprom_getword(sc, off + i, addr_len, &word);
256 		ptr = (u_int16_t *)(dest + (i * 2));
257 		if (swap)
258 			*ptr = letoh16(word);
259 		else
260 			*ptr = word;
261 	}
262 }
263 
264 /*
265  * MII access routines are provided for the 8129, which
266  * doesn't have a built-in PHY. For the 8139, we fake things
267  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
268  * direct access PHY registers.
269  */
270 #define MII_SET(x)					\
271 	CSR_WRITE_1(sc, RL_MII,				\
272 		CSR_READ_1(sc, RL_MII) | x)
273 
274 #define MII_CLR(x)					\
275 	CSR_WRITE_1(sc, RL_MII,				\
276 		CSR_READ_1(sc, RL_MII) & ~x)
277 
278 /*
279  * Sync the PHYs by setting data bit and strobing the clock 32 times.
280  */
281 void rl_mii_sync(sc)
282 	struct rl_softc		*sc;
283 {
284 	register int		i;
285 
286 	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
287 
288 	for (i = 0; i < 32; i++) {
289 		MII_SET(RL_MII_CLK);
290 		DELAY(1);
291 		MII_CLR(RL_MII_CLK);
292 		DELAY(1);
293 	}
294 }
295 
296 /*
297  * Clock a series of bits through the MII.
298  */
299 void rl_mii_send(sc, bits, cnt)
300 	struct rl_softc		*sc;
301 	u_int32_t		bits;
302 	int			cnt;
303 {
304 	int			i;
305 
306 	MII_CLR(RL_MII_CLK);
307 
308 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
309 		if (bits & i)
310 			MII_SET(RL_MII_DATAOUT);
311 		else
312 			MII_CLR(RL_MII_DATAOUT);
313 		DELAY(1);
314 		MII_CLR(RL_MII_CLK);
315 		DELAY(1);
316 		MII_SET(RL_MII_CLK);
317 	}
318 }
319 
320 /*
321  * Read an PHY register through the MII.
322  */
323 int rl_mii_readreg(sc, frame)
324 	struct rl_softc		*sc;
325 	struct rl_mii_frame	*frame;
326 {
327 	int			i, ack, s;
328 
329 	s = splnet();
330 
331 	/*
332 	 * Set up frame for RX.
333 	 */
334 	frame->mii_stdelim = RL_MII_STARTDELIM;
335 	frame->mii_opcode = RL_MII_READOP;
336 	frame->mii_turnaround = 0;
337 	frame->mii_data = 0;
338 
339 	CSR_WRITE_2(sc, RL_MII, 0);
340 
341 	/*
342 	 * Turn on data xmit.
343 	 */
344 	MII_SET(RL_MII_DIR);
345 
346 	rl_mii_sync(sc);
347 
348 	/*
349 	 * Send command/address info.
350 	 */
351 	rl_mii_send(sc, frame->mii_stdelim, 2);
352 	rl_mii_send(sc, frame->mii_opcode, 2);
353 	rl_mii_send(sc, frame->mii_phyaddr, 5);
354 	rl_mii_send(sc, frame->mii_regaddr, 5);
355 
356 	/* Idle bit */
357 	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
358 	DELAY(1);
359 	MII_SET(RL_MII_CLK);
360 	DELAY(1);
361 
362 	/* Turn off xmit. */
363 	MII_CLR(RL_MII_DIR);
364 
365 	/* Check for ack */
366 	MII_CLR(RL_MII_CLK);
367 	DELAY(1);
368 	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
369 	MII_SET(RL_MII_CLK);
370 	DELAY(1);
371 
372 	/*
373 	 * Now try reading data bits. If the ack failed, we still
374 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
375 	 */
376 	if (ack) {
377 		for(i = 0; i < 16; i++) {
378 			MII_CLR(RL_MII_CLK);
379 			DELAY(1);
380 			MII_SET(RL_MII_CLK);
381 			DELAY(1);
382 		}
383 		goto fail;
384 	}
385 
386 	for (i = 0x8000; i; i >>= 1) {
387 		MII_CLR(RL_MII_CLK);
388 		DELAY(1);
389 		if (!ack) {
390 			if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
391 				frame->mii_data |= i;
392 			DELAY(1);
393 		}
394 		MII_SET(RL_MII_CLK);
395 		DELAY(1);
396 	}
397 
398 fail:
399 
400 	MII_CLR(RL_MII_CLK);
401 	DELAY(1);
402 	MII_SET(RL_MII_CLK);
403 	DELAY(1);
404 
405 	splx(s);
406 
407 	if (ack)
408 		return(1);
409 	return(0);
410 }
411 
412 /*
413  * Write to a PHY register through the MII.
414  */
415 int rl_mii_writereg(sc, frame)
416 	struct rl_softc		*sc;
417 	struct rl_mii_frame	*frame;
418 {
419 	int			s;
420 
421 	s = splnet();
422 	/*
423 	 * Set up frame for TX.
424 	 */
425 
426 	frame->mii_stdelim = RL_MII_STARTDELIM;
427 	frame->mii_opcode = RL_MII_WRITEOP;
428 	frame->mii_turnaround = RL_MII_TURNAROUND;
429 
430 	/*
431 	 * Turn on data output.
432 	 */
433 	MII_SET(RL_MII_DIR);
434 
435 	rl_mii_sync(sc);
436 
437 	rl_mii_send(sc, frame->mii_stdelim, 2);
438 	rl_mii_send(sc, frame->mii_opcode, 2);
439 	rl_mii_send(sc, frame->mii_phyaddr, 5);
440 	rl_mii_send(sc, frame->mii_regaddr, 5);
441 	rl_mii_send(sc, frame->mii_turnaround, 2);
442 	rl_mii_send(sc, frame->mii_data, 16);
443 
444 	/* Idle bit. */
445 	MII_SET(RL_MII_CLK);
446 	DELAY(1);
447 	MII_CLR(RL_MII_CLK);
448 	DELAY(1);
449 
450 	/*
451 	 * Turn off xmit.
452 	 */
453 	MII_CLR(RL_MII_DIR);
454 
455 	splx(s);
456 
457 	return(0);
458 }
459 
460 /*
461  * Program the 64-bit multicast hash filter.
462  */
463 void rl_setmulti(sc)
464 	struct rl_softc		*sc;
465 {
466 	struct ifnet		*ifp;
467 	int			h = 0;
468 	u_int32_t		hashes[2] = { 0, 0 };
469 	struct arpcom		*ac = &sc->sc_arpcom;
470 	struct ether_multi	*enm;
471 	struct ether_multistep	step;
472 	u_int32_t		rxfilt;
473 	int			mcnt = 0;
474 
475 	ifp = &sc->sc_arpcom.ac_if;
476 
477 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
478 
479 allmulti:
480 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
481 		rxfilt |= RL_RXCFG_RX_MULTI;
482 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
483 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
484 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
485 		return;
486 	}
487 
488 	/* first, zot all the existing hash bits */
489 	CSR_WRITE_4(sc, RL_MAR0, 0);
490 	CSR_WRITE_4(sc, RL_MAR4, 0);
491 
492 	/* now program new ones */
493 	ETHER_FIRST_MULTI(step, ac, enm);
494 	while (enm != NULL) {
495 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
496 			ifp->if_flags |= IFF_ALLMULTI;
497 			goto allmulti;
498 		}
499 		mcnt++;
500 		h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
501 		if (h < 32)
502 			hashes[0] |= (1 << h);
503 		else
504 			hashes[1] |= (1 << (h - 32));
505 		mcnt++;
506 		ETHER_NEXT_MULTI(step, enm);
507 	}
508 
509 	if (mcnt)
510 		rxfilt |= RL_RXCFG_RX_MULTI;
511 	else
512 		rxfilt &= ~RL_RXCFG_RX_MULTI;
513 
514 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
515 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
516 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
517 }
518 
519 void
520 rl_reset(sc)
521 	struct rl_softc		*sc;
522 {
523 	register int		i;
524 
525 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
526 
527 	for (i = 0; i < RL_TIMEOUT; i++) {
528 		DELAY(10);
529 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
530 			break;
531 	}
532 	if (i == RL_TIMEOUT)
533 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
534 
535 }
536 
537 /*
538  * Initialize the transmit descriptors.
539  */
540 int
541 rl_list_tx_init(sc)
542 	struct rl_softc		*sc;
543 {
544 	struct rl_chain_data	*cd;
545 	int			i;
546 
547 	cd = &sc->rl_cdata;
548 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
549 		cd->rl_tx_chain[i] = NULL;
550 		CSR_WRITE_4(sc,
551 		    RL_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000);
552 	}
553 
554 	sc->rl_cdata.cur_tx = 0;
555 	sc->rl_cdata.last_tx = 0;
556 
557 	return(0);
558 }
559 
560 /*
561  * A frame has been uploaded: pass the resulting mbuf chain up to
562  * the higher level protocols.
563  *
564  * You know there's something wrong with a PCI bus-master chip design
565  * when you have to use m_devget().
566  *
567  * The receive operation is badly documented in the datasheet, so I'll
568  * attempt to document it here. The driver provides a buffer area and
569  * places its base address in the RX buffer start address register.
570  * The chip then begins copying frames into the RX buffer. Each frame
571  * is preceded by a 32-bit RX status word which specifies the length
572  * of the frame and certain other status bits. Each frame (starting with
573  * the status word) is also 32-bit aligned. The frame length is in the
574  * first 16 bits of the status word; the lower 15 bits correspond with
575  * the 'rx status register' mentioned in the datasheet.
576  *
577  * Note: to make the Alpha happy, the frame payload needs to be aligned
578  * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
579  * the ring buffer starting at an address two bytes before the actual
580  * data location. We can then shave off the first two bytes using m_adj().
581  * The reason we do this is because m_devget() doesn't let us specify an
582  * offset into the mbuf storage space, so we have to artificially create
583  * one. The ring is allocated in such a way that there are a few unused
584  * bytes of space preceding it so that it will be safe for us to do the
585  * 2-byte backstep even if reading from the ring at offset 0.
586  */
587 void
588 rl_rxeof(sc)
589 	struct rl_softc		*sc;
590 {
591 	struct mbuf		*m;
592 	struct ifnet		*ifp;
593 	int			total_len;
594 	u_int32_t		rxstat;
595 	caddr_t			rxbufpos;
596 	int			wrap = 0;
597 	u_int16_t		cur_rx;
598 	u_int16_t		limit;
599 	u_int16_t		rx_bytes = 0, max_bytes;
600 
601 	ifp = &sc->sc_arpcom.ac_if;
602 
603 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
604 
605 	/* Do not try to read past this point. */
606 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
607 
608 	if (limit < cur_rx)
609 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
610 	else
611 		max_bytes = limit - cur_rx;
612 
613 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
614 		bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
615 		    0, sc->sc_rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
616 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
617 		rxstat = *(u_int32_t *)rxbufpos;
618 
619 		/*
620 		 * Here's a totally undocumented fact for you. When the
621 		 * RealTek chip is in the process of copying a packet into
622 		 * RAM for you, the length will be 0xfff0. If you spot a
623 		 * packet header with this value, you need to stop. The
624 		 * datasheet makes absolutely no mention of this and
625 		 * RealTek should be shot for this.
626 		 */
627 		rxstat = htole32(rxstat);
628 		total_len = rxstat >> 16;
629 		if (total_len == RL_RXSTAT_UNFINISHED) {
630 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
631 			    0, sc->sc_rx_dmamap->dm_mapsize,
632 			    BUS_DMASYNC_PREREAD);
633 			break;
634 		}
635 
636 		if (!(rxstat & RL_RXSTAT_RXOK) ||
637 		    total_len < ETHER_MIN_LEN ||
638 		    total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
639 			ifp->if_ierrors++;
640 			rl_init(sc);
641 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
642 			    0, sc->sc_rx_dmamap->dm_mapsize,
643 			    BUS_DMASYNC_PREREAD);
644 			return;
645 		}
646 
647 		/* No errors; receive the packet. */
648 		rx_bytes += total_len + 4;
649 
650 		/*
651 		 * XXX The RealTek chip includes the CRC with every
652 		 * received frame, and there's no way to turn this
653 		 * behavior off (at least, I can't find anything in
654 		 * the manual that explains how to do it) so we have
655 		 * to trim off the CRC manually.
656 		 */
657 		total_len -= ETHER_CRC_LEN;
658 
659 		/*
660 		 * Avoid trying to read more bytes than we know
661 		 * the chip has prepared for us.
662 		 */
663 		if (rx_bytes > max_bytes) {
664 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
665 			    0, sc->sc_rx_dmamap->dm_mapsize,
666 			    BUS_DMASYNC_PREREAD);
667 			break;
668 		}
669 
670 		rxbufpos = sc->rl_cdata.rl_rx_buf +
671 			((cur_rx + sizeof(u_int32_t)) % RL_RXBUFLEN);
672 
673 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
674 			rxbufpos = sc->rl_cdata.rl_rx_buf;
675 
676 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
677 
678 		if (total_len > wrap) {
679 			m = m_devget(rxbufpos, wrap, ETHER_ALIGN, ifp, NULL);
680 			if (m != NULL) {
681 				m_copyback(m, wrap, total_len - wrap,
682 				    sc->rl_cdata.rl_rx_buf);
683 				if (m->m_pkthdr.len < total_len) {
684 					m_freem(m);
685 					m = NULL;
686 				}
687 			}
688 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
689 		} else {
690 			m = m_devget(rxbufpos, total_len, ETHER_ALIGN, ifp,
691 			    NULL);
692 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
693 		}
694 
695 		/*
696 		 * Round up to 32-bit boundary.
697 		 */
698 		cur_rx = (cur_rx + 3) & ~3;
699 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
700 
701 		if (m == NULL) {
702 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
703 			    0, sc->sc_rx_dmamap->dm_mapsize,
704 			    BUS_DMASYNC_PREREAD);
705 			ifp->if_ierrors++;
706 			continue;
707 		}
708 
709 		ifp->if_ipackets++;
710 
711 #if NBPFILTER > 0
712 		/*
713 		 * Handle BPF listeners. Let the BPF user see the packet.
714 		 */
715 		if (ifp->if_bpf)
716 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
717 #endif
718 		ether_input_mbuf(ifp, m);
719 
720 		bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
721 		    0, sc->sc_rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
722 	}
723 }
724 
725 /*
726  * A frame was downloaded to the chip. It's safe for us to clean up
727  * the list buffers.
728  */
729 void rl_txeof(sc)
730 	struct rl_softc		*sc;
731 {
732 	struct ifnet		*ifp;
733 	u_int32_t		txstat;
734 
735 	ifp = &sc->sc_arpcom.ac_if;
736 
737 	/*
738 	 * Go through our tx list and free mbufs for those
739 	 * frames that have been uploaded.
740 	 */
741 	do {
742 		if (RL_LAST_TXMBUF(sc) == NULL)
743 			break;
744 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
745 		if (!(txstat & (RL_TXSTAT_TX_OK|
746 		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
747 			break;
748 
749 		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
750 
751 		bus_dmamap_sync(sc->sc_dmat, RL_LAST_TXMAP(sc),
752 		    0, RL_LAST_TXMAP(sc)->dm_mapsize,
753 		    BUS_DMASYNC_POSTWRITE);
754 		bus_dmamap_unload(sc->sc_dmat, RL_LAST_TXMAP(sc));
755 		m_freem(RL_LAST_TXMBUF(sc));
756 		RL_LAST_TXMBUF(sc) = NULL;
757 		/*
758 		 * If there was a transmit underrun, bump the TX threshold.
759 		 * Make sure not to overflow the 63 * 32byte we can address
760 		 * with the 6 available bit.
761 		 */
762 		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
763 		    (sc->rl_txthresh < 2016))
764 			sc->rl_txthresh += 32;
765 		if (txstat & RL_TXSTAT_TX_OK)
766 			ifp->if_opackets++;
767 		else {
768 			int oldthresh;
769 
770 			ifp->if_oerrors++;
771 			if ((txstat & RL_TXSTAT_TXABRT) ||
772 			    (txstat & RL_TXSTAT_OUTOFWIN))
773 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
774 			oldthresh = sc->rl_txthresh;
775 			/* error recovery */
776 			rl_reset(sc);
777 			rl_init(sc);
778 			/* restore original threshold */
779 			sc->rl_txthresh = oldthresh;
780 			return;
781 		}
782 		RL_INC(sc->rl_cdata.last_tx);
783 		ifp->if_flags &= ~IFF_OACTIVE;
784 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
785 
786 	if (RL_LAST_TXMBUF(sc) == NULL)
787 		ifp->if_timer = 0;
788 	else if (ifp->if_timer == 0)
789 		ifp->if_timer = 5;
790 }
791 
792 int rl_intr(arg)
793 	void			*arg;
794 {
795 	struct rl_softc		*sc;
796 	struct ifnet		*ifp;
797 	int			claimed = 0;
798 	u_int16_t		status;
799 
800 	sc = arg;
801 	ifp = &sc->sc_arpcom.ac_if;
802 
803 	/* Disable interrupts. */
804 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
805 
806 	for (;;) {
807 		status = CSR_READ_2(sc, RL_ISR);
808 		/* If the card has gone away, the read returns 0xffff. */
809 		if (status == 0xffff)
810 			break;
811 		if (status != 0)
812 			CSR_WRITE_2(sc, RL_ISR, status);
813 		if ((status & RL_INTRS) == 0)
814 			break;
815 		if ((status & RL_ISR_RX_OK) || (status & RL_ISR_RX_ERR))
816 			rl_rxeof(sc);
817 		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
818 			rl_txeof(sc);
819 		if (status & RL_ISR_SYSTEM_ERR) {
820 			rl_reset(sc);
821 			rl_init(sc);
822 		}
823 		claimed = 1;
824 	}
825 
826 	/* Re-enable interrupts. */
827 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
828 
829 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
830 		rl_start(ifp);
831 
832 	return (claimed);
833 }
834 
835 /*
836  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
837  * pointers to the fragment pointers.
838  */
839 int rl_encap(sc, m_head)
840 	struct rl_softc		*sc;
841 	struct mbuf		*m_head;
842 {
843 	struct mbuf		*m_new;
844 
845 	/*
846 	 * The RealTek is brain damaged and wants longword-aligned
847 	 * TX buffers, plus we can only have one fragment buffer
848 	 * per packet. We have to copy pretty much all the time.
849 	 */
850 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
851 	if (m_new == NULL) {
852 		m_freem(m_head);
853 		return(1);
854 	}
855 	if (m_head->m_pkthdr.len > MHLEN) {
856 		MCLGET(m_new, M_DONTWAIT);
857 		if (!(m_new->m_flags & M_EXT)) {
858 			m_freem(m_new);
859 			m_freem(m_head);
860 			return(1);
861 		}
862 	}
863 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
864 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
865 
866 	/* Pad frames to at least 60 bytes. */
867 	if (m_new->m_pkthdr.len < RL_MIN_FRAMELEN) {
868 		/*
869 		 * Make security-conscious people happy: zero out the
870 		 * bytes in the pad area, since we don't know what
871 		 * this mbuf cluster buffer's previous user might
872 		 * have left in it.
873 		 */
874 		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len,
875 		    RL_MIN_FRAMELEN - m_new->m_pkthdr.len);
876 		m_new->m_pkthdr.len +=
877 		    (RL_MIN_FRAMELEN - m_new->m_pkthdr.len);
878 		m_new->m_len = m_new->m_pkthdr.len;
879 	}
880 
881 	if (bus_dmamap_load_mbuf(sc->sc_dmat, RL_CUR_TXMAP(sc),
882 	    m_new, BUS_DMA_NOWAIT) != 0) {
883 		m_freem(m_new);
884 		m_freem(m_head);
885 		return (1);
886 	}
887 	m_freem(m_head);
888 
889 	RL_CUR_TXMBUF(sc) = m_new;
890 	bus_dmamap_sync(sc->sc_dmat, RL_CUR_TXMAP(sc), 0,
891 	    RL_CUR_TXMAP(sc)->dm_mapsize, BUS_DMASYNC_PREWRITE);
892 	return(0);
893 }
894 
895 /*
896  * Main transmit routine.
897  */
898 
899 void rl_start(ifp)
900 	struct ifnet		*ifp;
901 {
902 	struct rl_softc		*sc;
903 	struct mbuf		*m_head = NULL;
904 	int			pkts = 0;
905 
906 	sc = ifp->if_softc;
907 
908 	while(RL_CUR_TXMBUF(sc) == NULL) {
909 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
910 		if (m_head == NULL)
911 			break;
912 
913 		/* Pack the data into the descriptor. */
914 		if (rl_encap(sc, m_head))
915 			break;
916 		pkts++;
917 
918 #if NBPFILTER > 0
919 		/*
920 		 * If there's a BPF listener, bounce a copy of this frame
921 		 * to him.
922 		 */
923 		if (ifp->if_bpf)
924 			bpf_mtap(ifp->if_bpf, RL_CUR_TXMBUF(sc),
925 			    BPF_DIRECTION_OUT);
926 #endif
927 		/*
928 		 * Transmit the frame.
929 		 */
930 		CSR_WRITE_4(sc, RL_CUR_TXADDR(sc),
931 		    RL_CUR_TXMAP(sc)->dm_segs[0].ds_addr);
932 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
933 		    RL_TXTHRESH(sc->rl_txthresh) |
934 		    RL_CUR_TXMAP(sc)->dm_segs[0].ds_len);
935 
936 		RL_INC(sc->rl_cdata.cur_tx);
937 
938 		/*
939 		 * Set a timeout in case the chip goes out to lunch.
940 		 */
941 		ifp->if_timer = 5;
942 	}
943 	if (pkts == 0)
944 		return;
945 
946 	/*
947 	 * We broke out of the loop because all our TX slots are
948 	 * full. Mark the NIC as busy until it drains some of the
949 	 * packets from the queue.
950 	 */
951 	if (RL_CUR_TXMBUF(sc) != NULL)
952 		ifp->if_flags |= IFF_OACTIVE;
953 }
954 
955 void rl_init(xsc)
956 	void			*xsc;
957 {
958 	struct rl_softc		*sc = xsc;
959 	struct ifnet		*ifp = &sc->sc_arpcom.ac_if;
960 	int			s;
961 	u_int32_t		rxcfg = 0;
962 
963 	s = splnet();
964 
965 	/*
966 	 * Cancel pending I/O and free all RX/TX buffers.
967 	 */
968 	rl_stop(sc);
969 
970 	/*
971 	 * Init our MAC address.  Even though the chipset
972 	 * documentation doesn't mention it, we need to enter "Config
973 	 * register write enable" mode to modify the ID registers.
974 	 */
975 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
976 	CSR_WRITE_RAW_4(sc, RL_IDR0,
977 	    (u_int8_t *)(&sc->sc_arpcom.ac_enaddr[0]));
978 	CSR_WRITE_RAW_4(sc, RL_IDR4,
979 	    (u_int8_t *)(&sc->sc_arpcom.ac_enaddr[4]));
980 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
981 
982 	/* Init the RX buffer pointer register. */
983 	CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_pa);
984 
985 	/* Init TX descriptors. */
986 	rl_list_tx_init(sc);
987 
988 	/*
989 	 * Enable transmit and receive.
990 	 */
991 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
992 
993 	/*
994 	 * Set the initial TX and RX configuration.
995 	 */
996 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
997 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
998 
999 	/* Set the individual bit to receive frames for this host only. */
1000 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1001 	rxcfg |= RL_RXCFG_RX_INDIV;
1002 
1003 	/* If we want promiscuous mode, set the allframes bit. */
1004 	if (ifp->if_flags & IFF_PROMISC)
1005 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1006 	else
1007 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1008 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1009 
1010 	/*
1011 	 * Set capture broadcast bit to capture broadcast frames.
1012 	 */
1013 	if (ifp->if_flags & IFF_BROADCAST)
1014 		rxcfg |= RL_RXCFG_RX_BROAD;
1015 	else
1016 		rxcfg &= ~RL_RXCFG_RX_BROAD;
1017 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1018 
1019 	/*
1020 	 * Program the multicast filter, if necessary.
1021 	 */
1022 	rl_setmulti(sc);
1023 
1024 	/*
1025 	 * Enable interrupts.
1026 	 */
1027 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1028 
1029 	/* Set initial TX threshold */
1030 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1031 
1032 	/* Start RX/TX process. */
1033 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1034 
1035 	/* Enable receiver and transmitter. */
1036 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1037 
1038 	mii_mediachg(&sc->sc_mii);
1039 
1040 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1041 
1042 	ifp->if_flags |= IFF_RUNNING;
1043 	ifp->if_flags &= ~IFF_OACTIVE;
1044 
1045 	splx(s);
1046 
1047 	timeout_set(&sc->sc_tick_tmo, rl_tick, sc);
1048 	timeout_add_sec(&sc->sc_tick_tmo, 1);
1049 }
1050 
1051 /*
1052  * Set media options.
1053  */
1054 int rl_ifmedia_upd(ifp)
1055 	struct ifnet		*ifp;
1056 {
1057 	struct rl_softc *sc = (struct rl_softc *)ifp->if_softc;
1058 
1059 	mii_mediachg(&sc->sc_mii);
1060 	return (0);
1061 }
1062 
1063 /*
1064  * Report current media status.
1065  */
1066 void rl_ifmedia_sts(ifp, ifmr)
1067 	struct ifnet		*ifp;
1068 	struct ifmediareq	*ifmr;
1069 {
1070 	struct rl_softc *sc = ifp->if_softc;
1071 
1072 	mii_pollstat(&sc->sc_mii);
1073 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1074 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1075 }
1076 
1077 int rl_ioctl(ifp, command, data)
1078 	struct ifnet		*ifp;
1079 	u_long			command;
1080 	caddr_t			data;
1081 {
1082 	struct rl_softc		*sc = ifp->if_softc;
1083 	struct ifreq		*ifr = (struct ifreq *) data;
1084 	struct ifaddr		*ifa = (struct ifaddr *) data;
1085 	int			s, error = 0;
1086 
1087 	s = splnet();
1088 
1089 	switch(command) {
1090 	case SIOCSIFADDR:
1091 		ifp->if_flags |= IFF_UP;
1092 		switch (ifa->ifa_addr->sa_family) {
1093 #ifdef INET
1094 		case AF_INET:
1095 			rl_init(sc);
1096 			arp_ifinit(&sc->sc_arpcom, ifa);
1097 			break;
1098 #endif /* INET */
1099 		default:
1100 			rl_init(sc);
1101 			break;
1102 		}
1103 		break;
1104 	case SIOCSIFFLAGS:
1105 		if (ifp->if_flags & IFF_UP) {
1106 			rl_init(sc);
1107 		} else {
1108 			if (ifp->if_flags & IFF_RUNNING)
1109 				rl_stop(sc);
1110 		}
1111 		error = 0;
1112 		break;
1113 	case SIOCGIFMEDIA:
1114 	case SIOCSIFMEDIA:
1115 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1116 		break;
1117 	default:
1118 		error = ether_ioctl(ifp, &sc->sc_arpcom, command, data);
1119 	}
1120 
1121 	if (error == ENETRESET) {
1122 		if (ifp->if_flags & IFF_RUNNING)
1123 			rl_setmulti(sc);
1124 		error = 0;
1125 	}
1126 
1127 	splx(s);
1128 	return(error);
1129 }
1130 
1131 void rl_watchdog(ifp)
1132 	struct ifnet		*ifp;
1133 {
1134 	struct rl_softc		*sc;
1135 
1136 	sc = ifp->if_softc;
1137 
1138 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1139 	ifp->if_oerrors++;
1140 	rl_txeof(sc);
1141 	rl_rxeof(sc);
1142 	rl_init(sc);
1143 }
1144 
1145 /*
1146  * Stop the adapter and free any mbufs allocated to the
1147  * RX and TX lists.
1148  */
1149 void rl_stop(sc)
1150 	struct rl_softc		*sc;
1151 {
1152 	register int		i;
1153 	struct ifnet		*ifp;
1154 
1155 	ifp = &sc->sc_arpcom.ac_if;
1156 	ifp->if_timer = 0;
1157 
1158 	timeout_del(&sc->sc_tick_tmo);
1159 
1160 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1161 
1162 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1163 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1164 
1165 	/*
1166 	 * Free the TX list buffers.
1167 	 */
1168 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1169 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1170 			bus_dmamap_sync(sc->sc_dmat,
1171 			    sc->rl_cdata.rl_tx_dmamap[i], 0,
1172 			    sc->rl_cdata.rl_tx_dmamap[i]->dm_mapsize,
1173 			    BUS_DMASYNC_POSTWRITE);
1174 			bus_dmamap_unload(sc->sc_dmat,
1175 			    sc->rl_cdata.rl_tx_dmamap[i]);
1176 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1177 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1178 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(u_int32_t)),
1179 				0x00000000);
1180 		}
1181 	}
1182 }
1183 
1184 int
1185 rl_attach(sc)
1186 	struct rl_softc *sc;
1187 {
1188 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1189 	int rseg, i;
1190 	u_int16_t rl_id, rl_did;
1191 	caddr_t kva;
1192 	int addr_len;
1193 
1194 	rl_reset(sc);
1195 
1196 	/*
1197 	 * Check EEPROM type 9346 or 9356.
1198 	 */
1199 	rl_read_eeprom(sc, (caddr_t)&rl_id, RL_EE_ID, RL_EEADDR_LEN1, 1, 0);
1200 	if (rl_id == 0x8129)
1201 		addr_len = RL_EEADDR_LEN1;
1202 	else
1203 		addr_len = RL_EEADDR_LEN0;
1204 
1205 	/*
1206 	 * Get station address.
1207 	 */
1208 	rl_read_eeprom(sc, (caddr_t)sc->sc_arpcom.ac_enaddr, RL_EE_EADDR,
1209 	    addr_len, 3, 1);
1210 
1211 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
1212 
1213 	rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, addr_len, 1, 0);
1214 
1215 	if (rl_did == RT_DEVICEID_8139 || rl_did == ACCTON_DEVICEID_5030 ||
1216 	    rl_did == DELTA_DEVICEID_8139 || rl_did == ADDTRON_DEVICEID_8139 ||
1217 	    rl_did == DLINK_DEVICEID_8139 || rl_did == DLINK_DEVICEID_8139_2 ||
1218 	    rl_did == ABOCOM_DEVICEID_8139)
1219 		sc->rl_type = RL_8139;
1220 	else if (rl_did == RT_DEVICEID_8129)
1221 		sc->rl_type = RL_8129;
1222 	else
1223 		sc->rl_type = RL_UNKNOWN;	/* could be 8138 or other */
1224 
1225 	if (bus_dmamem_alloc(sc->sc_dmat, RL_RXBUFLEN + 32, PAGE_SIZE, 0,
1226 	    &sc->sc_rx_seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1227 		printf("\n%s: can't alloc rx buffers\n", sc->sc_dev.dv_xname);
1228 		return (1);
1229 	}
1230 	if (bus_dmamem_map(sc->sc_dmat, &sc->sc_rx_seg, rseg,
1231 	    RL_RXBUFLEN + 32, &kva, BUS_DMA_NOWAIT)) {
1232 		printf("%s: can't map dma buffers (%d bytes)\n",
1233 		    sc->sc_dev.dv_xname, RL_RXBUFLEN + 32);
1234 		bus_dmamem_free(sc->sc_dmat, &sc->sc_rx_seg, rseg);
1235 		return (1);
1236 	}
1237 	if (bus_dmamap_create(sc->sc_dmat, RL_RXBUFLEN + 32, 1,
1238 	    RL_RXBUFLEN + 32, 0, BUS_DMA_NOWAIT, &sc->sc_rx_dmamap)) {
1239 		printf("%s: can't create dma map\n", sc->sc_dev.dv_xname);
1240 		bus_dmamem_unmap(sc->sc_dmat, kva, RL_RXBUFLEN + 32);
1241 		bus_dmamem_free(sc->sc_dmat, &sc->sc_rx_seg, rseg);
1242 		return (1);
1243 	}
1244 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_rx_dmamap, kva,
1245 	    RL_RXBUFLEN + 32, NULL, BUS_DMA_NOWAIT)) {
1246 		printf("%s: can't load dma map\n", sc->sc_dev.dv_xname);
1247 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamap);
1248 		bus_dmamem_unmap(sc->sc_dmat, kva, RL_RXBUFLEN + 32);
1249 		bus_dmamem_free(sc->sc_dmat, &sc->sc_rx_seg, rseg);
1250 		return (1);
1251 	}
1252 	sc->rl_cdata.rl_rx_buf = kva;
1253 	sc->rl_cdata.rl_rx_buf_pa = sc->sc_rx_dmamap->dm_segs[0].ds_addr;
1254 
1255 	bzero(sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN + 32);
1256 
1257 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
1258 	    0, sc->sc_rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1259 
1260 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1261 		if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1262 		    BUS_DMA_NOWAIT, &sc->rl_cdata.rl_tx_dmamap[i]) != 0) {
1263 			printf("%s: can't create tx maps\n",
1264 			    sc->sc_dev.dv_xname);
1265 			/* XXX free any allocated... */
1266 			return (1);
1267 		}
1268 	}
1269 
1270 	/* Leave a few bytes before the start of the RX ring buffer. */
1271 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1272 	sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
1273 	sc->rl_cdata.rl_rx_buf_pa += sizeof(u_int64_t);
1274 
1275 	ifp->if_softc = sc;
1276 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1277 	ifp->if_ioctl = rl_ioctl;
1278 	ifp->if_start = rl_start;
1279 	ifp->if_watchdog = rl_watchdog;
1280 	ifp->if_baudrate = 10000000;
1281 	IFQ_SET_READY(&ifp->if_snd);
1282 
1283 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1284 
1285 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1286 
1287 	/*
1288 	 * Initialize our media structures and probe the MII.
1289 	 */
1290 	sc->sc_mii.mii_ifp = ifp;
1291 	sc->sc_mii.mii_readreg = rl_miibus_readreg;
1292 	sc->sc_mii.mii_writereg = rl_miibus_writereg;
1293 	sc->sc_mii.mii_statchg = rl_miibus_statchg;
1294 	ifmedia_init(&sc->sc_mii.mii_media, 0, rl_ifmedia_upd, rl_ifmedia_sts);
1295 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1296 	    MII_OFFSET_ANY, 0);
1297 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1298 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1299 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1300 	} else
1301 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1302 
1303 	/*
1304 	 * Attach us everywhere
1305 	 */
1306 	if_attach(ifp);
1307 	ether_ifattach(ifp);
1308 
1309 	sc->sc_sdhook = shutdownhook_establish(rl_shutdown, sc);
1310 	sc->sc_pwrhook = powerhook_establish(rl_powerhook, sc);
1311 
1312 	return (0);
1313 }
1314 
1315 void
1316 rl_shutdown(arg)
1317 	void			*arg;
1318 {
1319 	struct rl_softc		*sc = (struct rl_softc *)arg;
1320 
1321 	rl_stop(sc);
1322 }
1323 
1324 void
1325 rl_powerhook(why, arg)
1326 	int why;
1327 	void *arg;
1328 {
1329 	if (why == PWR_RESUME)
1330 		rl_init(arg);
1331 }
1332 
1333 int
1334 rl_miibus_readreg(self, phy, reg)
1335 	struct device *self;
1336 	int phy, reg;
1337 {
1338 	struct rl_softc *sc = (struct rl_softc *)self;
1339 	struct rl_mii_frame frame;
1340 	u_int16_t rl8139_reg;
1341 
1342 	if (sc->rl_type == RL_8139) {
1343 		/*
1344 		* The RTL8139 PHY is mapped into PCI registers, unfortunately
1345 		* it has no phyid, or phyaddr, so assume it is phyaddr 0.
1346 		*/
1347 		if (phy != 0)
1348 			return(0);
1349 
1350 		switch (reg) {
1351 		case MII_BMCR:
1352 			rl8139_reg = RL_BMCR;
1353 			break;
1354 		case MII_BMSR:
1355 			rl8139_reg = RL_BMSR;
1356 			break;
1357 		case MII_ANAR:
1358 			rl8139_reg = RL_ANAR;
1359 			break;
1360 		case MII_ANER:
1361 			rl8139_reg = RL_ANER;
1362 			break;
1363 		case MII_ANLPAR:
1364 			rl8139_reg = RL_LPAR;
1365 			break;
1366 		case RL_MEDIASTAT:
1367 			return (CSR_READ_1(sc, RL_MEDIASTAT));
1368 		case MII_PHYIDR1:
1369 		case MII_PHYIDR2:
1370 		default:
1371 			return (0);
1372 		}
1373 		return (CSR_READ_2(sc, rl8139_reg));
1374 	}
1375 
1376 	bzero((char *)&frame, sizeof(frame));
1377 
1378 	frame.mii_phyaddr = phy;
1379 	frame.mii_regaddr = reg;
1380 	rl_mii_readreg(sc, &frame);
1381 
1382 	return(frame.mii_data);
1383 }
1384 
1385 void
1386 rl_miibus_writereg(self, phy, reg, val)
1387 	struct device *self;
1388 	int phy, reg, val;
1389 {
1390 	struct rl_softc *sc = (struct rl_softc *)self;
1391 	struct rl_mii_frame frame;
1392 	u_int16_t rl8139_reg = 0;
1393 
1394 	if (sc->rl_type == RL_8139) {
1395 		if (phy)
1396 			return;
1397 
1398 		switch (reg) {
1399 		case MII_BMCR:
1400 			rl8139_reg = RL_BMCR;
1401 			break;
1402 		case MII_BMSR:
1403 			rl8139_reg = RL_BMSR;
1404 			break;
1405 		case MII_ANAR:
1406 			rl8139_reg = RL_ANAR;
1407 			break;
1408 		case MII_ANER:
1409 			rl8139_reg = RL_ANER;
1410 			break;
1411 		case MII_ANLPAR:
1412 			rl8139_reg = RL_LPAR;
1413 			break;
1414 		case MII_PHYIDR1:
1415 		case MII_PHYIDR2:
1416 			return;
1417 		}
1418 		CSR_WRITE_2(sc, rl8139_reg, val);
1419 		return;
1420 	}
1421 
1422 	bzero((char *)&frame, sizeof(frame));
1423 	frame.mii_phyaddr = phy;
1424 	frame.mii_regaddr = reg;
1425 	frame.mii_data = val;
1426 	rl_mii_writereg(sc, &frame);
1427 }
1428 
1429 void
1430 rl_miibus_statchg(self)
1431 	struct device *self;
1432 {
1433 }
1434 
1435 void
1436 rl_tick(v)
1437 	void *v;
1438 {
1439 	struct rl_softc *sc = v;
1440 	int s;
1441 
1442 	s = splnet();
1443 	mii_tick(&sc->sc_mii);
1444 	splx(s);
1445 	timeout_add_sec(&sc->sc_tick_tmo, 1);
1446 }
1447 
1448 struct cfdriver rl_cd = {
1449 	0, "rl", DV_IFNET
1450 };
1451