xref: /openbsd-src/sys/dev/ic/rt2661.c (revision f2da64fbbbf1b03f09f390ab01267c93dfd77c4c)
1 /*	$OpenBSD: rt2661.c,v 1.90 2016/04/13 10:49:26 mpi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
22  * http://www.ralinktech.com/
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/timeout.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/queue.h>
38 #include <sys/endian.h>
39 
40 #include <machine/bus.h>
41 #include <machine/intr.h>
42 
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/if_ether.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_amrr.h>
55 #include <net80211/ieee80211_radiotap.h>
56 #include <net80211/ieee80211_node.h>
57 
58 #include <dev/ic/rt2661var.h>
59 #include <dev/ic/rt2661reg.h>
60 
61 #include <dev/pci/pcidevs.h>
62 
63 #ifdef RAL_DEBUG
64 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
65 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
66 int rt2661_debug = 1;
67 #else
68 #define DPRINTF(x)
69 #define DPRINTFN(n, x)
70 #endif
71 
72 void		rt2661_attachhook(struct device *);
73 int		rt2661_alloc_tx_ring(struct rt2661_softc *,
74 		    struct rt2661_tx_ring *, int);
75 void		rt2661_reset_tx_ring(struct rt2661_softc *,
76 		    struct rt2661_tx_ring *);
77 void		rt2661_free_tx_ring(struct rt2661_softc *,
78 		    struct rt2661_tx_ring *);
79 int		rt2661_alloc_rx_ring(struct rt2661_softc *,
80 		    struct rt2661_rx_ring *, int);
81 void		rt2661_reset_rx_ring(struct rt2661_softc *,
82 		    struct rt2661_rx_ring *);
83 void		rt2661_free_rx_ring(struct rt2661_softc *,
84 		    struct rt2661_rx_ring *);
85 struct		ieee80211_node *rt2661_node_alloc(struct ieee80211com *);
86 void		rt2661_node_free(struct ieee80211com *,
87 		    struct ieee80211_node *);
88 int		rt2661_media_change(struct ifnet *);
89 void		rt2661_next_scan(void *);
90 void		rt2661_iter_func(void *, struct ieee80211_node *);
91 void		rt2661_updatestats(void *);
92 void		rt2661_newassoc(struct ieee80211com *, struct ieee80211_node *,
93 		    int);
94 int		rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
95 		    int);
96 uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
97 void		rt2661_tx_intr(struct rt2661_softc *);
98 void		rt2661_tx_dma_intr(struct rt2661_softc *,
99 		    struct rt2661_tx_ring *);
100 void		rt2661_rx_intr(struct rt2661_softc *);
101 #ifndef IEEE80211_STA_ONLY
102 void		rt2661_mcu_beacon_expire(struct rt2661_softc *);
103 #endif
104 void		rt2661_mcu_wakeup(struct rt2661_softc *);
105 void		rt2661_mcu_cmd_intr(struct rt2661_softc *);
106 int		rt2661_intr(void *);
107 #if NBPFILTER > 0
108 uint8_t		rt2661_rxrate(const struct rt2661_rx_desc *);
109 #endif
110 int		rt2661_ack_rate(struct ieee80211com *, int);
111 uint16_t	rt2661_txtime(int, int, uint32_t);
112 uint8_t		rt2661_plcp_signal(int);
113 void		rt2661_setup_tx_desc(struct rt2661_softc *,
114 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
115 		    const bus_dma_segment_t *, int, int, u_int8_t);
116 int		rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
117 		    struct ieee80211_node *);
118 int		rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
119 		    struct ieee80211_node *, int);
120 void		rt2661_start(struct ifnet *);
121 void		rt2661_watchdog(struct ifnet *);
122 int		rt2661_ioctl(struct ifnet *, u_long, caddr_t);
123 void		rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
124 uint8_t		rt2661_bbp_read(struct rt2661_softc *, uint8_t);
125 void		rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
126 int		rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
127 void		rt2661_select_antenna(struct rt2661_softc *);
128 void		rt2661_enable_mrr(struct rt2661_softc *);
129 void		rt2661_set_txpreamble(struct rt2661_softc *);
130 void		rt2661_set_basicrates(struct rt2661_softc *);
131 void		rt2661_select_band(struct rt2661_softc *,
132 		    struct ieee80211_channel *);
133 void		rt2661_set_chan(struct rt2661_softc *,
134 		    struct ieee80211_channel *);
135 void		rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
136 void		rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
137 void		rt2661_update_promisc(struct rt2661_softc *);
138 void		rt2661_updateslot(struct ieee80211com *);
139 void		rt2661_set_slottime(struct rt2661_softc *);
140 const char	*rt2661_get_rf(int);
141 void		rt2661_read_eeprom(struct rt2661_softc *);
142 int		rt2661_bbp_init(struct rt2661_softc *);
143 int		rt2661_init(struct ifnet *);
144 void		rt2661_stop(struct ifnet *, int);
145 int		rt2661_load_microcode(struct rt2661_softc *);
146 void		rt2661_rx_tune(struct rt2661_softc *);
147 #ifdef notyet
148 void		rt2661_radar_start(struct rt2661_softc *);
149 int		rt2661_radar_stop(struct rt2661_softc *);
150 #endif
151 #ifndef IEEE80211_STA_ONLY
152 int		rt2661_prepare_beacon(struct rt2661_softc *);
153 #endif
154 void		rt2661_enable_tsf_sync(struct rt2661_softc *);
155 int		rt2661_get_rssi(struct rt2661_softc *, uint8_t);
156 struct		rt2661_amrr_node *rt2661_amrr_node_alloc(struct ieee80211com *,
157 		    struct rt2661_node *);
158 void 		rt2661_amrr_node_free(struct rt2661_softc *,
159 		    struct rt2661_amrr_node *);
160 void		rt2661_amrr_node_free_all(struct rt2661_softc *);
161 void		rt2661_amrr_node_free_unused(struct rt2661_softc *);
162 struct 		rt2661_amrr_node *rt2661_amrr_node_find(struct rt2661_softc *,
163 		    u_int8_t);
164 
165 static const struct {
166 	uint32_t	reg;
167 	uint32_t	val;
168 } rt2661_def_mac[] = {
169 	RT2661_DEF_MAC
170 };
171 
172 static const struct {
173 	uint8_t	reg;
174 	uint8_t	val;
175 } rt2661_def_bbp[] = {
176 	RT2661_DEF_BBP
177 };
178 
179 static const struct rfprog {
180 	uint8_t		chan;
181 	uint32_t	r1, r2, r3, r4;
182 }  rt2661_rf5225_1[] = {
183 	RT2661_RF5225_1
184 }, rt2661_rf5225_2[] = {
185 	RT2661_RF5225_2
186 };
187 
188 int
189 rt2661_attach(void *xsc, int id)
190 {
191 	struct rt2661_softc *sc = xsc;
192 	struct ieee80211com *ic = &sc->sc_ic;
193 	uint32_t val;
194 	int error, ac, ntries;
195 
196 	sc->sc_id = id;
197 
198 	sc->amrr.amrr_min_success_threshold =  1;
199 	sc->amrr.amrr_max_success_threshold = 15;
200 	timeout_set(&sc->amrr_to, rt2661_updatestats, sc);
201 	timeout_set(&sc->scan_to, rt2661_next_scan, sc);
202 
203 	TAILQ_INIT(&sc->amn);
204 
205 	/* wait for NIC to initialize */
206 	for (ntries = 0; ntries < 1000; ntries++) {
207 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
208 			break;
209 		DELAY(1000);
210 	}
211 	if (ntries == 1000) {
212 		printf("%s: timeout waiting for NIC to initialize\n",
213 		    sc->sc_dev.dv_xname);
214 		return EIO;
215 	}
216 
217 	/* retrieve RF rev. no and various other things from EEPROM */
218 	rt2661_read_eeprom(sc);
219 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
220 
221 	printf("%s: MAC/BBP RT%X, RF %s\n", sc->sc_dev.dv_xname, val,
222 	    rt2661_get_rf(sc->rf_rev));
223 
224 	/*
225 	 * Allocate Tx and Rx rings.
226 	 */
227 	for (ac = 0; ac < 4; ac++) {
228 		error = rt2661_alloc_tx_ring(sc, &sc->txq[ac],
229 		    RT2661_TX_RING_COUNT);
230 		if (error != 0) {
231 			printf("%s: could not allocate Tx ring %d\n",
232 			    sc->sc_dev.dv_xname, ac);
233 			goto fail1;
234 		}
235 	}
236 
237 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
238 	if (error != 0) {
239 		printf("%s: could not allocate Mgt ring\n",
240 		    sc->sc_dev.dv_xname);
241 		goto fail1;
242 	}
243 
244 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
245 	if (error != 0) {
246 		printf("%s: could not allocate Rx ring\n",
247 		    sc->sc_dev.dv_xname);
248 		goto fail2;
249 	}
250 
251 	config_mountroot(xsc, rt2661_attachhook);
252 
253 	return 0;
254 
255 fail2:	rt2661_free_tx_ring(sc, &sc->mgtq);
256 fail1:	while (--ac >= 0)
257 		rt2661_free_tx_ring(sc, &sc->txq[ac]);
258 	return ENXIO;
259 }
260 
261 void
262 rt2661_attachhook(struct device *self)
263 {
264 	struct rt2661_softc *sc = (struct rt2661_softc *)self;
265 	struct ieee80211com *ic = &sc->sc_ic;
266 	struct ifnet *ifp = &ic->ic_if;
267 	const char *name = NULL;
268 	int i, error;
269 
270 	switch (sc->sc_id) {
271 	case PCI_PRODUCT_RALINK_RT2561:
272 		name = "ral-rt2561";
273 		break;
274 	case PCI_PRODUCT_RALINK_RT2561S:
275 		name = "ral-rt2561s";
276 		break;
277 	case PCI_PRODUCT_RALINK_RT2661:
278 		name = "ral-rt2661";
279 		break;
280 	}
281 	if ((error = loadfirmware(name, &sc->ucode, &sc->ucsize)) != 0) {
282 		printf("%s: error %d, could not read firmware %s\n",
283 		    sc->sc_dev.dv_xname, error, name);
284 		return;
285 	}
286 
287 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
288 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
289 	ic->ic_state = IEEE80211_S_INIT;
290 
291 	/* set device capabilities */
292 	ic->ic_caps =
293 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
294 #ifndef IEEE80211_STA_ONLY
295 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
296 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
297 #endif
298 	    IEEE80211_C_TXPMGT |	/* tx power management */
299 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
300 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
301 	    IEEE80211_C_WEP |		/* s/w WEP */
302 	    IEEE80211_C_RSN;		/* WPA/RSN */
303 
304 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
305 		/* set supported .11a rates */
306 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
307 		    ieee80211_std_rateset_11a;
308 
309 		/* set supported .11a channels */
310 		for (i = 36; i <= 64; i += 4) {
311 			ic->ic_channels[i].ic_freq =
312 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
313 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
314 		}
315 		for (i = 100; i <= 140; i += 4) {
316 			ic->ic_channels[i].ic_freq =
317 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
318 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
319 		}
320 		for (i = 149; i <= 165; i += 4) {
321 			ic->ic_channels[i].ic_freq =
322 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
323 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
324 		}
325 	}
326 
327 	/* set supported .11b and .11g rates */
328 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
329 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
330 
331 	/* set supported .11b and .11g channels (1 through 14) */
332 	for (i = 1; i <= 14; i++) {
333 		ic->ic_channels[i].ic_freq =
334 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
335 		ic->ic_channels[i].ic_flags =
336 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
337 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
338 	}
339 
340 	ifp->if_softc = sc;
341 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
342 	ifp->if_ioctl = rt2661_ioctl;
343 	ifp->if_start = rt2661_start;
344 	ifp->if_watchdog = rt2661_watchdog;
345 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
346 
347 	if_attach(ifp);
348 	ieee80211_ifattach(ifp);
349 	ic->ic_node_alloc = rt2661_node_alloc;
350 	sc->sc_node_free = ic->ic_node_free;
351 	ic->ic_node_free = rt2661_node_free;
352 	ic->ic_newassoc = rt2661_newassoc;
353 	ic->ic_updateslot = rt2661_updateslot;
354 
355 	/* override state transition machine */
356 	sc->sc_newstate = ic->ic_newstate;
357 	ic->ic_newstate = rt2661_newstate;
358 	ieee80211_media_init(ifp, rt2661_media_change, ieee80211_media_status);
359 
360 #if NBPFILTER > 0
361 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
362 	    sizeof (struct ieee80211_frame) + 64);
363 
364 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
365 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
366 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
367 
368 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
369 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
370 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
371 #endif
372 }
373 
374 int
375 rt2661_detach(void *xsc)
376 {
377 	struct rt2661_softc *sc = xsc;
378 	struct ifnet *ifp = &sc->sc_ic.ic_if;
379 	int ac;
380 
381 	timeout_del(&sc->scan_to);
382 	timeout_del(&sc->amrr_to);
383 
384 	ieee80211_ifdetach(ifp);	/* free all nodes */
385 	rt2661_amrr_node_free_all(sc);
386 	if_detach(ifp);
387 
388 	for (ac = 0; ac < 4; ac++)
389 		rt2661_free_tx_ring(sc, &sc->txq[ac]);
390 	rt2661_free_tx_ring(sc, &sc->mgtq);
391 	rt2661_free_rx_ring(sc, &sc->rxq);
392 
393 	if (sc->ucode != NULL)
394 		free(sc->ucode, M_DEVBUF, sc->ucsize);
395 
396 	return 0;
397 }
398 
399 void
400 rt2661_suspend(void *xsc)
401 {
402 	struct rt2661_softc *sc = xsc;
403 	struct ifnet *ifp = &sc->sc_ic.ic_if;
404 
405 	if (ifp->if_flags & IFF_RUNNING) {
406 		rt2661_stop(ifp, 1);
407 		sc->sc_flags &= ~RT2661_FWLOADED;
408 	}
409 }
410 
411 void
412 rt2661_wakeup(void *xsc)
413 {
414 	struct rt2661_softc *sc = xsc;
415 	struct ifnet *ifp = &sc->sc_ic.ic_if;
416 
417 	if (ifp->if_flags & IFF_UP)
418 		rt2661_init(ifp);
419 }
420 
421 int
422 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
423     int count)
424 {
425 	int i, nsegs, error;
426 
427 	ring->count = count;
428 	ring->queued = 0;
429 	ring->cur = ring->next = ring->stat = 0;
430 
431 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
432 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
433 	if (error != 0) {
434 		printf("%s: could not create desc DMA map\n",
435 		    sc->sc_dev.dv_xname);
436 		goto fail;
437 	}
438 
439 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
440 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
441 	if (error != 0) {
442 		printf("%s: could not allocate DMA memory\n",
443 		    sc->sc_dev.dv_xname);
444 		goto fail;
445 	}
446 
447 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
448 	    count * RT2661_TX_DESC_SIZE, (caddr_t *)&ring->desc,
449 	    BUS_DMA_NOWAIT);
450 	if (error != 0) {
451 		printf("%s: can't map desc DMA memory\n",
452 		    sc->sc_dev.dv_xname);
453 		goto fail;
454 	}
455 
456 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
457 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
458 	if (error != 0) {
459 		printf("%s: could not load desc DMA map\n",
460 		    sc->sc_dev.dv_xname);
461 		goto fail;
462 	}
463 
464 	ring->physaddr = ring->map->dm_segs->ds_addr;
465 
466 	ring->data = mallocarray(count, sizeof (struct rt2661_tx_data),
467 	    M_DEVBUF, M_NOWAIT | M_ZERO);
468 	if (ring->data == NULL) {
469 		printf("%s: could not allocate soft data\n",
470 		    sc->sc_dev.dv_xname);
471 		error = ENOMEM;
472 		goto fail;
473 	}
474 
475 	for (i = 0; i < count; i++) {
476 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
477 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
478 		    &ring->data[i].map);
479 		if (error != 0) {
480 			printf("%s: could not create DMA map\n",
481 			    sc->sc_dev.dv_xname);
482 			goto fail;
483 		}
484 	}
485 
486 	return 0;
487 
488 fail:	rt2661_free_tx_ring(sc, ring);
489 	return error;
490 }
491 
492 void
493 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
494 {
495 	int i;
496 
497 	for (i = 0; i < ring->count; i++) {
498 		struct rt2661_tx_desc *desc = &ring->desc[i];
499 		struct rt2661_tx_data *data = &ring->data[i];
500 
501 		if (data->m != NULL) {
502 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
503 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
504 			bus_dmamap_unload(sc->sc_dmat, data->map);
505 			m_freem(data->m);
506 			data->m = NULL;
507 		}
508 
509 		/*
510 		 * The node has already been freed at that point so don't call
511 		 * ieee80211_release_node() here.
512 		 */
513 		data->ni = NULL;
514 
515 		desc->flags = 0;
516 	}
517 
518 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
519 	    BUS_DMASYNC_PREWRITE);
520 
521 	ring->queued = 0;
522 	ring->cur = ring->next = ring->stat = 0;
523 }
524 
525 void
526 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
527 {
528 	int i;
529 
530 	if (ring->desc != NULL) {
531 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
532 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
533 		bus_dmamap_unload(sc->sc_dmat, ring->map);
534 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
535 		    ring->count * RT2661_TX_DESC_SIZE);
536 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
537 	}
538 
539 	if (ring->data != NULL) {
540 		for (i = 0; i < ring->count; i++) {
541 			struct rt2661_tx_data *data = &ring->data[i];
542 
543 			if (data->m != NULL) {
544 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
545 				    data->map->dm_mapsize,
546 				    BUS_DMASYNC_POSTWRITE);
547 				bus_dmamap_unload(sc->sc_dmat, data->map);
548 				m_freem(data->m);
549 			}
550 			/*
551 			 * The node has already been freed at that point so
552 			 * don't call ieee80211_release_node() here.
553 			 */
554 			data->ni = NULL;
555 
556 			if (data->map != NULL)
557 				bus_dmamap_destroy(sc->sc_dmat, data->map);
558 		}
559 		free(ring->data, M_DEVBUF, ring->count * sizeof *ring->data);
560 	}
561 }
562 
563 int
564 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
565     int count)
566 {
567 	int i, nsegs, error;
568 
569 	ring->count = count;
570 	ring->cur = ring->next = 0;
571 
572 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
573 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
574 	if (error != 0) {
575 		printf("%s: could not create desc DMA map\n",
576 		    sc->sc_dev.dv_xname);
577 		goto fail;
578 	}
579 
580 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
581 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
582 	if (error != 0) {
583 		printf("%s: could not allocate DMA memory\n",
584 		    sc->sc_dev.dv_xname);
585 		goto fail;
586 	}
587 
588 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
589 	    count * RT2661_RX_DESC_SIZE, (caddr_t *)&ring->desc,
590 	    BUS_DMA_NOWAIT);
591 	if (error != 0) {
592 		printf("%s: can't map desc DMA memory\n",
593 		    sc->sc_dev.dv_xname);
594 		goto fail;
595 	}
596 
597 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
598 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
599 	if (error != 0) {
600 		printf("%s: could not load desc DMA map\n",
601 		    sc->sc_dev.dv_xname);
602 		goto fail;
603 	}
604 
605 	ring->physaddr = ring->map->dm_segs->ds_addr;
606 
607 	ring->data = mallocarray(count, sizeof (struct rt2661_rx_data),
608 	    M_DEVBUF, M_NOWAIT | M_ZERO);
609 	if (ring->data == NULL) {
610 		printf("%s: could not allocate soft data\n",
611 		    sc->sc_dev.dv_xname);
612 		error = ENOMEM;
613 		goto fail;
614 	}
615 
616 	/*
617 	 * Pre-allocate Rx buffers and populate Rx ring.
618 	 */
619 	for (i = 0; i < count; i++) {
620 		struct rt2661_rx_desc *desc = &sc->rxq.desc[i];
621 		struct rt2661_rx_data *data = &sc->rxq.data[i];
622 
623 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
624 		    0, BUS_DMA_NOWAIT, &data->map);
625 		if (error != 0) {
626 			printf("%s: could not create DMA map\n",
627 			    sc->sc_dev.dv_xname);
628 			goto fail;
629 		}
630 
631 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
632 		if (data->m == NULL) {
633 			printf("%s: could not allocate rx mbuf\n",
634 			    sc->sc_dev.dv_xname);
635 			error = ENOMEM;
636 			goto fail;
637 		}
638 		MCLGET(data->m, M_DONTWAIT);
639 		if (!(data->m->m_flags & M_EXT)) {
640 			printf("%s: could not allocate rx mbuf cluster\n",
641 			    sc->sc_dev.dv_xname);
642 			error = ENOMEM;
643 			goto fail;
644 		}
645 
646 		error = bus_dmamap_load(sc->sc_dmat, data->map,
647 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
648 		if (error != 0) {
649 			printf("%s: could not load rx buf DMA map",
650 			    sc->sc_dev.dv_xname);
651 			goto fail;
652 		}
653 
654 		desc->flags = htole32(RT2661_RX_BUSY);
655 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
656 	}
657 
658 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
659 	    BUS_DMASYNC_PREWRITE);
660 
661 	return 0;
662 
663 fail:	rt2661_free_rx_ring(sc, ring);
664 	return error;
665 }
666 
667 void
668 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
669 {
670 	int i;
671 
672 	for (i = 0; i < ring->count; i++)
673 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
674 
675 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
676 	    BUS_DMASYNC_PREWRITE);
677 
678 	ring->cur = ring->next = 0;
679 }
680 
681 void
682 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
683 {
684 	int i;
685 
686 	if (ring->desc != NULL) {
687 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
688 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
689 		bus_dmamap_unload(sc->sc_dmat, ring->map);
690 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
691 		    ring->count * RT2661_RX_DESC_SIZE);
692 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
693 	}
694 
695 	if (ring->data != NULL) {
696 		for (i = 0; i < ring->count; i++) {
697 			struct rt2661_rx_data *data = &ring->data[i];
698 
699 			if (data->m != NULL) {
700 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
701 				    data->map->dm_mapsize,
702 				    BUS_DMASYNC_POSTREAD);
703 				bus_dmamap_unload(sc->sc_dmat, data->map);
704 				m_freem(data->m);
705 			}
706 
707 			if (data->map != NULL)
708 				bus_dmamap_destroy(sc->sc_dmat, data->map);
709 		}
710 		free(ring->data, M_DEVBUF, ring->count * sizeof *ring->data);
711 	}
712 }
713 
714 struct rt2661_amrr_node *
715 rt2661_amrr_node_alloc(struct ieee80211com *ic, struct rt2661_node *rn)
716 {
717 	struct rt2661_softc *sc = ic->ic_softc;
718 	struct rt2661_amrr_node *amn;
719 	int s;
720 
721 	if (sc->amn_count >= RT2661_AMRR_NODES_MAX)
722 		rt2661_amrr_node_free_unused(sc);
723 	if (sc->amn_count >= RT2661_AMRR_NODES_MAX)
724 		return NULL;
725 
726 	amn = malloc(sizeof (struct rt2661_amrr_node), M_DEVBUF,
727 	    M_NOWAIT | M_ZERO);
728 
729 	if (amn) {
730 		s = splnet();
731 		amn->id = sc->amn_count++;
732 		amn->rn = rn;
733 		TAILQ_INSERT_TAIL(&sc->amn, amn, entry);
734 		splx(s);
735 	}
736 
737 	return amn;
738 }
739 
740 void
741 rt2661_amrr_node_free(struct rt2661_softc *sc, struct rt2661_amrr_node *amn)
742 {
743 	int s;
744 
745 	s = splnet();
746 	if (amn->rn)
747 		amn->rn->amn = NULL;
748 	TAILQ_REMOVE(&sc->amn, amn, entry);
749 	sc->amn_count--;
750 	splx(s);
751 	free(amn, M_DEVBUF, sizeof *amn);
752 }
753 
754 void
755 rt2661_amrr_node_free_all(struct rt2661_softc *sc)
756 {
757 	struct rt2661_amrr_node *amn, *a;
758 	int s;
759 
760 	s = splnet();
761 	TAILQ_FOREACH_SAFE(amn, &sc->amn, entry, a)
762 		rt2661_amrr_node_free(sc, amn);
763 	splx(s);
764 }
765 
766 void
767 rt2661_amrr_node_free_unused(struct rt2661_softc *sc)
768 {
769 	struct rt2661_amrr_node *amn, *a;
770 	int s;
771 
772 	s = splnet();
773 	TAILQ_FOREACH_SAFE(amn, &sc->amn, entry, a) {
774 		if (amn->rn == NULL)
775 			rt2661_amrr_node_free(sc, amn);
776 	}
777 	splx(s);
778 }
779 
780 struct rt2661_amrr_node *
781 rt2661_amrr_node_find(struct rt2661_softc *sc, u_int8_t id)
782 {
783 	struct rt2661_amrr_node *amn, *a, *ret = NULL;
784 	int s;
785 
786 	if (id == RT2661_AMRR_INVALID_ID)
787 		return NULL;
788 
789 	s = splnet();
790 	TAILQ_FOREACH_SAFE(amn, &sc->amn, entry, a) {
791 		/* If the corresponding node was freed, free the amrr node. */
792 		if (amn->rn == NULL)
793 			rt2661_amrr_node_free(sc, amn);
794 		else if (amn->id == id)
795 			ret = amn;
796 	}
797 	splx(s);
798 
799 	return ret;
800 }
801 
802 struct ieee80211_node *
803 rt2661_node_alloc(struct ieee80211com *ic)
804 {
805 	struct rt2661_node *rn;
806 
807 	rn = malloc(sizeof (struct rt2661_node), M_DEVBUF,
808 	    M_NOWAIT | M_ZERO);
809 	if (rn == NULL)
810 		return NULL;
811 
812 	rn->amn = rt2661_amrr_node_alloc(ic, rn);
813 	return (struct ieee80211_node *)rn;
814 }
815 
816 void
817 rt2661_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
818 {
819 	struct rt2661_softc *sc = ic->ic_softc;
820 	struct rt2661_node *rn = (struct rt2661_node *)ni;
821 
822 	if (rn->amn)
823 		rn->amn->rn = NULL;
824 	sc->sc_node_free(ic, ni);
825 }
826 
827 int
828 rt2661_media_change(struct ifnet *ifp)
829 {
830 	int error;
831 
832 	error = ieee80211_media_change(ifp);
833 	if (error != ENETRESET)
834 		return error;
835 
836 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
837 		rt2661_init(ifp);
838 
839 	return 0;
840 }
841 
842 /*
843  * This function is called periodically (every 200ms) during scanning to
844  * switch from one channel to another.
845  */
846 void
847 rt2661_next_scan(void *arg)
848 {
849 	struct rt2661_softc *sc = arg;
850 	struct ieee80211com *ic = &sc->sc_ic;
851 	struct ifnet *ifp = &ic->ic_if;
852 	int s;
853 
854 	s = splnet();
855 	if (ic->ic_state == IEEE80211_S_SCAN)
856 		ieee80211_next_scan(ifp);
857 	splx(s);
858 }
859 
860 /*
861  * This function is called for each neighbor node.
862  */
863 void
864 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
865 {
866 	struct rt2661_softc *sc = arg;
867 	struct rt2661_node *rn = (struct rt2661_node *)ni;
868 
869 	if (rn->amn)
870 		ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn->amn);
871 }
872 
873 /*
874  * This function is called periodically (every 500ms) in RUN state to update
875  * various settings like rate control statistics or Rx sensitivity.
876  */
877 void
878 rt2661_updatestats(void *arg)
879 {
880 	struct rt2661_softc *sc = arg;
881 	struct ieee80211com *ic = &sc->sc_ic;
882 	int s;
883 
884 	s = splnet();
885 	if (ic->ic_opmode == IEEE80211_M_STA)
886 		rt2661_iter_func(sc, ic->ic_bss);
887 	else
888 		ieee80211_iterate_nodes(ic, rt2661_iter_func, arg);
889 
890 	/* update rx sensitivity and free unused amrr nodes every 1 sec */
891 	if (++sc->ncalls & 1) {
892 		rt2661_rx_tune(sc);
893 		rt2661_amrr_node_free_unused(sc);
894 	}
895 	splx(s);
896 
897 	timeout_add_msec(&sc->amrr_to, 500);
898 }
899 
900 void
901 rt2661_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
902 {
903 	struct rt2661_softc *sc = ic->ic_softc;
904 	struct rt2661_node *rn = (struct rt2661_node *)ni;
905 	int i;
906 
907 	if (rn->amn)
908 		ieee80211_amrr_node_init(&sc->amrr, &rn->amn->amn);
909 
910 	/* set rate to some reasonable initial value */
911 	for (i = ni->ni_rates.rs_nrates - 1;
912 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
913 	     i--);
914 	ni->ni_txrate = i;
915 }
916 
917 int
918 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
919 {
920 	struct rt2661_softc *sc = ic->ic_if.if_softc;
921 	enum ieee80211_state ostate;
922 	struct ieee80211_node *ni;
923 	uint32_t tmp;
924 
925 	ostate = ic->ic_state;
926 	timeout_del(&sc->scan_to);
927 	timeout_del(&sc->amrr_to);
928 
929 	switch (nstate) {
930 	case IEEE80211_S_INIT:
931 		if (ostate == IEEE80211_S_RUN) {
932 			/* abort TSF synchronization */
933 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
934 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
935 		}
936 		break;
937 
938 	case IEEE80211_S_SCAN:
939 		rt2661_set_chan(sc, ic->ic_bss->ni_chan);
940 		timeout_add_msec(&sc->scan_to, 200);
941 		break;
942 
943 	case IEEE80211_S_AUTH:
944 	case IEEE80211_S_ASSOC:
945 		rt2661_set_chan(sc, ic->ic_bss->ni_chan);
946 		break;
947 
948 	case IEEE80211_S_RUN:
949 		rt2661_set_chan(sc, ic->ic_bss->ni_chan);
950 
951 		ni = ic->ic_bss;
952 
953 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
954 			rt2661_set_slottime(sc);
955 			rt2661_enable_mrr(sc);
956 			rt2661_set_txpreamble(sc);
957 			rt2661_set_basicrates(sc);
958 			rt2661_set_bssid(sc, ni->ni_bssid);
959 		}
960 
961 #ifndef IEEE80211_STA_ONLY
962 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
963 		    ic->ic_opmode == IEEE80211_M_IBSS)
964 			rt2661_prepare_beacon(sc);
965 #endif
966 
967 		if (ic->ic_opmode == IEEE80211_M_STA) {
968 			/* fake a join to init the tx rate */
969 			rt2661_newassoc(ic, ni, 1);
970 		}
971 
972 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
973 			sc->ncalls = 0;
974 			sc->avg_rssi = -95;	/* reset EMA */
975 			timeout_add_msec(&sc->amrr_to, 500);
976 			rt2661_enable_tsf_sync(sc);
977 		}
978 		break;
979 	}
980 
981 	return sc->sc_newstate(ic, nstate, arg);
982 }
983 
984 /*
985  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
986  * 93C66).
987  */
988 uint16_t
989 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
990 {
991 	uint32_t tmp;
992 	uint16_t val;
993 	int n;
994 
995 	/* clock C once before the first command */
996 	RT2661_EEPROM_CTL(sc, 0);
997 
998 	RT2661_EEPROM_CTL(sc, RT2661_S);
999 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1000 	RT2661_EEPROM_CTL(sc, RT2661_S);
1001 
1002 	/* write start bit (1) */
1003 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1004 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1005 
1006 	/* write READ opcode (10) */
1007 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1008 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1009 	RT2661_EEPROM_CTL(sc, RT2661_S);
1010 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1011 
1012 	/* write address (A5-A0 or A7-A0) */
1013 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
1014 	for (; n >= 0; n--) {
1015 		RT2661_EEPROM_CTL(sc, RT2661_S |
1016 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
1017 		RT2661_EEPROM_CTL(sc, RT2661_S |
1018 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
1019 	}
1020 
1021 	RT2661_EEPROM_CTL(sc, RT2661_S);
1022 
1023 	/* read data Q15-Q0 */
1024 	val = 0;
1025 	for (n = 15; n >= 0; n--) {
1026 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1027 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
1028 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
1029 		RT2661_EEPROM_CTL(sc, RT2661_S);
1030 	}
1031 
1032 	RT2661_EEPROM_CTL(sc, 0);
1033 
1034 	/* clear Chip Select and clock C */
1035 	RT2661_EEPROM_CTL(sc, RT2661_S);
1036 	RT2661_EEPROM_CTL(sc, 0);
1037 	RT2661_EEPROM_CTL(sc, RT2661_C);
1038 
1039 	return val;
1040 }
1041 
1042 /* The TX interrupt handler accumulates statistics based on whether frames
1043  * were sent successfully by the ASIC. */
1044 void
1045 rt2661_tx_intr(struct rt2661_softc *sc)
1046 {
1047 	struct ieee80211com *ic = &sc->sc_ic;
1048 	struct ifnet *ifp = &ic->ic_if;
1049 	struct rt2661_amrr_node *amn;
1050 	int retrycnt;
1051 	u_int8_t amrr_id;
1052 
1053 	for (;;) {
1054 		const uint32_t val = RAL_READ(sc, RT2661_STA_CSR4);
1055 		if (!(val & RT2661_TX_STAT_VALID))
1056 			break;
1057 
1058 		/* retrieve rate control algorithm context */
1059 		amrr_id = RT2661_TX_PRIV_DATA(val);
1060 		amn = rt2661_amrr_node_find(sc, amrr_id);
1061 
1062 		switch (RT2661_TX_RESULT(val)) {
1063 		case RT2661_TX_SUCCESS:
1064 			retrycnt = RT2661_TX_RETRYCNT(val);
1065 
1066 			DPRINTFN(10, ("data frame sent successfully after "
1067 			    "%d retries\n", retrycnt));
1068 			if (amn) {
1069 				amn->amn.amn_txcnt++;
1070 				if (retrycnt > 0)
1071 					amn->amn.amn_retrycnt++;
1072 			}
1073 			ifp->if_opackets++;
1074 			break;
1075 
1076 		case RT2661_TX_RETRY_FAIL:
1077 			DPRINTFN(9, ("sending data frame failed (too much "
1078 			    "retries)\n"));
1079 			if (amn) {
1080 				amn->amn.amn_txcnt++;
1081 				amn->amn.amn_retrycnt++;
1082 			}
1083 			ifp->if_oerrors++;
1084 			break;
1085 
1086 		default:
1087 			/* other failure */
1088 			printf("%s: sending data frame failed 0x%08x\n",
1089 			    sc->sc_dev.dv_xname, val);
1090 			ifp->if_oerrors++;
1091 		}
1092 
1093 		DPRINTFN(15, ("tx done amrr_id=%hhu amn=0x%x\n", amrr_id, amn));
1094 	}
1095 }
1096 
1097 /* The TX DMA interrupt handler processes frames which have been offloaded
1098  * to the ASIC for transmission. We can free all resources corresponding
1099  * to the frame here. */
1100 void
1101 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1102 {
1103 	struct ieee80211com *ic = &sc->sc_ic;
1104 	struct ifnet *ifp = &ic->ic_if;
1105 
1106 	for (;;) {
1107 		struct rt2661_tx_desc *desc = &txq->desc[txq->next];
1108 		struct rt2661_tx_data *data = &txq->data[txq->next];
1109 
1110 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1111 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1112 		    BUS_DMASYNC_POSTREAD);
1113 
1114 		if ((letoh32(desc->flags) & RT2661_TX_BUSY) ||
1115 		    !(letoh32(desc->flags) & RT2661_TX_VALID))
1116 			break;
1117 
1118 		/* descriptor is no longer valid */
1119 		desc->flags &= ~htole32(RT2661_TX_VALID);
1120 
1121 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1122 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1123 		    BUS_DMASYNC_PREWRITE);
1124 
1125 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1126 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1127 		bus_dmamap_unload(sc->sc_dmat, data->map);
1128 		m_freem(data->m);
1129 		data->m = NULL;
1130 		ieee80211_release_node(ic, data->ni);
1131 		data->ni = NULL;
1132 
1133 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1134 
1135 		txq->queued--;
1136 		if (++txq->next >= txq->count)	/* faster than % count */
1137 			txq->next = 0;
1138 	}
1139 
1140 	if (sc->mgtq.queued == 0 && sc->txq[0].queued == 0)
1141 		sc->sc_tx_timer = 0;
1142 	if (sc->mgtq.queued < RT2661_MGT_RING_COUNT &&
1143 	    sc->txq[0].queued < RT2661_TX_RING_COUNT - 1) {
1144 		if (sc->mgtq.queued < RT2661_MGT_RING_COUNT)
1145 			sc->sc_flags &= ~RT2661_MGT_OACTIVE;
1146 		if (sc->txq[0].queued < RT2661_TX_RING_COUNT - 1)
1147 			sc->sc_flags &= ~RT2661_DATA_OACTIVE;
1148 		if (!(sc->sc_flags & (RT2661_MGT_OACTIVE|RT2661_DATA_OACTIVE)))
1149 			ifq_clr_oactive(&ifp->if_snd);
1150 		rt2661_start(ifp);
1151 	}
1152 }
1153 
1154 void
1155 rt2661_rx_intr(struct rt2661_softc *sc)
1156 {
1157 	struct ieee80211com *ic = &sc->sc_ic;
1158 	struct ifnet *ifp = &ic->ic_if;
1159 	struct ieee80211_frame *wh;
1160 	struct ieee80211_rxinfo rxi;
1161 	struct ieee80211_node *ni;
1162 	struct mbuf *mnew, *m;
1163 	int error, rssi;
1164 
1165 	for (;;) {
1166 		struct rt2661_rx_desc *desc = &sc->rxq.desc[sc->rxq.cur];
1167 		struct rt2661_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1168 
1169 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1170 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1171 		    BUS_DMASYNC_POSTREAD);
1172 
1173 		if (letoh32(desc->flags) & RT2661_RX_BUSY)
1174 			break;
1175 
1176 		if ((letoh32(desc->flags) & RT2661_RX_PHY_ERROR) ||
1177 		    (letoh32(desc->flags) & RT2661_RX_CRC_ERROR)) {
1178 			/*
1179 			 * This should not happen since we did not request
1180 			 * to receive those frames when we filled TXRX_CSR0.
1181 			 */
1182 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1183 			    letoh32(desc->flags)));
1184 			ifp->if_ierrors++;
1185 			goto skip;
1186 		}
1187 
1188 		if ((letoh32(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1189 			ifp->if_ierrors++;
1190 			goto skip;
1191 		}
1192 
1193 		/*
1194 		 * Try to allocate a new mbuf for this ring element and load it
1195 		 * before processing the current mbuf. If the ring element
1196 		 * cannot be loaded, drop the received packet and reuse the old
1197 		 * mbuf. In the unlikely case that the old mbuf can't be
1198 		 * reloaded either, explicitly panic.
1199 		 */
1200 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1201 		if (mnew == NULL) {
1202 			ifp->if_ierrors++;
1203 			goto skip;
1204 		}
1205 		MCLGET(mnew, M_DONTWAIT);
1206 		if (!(mnew->m_flags & M_EXT)) {
1207 			m_freem(mnew);
1208 			ifp->if_ierrors++;
1209 			goto skip;
1210 		}
1211 
1212 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1213 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1214 		bus_dmamap_unload(sc->sc_dmat, data->map);
1215 
1216 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1217 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1218 		if (error != 0) {
1219 			m_freem(mnew);
1220 
1221 			/* try to reload the old mbuf */
1222 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1223 			    mtod(data->m, void *), MCLBYTES, NULL,
1224 			    BUS_DMA_NOWAIT);
1225 			if (error != 0) {
1226 				/* very unlikely that it will fail... */
1227 				panic("%s: could not load old rx mbuf",
1228 				    sc->sc_dev.dv_xname);
1229 			}
1230 			/* physical address may have changed */
1231 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1232 			ifp->if_ierrors++;
1233 			goto skip;
1234 		}
1235 
1236 		/*
1237 	 	 * New mbuf successfully loaded, update Rx ring and continue
1238 		 * processing.
1239 		 */
1240 		m = data->m;
1241 		data->m = mnew;
1242 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1243 
1244 		/* finalize mbuf */
1245 		m->m_pkthdr.len = m->m_len =
1246 		    (letoh32(desc->flags) >> 16) & 0xfff;
1247 
1248 #if NBPFILTER > 0
1249 		if (sc->sc_drvbpf != NULL) {
1250 			struct mbuf mb;
1251 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1252 			uint32_t tsf_lo, tsf_hi;
1253 
1254 			/* get timestamp (low and high 32 bits) */
1255 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1256 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1257 
1258 			tap->wr_tsf =
1259 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1260 			tap->wr_flags = 0;
1261 			tap->wr_rate = rt2661_rxrate(desc);
1262 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1263 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1264 			tap->wr_antsignal = desc->rssi;
1265 
1266 			mb.m_data = (caddr_t)tap;
1267 			mb.m_len = sc->sc_rxtap_len;
1268 			mb.m_next = m;
1269 			mb.m_nextpkt = NULL;
1270 			mb.m_type = 0;
1271 			mb.m_flags = 0;
1272 			bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1273 		}
1274 #endif
1275 
1276 		wh = mtod(m, struct ieee80211_frame *);
1277 		ni = ieee80211_find_rxnode(ic, wh);
1278 
1279 		/* send the frame to the 802.11 layer */
1280 		rxi.rxi_flags = 0;
1281 		rxi.rxi_rssi = desc->rssi;
1282 		rxi.rxi_tstamp = 0;	/* unused */
1283 		ieee80211_input(ifp, m, ni, &rxi);
1284 
1285 		/*-
1286 		 * Keep track of the average RSSI using an Exponential Moving
1287 		 * Average (EMA) of 8 Wilder's days:
1288 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
1289 		 */
1290 		rssi = rt2661_get_rssi(sc, desc->rssi);
1291 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1292 
1293 		/* node is no longer needed */
1294 		ieee80211_release_node(ic, ni);
1295 
1296 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1297 
1298 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1299 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1300 		    BUS_DMASYNC_PREWRITE);
1301 
1302 		DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1303 
1304 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1305 	}
1306 }
1307 
1308 #ifndef IEEE80211_STA_ONLY
1309 /*
1310  * This function is called in HostAP or IBSS modes when it's time to send a
1311  * new beacon (every ni_intval milliseconds).
1312  */
1313 void
1314 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1315 {
1316 	struct ieee80211com *ic = &sc->sc_ic;
1317 
1318 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1319 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1320 		sc->sc_flags |= RT2661_SET_SLOTTIME;
1321 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1322 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1323 		rt2661_set_slottime(sc);
1324 	}
1325 
1326 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1327 		/* update ERP Information Element */
1328 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1329 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
1330 	}
1331 
1332 	DPRINTFN(15, ("beacon expired\n"));
1333 }
1334 #endif
1335 
1336 void
1337 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1338 {
1339 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1340 
1341 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1342 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1343 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1344 
1345 	/* send wakeup command to MCU */
1346 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1347 }
1348 
1349 void
1350 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1351 {
1352 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1353 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1354 }
1355 
1356 int
1357 rt2661_intr(void *arg)
1358 {
1359 	struct rt2661_softc *sc = arg;
1360 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1361 	uint32_t r1, r2;
1362 
1363 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1364 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1365 	if (__predict_false(r1 == 0xffffffff && r2 == 0xffffffff))
1366 		return 0;	/* device likely went away */
1367 	if (r1 == 0 && r2 == 0)
1368 		return 0;	/* not for us */
1369 
1370 	/* disable MAC and MCU interrupts */
1371 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1372 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1373 
1374 	/* acknowledge interrupts */
1375 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1376 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1377 
1378 	/* don't re-enable interrupts if we're shutting down */
1379 	if (!(ifp->if_flags & IFF_RUNNING))
1380 		return 0;
1381 
1382 	if (r1 & RT2661_MGT_DONE)
1383 		rt2661_tx_dma_intr(sc, &sc->mgtq);
1384 
1385 	if (r1 & RT2661_RX_DONE)
1386 		rt2661_rx_intr(sc);
1387 
1388 	if (r1 & RT2661_TX0_DMA_DONE)
1389 		rt2661_tx_dma_intr(sc, &sc->txq[0]);
1390 
1391 	if (r1 & RT2661_TX1_DMA_DONE)
1392 		rt2661_tx_dma_intr(sc, &sc->txq[1]);
1393 
1394 	if (r1 & RT2661_TX2_DMA_DONE)
1395 		rt2661_tx_dma_intr(sc, &sc->txq[2]);
1396 
1397 	if (r1 & RT2661_TX3_DMA_DONE)
1398 		rt2661_tx_dma_intr(sc, &sc->txq[3]);
1399 
1400 	if (r1 & RT2661_TX_DONE)
1401 		rt2661_tx_intr(sc);
1402 
1403 	if (r2 & RT2661_MCU_CMD_DONE)
1404 		rt2661_mcu_cmd_intr(sc);
1405 
1406 #ifndef IEEE80211_STA_ONLY
1407 	if (r2 & RT2661_MCU_BEACON_EXPIRE)
1408 		rt2661_mcu_beacon_expire(sc);
1409 #endif
1410 
1411 	if (r2 & RT2661_MCU_WAKEUP)
1412 		rt2661_mcu_wakeup(sc);
1413 
1414 	/* re-enable MAC and MCU interrupts */
1415 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1416 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1417 
1418 	return 1;
1419 }
1420 
1421 /* quickly determine if a given rate is CCK or OFDM */
1422 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1423 
1424 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1425 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1426 
1427 /*
1428  * This function is only used by the Rx radiotap code. It returns the rate at
1429  * which a given frame was received.
1430  */
1431 #if NBPFILTER > 0
1432 uint8_t
1433 rt2661_rxrate(const struct rt2661_rx_desc *desc)
1434 {
1435 	if (letoh32(desc->flags) & RT2661_RX_OFDM) {
1436 		/* reverse function of rt2661_plcp_signal */
1437 		switch (desc->rate & 0xf) {
1438 		case 0xb:	return 12;
1439 		case 0xf:	return 18;
1440 		case 0xa:	return 24;
1441 		case 0xe:	return 36;
1442 		case 0x9:	return 48;
1443 		case 0xd:	return 72;
1444 		case 0x8:	return 96;
1445 		case 0xc:	return 108;
1446 		}
1447 	} else {
1448 		if (desc->rate == 10)
1449 			return 2;
1450 		if (desc->rate == 20)
1451 			return 4;
1452 		if (desc->rate == 55)
1453 			return 11;
1454 		if (desc->rate == 110)
1455 			return 22;
1456 	}
1457 	return 2;	/* should not get there */
1458 }
1459 #endif
1460 
1461 /*
1462  * Return the expected ack rate for a frame transmitted at rate `rate'.
1463  */
1464 int
1465 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1466 {
1467 	switch (rate) {
1468 	/* CCK rates */
1469 	case 2:
1470 		return 2;
1471 	case 4:
1472 	case 11:
1473 	case 22:
1474 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1475 
1476 	/* OFDM rates */
1477 	case 12:
1478 	case 18:
1479 		return 12;
1480 	case 24:
1481 	case 36:
1482 		return 24;
1483 	case 48:
1484 	case 72:
1485 	case 96:
1486 	case 108:
1487 		return 48;
1488 	}
1489 
1490 	/* default to 1Mbps */
1491 	return 2;
1492 }
1493 
1494 /*
1495  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1496  * The function automatically determines the operating mode depending on the
1497  * given rate. `flags' indicates whether short preamble is in use or not.
1498  */
1499 uint16_t
1500 rt2661_txtime(int len, int rate, uint32_t flags)
1501 {
1502 	uint16_t txtime;
1503 
1504 	if (RAL_RATE_IS_OFDM(rate)) {
1505 		/* IEEE Std 802.11g-2003, pp. 44 */
1506 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1507 		txtime = 16 + 4 + 4 * txtime + 6;
1508 	} else {
1509 		/* IEEE Std 802.11b-1999, pp. 28 */
1510 		txtime = (16 * len + rate - 1) / rate;
1511 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1512 			txtime +=  72 + 24;
1513 		else
1514 			txtime += 144 + 48;
1515 	}
1516 	return txtime;
1517 }
1518 
1519 uint8_t
1520 rt2661_plcp_signal(int rate)
1521 {
1522 	switch (rate) {
1523 	/* CCK rates (returned values are device-dependent) */
1524 	case 2:		return 0x0;
1525 	case 4:		return 0x1;
1526 	case 11:	return 0x2;
1527 	case 22:	return 0x3;
1528 
1529 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1530 	case 12:	return 0xb;
1531 	case 18:	return 0xf;
1532 	case 24:	return 0xa;
1533 	case 36:	return 0xe;
1534 	case 48:	return 0x9;
1535 	case 72:	return 0xd;
1536 	case 96:	return 0x8;
1537 	case 108:	return 0xc;
1538 
1539 	/* unsupported rates (should not get there) */
1540 	default:	return 0xff;
1541 	}
1542 }
1543 
1544 void
1545 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1546     uint32_t flags, uint16_t xflags, int len, int rate,
1547     const bus_dma_segment_t *segs, int nsegs, int ac, u_int8_t amrr_id)
1548 {
1549 	struct ieee80211com *ic = &sc->sc_ic;
1550 	uint16_t plcp_length;
1551 	int i, remainder;
1552 
1553 	desc->flags = htole32(flags);
1554 	desc->flags |= htole32(len << 16);
1555 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1556 
1557 	desc->xflags = htole16(xflags);
1558 	desc->xflags |= htole16(nsegs << 13);
1559 
1560 	desc->wme = htole16(
1561 	    RT2661_QID(ac) |
1562 	    RT2661_AIFSN(2) |
1563 	    RT2661_LOGCWMIN(4) |
1564 	    RT2661_LOGCWMAX(10));
1565 
1566 	/*
1567 	 * Remember the ID of the AMRR node to update when Tx completes.
1568 	 * This field is driver private data only. It will be made available
1569 	 * by the NIC in STA_CSR4 on Tx interrupts.
1570 	 */
1571 	desc->priv_data = amrr_id;
1572 
1573 	/* setup PLCP fields */
1574 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1575 	desc->plcp_service = 4;
1576 
1577 	len += IEEE80211_CRC_LEN;
1578 	if (RAL_RATE_IS_OFDM(rate)) {
1579 		desc->flags |= htole32(RT2661_TX_OFDM);
1580 
1581 		plcp_length = len & 0xfff;
1582 		desc->plcp_length_hi = plcp_length >> 6;
1583 		desc->plcp_length_lo = plcp_length & 0x3f;
1584 	} else {
1585 		plcp_length = (16 * len + rate - 1) / rate;
1586 		if (rate == 22) {
1587 			remainder = (16 * len) % 22;
1588 			if (remainder != 0 && remainder < 7)
1589 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1590 		}
1591 		desc->plcp_length_hi = plcp_length >> 8;
1592 		desc->plcp_length_lo = plcp_length & 0xff;
1593 
1594 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1595 			desc->plcp_signal |= 0x08;
1596 	}
1597 
1598 	/* RT2x61 supports scatter with up to 5 segments */
1599 	for (i = 0; i < nsegs; i++) {
1600 		desc->addr[i] = htole32(segs[i].ds_addr);
1601 		desc->len [i] = htole16(segs[i].ds_len);
1602 	}
1603 }
1604 
1605 int
1606 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1607     struct ieee80211_node *ni)
1608 {
1609 	struct ieee80211com *ic = &sc->sc_ic;
1610 	struct rt2661_tx_desc *desc;
1611 	struct rt2661_tx_data *data;
1612 	struct ieee80211_frame *wh;
1613 	uint16_t dur;
1614 	uint32_t flags = 0;
1615 	int rate, error;
1616 
1617 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1618 	data = &sc->mgtq.data[sc->mgtq.cur];
1619 
1620 	/* send mgt frames at the lowest available rate */
1621 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1622 
1623 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1624 	    BUS_DMA_NOWAIT);
1625 	if (error != 0) {
1626 		printf("%s: can't map mbuf (error %d)\n",
1627 		    sc->sc_dev.dv_xname, error);
1628 		m_freem(m0);
1629 		return error;
1630 	}
1631 
1632 #if NBPFILTER > 0
1633 	if (sc->sc_drvbpf != NULL) {
1634 		struct mbuf mb;
1635 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1636 
1637 		tap->wt_flags = 0;
1638 		tap->wt_rate = rate;
1639 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1640 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1641 
1642 		mb.m_data = (caddr_t)tap;
1643 		mb.m_len = sc->sc_txtap_len;
1644 		mb.m_next = m0;
1645 		mb.m_nextpkt = NULL;
1646 		mb.m_type = 0;
1647 		mb.m_flags = 0;
1648 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1649 	}
1650 #endif
1651 
1652 	data->m = m0;
1653 	data->ni = ni;
1654 
1655 	wh = mtod(m0, struct ieee80211_frame *);
1656 
1657 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1658 		flags |= RT2661_TX_NEED_ACK;
1659 
1660 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1661 		    sc->sifs;
1662 		*(uint16_t *)wh->i_dur = htole16(dur);
1663 
1664 #ifndef IEEE80211_STA_ONLY
1665 		/* tell hardware to set timestamp in probe responses */
1666 		if ((wh->i_fc[0] &
1667 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1668 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1669 			flags |= RT2661_TX_TIMESTAMP;
1670 #endif
1671 	}
1672 
1673 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1674 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1675 	    RT2661_QID_MGT, RT2661_AMRR_INVALID_ID);
1676 
1677 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1678 	    BUS_DMASYNC_PREWRITE);
1679 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1680 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1681 	    BUS_DMASYNC_PREWRITE);
1682 
1683 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1684 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1685 
1686 	/* kick mgt */
1687 	sc->mgtq.queued++;
1688 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1689 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1690 
1691 	return 0;
1692 }
1693 
1694 int
1695 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1696     struct ieee80211_node *ni, int ac)
1697 {
1698 	struct ieee80211com *ic = &sc->sc_ic;
1699 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1700 	struct rt2661_node *rn;
1701 	struct rt2661_tx_desc *desc;
1702 	struct rt2661_tx_data *data;
1703 	struct ieee80211_frame *wh;
1704 	struct ieee80211_key *k;
1705 	struct mbuf *m1;
1706 	uint16_t dur;
1707 	uint32_t flags = 0;
1708 	int pktlen, rate, needcts = 0, needrts = 0, error;
1709 
1710 	rn = ((ni == ic->ic_bss) ? NULL : (struct rt2661_node *)ni);
1711 	wh = mtod(m0, struct ieee80211_frame *);
1712 
1713 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1714 		k = ieee80211_get_txkey(ic, wh, ni);
1715 
1716 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1717 			return ENOBUFS;
1718 
1719 		/* packet header may have moved, reset our local pointer */
1720 		wh = mtod(m0, struct ieee80211_frame *);
1721 	}
1722 
1723 	/* compute actual packet length (including CRC and crypto overhead) */
1724 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1725 
1726 	/* pickup a rate */
1727 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1728 		/* multicast frames are sent at the lowest avail. rate */
1729 		rate = ni->ni_rates.rs_rates[0];
1730 	} else if (ic->ic_fixed_rate != -1) {
1731 		rate = ic->ic_sup_rates[ic->ic_curmode].
1732 		    rs_rates[ic->ic_fixed_rate];
1733 	} else
1734 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1735 	if (rate == 0)
1736 		rate = 2;	/* XXX should not happen */
1737 	rate &= IEEE80211_RATE_VAL;
1738 
1739 	/*
1740 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1741 	 * chance to contend for the wireless medium.
1742 	 */
1743 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseq & 7))
1744 		flags |= RT2661_TX_IFS_SIFS;
1745 
1746 	/* check if RTS/CTS or CTS-to-self protection must be used */
1747 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1748 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1749 		if (pktlen > ic->ic_rtsthreshold) {
1750 			needrts = 1;	/* RTS/CTS based on frame length */
1751 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1752 		    RAL_RATE_IS_OFDM(rate)) {
1753 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1754 				needcts = 1;	/* CTS-to-self */
1755 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1756 				needrts = 1;	/* RTS/CTS */
1757 		}
1758 	}
1759 	if (needrts || needcts) {
1760 		struct mbuf *mprot;
1761 		int protrate, ackrate;
1762 
1763 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1764 		ackrate  = rt2661_ack_rate(ic, rate);
1765 
1766 		dur = rt2661_txtime(pktlen, rate, ic->ic_flags) +
1767 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1768 		      2 * sc->sifs;
1769 		if (needrts) {
1770 			dur += rt2661_txtime(RAL_CTS_SIZE, rt2661_ack_rate(ic,
1771 			    protrate), ic->ic_flags) + sc->sifs;
1772 			mprot = ieee80211_get_rts(ic, wh, dur);
1773 		} else {
1774 			mprot = ieee80211_get_cts_to_self(ic, dur);
1775 		}
1776 		if (mprot == NULL) {
1777 			printf("%s: could not allocate protection frame\n",
1778 			    sc->sc_dev.dv_xname);
1779 			m_freem(m0);
1780 			return ENOBUFS;
1781 		}
1782 
1783 		desc = &txq->desc[txq->cur];
1784 		data = &txq->data[txq->cur];
1785 
1786 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, mprot,
1787 		    BUS_DMA_NOWAIT);
1788 		if (error != 0) {
1789 			printf("%s: can't map mbuf (error %d)\n",
1790 			    sc->sc_dev.dv_xname, error);
1791 			m_freem(mprot);
1792 			m_freem(m0);
1793 			return error;
1794 		}
1795 
1796 		data->m = mprot;
1797 		/* avoid multiple free() of the same node for each fragment */
1798 		data->ni = ieee80211_ref_node(ni);
1799 
1800 		/* XXX may want to pass the protection frame to BPF */
1801 
1802 		rt2661_setup_tx_desc(sc, desc,
1803 		    (needrts ? RT2661_TX_NEED_ACK : 0) | RT2661_TX_MORE_FRAG,
1804 		    0, mprot->m_pkthdr.len, protrate, data->map->dm_segs,
1805 		    data->map->dm_nsegs, ac,
1806 	    	    (rn && rn->amn) ? rn->amn->id : RT2661_AMRR_INVALID_ID);
1807 
1808 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1809 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1810 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1811 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1812 		    BUS_DMASYNC_PREWRITE);
1813 
1814 		txq->queued++;
1815 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1816 
1817 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1818 	}
1819 
1820 	data = &txq->data[txq->cur];
1821 	desc = &txq->desc[txq->cur];
1822 
1823 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1824 	    BUS_DMA_NOWAIT);
1825 	if (error != 0 && error != EFBIG) {
1826 		printf("%s: can't map mbuf (error %d)\n",
1827 		    sc->sc_dev.dv_xname, error);
1828 		m_freem(m0);
1829 		return error;
1830 	}
1831 	if (error != 0) {
1832 		/* too many fragments, linearize */
1833 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1834 		if (m1 == NULL) {
1835 			m_freem(m0);
1836 			return ENOBUFS;
1837 		}
1838 		if (m0->m_pkthdr.len > MHLEN) {
1839 			MCLGET(m1, M_DONTWAIT);
1840 			if (!(m1->m_flags & M_EXT)) {
1841 				m_freem(m0);
1842 				m_freem(m1);
1843 				return ENOBUFS;
1844 			}
1845 		}
1846 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m1, caddr_t));
1847 		m1->m_pkthdr.len = m1->m_len = m0->m_pkthdr.len;
1848 		m_freem(m0);
1849 		m0 = m1;
1850 
1851 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1852 		    BUS_DMA_NOWAIT);
1853 		if (error != 0) {
1854 			printf("%s: can't map mbuf (error %d)\n",
1855 			    sc->sc_dev.dv_xname, error);
1856 			m_freem(m0);
1857 			return error;
1858 		}
1859 
1860 		/* packet header have moved, reset our local pointer */
1861 		wh = mtod(m0, struct ieee80211_frame *);
1862 	}
1863 
1864 #if NBPFILTER > 0
1865 	if (sc->sc_drvbpf != NULL) {
1866 		struct mbuf mb;
1867 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1868 
1869 		tap->wt_flags = 0;
1870 		tap->wt_rate = rate;
1871 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1872 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1873 
1874 		mb.m_data = (caddr_t)tap;
1875 		mb.m_len = sc->sc_txtap_len;
1876 		mb.m_next = m0;
1877 		mb.m_nextpkt = NULL;
1878 		mb.m_type = 0;
1879 		mb.m_flags = 0;
1880 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1881 	}
1882 #endif
1883 
1884 	data->m = m0;
1885 	data->ni = ni;
1886 
1887 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1888 		flags |= RT2661_TX_NEED_ACK;
1889 
1890 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1891 		    ic->ic_flags) + sc->sifs;
1892 		*(uint16_t *)wh->i_dur = htole16(dur);
1893 	}
1894 
1895 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1896 	    data->map->dm_segs, data->map->dm_nsegs, ac,
1897 	    (rn && rn->amn) ? rn->amn->id : RT2661_AMRR_INVALID_ID);
1898 
1899 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1900 	    BUS_DMASYNC_PREWRITE);
1901 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1902 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1903 
1904 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1905 	    m0->m_pkthdr.len, txq->cur, rate));
1906 
1907 	/* kick Tx */
1908 	txq->queued++;
1909 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1910 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1911 
1912 	return 0;
1913 }
1914 
1915 void
1916 rt2661_start(struct ifnet *ifp)
1917 {
1918 	struct rt2661_softc *sc = ifp->if_softc;
1919 	struct ieee80211com *ic = &sc->sc_ic;
1920 	struct mbuf *m0;
1921 	struct ieee80211_node *ni;
1922 
1923 	/*
1924 	 * net80211 may still try to send management frames even if the
1925 	 * IFF_RUNNING flag is not set...
1926 	 */
1927 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1928 		return;
1929 
1930 	for (;;) {
1931 		if (mq_len(&ic->ic_mgtq) > 0) {
1932 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1933 				ifq_set_oactive(&ifp->if_snd);
1934 				break;
1935 			}
1936 
1937 			m0 = mq_dequeue(&ic->ic_mgtq);
1938 			if (m0 == NULL)
1939 				continue;
1940 			ni = m0->m_pkthdr.ph_cookie;
1941 #if NBPFILTER > 0
1942 			if (ic->ic_rawbpf != NULL)
1943 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1944 #endif
1945 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1946 				break;
1947 
1948 		} else {
1949 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1950 				ifq_set_oactive(&ifp->if_snd);
1951 				break;
1952 			}
1953 
1954 			if (ic->ic_state != IEEE80211_S_RUN)
1955 				break;
1956 
1957 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1958 			if (m0 == NULL)
1959 				break;
1960 #if NBPFILTER > 0
1961 			if (ifp->if_bpf != NULL)
1962 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1963 #endif
1964 			m0 = ieee80211_encap(ifp, m0, &ni);
1965 			if (m0 == NULL)
1966 				continue;
1967 #if NBPFILTER > 0
1968 			if (ic->ic_rawbpf != NULL)
1969 				bpf_mtap(ic->ic_rawbpf, m0,
1970 				    BPF_DIRECTION_OUT);
1971 #endif
1972 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1973 				if (ni != NULL)
1974 					ieee80211_release_node(ic, ni);
1975 				ifp->if_oerrors++;
1976 				break;
1977 			}
1978 		}
1979 
1980 		sc->sc_tx_timer = 5;
1981 		ifp->if_timer = 1;
1982 	}
1983 }
1984 
1985 void
1986 rt2661_watchdog(struct ifnet *ifp)
1987 {
1988 	struct rt2661_softc *sc = ifp->if_softc;
1989 
1990 	ifp->if_timer = 0;
1991 
1992 	if (sc->sc_tx_timer > 0) {
1993 		if (--sc->sc_tx_timer == 0) {
1994 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1995 			rt2661_init(ifp);
1996 			ifp->if_oerrors++;
1997 			return;
1998 		}
1999 		ifp->if_timer = 1;
2000 	}
2001 
2002 	ieee80211_watchdog(ifp);
2003 }
2004 
2005 int
2006 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2007 {
2008 	struct rt2661_softc *sc = ifp->if_softc;
2009 	struct ieee80211com *ic = &sc->sc_ic;
2010 	struct ifreq *ifr;
2011 	int s, error = 0;
2012 
2013 	s = splnet();
2014 
2015 	switch (cmd) {
2016 	case SIOCSIFADDR:
2017 		ifp->if_flags |= IFF_UP;
2018 		/* FALLTHROUGH */
2019 	case SIOCSIFFLAGS:
2020 		if (ifp->if_flags & IFF_UP) {
2021 			if (ifp->if_flags & IFF_RUNNING)
2022 				rt2661_update_promisc(sc);
2023 			else
2024 				rt2661_init(ifp);
2025 		} else {
2026 			if (ifp->if_flags & IFF_RUNNING)
2027 				rt2661_stop(ifp, 1);
2028 		}
2029 		break;
2030 
2031 	case SIOCADDMULTI:
2032 	case SIOCDELMULTI:
2033 		ifr = (struct ifreq *)data;
2034 		error = (cmd == SIOCADDMULTI) ?
2035 		    ether_addmulti(ifr, &ic->ic_ac) :
2036 		    ether_delmulti(ifr, &ic->ic_ac);
2037 
2038 		if (error == ENETRESET)
2039 			error = 0;
2040 		break;
2041 
2042 	case SIOCS80211CHANNEL:
2043 		/*
2044 		 * This allows for fast channel switching in monitor mode
2045 		 * (used by kismet). In IBSS mode, we must explicitly reset
2046 		 * the interface to generate a new beacon frame.
2047 		 */
2048 		error = ieee80211_ioctl(ifp, cmd, data);
2049 		if (error == ENETRESET &&
2050 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2051 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2052 			    (IFF_UP | IFF_RUNNING))
2053 				rt2661_set_chan(sc, ic->ic_ibss_chan);
2054 			error = 0;
2055 		}
2056 		break;
2057 
2058 	default:
2059 		error = ieee80211_ioctl(ifp, cmd, data);
2060 	}
2061 
2062 	if (error == ENETRESET) {
2063 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2064 		    (IFF_UP | IFF_RUNNING))
2065 			rt2661_init(ifp);
2066 		error = 0;
2067 	}
2068 
2069 	splx(s);
2070 
2071 	return error;
2072 }
2073 
2074 void
2075 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2076 {
2077 	uint32_t tmp;
2078 	int ntries;
2079 
2080 	for (ntries = 0; ntries < 100; ntries++) {
2081 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2082 			break;
2083 		DELAY(1);
2084 	}
2085 	if (ntries == 100) {
2086 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2087 		return;
2088 	}
2089 
2090 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2091 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2092 
2093 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2094 }
2095 
2096 uint8_t
2097 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2098 {
2099 	uint32_t val;
2100 	int ntries;
2101 
2102 	for (ntries = 0; ntries < 100; ntries++) {
2103 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2104 			break;
2105 		DELAY(1);
2106 	}
2107 	if (ntries == 100) {
2108 		printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2109 		return 0;
2110 	}
2111 
2112 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2113 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2114 
2115 	for (ntries = 0; ntries < 100; ntries++) {
2116 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2117 		if (!(val & RT2661_BBP_BUSY))
2118 			return val & 0xff;
2119 		DELAY(1);
2120 	}
2121 
2122 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2123 	return 0;
2124 }
2125 
2126 void
2127 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2128 {
2129 	uint32_t tmp;
2130 	int ntries;
2131 
2132 	for (ntries = 0; ntries < 100; ntries++) {
2133 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2134 			break;
2135 		DELAY(1);
2136 	}
2137 	if (ntries == 100) {
2138 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2139 		return;
2140 	}
2141 
2142 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2143 	    (reg & 3);
2144 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2145 
2146 	/* remember last written value in sc */
2147 	sc->rf_regs[reg] = val;
2148 
2149 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2150 }
2151 
2152 int
2153 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2154 {
2155 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2156 		return EIO;	/* there is already a command pending */
2157 
2158 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2159 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2160 
2161 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2162 
2163 	return 0;
2164 }
2165 
2166 void
2167 rt2661_select_antenna(struct rt2661_softc *sc)
2168 {
2169 	uint8_t bbp4, bbp77;
2170 	uint32_t tmp;
2171 
2172 	bbp4  = rt2661_bbp_read(sc,  4);
2173 	bbp77 = rt2661_bbp_read(sc, 77);
2174 
2175 	/* TBD */
2176 
2177 	/* make sure Rx is disabled before switching antenna */
2178 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2179 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2180 
2181 	rt2661_bbp_write(sc,  4, bbp4);
2182 	rt2661_bbp_write(sc, 77, bbp77);
2183 
2184 	/* restore Rx filter */
2185 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2186 }
2187 
2188 /*
2189  * Enable multi-rate retries for frames sent at OFDM rates.
2190  * In 802.11b/g mode, allow fallback to CCK rates.
2191  */
2192 void
2193 rt2661_enable_mrr(struct rt2661_softc *sc)
2194 {
2195 	struct ieee80211com *ic = &sc->sc_ic;
2196 	uint32_t tmp;
2197 
2198 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2199 
2200 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2201 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2202 		tmp |= RT2661_MRR_CCK_FALLBACK;
2203 	tmp |= RT2661_MRR_ENABLED;
2204 
2205 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2206 }
2207 
2208 void
2209 rt2661_set_txpreamble(struct rt2661_softc *sc)
2210 {
2211 	uint32_t tmp;
2212 
2213 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2214 
2215 	tmp &= ~RT2661_SHORT_PREAMBLE;
2216 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2217 		tmp |= RT2661_SHORT_PREAMBLE;
2218 
2219 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2220 }
2221 
2222 void
2223 rt2661_set_basicrates(struct rt2661_softc *sc)
2224 {
2225 	struct ieee80211com *ic = &sc->sc_ic;
2226 
2227 	/* update basic rate set */
2228 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2229 		/* 11b basic rates: 1, 2Mbps */
2230 		RAL_WRITE(sc, RT2661_TXRX_CSR5, 0x3);
2231 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
2232 		/* 11a basic rates: 6, 12, 24Mbps */
2233 		RAL_WRITE(sc, RT2661_TXRX_CSR5, 0x150);
2234 	} else {
2235 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2236 		RAL_WRITE(sc, RT2661_TXRX_CSR5, 0xf);
2237 	}
2238 }
2239 
2240 /*
2241  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2242  * driver.
2243  */
2244 void
2245 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2246 {
2247 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2248 	uint32_t tmp;
2249 
2250 	/* update all BBP registers that depend on the band */
2251 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2252 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2253 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2254 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2255 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2256 	}
2257 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2258 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2259 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2260 	}
2261 
2262 	sc->bbp17 = bbp17;
2263 	rt2661_bbp_write(sc,  17, bbp17);
2264 	rt2661_bbp_write(sc,  96, bbp96);
2265 	rt2661_bbp_write(sc, 104, bbp104);
2266 
2267 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2268 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2269 		rt2661_bbp_write(sc, 75, 0x80);
2270 		rt2661_bbp_write(sc, 86, 0x80);
2271 		rt2661_bbp_write(sc, 88, 0x80);
2272 	}
2273 
2274 	rt2661_bbp_write(sc, 35, bbp35);
2275 	rt2661_bbp_write(sc, 97, bbp97);
2276 	rt2661_bbp_write(sc, 98, bbp98);
2277 
2278 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2279 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2280 	if (IEEE80211_IS_CHAN_2GHZ(c))
2281 		tmp |= RT2661_PA_PE_2GHZ;
2282 	else
2283 		tmp |= RT2661_PA_PE_5GHZ;
2284 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2285 
2286 	/* 802.11a uses a 16 microseconds short interframe space */
2287 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2288 }
2289 
2290 void
2291 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2292 {
2293 	struct ieee80211com *ic = &sc->sc_ic;
2294 	const struct rfprog *rfprog;
2295 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2296 	int8_t power;
2297 	u_int i, chan;
2298 
2299 	chan = ieee80211_chan2ieee(ic, c);
2300 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2301 		return;
2302 
2303 	/* select the appropriate RF settings based on what EEPROM says */
2304 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2305 
2306 	/* find the settings for this channel (we know it exists) */
2307 	for (i = 0; rfprog[i].chan != chan; i++);
2308 
2309 	power = sc->txpow[i];
2310 	if (power < 0) {
2311 		bbp94 += power;
2312 		power = 0;
2313 	} else if (power > 31) {
2314 		bbp94 += power - 31;
2315 		power = 31;
2316 	}
2317 
2318 	/*
2319 	 * If we are switching from the 2GHz band to the 5GHz band or
2320 	 * vice-versa, BBP registers need to be reprogrammed.
2321 	 */
2322 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
2323 		rt2661_select_band(sc, c);
2324 		rt2661_select_antenna(sc);
2325 	}
2326 	sc->sc_curchan = c;
2327 
2328 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2329 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2330 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2331 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2332 
2333 	DELAY(200);
2334 
2335 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2336 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2337 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2338 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2339 
2340 	DELAY(200);
2341 
2342 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2343 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2344 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2345 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2346 
2347 	/* enable smart mode for MIMO-capable RFs */
2348 	bbp3 = rt2661_bbp_read(sc, 3);
2349 
2350 	bbp3 &= ~RT2661_SMART_MODE;
2351 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2352 		bbp3 |= RT2661_SMART_MODE;
2353 
2354 	rt2661_bbp_write(sc, 3, bbp3);
2355 
2356 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2357 		rt2661_bbp_write(sc, 94, bbp94);
2358 
2359 	/* 5GHz radio needs a 1ms delay here */
2360 	if (IEEE80211_IS_CHAN_5GHZ(c))
2361 		DELAY(1000);
2362 }
2363 
2364 void
2365 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2366 {
2367 	uint32_t tmp;
2368 
2369 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2370 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2371 
2372 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2373 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2374 }
2375 
2376 void
2377 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2378 {
2379 	uint32_t tmp;
2380 
2381 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2382 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2383 
2384 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2385 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2386 }
2387 
2388 void
2389 rt2661_update_promisc(struct rt2661_softc *sc)
2390 {
2391 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2392 	uint32_t tmp;
2393 
2394 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2395 
2396 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2397 	if (!(ifp->if_flags & IFF_PROMISC))
2398 		tmp |= RT2661_DROP_NOT_TO_ME;
2399 
2400 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2401 
2402 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2403 	    "entering" : "leaving"));
2404 }
2405 
2406 void
2407 rt2661_updateslot(struct ieee80211com *ic)
2408 {
2409 	struct rt2661_softc *sc = ic->ic_if.if_softc;
2410 
2411 #ifndef IEEE80211_STA_ONLY
2412 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2413 		/*
2414 		 * In HostAP mode, we defer setting of new slot time until
2415 		 * updated ERP Information Element has propagated to all
2416 		 * associated STAs.
2417 		 */
2418 		sc->sc_flags |= RT2661_UPDATE_SLOT;
2419 	} else
2420 #endif
2421 		rt2661_set_slottime(sc);
2422 }
2423 
2424 void
2425 rt2661_set_slottime(struct rt2661_softc *sc)
2426 {
2427 	struct ieee80211com *ic = &sc->sc_ic;
2428 	uint8_t slottime;
2429 	uint32_t tmp;
2430 
2431 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2432 
2433 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2434 	tmp = (tmp & ~0xff) | slottime;
2435 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2436 
2437 	DPRINTF(("setting slot time to %uus\n", slottime));
2438 }
2439 
2440 const char *
2441 rt2661_get_rf(int rev)
2442 {
2443 	switch (rev) {
2444 	case RT2661_RF_5225:	return "RT5225";
2445 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2446 	case RT2661_RF_2527:	return "RT2527";
2447 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2448 	default:		return "unknown";
2449 	}
2450 }
2451 
2452 void
2453 rt2661_read_eeprom(struct rt2661_softc *sc)
2454 {
2455 	struct ieee80211com *ic = &sc->sc_ic;
2456 	uint16_t val;
2457 	int i;
2458 
2459 	/* read MAC address */
2460 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2461 	ic->ic_myaddr[0] = val & 0xff;
2462 	ic->ic_myaddr[1] = val >> 8;
2463 
2464 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2465 	ic->ic_myaddr[2] = val & 0xff;
2466 	ic->ic_myaddr[3] = val >> 8;
2467 
2468 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2469 	ic->ic_myaddr[4] = val & 0xff;
2470 	ic->ic_myaddr[5] = val >> 8;
2471 
2472 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2473 	/* XXX: test if different from 0xffff? */
2474 	sc->rf_rev   = (val >> 11) & 0x1f;
2475 	sc->hw_radio = (val >> 10) & 0x1;
2476 	sc->rx_ant   = (val >> 4)  & 0x3;
2477 	sc->tx_ant   = (val >> 2)  & 0x3;
2478 	sc->nb_ant   = val & 0x3;
2479 
2480 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2481 
2482 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2483 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2484 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2485 
2486 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2487 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2488 
2489 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2490 	if ((val & 0xff) != 0xff)
2491 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2492 
2493 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2494 	if ((val & 0xff) != 0xff)
2495 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2496 
2497 	/* adjust RSSI correction for external low-noise amplifier */
2498 	if (sc->ext_2ghz_lna)
2499 		sc->rssi_2ghz_corr -= 14;
2500 	if (sc->ext_5ghz_lna)
2501 		sc->rssi_5ghz_corr -= 14;
2502 
2503 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2504 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2505 
2506 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2507 	if ((val >> 8) != 0xff)
2508 		sc->rfprog = (val >> 8) & 0x3;
2509 	if ((val & 0xff) != 0xff)
2510 		sc->rffreq = val & 0xff;
2511 
2512 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2513 
2514 	/* read Tx power for all a/b/g channels */
2515 	for (i = 0; i < 19; i++) {
2516 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2517 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2518 		DPRINTF(("Channel=%d Tx power=%d\n",
2519 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2520 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2521 		DPRINTF(("Channel=%d Tx power=%d\n",
2522 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2523 	}
2524 
2525 	/* read vendor-specific BBP values */
2526 	for (i = 0; i < 16; i++) {
2527 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2528 		if (val == 0 || val == 0xffff)
2529 			continue;	/* skip invalid entries */
2530 		sc->bbp_prom[i].reg = val >> 8;
2531 		sc->bbp_prom[i].val = val & 0xff;
2532 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2533 		    sc->bbp_prom[i].val));
2534 	}
2535 }
2536 
2537 int
2538 rt2661_bbp_init(struct rt2661_softc *sc)
2539 {
2540 	int i, ntries;
2541 
2542 	/* wait for BBP to be ready */
2543 	for (ntries = 0; ntries < 100; ntries++) {
2544 		const uint8_t val = rt2661_bbp_read(sc, 0);
2545 		if (val != 0 && val != 0xff)
2546 			break;
2547 		DELAY(100);
2548 	}
2549 	if (ntries == 100) {
2550 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2551 		return EIO;
2552 	}
2553 
2554 	/* initialize BBP registers to default values */
2555 	for (i = 0; i < nitems(rt2661_def_bbp); i++) {
2556 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2557 		    rt2661_def_bbp[i].val);
2558 	}
2559 
2560 	/* write vendor-specific BBP values (from EEPROM) */
2561 	for (i = 0; i < 16; i++) {
2562 		if (sc->bbp_prom[i].reg == 0)
2563 			continue;
2564 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2565 	}
2566 
2567 	return 0;
2568 }
2569 
2570 int
2571 rt2661_init(struct ifnet *ifp)
2572 {
2573 	struct rt2661_softc *sc = ifp->if_softc;
2574 	struct ieee80211com *ic = &sc->sc_ic;
2575 	uint32_t tmp, sta[3];
2576 	int i, ntries;
2577 
2578 	/* for CardBus, power on the socket */
2579 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2580 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2581 			printf("%s: could not enable device\n",
2582 			    sc->sc_dev.dv_xname);
2583 			return EIO;
2584 		}
2585 		sc->sc_flags |= RT2661_ENABLED;
2586 	}
2587 
2588 	rt2661_stop(ifp, 0);
2589 
2590 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2591 		if (rt2661_load_microcode(sc) != 0) {
2592 			printf("%s: could not load 8051 microcode\n",
2593 			    sc->sc_dev.dv_xname);
2594 			rt2661_stop(ifp, 1);
2595 			return EIO;
2596 		}
2597 		sc->sc_flags |= RT2661_FWLOADED;
2598 	}
2599 
2600 	/* initialize Tx rings */
2601 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2602 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2603 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2604 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2605 
2606 	/* initialize Mgt ring */
2607 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2608 
2609 	/* initialize Rx ring */
2610 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2611 
2612 	/* initialize Tx rings sizes */
2613 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2614 	    RT2661_TX_RING_COUNT << 24 |
2615 	    RT2661_TX_RING_COUNT << 16 |
2616 	    RT2661_TX_RING_COUNT <<  8 |
2617 	    RT2661_TX_RING_COUNT);
2618 
2619 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2620 	    RT2661_TX_DESC_WSIZE << 16 |
2621 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2622 	    RT2661_MGT_RING_COUNT);
2623 
2624 	/* initialize Rx rings */
2625 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2626 	    RT2661_RX_DESC_BACK  << 16 |
2627 	    RT2661_RX_DESC_WSIZE <<  8 |
2628 	    RT2661_RX_RING_COUNT);
2629 
2630 	/* XXX: some magic here */
2631 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2632 
2633 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2634 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2635 
2636 	/* load base address of Rx ring */
2637 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2638 
2639 	/* initialize MAC registers to default values */
2640 	for (i = 0; i < nitems(rt2661_def_mac); i++)
2641 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2642 
2643 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2644 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2645 
2646 	/* set host ready */
2647 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2648 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2649 
2650 	/* wait for BBP/RF to wakeup */
2651 	for (ntries = 0; ntries < 1000; ntries++) {
2652 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2653 			break;
2654 		DELAY(1000);
2655 	}
2656 	if (ntries == 1000) {
2657 		printf("timeout waiting for BBP/RF to wakeup\n");
2658 		rt2661_stop(ifp, 1);
2659 		return EIO;
2660 	}
2661 
2662 	if (rt2661_bbp_init(sc) != 0) {
2663 		rt2661_stop(ifp, 1);
2664 		return EIO;
2665 	}
2666 
2667 	/* select default channel */
2668 	sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2669 	rt2661_select_band(sc, sc->sc_curchan);
2670 	rt2661_select_antenna(sc);
2671 	rt2661_set_chan(sc, sc->sc_curchan);
2672 
2673 	/* update Rx filter */
2674 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2675 
2676 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2677 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2678 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2679 		       RT2661_DROP_ACKCTS;
2680 #ifndef IEEE80211_STA_ONLY
2681 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2682 #endif
2683 			tmp |= RT2661_DROP_TODS;
2684 		if (!(ifp->if_flags & IFF_PROMISC))
2685 			tmp |= RT2661_DROP_NOT_TO_ME;
2686 	}
2687 
2688 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2689 
2690 	/* clear STA registers */
2691 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, nitems(sta));
2692 
2693 	/* initialize ASIC */
2694 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2695 
2696 	/* clear any pending interrupt */
2697 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2698 
2699 	/* enable interrupts */
2700 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2701 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2702 
2703 	/* kick Rx */
2704 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2705 
2706 	ifp->if_flags |= IFF_RUNNING;
2707 	ifq_clr_oactive(&ifp->if_snd);
2708 
2709 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2710 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2711 	else
2712 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2713 
2714 	return 0;
2715 }
2716 
2717 void
2718 rt2661_stop(struct ifnet *ifp, int disable)
2719 {
2720 	struct rt2661_softc *sc = ifp->if_softc;
2721 	struct ieee80211com *ic = &sc->sc_ic;
2722 	uint32_t tmp;
2723 	int ac;
2724 
2725 	sc->sc_tx_timer = 0;
2726 	ifp->if_timer = 0;
2727 	ifp->if_flags &= ~IFF_RUNNING;
2728 	ifq_clr_oactive(&ifp->if_snd);
2729 
2730 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2731 	rt2661_amrr_node_free_all(sc);
2732 
2733 	/* abort Tx (for all 5 Tx rings) */
2734 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2735 
2736 	/* disable Rx (value remains after reset!) */
2737 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2738 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2739 
2740 	/* reset ASIC */
2741 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2742 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2743 
2744 	/* disable interrupts */
2745 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2746 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2747 
2748 	/* clear any pending interrupt */
2749 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2750 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2751 
2752 	/* reset Tx and Rx rings */
2753 	for (ac = 0; ac < 4; ac++)
2754 		rt2661_reset_tx_ring(sc, &sc->txq[ac]);
2755 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2756 	rt2661_reset_rx_ring(sc, &sc->rxq);
2757 
2758 	/* for CardBus, power down the socket */
2759 	if (disable && sc->sc_disable != NULL) {
2760 		if (sc->sc_flags & RT2661_ENABLED) {
2761 			(*sc->sc_disable)(sc);
2762 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2763 		}
2764 	}
2765 }
2766 
2767 int
2768 rt2661_load_microcode(struct rt2661_softc *sc)
2769 {
2770 	int ntries;
2771 
2772 	/* reset 8051 */
2773 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2774 
2775 	/* cancel any pending Host to MCU command */
2776 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2777 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2778 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2779 
2780 	/* write 8051's microcode */
2781 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2782 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, sc->ucode, sc->ucsize);
2783 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2784 
2785 	/* kick 8051's ass */
2786 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2787 
2788 	/* wait for 8051 to initialize */
2789 	for (ntries = 0; ntries < 500; ntries++) {
2790 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2791 			break;
2792 		DELAY(100);
2793 	}
2794 	if (ntries == 500) {
2795 		printf("%s: timeout waiting for MCU to initialize\n",
2796 		    sc->sc_dev.dv_xname);
2797 		return EIO;
2798 	}
2799 	return 0;
2800 }
2801 
2802 /*
2803  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2804  * false CCA count.  This function is called periodically (every seconds) when
2805  * in the RUN state.  Values taken from the reference driver.
2806  */
2807 void
2808 rt2661_rx_tune(struct rt2661_softc *sc)
2809 {
2810 	uint8_t bbp17;
2811 	uint16_t cca;
2812 	int lo, hi, dbm;
2813 
2814 	/*
2815 	 * Tuning range depends on operating band and on the presence of an
2816 	 * external low-noise amplifier.
2817 	 */
2818 	lo = 0x20;
2819 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2820 		lo += 0x08;
2821 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2822 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2823 		lo += 0x10;
2824 	hi = lo + 0x20;
2825 
2826 	dbm = sc->avg_rssi;
2827 	/* retrieve false CCA count since last call (clear on read) */
2828 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2829 
2830 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2831 
2832 	if (dbm < -74) {
2833 		/* very bad RSSI, tune using false CCA count */
2834 		bbp17 = sc->bbp17; /* current value */
2835 
2836 		hi -= 2 * (-74 - dbm);
2837 		if (hi < lo)
2838 			hi = lo;
2839 
2840 		if (bbp17 > hi)
2841 			bbp17 = hi;
2842 		else if (cca > 512)
2843 			bbp17 = min(bbp17 + 1, hi);
2844 		else if (cca < 100)
2845 			bbp17 = max(bbp17 - 1, lo);
2846 
2847 	} else if (dbm < -66) {
2848 		bbp17 = lo + 0x08;
2849 	} else if (dbm < -58) {
2850 		bbp17 = lo + 0x10;
2851 	} else if (dbm < -35) {
2852 		bbp17 = hi;
2853 	} else {	/* very good RSSI >= -35dBm */
2854 		bbp17 = 0x60;	/* very low sensitivity */
2855 	}
2856 
2857 	if (bbp17 != sc->bbp17) {
2858 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2859 		rt2661_bbp_write(sc, 17, bbp17);
2860 		sc->bbp17 = bbp17;
2861 	}
2862 }
2863 
2864 #ifdef notyet
2865 /*
2866  * Enter/Leave radar detection mode.
2867  * This is for 802.11h additional regulatory domains.
2868  */
2869 void
2870 rt2661_radar_start(struct rt2661_softc *sc)
2871 {
2872 	uint32_t tmp;
2873 
2874 	/* disable Rx */
2875 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2876 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2877 
2878 	rt2661_bbp_write(sc, 82, 0x20);
2879 	rt2661_bbp_write(sc, 83, 0x00);
2880 	rt2661_bbp_write(sc, 84, 0x40);
2881 
2882 	/* save current BBP registers values */
2883 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2884 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2885 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2886 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2887 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2888 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2889 
2890 	rt2661_bbp_write(sc, 18, 0xff);
2891 	rt2661_bbp_write(sc, 21, 0x3f);
2892 	rt2661_bbp_write(sc, 22, 0x3f);
2893 	rt2661_bbp_write(sc, 16, 0xbd);
2894 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2895 	rt2661_bbp_write(sc, 64, 0x21);
2896 
2897 	/* restore Rx filter */
2898 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2899 }
2900 
2901 int
2902 rt2661_radar_stop(struct rt2661_softc *sc)
2903 {
2904 	uint8_t bbp66;
2905 
2906 	/* read radar detection result */
2907 	bbp66 = rt2661_bbp_read(sc, 66);
2908 
2909 	/* restore BBP registers values */
2910 	rt2661_bbp_write(sc, 16, sc->bbp16);
2911 	rt2661_bbp_write(sc, 17, sc->bbp17);
2912 	rt2661_bbp_write(sc, 18, sc->bbp18);
2913 	rt2661_bbp_write(sc, 21, sc->bbp21);
2914 	rt2661_bbp_write(sc, 22, sc->bbp22);
2915 	rt2661_bbp_write(sc, 64, sc->bbp64);
2916 
2917 	return bbp66 == 1;
2918 }
2919 #endif
2920 
2921 #ifndef IEEE80211_STA_ONLY
2922 int
2923 rt2661_prepare_beacon(struct rt2661_softc *sc)
2924 {
2925 	struct ieee80211com *ic = &sc->sc_ic;
2926 	struct ieee80211_node *ni = ic->ic_bss;
2927 	struct rt2661_tx_desc desc;
2928 	struct mbuf *m0;
2929 	int rate;
2930 
2931 	m0 = ieee80211_beacon_alloc(ic, ni);
2932 	if (m0 == NULL) {
2933 		printf("%s: could not allocate beacon frame\n",
2934 		    sc->sc_dev.dv_xname);
2935 		return ENOBUFS;
2936 	}
2937 
2938 	/* send beacons at the lowest available rate */
2939 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2940 
2941 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2942 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT,
2943 	    RT2661_AMRR_INVALID_ID);
2944 
2945 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2946 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2947 
2948 	/* copy beacon header and payload into NIC memory */
2949 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2950 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2951 
2952 	m_freem(m0);
2953 
2954 	/*
2955 	 * Store offset of ERP Information Element so that we can update it
2956 	 * dynamically when the slot time changes.
2957 	 * XXX: this is ugly since it depends on how net80211 builds beacon
2958 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2959 	 */
2960 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
2961 		sc->erp_csr =
2962 		    RT2661_HW_BEACON_BASE0 + 24 +
2963 		    sizeof (struct ieee80211_frame) +
2964 		    8 + 2 + 2 +
2965 		    ((ic->ic_flags & IEEE80211_F_HIDENWID) ?
2966 			1 : 2 + ni->ni_esslen) +
2967 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2968 		    2 + 1 +
2969 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2970 		    2;
2971 	}
2972 
2973 	return 0;
2974 }
2975 #endif
2976 
2977 /*
2978  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2979  * and HostAP operating modes.
2980  */
2981 void
2982 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2983 {
2984 	struct ieee80211com *ic = &sc->sc_ic;
2985 	uint32_t tmp;
2986 
2987 #ifndef IEEE80211_STA_ONLY
2988 	if (ic->ic_opmode != IEEE80211_M_STA) {
2989 		/*
2990 		 * Change default 16ms TBTT adjustment to 8ms.
2991 		 * Must be done before enabling beacon generation.
2992 		 */
2993 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
2994 	}
2995 #endif
2996 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
2997 
2998 	/* set beacon interval (in 1/16ms unit) */
2999 	tmp |= ic->ic_bss->ni_intval * 16;
3000 
3001 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3002 	if (ic->ic_opmode == IEEE80211_M_STA)
3003 		tmp |= RT2661_TSF_MODE(1);
3004 #ifndef IEEE80211_STA_ONLY
3005 	else
3006 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3007 #endif
3008 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3009 }
3010 
3011 /*
3012  * Retrieve the "Received Signal Strength Indicator" from the raw values
3013  * contained in Rx descriptors.  The computation depends on which band the
3014  * frame was received.  Correction values taken from the reference driver.
3015  */
3016 int
3017 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3018 {
3019 	int lna, agc, rssi;
3020 
3021 	lna = (raw >> 5) & 0x3;
3022 	agc = raw & 0x1f;
3023 
3024 	rssi = 2 * agc;
3025 
3026 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3027 		rssi += sc->rssi_2ghz_corr;
3028 
3029 		if (lna == 1)
3030 			rssi -= 64;
3031 		else if (lna == 2)
3032 			rssi -= 74;
3033 		else if (lna == 3)
3034 			rssi -= 90;
3035 	} else {
3036 		rssi += sc->rssi_5ghz_corr;
3037 
3038 		if (lna == 1)
3039 			rssi -= 64;
3040 		else if (lna == 2)
3041 			rssi -= 86;
3042 		else if (lna == 3)
3043 			rssi -= 100;
3044 	}
3045 	return rssi;
3046 }
3047