xref: /openbsd-src/sys/dev/ic/rt2661.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: rt2661.c,v 1.74 2014/07/13 23:10:23 deraadt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
22  * http://www.ralinktech.com/
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/timeout.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/queue.h>
38 
39 #include <machine/bus.h>
40 #include <machine/endian.h>
41 #include <machine/intr.h>
42 
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/if_ether.h>
55 #include <netinet/ip.h>
56 
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60 #include <net80211/ieee80211_node.h>
61 
62 #include <dev/ic/rt2661var.h>
63 #include <dev/ic/rt2661reg.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 #include <dev/pci/pcidevs.h>
68 
69 #ifdef RAL_DEBUG
70 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
71 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
72 int rt2661_debug = 1;
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77 
78 void		rt2661_attachhook(void *);
79 int		rt2661_alloc_tx_ring(struct rt2661_softc *,
80 		    struct rt2661_tx_ring *, int);
81 void		rt2661_reset_tx_ring(struct rt2661_softc *,
82 		    struct rt2661_tx_ring *);
83 void		rt2661_free_tx_ring(struct rt2661_softc *,
84 		    struct rt2661_tx_ring *);
85 int		rt2661_alloc_rx_ring(struct rt2661_softc *,
86 		    struct rt2661_rx_ring *, int);
87 void		rt2661_reset_rx_ring(struct rt2661_softc *,
88 		    struct rt2661_rx_ring *);
89 void		rt2661_free_rx_ring(struct rt2661_softc *,
90 		    struct rt2661_rx_ring *);
91 struct		ieee80211_node *rt2661_node_alloc(struct ieee80211com *);
92 void		rt2661_node_free(struct ieee80211com *,
93 		    struct ieee80211_node *);
94 int		rt2661_media_change(struct ifnet *);
95 void		rt2661_next_scan(void *);
96 void		rt2661_iter_func(void *, struct ieee80211_node *);
97 void		rt2661_updatestats(void *);
98 void		rt2661_newassoc(struct ieee80211com *, struct ieee80211_node *,
99 		    int);
100 int		rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
101 		    int);
102 uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
103 void		rt2661_tx_intr(struct rt2661_softc *);
104 void		rt2661_tx_dma_intr(struct rt2661_softc *,
105 		    struct rt2661_tx_ring *);
106 void		rt2661_rx_intr(struct rt2661_softc *);
107 #ifndef IEEE80211_STA_ONLY
108 void		rt2661_mcu_beacon_expire(struct rt2661_softc *);
109 #endif
110 void		rt2661_mcu_wakeup(struct rt2661_softc *);
111 void		rt2661_mcu_cmd_intr(struct rt2661_softc *);
112 int		rt2661_intr(void *);
113 #if NBPFILTER > 0
114 uint8_t		rt2661_rxrate(const struct rt2661_rx_desc *);
115 #endif
116 int		rt2661_ack_rate(struct ieee80211com *, int);
117 uint16_t	rt2661_txtime(int, int, uint32_t);
118 uint8_t		rt2661_plcp_signal(int);
119 void		rt2661_setup_tx_desc(struct rt2661_softc *,
120 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
121 		    const bus_dma_segment_t *, int, int, u_int8_t);
122 int		rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
123 		    struct ieee80211_node *);
124 int		rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
125 		    struct ieee80211_node *, int);
126 void		rt2661_start(struct ifnet *);
127 void		rt2661_watchdog(struct ifnet *);
128 int		rt2661_ioctl(struct ifnet *, u_long, caddr_t);
129 void		rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
130 uint8_t		rt2661_bbp_read(struct rt2661_softc *, uint8_t);
131 void		rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
132 int		rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
133 void		rt2661_select_antenna(struct rt2661_softc *);
134 void		rt2661_enable_mrr(struct rt2661_softc *);
135 void		rt2661_set_txpreamble(struct rt2661_softc *);
136 void		rt2661_set_basicrates(struct rt2661_softc *);
137 void		rt2661_select_band(struct rt2661_softc *,
138 		    struct ieee80211_channel *);
139 void		rt2661_set_chan(struct rt2661_softc *,
140 		    struct ieee80211_channel *);
141 void		rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
142 void		rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
143 void		rt2661_update_promisc(struct rt2661_softc *);
144 void		rt2661_updateslot(struct ieee80211com *);
145 void		rt2661_set_slottime(struct rt2661_softc *);
146 const char	*rt2661_get_rf(int);
147 void		rt2661_read_eeprom(struct rt2661_softc *);
148 int		rt2661_bbp_init(struct rt2661_softc *);
149 int		rt2661_init(struct ifnet *);
150 void		rt2661_stop(struct ifnet *, int);
151 int		rt2661_load_microcode(struct rt2661_softc *);
152 void		rt2661_rx_tune(struct rt2661_softc *);
153 #ifdef notyet
154 void		rt2661_radar_start(struct rt2661_softc *);
155 int		rt2661_radar_stop(struct rt2661_softc *);
156 #endif
157 #ifndef IEEE80211_STA_ONLY
158 int		rt2661_prepare_beacon(struct rt2661_softc *);
159 #endif
160 void		rt2661_enable_tsf_sync(struct rt2661_softc *);
161 int		rt2661_get_rssi(struct rt2661_softc *, uint8_t);
162 struct		rt2661_amrr_node *rt2661_amrr_node_alloc(struct ieee80211com *,
163 		    struct rt2661_node *);
164 void 		rt2661_amrr_node_free(struct rt2661_softc *,
165 		    struct rt2661_amrr_node *);
166 void		rt2661_amrr_node_free_all(struct rt2661_softc *);
167 void		rt2661_amrr_node_free_unused(struct rt2661_softc *);
168 struct 		rt2661_amrr_node *rt2661_amrr_node_find(struct rt2661_softc *,
169 		    u_int8_t);
170 
171 static const struct {
172 	uint32_t	reg;
173 	uint32_t	val;
174 } rt2661_def_mac[] = {
175 	RT2661_DEF_MAC
176 };
177 
178 static const struct {
179 	uint8_t	reg;
180 	uint8_t	val;
181 } rt2661_def_bbp[] = {
182 	RT2661_DEF_BBP
183 };
184 
185 static const struct rfprog {
186 	uint8_t		chan;
187 	uint32_t	r1, r2, r3, r4;
188 }  rt2661_rf5225_1[] = {
189 	RT2661_RF5225_1
190 }, rt2661_rf5225_2[] = {
191 	RT2661_RF5225_2
192 };
193 
194 int
195 rt2661_attach(void *xsc, int id)
196 {
197 	struct rt2661_softc *sc = xsc;
198 	struct ieee80211com *ic = &sc->sc_ic;
199 	uint32_t val;
200 	int error, ac, ntries;
201 
202 	sc->sc_id = id;
203 
204 	sc->amrr.amrr_min_success_threshold =  1;
205 	sc->amrr.amrr_max_success_threshold = 15;
206 	timeout_set(&sc->amrr_to, rt2661_updatestats, sc);
207 	timeout_set(&sc->scan_to, rt2661_next_scan, sc);
208 
209 	TAILQ_INIT(&sc->amn);
210 
211 	/* wait for NIC to initialize */
212 	for (ntries = 0; ntries < 1000; ntries++) {
213 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
214 			break;
215 		DELAY(1000);
216 	}
217 	if (ntries == 1000) {
218 		printf("%s: timeout waiting for NIC to initialize\n",
219 		    sc->sc_dev.dv_xname);
220 		return EIO;
221 	}
222 
223 	/* retrieve RF rev. no and various other things from EEPROM */
224 	rt2661_read_eeprom(sc);
225 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
226 
227 	printf("%s: MAC/BBP RT%X, RF %s\n", sc->sc_dev.dv_xname, val,
228 	    rt2661_get_rf(sc->rf_rev));
229 
230 	/*
231 	 * Allocate Tx and Rx rings.
232 	 */
233 	for (ac = 0; ac < 4; ac++) {
234 		error = rt2661_alloc_tx_ring(sc, &sc->txq[ac],
235 		    RT2661_TX_RING_COUNT);
236 		if (error != 0) {
237 			printf("%s: could not allocate Tx ring %d\n",
238 			    sc->sc_dev.dv_xname, ac);
239 			goto fail1;
240 		}
241 	}
242 
243 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
244 	if (error != 0) {
245 		printf("%s: could not allocate Mgt ring\n",
246 		    sc->sc_dev.dv_xname);
247 		goto fail1;
248 	}
249 
250 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
251 	if (error != 0) {
252 		printf("%s: could not allocate Rx ring\n",
253 		    sc->sc_dev.dv_xname);
254 		goto fail2;
255 	}
256 
257 	if (rootvp == NULL)
258 		mountroothook_establish(rt2661_attachhook, sc);
259 	else
260 		rt2661_attachhook(sc);
261 
262 	return 0;
263 
264 fail2:	rt2661_free_tx_ring(sc, &sc->mgtq);
265 fail1:	while (--ac >= 0)
266 		rt2661_free_tx_ring(sc, &sc->txq[ac]);
267 	return ENXIO;
268 }
269 
270 void
271 rt2661_attachhook(void *xsc)
272 {
273 	struct rt2661_softc *sc = xsc;
274 	struct ieee80211com *ic = &sc->sc_ic;
275 	struct ifnet *ifp = &ic->ic_if;
276 	const char *name = NULL;
277 	int i, error;
278 
279 	switch (sc->sc_id) {
280 	case PCI_PRODUCT_RALINK_RT2561:
281 		name = "ral-rt2561";
282 		break;
283 	case PCI_PRODUCT_RALINK_RT2561S:
284 		name = "ral-rt2561s";
285 		break;
286 	case PCI_PRODUCT_RALINK_RT2661:
287 		name = "ral-rt2661";
288 		break;
289 	}
290 	if ((error = loadfirmware(name, &sc->ucode, &sc->ucsize)) != 0) {
291 		printf("%s: error %d, could not read firmware %s\n",
292 		    sc->sc_dev.dv_xname, error, name);
293 		return;
294 	}
295 
296 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
297 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
298 	ic->ic_state = IEEE80211_S_INIT;
299 
300 	/* set device capabilities */
301 	ic->ic_caps =
302 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
303 #ifndef IEEE80211_STA_ONLY
304 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
305 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
306 #endif
307 	    IEEE80211_C_TXPMGT |	/* tx power management */
308 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
309 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
310 	    IEEE80211_C_WEP |		/* s/w WEP */
311 	    IEEE80211_C_RSN;		/* WPA/RSN */
312 
313 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
314 		/* set supported .11a rates */
315 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
316 		    ieee80211_std_rateset_11a;
317 
318 		/* set supported .11a channels */
319 		for (i = 36; i <= 64; i += 4) {
320 			ic->ic_channels[i].ic_freq =
321 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
322 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
323 		}
324 		for (i = 100; i <= 140; i += 4) {
325 			ic->ic_channels[i].ic_freq =
326 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
327 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
328 		}
329 		for (i = 149; i <= 165; i += 4) {
330 			ic->ic_channels[i].ic_freq =
331 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
332 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
333 		}
334 	}
335 
336 	/* set supported .11b and .11g rates */
337 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
338 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
339 
340 	/* set supported .11b and .11g channels (1 through 14) */
341 	for (i = 1; i <= 14; i++) {
342 		ic->ic_channels[i].ic_freq =
343 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
344 		ic->ic_channels[i].ic_flags =
345 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
346 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
347 	}
348 
349 	ifp->if_softc = sc;
350 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
351 	ifp->if_ioctl = rt2661_ioctl;
352 	ifp->if_start = rt2661_start;
353 	ifp->if_watchdog = rt2661_watchdog;
354 	IFQ_SET_READY(&ifp->if_snd);
355 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
356 
357 	if_attach(ifp);
358 	ieee80211_ifattach(ifp);
359 	ic->ic_node_alloc = rt2661_node_alloc;
360 	sc->sc_node_free = ic->ic_node_free;
361 	ic->ic_node_free = rt2661_node_free;
362 	ic->ic_newassoc = rt2661_newassoc;
363 	ic->ic_updateslot = rt2661_updateslot;
364 
365 	/* override state transition machine */
366 	sc->sc_newstate = ic->ic_newstate;
367 	ic->ic_newstate = rt2661_newstate;
368 	ieee80211_media_init(ifp, rt2661_media_change, ieee80211_media_status);
369 
370 #if NBPFILTER > 0
371 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
372 	    sizeof (struct ieee80211_frame) + 64);
373 
374 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
375 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
376 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
377 
378 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
379 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
380 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
381 #endif
382 }
383 
384 int
385 rt2661_detach(void *xsc)
386 {
387 	struct rt2661_softc *sc = xsc;
388 	struct ifnet *ifp = &sc->sc_ic.ic_if;
389 	int ac;
390 
391 	timeout_del(&sc->scan_to);
392 	timeout_del(&sc->amrr_to);
393 
394 	ieee80211_ifdetach(ifp);	/* free all nodes */
395 	rt2661_amrr_node_free_all(sc);
396 	if_detach(ifp);
397 
398 	for (ac = 0; ac < 4; ac++)
399 		rt2661_free_tx_ring(sc, &sc->txq[ac]);
400 	rt2661_free_tx_ring(sc, &sc->mgtq);
401 	rt2661_free_rx_ring(sc, &sc->rxq);
402 
403 	if (sc->ucode != NULL)
404 		free(sc->ucode, M_DEVBUF, 0);
405 
406 	return 0;
407 }
408 
409 void
410 rt2661_suspend(void *xsc)
411 {
412 	struct rt2661_softc *sc = xsc;
413 	struct ifnet *ifp = &sc->sc_ic.ic_if;
414 
415 	if (ifp->if_flags & IFF_RUNNING) {
416 		rt2661_stop(ifp, 1);
417 		sc->sc_flags &= ~RT2661_FWLOADED;
418 	}
419 }
420 
421 void
422 rt2661_wakeup(void *xsc)
423 {
424 	struct rt2661_softc *sc = xsc;
425 	struct ifnet *ifp = &sc->sc_ic.ic_if;
426 
427 	if (ifp->if_flags & IFF_UP)
428 		rt2661_init(ifp);
429 }
430 
431 int
432 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
433     int count)
434 {
435 	int i, nsegs, error;
436 
437 	ring->count = count;
438 	ring->queued = 0;
439 	ring->cur = ring->next = ring->stat = 0;
440 
441 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
442 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
443 	if (error != 0) {
444 		printf("%s: could not create desc DMA map\n",
445 		    sc->sc_dev.dv_xname);
446 		goto fail;
447 	}
448 
449 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
450 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
451 	if (error != 0) {
452 		printf("%s: could not allocate DMA memory\n",
453 		    sc->sc_dev.dv_xname);
454 		goto fail;
455 	}
456 
457 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
458 	    count * RT2661_TX_DESC_SIZE, (caddr_t *)&ring->desc,
459 	    BUS_DMA_NOWAIT);
460 	if (error != 0) {
461 		printf("%s: can't map desc DMA memory\n",
462 		    sc->sc_dev.dv_xname);
463 		goto fail;
464 	}
465 
466 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
467 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
468 	if (error != 0) {
469 		printf("%s: could not load desc DMA map\n",
470 		    sc->sc_dev.dv_xname);
471 		goto fail;
472 	}
473 
474 	ring->physaddr = ring->map->dm_segs->ds_addr;
475 
476 	ring->data = mallocarray(count, sizeof (struct rt2661_tx_data),
477 	    M_DEVBUF, M_NOWAIT | M_ZERO);
478 	if (ring->data == NULL) {
479 		printf("%s: could not allocate soft data\n",
480 		    sc->sc_dev.dv_xname);
481 		error = ENOMEM;
482 		goto fail;
483 	}
484 
485 	for (i = 0; i < count; i++) {
486 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
487 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
488 		    &ring->data[i].map);
489 		if (error != 0) {
490 			printf("%s: could not create DMA map\n",
491 			    sc->sc_dev.dv_xname);
492 			goto fail;
493 		}
494 	}
495 
496 	return 0;
497 
498 fail:	rt2661_free_tx_ring(sc, ring);
499 	return error;
500 }
501 
502 void
503 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
504 {
505 	int i;
506 
507 	for (i = 0; i < ring->count; i++) {
508 		struct rt2661_tx_desc *desc = &ring->desc[i];
509 		struct rt2661_tx_data *data = &ring->data[i];
510 
511 		if (data->m != NULL) {
512 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
513 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
514 			bus_dmamap_unload(sc->sc_dmat, data->map);
515 			m_freem(data->m);
516 			data->m = NULL;
517 		}
518 
519 		/*
520 		 * The node has already been freed at that point so don't call
521 		 * ieee80211_release_node() here.
522 		 */
523 		data->ni = NULL;
524 
525 		desc->flags = 0;
526 	}
527 
528 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
529 	    BUS_DMASYNC_PREWRITE);
530 
531 	ring->queued = 0;
532 	ring->cur = ring->next = ring->stat = 0;
533 }
534 
535 void
536 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
537 {
538 	int i;
539 
540 	if (ring->desc != NULL) {
541 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
542 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
543 		bus_dmamap_unload(sc->sc_dmat, ring->map);
544 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
545 		    ring->count * RT2661_TX_DESC_SIZE);
546 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
547 	}
548 
549 	if (ring->data != NULL) {
550 		for (i = 0; i < ring->count; i++) {
551 			struct rt2661_tx_data *data = &ring->data[i];
552 
553 			if (data->m != NULL) {
554 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
555 				    data->map->dm_mapsize,
556 				    BUS_DMASYNC_POSTWRITE);
557 				bus_dmamap_unload(sc->sc_dmat, data->map);
558 				m_freem(data->m);
559 			}
560 			/*
561 			 * The node has already been freed at that point so
562 			 * don't call ieee80211_release_node() here.
563 			 */
564 			data->ni = NULL;
565 
566 			if (data->map != NULL)
567 				bus_dmamap_destroy(sc->sc_dmat, data->map);
568 		}
569 		free(ring->data, M_DEVBUF, 0);
570 	}
571 }
572 
573 int
574 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
575     int count)
576 {
577 	int i, nsegs, error;
578 
579 	ring->count = count;
580 	ring->cur = ring->next = 0;
581 
582 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
583 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
584 	if (error != 0) {
585 		printf("%s: could not create desc DMA map\n",
586 		    sc->sc_dev.dv_xname);
587 		goto fail;
588 	}
589 
590 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
591 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
592 	if (error != 0) {
593 		printf("%s: could not allocate DMA memory\n",
594 		    sc->sc_dev.dv_xname);
595 		goto fail;
596 	}
597 
598 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
599 	    count * RT2661_RX_DESC_SIZE, (caddr_t *)&ring->desc,
600 	    BUS_DMA_NOWAIT);
601 	if (error != 0) {
602 		printf("%s: can't map desc DMA memory\n",
603 		    sc->sc_dev.dv_xname);
604 		goto fail;
605 	}
606 
607 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
608 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
609 	if (error != 0) {
610 		printf("%s: could not load desc DMA map\n",
611 		    sc->sc_dev.dv_xname);
612 		goto fail;
613 	}
614 
615 	ring->physaddr = ring->map->dm_segs->ds_addr;
616 
617 	ring->data = mallocarray(count, sizeof (struct rt2661_rx_data),
618 	    M_DEVBUF, M_NOWAIT | M_ZERO);
619 	if (ring->data == NULL) {
620 		printf("%s: could not allocate soft data\n",
621 		    sc->sc_dev.dv_xname);
622 		error = ENOMEM;
623 		goto fail;
624 	}
625 
626 	/*
627 	 * Pre-allocate Rx buffers and populate Rx ring.
628 	 */
629 	for (i = 0; i < count; i++) {
630 		struct rt2661_rx_desc *desc = &sc->rxq.desc[i];
631 		struct rt2661_rx_data *data = &sc->rxq.data[i];
632 
633 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
634 		    0, BUS_DMA_NOWAIT, &data->map);
635 		if (error != 0) {
636 			printf("%s: could not create DMA map\n",
637 			    sc->sc_dev.dv_xname);
638 			goto fail;
639 		}
640 
641 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
642 		if (data->m == NULL) {
643 			printf("%s: could not allocate rx mbuf\n",
644 			    sc->sc_dev.dv_xname);
645 			error = ENOMEM;
646 			goto fail;
647 		}
648 		MCLGET(data->m, M_DONTWAIT);
649 		if (!(data->m->m_flags & M_EXT)) {
650 			printf("%s: could not allocate rx mbuf cluster\n",
651 			    sc->sc_dev.dv_xname);
652 			error = ENOMEM;
653 			goto fail;
654 		}
655 
656 		error = bus_dmamap_load(sc->sc_dmat, data->map,
657 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
658 		if (error != 0) {
659 			printf("%s: could not load rx buf DMA map",
660 			    sc->sc_dev.dv_xname);
661 			goto fail;
662 		}
663 
664 		desc->flags = htole32(RT2661_RX_BUSY);
665 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
666 	}
667 
668 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
669 	    BUS_DMASYNC_PREWRITE);
670 
671 	return 0;
672 
673 fail:	rt2661_free_rx_ring(sc, ring);
674 	return error;
675 }
676 
677 void
678 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
679 {
680 	int i;
681 
682 	for (i = 0; i < ring->count; i++)
683 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
684 
685 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
686 	    BUS_DMASYNC_PREWRITE);
687 
688 	ring->cur = ring->next = 0;
689 }
690 
691 void
692 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
693 {
694 	int i;
695 
696 	if (ring->desc != NULL) {
697 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
698 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
699 		bus_dmamap_unload(sc->sc_dmat, ring->map);
700 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
701 		    ring->count * RT2661_RX_DESC_SIZE);
702 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
703 	}
704 
705 	if (ring->data != NULL) {
706 		for (i = 0; i < ring->count; i++) {
707 			struct rt2661_rx_data *data = &ring->data[i];
708 
709 			if (data->m != NULL) {
710 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
711 				    data->map->dm_mapsize,
712 				    BUS_DMASYNC_POSTREAD);
713 				bus_dmamap_unload(sc->sc_dmat, data->map);
714 				m_freem(data->m);
715 			}
716 
717 			if (data->map != NULL)
718 				bus_dmamap_destroy(sc->sc_dmat, data->map);
719 		}
720 		free(ring->data, M_DEVBUF, 0);
721 	}
722 }
723 
724 struct rt2661_amrr_node *
725 rt2661_amrr_node_alloc(struct ieee80211com *ic, struct rt2661_node *rn)
726 {
727 	struct rt2661_softc *sc = ic->ic_softc;
728 	struct rt2661_amrr_node *amn;
729 	int s;
730 
731 	if (sc->amn_count >= RT2661_AMRR_NODES_MAX)
732 		rt2661_amrr_node_free_unused(sc);
733 	if (sc->amn_count >= RT2661_AMRR_NODES_MAX)
734 		return NULL;
735 
736 	amn = malloc(sizeof (struct rt2661_amrr_node), M_DEVBUF,
737 	    M_NOWAIT | M_ZERO);
738 
739 	if (amn) {
740 		s = splnet();
741 		amn->id = sc->amn_count++;
742 		amn->rn = rn;
743 		TAILQ_INSERT_TAIL(&sc->amn, amn, entry);
744 		splx(s);
745 	}
746 
747 	return amn;
748 }
749 
750 void
751 rt2661_amrr_node_free(struct rt2661_softc *sc, struct rt2661_amrr_node *amn)
752 {
753 	int s;
754 
755 	s = splnet();
756 	if (amn->rn)
757 		amn->rn->amn = NULL;
758 	TAILQ_REMOVE(&sc->amn, amn, entry);
759 	sc->amn_count--;
760 	splx(s);
761 	free(amn, M_DEVBUF, 0);
762 }
763 
764 void
765 rt2661_amrr_node_free_all(struct rt2661_softc *sc)
766 {
767 	struct rt2661_amrr_node *amn, *a;
768 	int s;
769 
770 	s = splnet();
771 	TAILQ_FOREACH_SAFE(amn, &sc->amn, entry, a)
772 		rt2661_amrr_node_free(sc, amn);
773 	splx(s);
774 }
775 
776 void
777 rt2661_amrr_node_free_unused(struct rt2661_softc *sc)
778 {
779 	struct rt2661_amrr_node *amn, *a;
780 	int s;
781 
782 	s = splnet();
783 	TAILQ_FOREACH_SAFE(amn, &sc->amn, entry, a) {
784 		if (amn->rn == NULL)
785 			rt2661_amrr_node_free(sc, amn);
786 	}
787 	splx(s);
788 }
789 
790 struct rt2661_amrr_node *
791 rt2661_amrr_node_find(struct rt2661_softc *sc, u_int8_t id)
792 {
793 	struct rt2661_amrr_node *amn, *a, *ret = NULL;
794 	int s;
795 
796 	if (id == RT2661_AMRR_INVALID_ID)
797 		return NULL;
798 
799 	s = splnet();
800 	TAILQ_FOREACH_SAFE(amn, &sc->amn, entry, a) {
801 		/* If the corresponding node was freed, free the amrr node. */
802 		if (amn->rn == NULL)
803 			rt2661_amrr_node_free(sc, amn);
804 		else if (amn->id == id)
805 			ret = amn;
806 	}
807 	splx(s);
808 
809 	return ret;
810 }
811 
812 struct ieee80211_node *
813 rt2661_node_alloc(struct ieee80211com *ic)
814 {
815 	struct rt2661_node *rn;
816 
817 	rn = malloc(sizeof (struct rt2661_node), M_DEVBUF,
818 	    M_NOWAIT | M_ZERO);
819 	if (rn == NULL)
820 		return NULL;
821 
822 	rn->amn = rt2661_amrr_node_alloc(ic, rn);
823 	return (struct ieee80211_node *)rn;
824 }
825 
826 void
827 rt2661_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
828 {
829 	struct rt2661_softc *sc = ic->ic_softc;
830 	struct rt2661_node *rn = (struct rt2661_node *)ni;
831 
832 	if (rn->amn)
833 		rn->amn->rn = NULL;
834 	sc->sc_node_free(ic, ni);
835 }
836 
837 int
838 rt2661_media_change(struct ifnet *ifp)
839 {
840 	int error;
841 
842 	error = ieee80211_media_change(ifp);
843 	if (error != ENETRESET)
844 		return error;
845 
846 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
847 		rt2661_init(ifp);
848 
849 	return 0;
850 }
851 
852 /*
853  * This function is called periodically (every 200ms) during scanning to
854  * switch from one channel to another.
855  */
856 void
857 rt2661_next_scan(void *arg)
858 {
859 	struct rt2661_softc *sc = arg;
860 	struct ieee80211com *ic = &sc->sc_ic;
861 	struct ifnet *ifp = &ic->ic_if;
862 	int s;
863 
864 	s = splnet();
865 	if (ic->ic_state == IEEE80211_S_SCAN)
866 		ieee80211_next_scan(ifp);
867 	splx(s);
868 }
869 
870 /*
871  * This function is called for each neighbor node.
872  */
873 void
874 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
875 {
876 	struct rt2661_softc *sc = arg;
877 	struct rt2661_node *rn = (struct rt2661_node *)ni;
878 
879 	if (rn->amn)
880 		ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn->amn);
881 }
882 
883 /*
884  * This function is called periodically (every 500ms) in RUN state to update
885  * various settings like rate control statistics or Rx sensitivity.
886  */
887 void
888 rt2661_updatestats(void *arg)
889 {
890 	struct rt2661_softc *sc = arg;
891 	struct ieee80211com *ic = &sc->sc_ic;
892 	int s;
893 
894 	s = splnet();
895 	if (ic->ic_opmode == IEEE80211_M_STA)
896 		rt2661_iter_func(sc, ic->ic_bss);
897 	else
898 		ieee80211_iterate_nodes(ic, rt2661_iter_func, arg);
899 
900 	/* update rx sensitivity and free unused amrr nodes every 1 sec */
901 	if (++sc->ncalls & 1) {
902 		rt2661_rx_tune(sc);
903 		rt2661_amrr_node_free_unused(sc);
904 	}
905 	splx(s);
906 
907 	timeout_add_msec(&sc->amrr_to, 500);
908 }
909 
910 void
911 rt2661_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
912 {
913 	struct rt2661_softc *sc = ic->ic_softc;
914 	struct rt2661_node *rn = (struct rt2661_node *)ni;
915 	int i;
916 
917 	if (rn->amn)
918 		ieee80211_amrr_node_init(&sc->amrr, &rn->amn->amn);
919 
920 	/* set rate to some reasonable initial value */
921 	for (i = ni->ni_rates.rs_nrates - 1;
922 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
923 	     i--);
924 	ni->ni_txrate = i;
925 }
926 
927 int
928 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
929 {
930 	struct rt2661_softc *sc = ic->ic_if.if_softc;
931 	enum ieee80211_state ostate;
932 	struct ieee80211_node *ni;
933 	uint32_t tmp;
934 
935 	ostate = ic->ic_state;
936 	timeout_del(&sc->scan_to);
937 	timeout_del(&sc->amrr_to);
938 
939 	switch (nstate) {
940 	case IEEE80211_S_INIT:
941 		if (ostate == IEEE80211_S_RUN) {
942 			/* abort TSF synchronization */
943 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
944 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
945 		}
946 		break;
947 
948 	case IEEE80211_S_SCAN:
949 		rt2661_set_chan(sc, ic->ic_bss->ni_chan);
950 		timeout_add_msec(&sc->scan_to, 200);
951 		break;
952 
953 	case IEEE80211_S_AUTH:
954 	case IEEE80211_S_ASSOC:
955 		rt2661_set_chan(sc, ic->ic_bss->ni_chan);
956 		break;
957 
958 	case IEEE80211_S_RUN:
959 		rt2661_set_chan(sc, ic->ic_bss->ni_chan);
960 
961 		ni = ic->ic_bss;
962 
963 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
964 			rt2661_set_slottime(sc);
965 			rt2661_enable_mrr(sc);
966 			rt2661_set_txpreamble(sc);
967 			rt2661_set_basicrates(sc);
968 			rt2661_set_bssid(sc, ni->ni_bssid);
969 		}
970 
971 #ifndef IEEE80211_STA_ONLY
972 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
973 		    ic->ic_opmode == IEEE80211_M_IBSS)
974 			rt2661_prepare_beacon(sc);
975 #endif
976 
977 		if (ic->ic_opmode == IEEE80211_M_STA) {
978 			/* fake a join to init the tx rate */
979 			rt2661_newassoc(ic, ni, 1);
980 		}
981 
982 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
983 			sc->ncalls = 0;
984 			sc->avg_rssi = -95;	/* reset EMA */
985 			timeout_add_msec(&sc->amrr_to, 500);
986 			rt2661_enable_tsf_sync(sc);
987 		}
988 		break;
989 	}
990 
991 	return sc->sc_newstate(ic, nstate, arg);
992 }
993 
994 /*
995  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
996  * 93C66).
997  */
998 uint16_t
999 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
1000 {
1001 	uint32_t tmp;
1002 	uint16_t val;
1003 	int n;
1004 
1005 	/* clock C once before the first command */
1006 	RT2661_EEPROM_CTL(sc, 0);
1007 
1008 	RT2661_EEPROM_CTL(sc, RT2661_S);
1009 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1010 	RT2661_EEPROM_CTL(sc, RT2661_S);
1011 
1012 	/* write start bit (1) */
1013 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1014 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1015 
1016 	/* write READ opcode (10) */
1017 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1018 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1019 	RT2661_EEPROM_CTL(sc, RT2661_S);
1020 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1021 
1022 	/* write address (A5-A0 or A7-A0) */
1023 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
1024 	for (; n >= 0; n--) {
1025 		RT2661_EEPROM_CTL(sc, RT2661_S |
1026 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
1027 		RT2661_EEPROM_CTL(sc, RT2661_S |
1028 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
1029 	}
1030 
1031 	RT2661_EEPROM_CTL(sc, RT2661_S);
1032 
1033 	/* read data Q15-Q0 */
1034 	val = 0;
1035 	for (n = 15; n >= 0; n--) {
1036 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1037 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
1038 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
1039 		RT2661_EEPROM_CTL(sc, RT2661_S);
1040 	}
1041 
1042 	RT2661_EEPROM_CTL(sc, 0);
1043 
1044 	/* clear Chip Select and clock C */
1045 	RT2661_EEPROM_CTL(sc, RT2661_S);
1046 	RT2661_EEPROM_CTL(sc, 0);
1047 	RT2661_EEPROM_CTL(sc, RT2661_C);
1048 
1049 	return val;
1050 }
1051 
1052 /* The TX interrupt handler accumulates statistics based on whether frames
1053  * were sent successfully by the ASIC. */
1054 void
1055 rt2661_tx_intr(struct rt2661_softc *sc)
1056 {
1057 	struct ieee80211com *ic = &sc->sc_ic;
1058 	struct ifnet *ifp = &ic->ic_if;
1059 	struct rt2661_amrr_node *amn;
1060 	int retrycnt;
1061 	u_int8_t amrr_id;
1062 
1063 	for (;;) {
1064 		const uint32_t val = RAL_READ(sc, RT2661_STA_CSR4);
1065 		if (!(val & RT2661_TX_STAT_VALID))
1066 			break;
1067 
1068 		/* retrieve rate control algorithm context */
1069 		amrr_id = RT2661_TX_PRIV_DATA(val);
1070 		amn = rt2661_amrr_node_find(sc, amrr_id);
1071 
1072 		switch (RT2661_TX_RESULT(val)) {
1073 		case RT2661_TX_SUCCESS:
1074 			retrycnt = RT2661_TX_RETRYCNT(val);
1075 
1076 			DPRINTFN(10, ("data frame sent successfully after "
1077 			    "%d retries\n", retrycnt));
1078 			if (amn) {
1079 				amn->amn.amn_txcnt++;
1080 				if (retrycnt > 0)
1081 					amn->amn.amn_retrycnt++;
1082 			}
1083 			ifp->if_opackets++;
1084 			break;
1085 
1086 		case RT2661_TX_RETRY_FAIL:
1087 			DPRINTFN(9, ("sending data frame failed (too much "
1088 			    "retries)\n"));
1089 			if (amn) {
1090 				amn->amn.amn_txcnt++;
1091 				amn->amn.amn_retrycnt++;
1092 			}
1093 			ifp->if_oerrors++;
1094 			break;
1095 
1096 		default:
1097 			/* other failure */
1098 			printf("%s: sending data frame failed 0x%08x\n",
1099 			    sc->sc_dev.dv_xname, val);
1100 			ifp->if_oerrors++;
1101 		}
1102 
1103 		DPRINTFN(15, ("tx done amrr_id=%hhu amn=0x%x\n", amrr_id, amn));
1104 	}
1105 }
1106 
1107 /* The TX DMA interrupt handler processes frames which have been offloaded
1108  * to the ASIC for transmission. We can free all resources corresponding
1109  * to the frame here. */
1110 void
1111 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1112 {
1113 	struct ieee80211com *ic = &sc->sc_ic;
1114 	struct ifnet *ifp = &ic->ic_if;
1115 
1116 	for (;;) {
1117 		struct rt2661_tx_desc *desc = &txq->desc[txq->next];
1118 		struct rt2661_tx_data *data = &txq->data[txq->next];
1119 
1120 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1121 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1122 		    BUS_DMASYNC_POSTREAD);
1123 
1124 		if ((letoh32(desc->flags) & RT2661_TX_BUSY) ||
1125 		    !(letoh32(desc->flags) & RT2661_TX_VALID))
1126 			break;
1127 
1128 		/* descriptor is no longer valid */
1129 		desc->flags &= ~htole32(RT2661_TX_VALID);
1130 
1131 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1132 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1133 		    BUS_DMASYNC_PREWRITE);
1134 
1135 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1136 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1137 		bus_dmamap_unload(sc->sc_dmat, data->map);
1138 		m_freem(data->m);
1139 		data->m = NULL;
1140 		ieee80211_release_node(ic, data->ni);
1141 		data->ni = NULL;
1142 
1143 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1144 
1145 		txq->queued--;
1146 		if (++txq->next >= txq->count)	/* faster than % count */
1147 			txq->next = 0;
1148 	}
1149 
1150 	if (sc->mgtq.queued == 0 && sc->txq[0].queued == 0)
1151 		sc->sc_tx_timer = 0;
1152 	if (sc->mgtq.queued < RT2661_MGT_RING_COUNT &&
1153 	    sc->txq[0].queued < RT2661_TX_RING_COUNT - 1) {
1154 		if (sc->mgtq.queued < RT2661_MGT_RING_COUNT)
1155 			sc->sc_flags &= ~RT2661_MGT_OACTIVE;
1156 		if (sc->txq[0].queued < RT2661_TX_RING_COUNT - 1)
1157 			sc->sc_flags &= ~RT2661_DATA_OACTIVE;
1158 		if (!(sc->sc_flags & (RT2661_MGT_OACTIVE|RT2661_DATA_OACTIVE)))
1159 			ifp->if_flags &= ~IFF_OACTIVE;
1160 		rt2661_start(ifp);
1161 	}
1162 }
1163 
1164 void
1165 rt2661_rx_intr(struct rt2661_softc *sc)
1166 {
1167 	struct ieee80211com *ic = &sc->sc_ic;
1168 	struct ifnet *ifp = &ic->ic_if;
1169 	struct ieee80211_frame *wh;
1170 	struct ieee80211_rxinfo rxi;
1171 	struct ieee80211_node *ni;
1172 	struct mbuf *mnew, *m;
1173 	int error, rssi;
1174 
1175 	for (;;) {
1176 		struct rt2661_rx_desc *desc = &sc->rxq.desc[sc->rxq.cur];
1177 		struct rt2661_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1178 
1179 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1180 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1181 		    BUS_DMASYNC_POSTREAD);
1182 
1183 		if (letoh32(desc->flags) & RT2661_RX_BUSY)
1184 			break;
1185 
1186 		if ((letoh32(desc->flags) & RT2661_RX_PHY_ERROR) ||
1187 		    (letoh32(desc->flags) & RT2661_RX_CRC_ERROR)) {
1188 			/*
1189 			 * This should not happen since we did not request
1190 			 * to receive those frames when we filled TXRX_CSR0.
1191 			 */
1192 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1193 			    letoh32(desc->flags)));
1194 			ifp->if_ierrors++;
1195 			goto skip;
1196 		}
1197 
1198 		if ((letoh32(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1199 			ifp->if_ierrors++;
1200 			goto skip;
1201 		}
1202 
1203 		/*
1204 		 * Try to allocate a new mbuf for this ring element and load it
1205 		 * before processing the current mbuf. If the ring element
1206 		 * cannot be loaded, drop the received packet and reuse the old
1207 		 * mbuf. In the unlikely case that the old mbuf can't be
1208 		 * reloaded either, explicitly panic.
1209 		 */
1210 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1211 		if (mnew == NULL) {
1212 			ifp->if_ierrors++;
1213 			goto skip;
1214 		}
1215 		MCLGET(mnew, M_DONTWAIT);
1216 		if (!(mnew->m_flags & M_EXT)) {
1217 			m_freem(mnew);
1218 			ifp->if_ierrors++;
1219 			goto skip;
1220 		}
1221 
1222 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1223 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1224 		bus_dmamap_unload(sc->sc_dmat, data->map);
1225 
1226 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1227 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1228 		if (error != 0) {
1229 			m_freem(mnew);
1230 
1231 			/* try to reload the old mbuf */
1232 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1233 			    mtod(data->m, void *), MCLBYTES, NULL,
1234 			    BUS_DMA_NOWAIT);
1235 			if (error != 0) {
1236 				/* very unlikely that it will fail... */
1237 				panic("%s: could not load old rx mbuf",
1238 				    sc->sc_dev.dv_xname);
1239 			}
1240 			/* physical address may have changed */
1241 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1242 			ifp->if_ierrors++;
1243 			goto skip;
1244 		}
1245 
1246 		/*
1247 	 	 * New mbuf successfully loaded, update Rx ring and continue
1248 		 * processing.
1249 		 */
1250 		m = data->m;
1251 		data->m = mnew;
1252 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1253 
1254 		/* finalize mbuf */
1255 		m->m_pkthdr.rcvif = ifp;
1256 		m->m_pkthdr.len = m->m_len =
1257 		    (letoh32(desc->flags) >> 16) & 0xfff;
1258 
1259 #if NBPFILTER > 0
1260 		if (sc->sc_drvbpf != NULL) {
1261 			struct mbuf mb;
1262 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1263 			uint32_t tsf_lo, tsf_hi;
1264 
1265 			/* get timestamp (low and high 32 bits) */
1266 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1267 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1268 
1269 			tap->wr_tsf =
1270 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1271 			tap->wr_flags = 0;
1272 			tap->wr_rate = rt2661_rxrate(desc);
1273 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1274 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1275 			tap->wr_antsignal = desc->rssi;
1276 
1277 			mb.m_data = (caddr_t)tap;
1278 			mb.m_len = sc->sc_rxtap_len;
1279 			mb.m_next = m;
1280 			mb.m_nextpkt = NULL;
1281 			mb.m_type = 0;
1282 			mb.m_flags = 0;
1283 			bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1284 		}
1285 #endif
1286 
1287 		wh = mtod(m, struct ieee80211_frame *);
1288 		ni = ieee80211_find_rxnode(ic, wh);
1289 
1290 		/* send the frame to the 802.11 layer */
1291 		rxi.rxi_flags = 0;
1292 		rxi.rxi_rssi = desc->rssi;
1293 		rxi.rxi_tstamp = 0;	/* unused */
1294 		ieee80211_input(ifp, m, ni, &rxi);
1295 
1296 		/*-
1297 		 * Keep track of the average RSSI using an Exponential Moving
1298 		 * Average (EMA) of 8 Wilder's days:
1299 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
1300 		 */
1301 		rssi = rt2661_get_rssi(sc, desc->rssi);
1302 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1303 
1304 		/* node is no longer needed */
1305 		ieee80211_release_node(ic, ni);
1306 
1307 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1308 
1309 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1310 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1311 		    BUS_DMASYNC_PREWRITE);
1312 
1313 		DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1314 
1315 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1316 	}
1317 }
1318 
1319 #ifndef IEEE80211_STA_ONLY
1320 /*
1321  * This function is called in HostAP or IBSS modes when it's time to send a
1322  * new beacon (every ni_intval milliseconds).
1323  */
1324 void
1325 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1326 {
1327 	struct ieee80211com *ic = &sc->sc_ic;
1328 
1329 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1330 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1331 		sc->sc_flags |= RT2661_SET_SLOTTIME;
1332 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1333 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1334 		rt2661_set_slottime(sc);
1335 	}
1336 
1337 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1338 		/* update ERP Information Element */
1339 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1340 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
1341 	}
1342 
1343 	DPRINTFN(15, ("beacon expired\n"));
1344 }
1345 #endif
1346 
1347 void
1348 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1349 {
1350 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1351 
1352 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1353 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1354 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1355 
1356 	/* send wakeup command to MCU */
1357 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1358 }
1359 
1360 void
1361 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1362 {
1363 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1364 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1365 }
1366 
1367 int
1368 rt2661_intr(void *arg)
1369 {
1370 	struct rt2661_softc *sc = arg;
1371 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1372 	uint32_t r1, r2;
1373 
1374 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1375 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1376 	if (__predict_false(r1 == 0xffffffff && r2 == 0xffffffff))
1377 		return 0;	/* device likely went away */
1378 	if (r1 == 0 && r2 == 0)
1379 		return 0;	/* not for us */
1380 
1381 	/* disable MAC and MCU interrupts */
1382 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1383 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1384 
1385 	/* acknowledge interrupts */
1386 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1387 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1388 
1389 	/* don't re-enable interrupts if we're shutting down */
1390 	if (!(ifp->if_flags & IFF_RUNNING))
1391 		return 0;
1392 
1393 	if (r1 & RT2661_MGT_DONE)
1394 		rt2661_tx_dma_intr(sc, &sc->mgtq);
1395 
1396 	if (r1 & RT2661_RX_DONE)
1397 		rt2661_rx_intr(sc);
1398 
1399 	if (r1 & RT2661_TX0_DMA_DONE)
1400 		rt2661_tx_dma_intr(sc, &sc->txq[0]);
1401 
1402 	if (r1 & RT2661_TX1_DMA_DONE)
1403 		rt2661_tx_dma_intr(sc, &sc->txq[1]);
1404 
1405 	if (r1 & RT2661_TX2_DMA_DONE)
1406 		rt2661_tx_dma_intr(sc, &sc->txq[2]);
1407 
1408 	if (r1 & RT2661_TX3_DMA_DONE)
1409 		rt2661_tx_dma_intr(sc, &sc->txq[3]);
1410 
1411 	if (r1 & RT2661_TX_DONE)
1412 		rt2661_tx_intr(sc);
1413 
1414 	if (r2 & RT2661_MCU_CMD_DONE)
1415 		rt2661_mcu_cmd_intr(sc);
1416 
1417 #ifndef IEEE80211_STA_ONLY
1418 	if (r2 & RT2661_MCU_BEACON_EXPIRE)
1419 		rt2661_mcu_beacon_expire(sc);
1420 #endif
1421 
1422 	if (r2 & RT2661_MCU_WAKEUP)
1423 		rt2661_mcu_wakeup(sc);
1424 
1425 	/* re-enable MAC and MCU interrupts */
1426 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1427 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1428 
1429 	return 1;
1430 }
1431 
1432 /* quickly determine if a given rate is CCK or OFDM */
1433 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1434 
1435 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1436 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1437 
1438 /*
1439  * This function is only used by the Rx radiotap code. It returns the rate at
1440  * which a given frame was received.
1441  */
1442 #if NBPFILTER > 0
1443 uint8_t
1444 rt2661_rxrate(const struct rt2661_rx_desc *desc)
1445 {
1446 	if (letoh32(desc->flags) & RT2661_RX_OFDM) {
1447 		/* reverse function of rt2661_plcp_signal */
1448 		switch (desc->rate & 0xf) {
1449 		case 0xb:	return 12;
1450 		case 0xf:	return 18;
1451 		case 0xa:	return 24;
1452 		case 0xe:	return 36;
1453 		case 0x9:	return 48;
1454 		case 0xd:	return 72;
1455 		case 0x8:	return 96;
1456 		case 0xc:	return 108;
1457 		}
1458 	} else {
1459 		if (desc->rate == 10)
1460 			return 2;
1461 		if (desc->rate == 20)
1462 			return 4;
1463 		if (desc->rate == 55)
1464 			return 11;
1465 		if (desc->rate == 110)
1466 			return 22;
1467 	}
1468 	return 2;	/* should not get there */
1469 }
1470 #endif
1471 
1472 /*
1473  * Return the expected ack rate for a frame transmitted at rate `rate'.
1474  */
1475 int
1476 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1477 {
1478 	switch (rate) {
1479 	/* CCK rates */
1480 	case 2:
1481 		return 2;
1482 	case 4:
1483 	case 11:
1484 	case 22:
1485 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1486 
1487 	/* OFDM rates */
1488 	case 12:
1489 	case 18:
1490 		return 12;
1491 	case 24:
1492 	case 36:
1493 		return 24;
1494 	case 48:
1495 	case 72:
1496 	case 96:
1497 	case 108:
1498 		return 48;
1499 	}
1500 
1501 	/* default to 1Mbps */
1502 	return 2;
1503 }
1504 
1505 /*
1506  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1507  * The function automatically determines the operating mode depending on the
1508  * given rate. `flags' indicates whether short preamble is in use or not.
1509  */
1510 uint16_t
1511 rt2661_txtime(int len, int rate, uint32_t flags)
1512 {
1513 	uint16_t txtime;
1514 
1515 	if (RAL_RATE_IS_OFDM(rate)) {
1516 		/* IEEE Std 802.11g-2003, pp. 44 */
1517 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1518 		txtime = 16 + 4 + 4 * txtime + 6;
1519 	} else {
1520 		/* IEEE Std 802.11b-1999, pp. 28 */
1521 		txtime = (16 * len + rate - 1) / rate;
1522 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1523 			txtime +=  72 + 24;
1524 		else
1525 			txtime += 144 + 48;
1526 	}
1527 	return txtime;
1528 }
1529 
1530 uint8_t
1531 rt2661_plcp_signal(int rate)
1532 {
1533 	switch (rate) {
1534 	/* CCK rates (returned values are device-dependent) */
1535 	case 2:		return 0x0;
1536 	case 4:		return 0x1;
1537 	case 11:	return 0x2;
1538 	case 22:	return 0x3;
1539 
1540 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1541 	case 12:	return 0xb;
1542 	case 18:	return 0xf;
1543 	case 24:	return 0xa;
1544 	case 36:	return 0xe;
1545 	case 48:	return 0x9;
1546 	case 72:	return 0xd;
1547 	case 96:	return 0x8;
1548 	case 108:	return 0xc;
1549 
1550 	/* unsupported rates (should not get there) */
1551 	default:	return 0xff;
1552 	}
1553 }
1554 
1555 void
1556 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1557     uint32_t flags, uint16_t xflags, int len, int rate,
1558     const bus_dma_segment_t *segs, int nsegs, int ac, u_int8_t amrr_id)
1559 {
1560 	struct ieee80211com *ic = &sc->sc_ic;
1561 	uint16_t plcp_length;
1562 	int i, remainder;
1563 
1564 	desc->flags = htole32(flags);
1565 	desc->flags |= htole32(len << 16);
1566 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1567 
1568 	desc->xflags = htole16(xflags);
1569 	desc->xflags |= htole16(nsegs << 13);
1570 
1571 	desc->wme = htole16(
1572 	    RT2661_QID(ac) |
1573 	    RT2661_AIFSN(2) |
1574 	    RT2661_LOGCWMIN(4) |
1575 	    RT2661_LOGCWMAX(10));
1576 
1577 	/*
1578 	 * Remember the ID of the AMRR node to update when Tx completes.
1579 	 * This field is driver private data only. It will be made available
1580 	 * by the NIC in STA_CSR4 on Tx interrupts.
1581 	 */
1582 	desc->priv_data = amrr_id;
1583 
1584 	/* setup PLCP fields */
1585 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1586 	desc->plcp_service = 4;
1587 
1588 	len += IEEE80211_CRC_LEN;
1589 	if (RAL_RATE_IS_OFDM(rate)) {
1590 		desc->flags |= htole32(RT2661_TX_OFDM);
1591 
1592 		plcp_length = len & 0xfff;
1593 		desc->plcp_length_hi = plcp_length >> 6;
1594 		desc->plcp_length_lo = plcp_length & 0x3f;
1595 	} else {
1596 		plcp_length = (16 * len + rate - 1) / rate;
1597 		if (rate == 22) {
1598 			remainder = (16 * len) % 22;
1599 			if (remainder != 0 && remainder < 7)
1600 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1601 		}
1602 		desc->plcp_length_hi = plcp_length >> 8;
1603 		desc->plcp_length_lo = plcp_length & 0xff;
1604 
1605 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1606 			desc->plcp_signal |= 0x08;
1607 	}
1608 
1609 	/* RT2x61 supports scatter with up to 5 segments */
1610 	for (i = 0; i < nsegs; i++) {
1611 		desc->addr[i] = htole32(segs[i].ds_addr);
1612 		desc->len [i] = htole16(segs[i].ds_len);
1613 	}
1614 }
1615 
1616 int
1617 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1618     struct ieee80211_node *ni)
1619 {
1620 	struct ieee80211com *ic = &sc->sc_ic;
1621 	struct rt2661_tx_desc *desc;
1622 	struct rt2661_tx_data *data;
1623 	struct ieee80211_frame *wh;
1624 	uint16_t dur;
1625 	uint32_t flags = 0;
1626 	int rate, error;
1627 
1628 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1629 	data = &sc->mgtq.data[sc->mgtq.cur];
1630 
1631 	/* send mgt frames at the lowest available rate */
1632 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1633 
1634 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1635 	    BUS_DMA_NOWAIT);
1636 	if (error != 0) {
1637 		printf("%s: can't map mbuf (error %d)\n",
1638 		    sc->sc_dev.dv_xname, error);
1639 		m_freem(m0);
1640 		return error;
1641 	}
1642 
1643 #if NBPFILTER > 0
1644 	if (sc->sc_drvbpf != NULL) {
1645 		struct mbuf mb;
1646 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1647 
1648 		tap->wt_flags = 0;
1649 		tap->wt_rate = rate;
1650 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1651 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1652 
1653 		mb.m_data = (caddr_t)tap;
1654 		mb.m_len = sc->sc_txtap_len;
1655 		mb.m_next = m0;
1656 		mb.m_nextpkt = NULL;
1657 		mb.m_type = 0;
1658 		mb.m_flags = 0;
1659 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1660 	}
1661 #endif
1662 
1663 	data->m = m0;
1664 	data->ni = ni;
1665 
1666 	wh = mtod(m0, struct ieee80211_frame *);
1667 
1668 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1669 		flags |= RT2661_TX_NEED_ACK;
1670 
1671 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1672 		    sc->sifs;
1673 		*(uint16_t *)wh->i_dur = htole16(dur);
1674 
1675 #ifndef IEEE80211_STA_ONLY
1676 		/* tell hardware to set timestamp in probe responses */
1677 		if ((wh->i_fc[0] &
1678 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1679 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1680 			flags |= RT2661_TX_TIMESTAMP;
1681 #endif
1682 	}
1683 
1684 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1685 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1686 	    RT2661_QID_MGT, RT2661_AMRR_INVALID_ID);
1687 
1688 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1689 	    BUS_DMASYNC_PREWRITE);
1690 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1691 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1692 	    BUS_DMASYNC_PREWRITE);
1693 
1694 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1695 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1696 
1697 	/* kick mgt */
1698 	sc->mgtq.queued++;
1699 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1700 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1701 
1702 	return 0;
1703 }
1704 
1705 int
1706 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1707     struct ieee80211_node *ni, int ac)
1708 {
1709 	struct ieee80211com *ic = &sc->sc_ic;
1710 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1711 	struct rt2661_node *rn;
1712 	struct rt2661_tx_desc *desc;
1713 	struct rt2661_tx_data *data;
1714 	struct ieee80211_frame *wh;
1715 	struct ieee80211_key *k;
1716 	struct mbuf *m1;
1717 	uint16_t dur;
1718 	uint32_t flags = 0;
1719 	int pktlen, rate, needcts = 0, needrts = 0, error;
1720 
1721 	rn = ((ni == ic->ic_bss) ? NULL : (struct rt2661_node *)ni);
1722 	wh = mtod(m0, struct ieee80211_frame *);
1723 
1724 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1725 		k = ieee80211_get_txkey(ic, wh, ni);
1726 
1727 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1728 			return ENOBUFS;
1729 
1730 		/* packet header may have moved, reset our local pointer */
1731 		wh = mtod(m0, struct ieee80211_frame *);
1732 	}
1733 
1734 	/* compute actual packet length (including CRC and crypto overhead) */
1735 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1736 
1737 	/* pickup a rate */
1738 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1739 		/* multicast frames are sent at the lowest avail. rate */
1740 		rate = ni->ni_rates.rs_rates[0];
1741 	} else if (ic->ic_fixed_rate != -1) {
1742 		rate = ic->ic_sup_rates[ic->ic_curmode].
1743 		    rs_rates[ic->ic_fixed_rate];
1744 	} else
1745 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1746 	if (rate == 0)
1747 		rate = 2;	/* XXX should not happen */
1748 	rate &= IEEE80211_RATE_VAL;
1749 
1750 	/*
1751 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1752 	 * chance to contend for the wireless medium.
1753 	 */
1754 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseq & 7))
1755 		flags |= RT2661_TX_IFS_SIFS;
1756 
1757 	/* check if RTS/CTS or CTS-to-self protection must be used */
1758 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1759 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1760 		if (pktlen > ic->ic_rtsthreshold) {
1761 			needrts = 1;	/* RTS/CTS based on frame length */
1762 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1763 		    RAL_RATE_IS_OFDM(rate)) {
1764 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1765 				needcts = 1;	/* CTS-to-self */
1766 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1767 				needrts = 1;	/* RTS/CTS */
1768 		}
1769 	}
1770 	if (needrts || needcts) {
1771 		struct mbuf *mprot;
1772 		int protrate, ackrate;
1773 
1774 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1775 		ackrate  = rt2661_ack_rate(ic, rate);
1776 
1777 		dur = rt2661_txtime(pktlen, rate, ic->ic_flags) +
1778 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1779 		      2 * sc->sifs;
1780 		if (needrts) {
1781 			dur += rt2661_txtime(RAL_CTS_SIZE, rt2661_ack_rate(ic,
1782 			    protrate), ic->ic_flags) + sc->sifs;
1783 			mprot = ieee80211_get_rts(ic, wh, dur);
1784 		} else {
1785 			mprot = ieee80211_get_cts_to_self(ic, dur);
1786 		}
1787 		if (mprot == NULL) {
1788 			printf("%s: could not allocate protection frame\n",
1789 			    sc->sc_dev.dv_xname);
1790 			m_freem(m0);
1791 			return ENOBUFS;
1792 		}
1793 
1794 		desc = &txq->desc[txq->cur];
1795 		data = &txq->data[txq->cur];
1796 
1797 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, mprot,
1798 		    BUS_DMA_NOWAIT);
1799 		if (error != 0) {
1800 			printf("%s: can't map mbuf (error %d)\n",
1801 			    sc->sc_dev.dv_xname, error);
1802 			m_freem(mprot);
1803 			m_freem(m0);
1804 			return error;
1805 		}
1806 
1807 		data->m = mprot;
1808 		/* avoid multiple free() of the same node for each fragment */
1809 		data->ni = ieee80211_ref_node(ni);
1810 
1811 		/* XXX may want to pass the protection frame to BPF */
1812 
1813 		rt2661_setup_tx_desc(sc, desc,
1814 		    (needrts ? RT2661_TX_NEED_ACK : 0) | RT2661_TX_MORE_FRAG,
1815 		    0, mprot->m_pkthdr.len, protrate, data->map->dm_segs,
1816 		    data->map->dm_nsegs, ac,
1817 	    	    (rn && rn->amn) ? rn->amn->id : RT2661_AMRR_INVALID_ID);
1818 
1819 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1820 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1821 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1822 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1823 		    BUS_DMASYNC_PREWRITE);
1824 
1825 		txq->queued++;
1826 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1827 
1828 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1829 	}
1830 
1831 	data = &txq->data[txq->cur];
1832 	desc = &txq->desc[txq->cur];
1833 
1834 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1835 	    BUS_DMA_NOWAIT);
1836 	if (error != 0 && error != EFBIG) {
1837 		printf("%s: can't map mbuf (error %d)\n",
1838 		    sc->sc_dev.dv_xname, error);
1839 		m_freem(m0);
1840 		return error;
1841 	}
1842 	if (error != 0) {
1843 		/* too many fragments, linearize */
1844 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1845 		if (m1 == NULL) {
1846 			m_freem(m0);
1847 			return ENOBUFS;
1848 		}
1849 		if (m0->m_pkthdr.len > MHLEN) {
1850 			MCLGET(m1, M_DONTWAIT);
1851 			if (!(m1->m_flags & M_EXT)) {
1852 				m_freem(m0);
1853 				m_freem(m1);
1854 				return ENOBUFS;
1855 			}
1856 		}
1857 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m1, caddr_t));
1858 		m1->m_pkthdr.len = m1->m_len = m0->m_pkthdr.len;
1859 		m_freem(m0);
1860 		m0 = m1;
1861 
1862 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1863 		    BUS_DMA_NOWAIT);
1864 		if (error != 0) {
1865 			printf("%s: can't map mbuf (error %d)\n",
1866 			    sc->sc_dev.dv_xname, error);
1867 			m_freem(m0);
1868 			return error;
1869 		}
1870 
1871 		/* packet header have moved, reset our local pointer */
1872 		wh = mtod(m0, struct ieee80211_frame *);
1873 	}
1874 
1875 #if NBPFILTER > 0
1876 	if (sc->sc_drvbpf != NULL) {
1877 		struct mbuf mb;
1878 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1879 
1880 		tap->wt_flags = 0;
1881 		tap->wt_rate = rate;
1882 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1883 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1884 
1885 		mb.m_data = (caddr_t)tap;
1886 		mb.m_len = sc->sc_txtap_len;
1887 		mb.m_next = m0;
1888 		mb.m_nextpkt = NULL;
1889 		mb.m_type = 0;
1890 		mb.m_flags = 0;
1891 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1892 	}
1893 #endif
1894 
1895 	data->m = m0;
1896 	data->ni = ni;
1897 
1898 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1899 		flags |= RT2661_TX_NEED_ACK;
1900 
1901 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1902 		    ic->ic_flags) + sc->sifs;
1903 		*(uint16_t *)wh->i_dur = htole16(dur);
1904 	}
1905 
1906 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1907 	    data->map->dm_segs, data->map->dm_nsegs, ac,
1908 	    (rn && rn->amn) ? rn->amn->id : RT2661_AMRR_INVALID_ID);
1909 
1910 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1911 	    BUS_DMASYNC_PREWRITE);
1912 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1913 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1914 
1915 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1916 	    m0->m_pkthdr.len, txq->cur, rate));
1917 
1918 	/* kick Tx */
1919 	txq->queued++;
1920 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1921 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1922 
1923 	return 0;
1924 }
1925 
1926 void
1927 rt2661_start(struct ifnet *ifp)
1928 {
1929 	struct rt2661_softc *sc = ifp->if_softc;
1930 	struct ieee80211com *ic = &sc->sc_ic;
1931 	struct mbuf *m0;
1932 	struct ieee80211_node *ni;
1933 
1934 	/*
1935 	 * net80211 may still try to send management frames even if the
1936 	 * IFF_RUNNING flag is not set...
1937 	 */
1938 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1939 		return;
1940 
1941 	for (;;) {
1942 		IF_POLL(&ic->ic_mgtq, m0);
1943 		if (m0 != NULL) {
1944 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1945 				ifp->if_flags |= IFF_OACTIVE;
1946 				break;
1947 			}
1948 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1949 
1950 			ni = m0->m_pkthdr.ph_cookie;
1951 #if NBPFILTER > 0
1952 			if (ic->ic_rawbpf != NULL)
1953 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1954 #endif
1955 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1956 				break;
1957 
1958 		} else {
1959 			if (ic->ic_state != IEEE80211_S_RUN)
1960 				break;
1961 			IFQ_POLL(&ifp->if_snd, m0);
1962 			if (m0 == NULL)
1963 				break;
1964 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1965 				/* there is no place left in this ring */
1966 				ifp->if_flags |= IFF_OACTIVE;
1967 				break;
1968 			}
1969 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1970 #if NBPFILTER > 0
1971 			if (ifp->if_bpf != NULL)
1972 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1973 #endif
1974 			m0 = ieee80211_encap(ifp, m0, &ni);
1975 			if (m0 == NULL)
1976 				continue;
1977 #if NBPFILTER > 0
1978 			if (ic->ic_rawbpf != NULL)
1979 				bpf_mtap(ic->ic_rawbpf, m0,
1980 				    BPF_DIRECTION_OUT);
1981 #endif
1982 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1983 				if (ni != NULL)
1984 					ieee80211_release_node(ic, ni);
1985 				ifp->if_oerrors++;
1986 				break;
1987 			}
1988 		}
1989 
1990 		sc->sc_tx_timer = 5;
1991 		ifp->if_timer = 1;
1992 	}
1993 }
1994 
1995 void
1996 rt2661_watchdog(struct ifnet *ifp)
1997 {
1998 	struct rt2661_softc *sc = ifp->if_softc;
1999 
2000 	ifp->if_timer = 0;
2001 
2002 	if (sc->sc_tx_timer > 0) {
2003 		if (--sc->sc_tx_timer == 0) {
2004 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2005 			rt2661_init(ifp);
2006 			ifp->if_oerrors++;
2007 			return;
2008 		}
2009 		ifp->if_timer = 1;
2010 	}
2011 
2012 	ieee80211_watchdog(ifp);
2013 }
2014 
2015 int
2016 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2017 {
2018 	struct rt2661_softc *sc = ifp->if_softc;
2019 	struct ieee80211com *ic = &sc->sc_ic;
2020 	struct ifaddr *ifa;
2021 	struct ifreq *ifr;
2022 	int s, error = 0;
2023 
2024 	s = splnet();
2025 
2026 	switch (cmd) {
2027 	case SIOCSIFADDR:
2028 		ifa = (struct ifaddr *)data;
2029 		ifp->if_flags |= IFF_UP;
2030 #ifdef INET
2031 		if (ifa->ifa_addr->sa_family == AF_INET)
2032 			arp_ifinit(&ic->ic_ac, ifa);
2033 #endif
2034 		/* FALLTHROUGH */
2035 	case SIOCSIFFLAGS:
2036 		if (ifp->if_flags & IFF_UP) {
2037 			if (ifp->if_flags & IFF_RUNNING)
2038 				rt2661_update_promisc(sc);
2039 			else
2040 				rt2661_init(ifp);
2041 		} else {
2042 			if (ifp->if_flags & IFF_RUNNING)
2043 				rt2661_stop(ifp, 1);
2044 		}
2045 		break;
2046 
2047 	case SIOCADDMULTI:
2048 	case SIOCDELMULTI:
2049 		ifr = (struct ifreq *)data;
2050 		error = (cmd == SIOCADDMULTI) ?
2051 		    ether_addmulti(ifr, &ic->ic_ac) :
2052 		    ether_delmulti(ifr, &ic->ic_ac);
2053 
2054 		if (error == ENETRESET)
2055 			error = 0;
2056 		break;
2057 
2058 	case SIOCS80211CHANNEL:
2059 		/*
2060 		 * This allows for fast channel switching in monitor mode
2061 		 * (used by kismet). In IBSS mode, we must explicitly reset
2062 		 * the interface to generate a new beacon frame.
2063 		 */
2064 		error = ieee80211_ioctl(ifp, cmd, data);
2065 		if (error == ENETRESET &&
2066 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2067 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2068 			    (IFF_UP | IFF_RUNNING))
2069 				rt2661_set_chan(sc, ic->ic_ibss_chan);
2070 			error = 0;
2071 		}
2072 		break;
2073 
2074 	default:
2075 		error = ieee80211_ioctl(ifp, cmd, data);
2076 	}
2077 
2078 	if (error == ENETRESET) {
2079 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2080 		    (IFF_UP | IFF_RUNNING))
2081 			rt2661_init(ifp);
2082 		error = 0;
2083 	}
2084 
2085 	splx(s);
2086 
2087 	return error;
2088 }
2089 
2090 void
2091 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2092 {
2093 	uint32_t tmp;
2094 	int ntries;
2095 
2096 	for (ntries = 0; ntries < 100; ntries++) {
2097 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2098 			break;
2099 		DELAY(1);
2100 	}
2101 	if (ntries == 100) {
2102 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2103 		return;
2104 	}
2105 
2106 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2107 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2108 
2109 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2110 }
2111 
2112 uint8_t
2113 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2114 {
2115 	uint32_t val;
2116 	int ntries;
2117 
2118 	for (ntries = 0; ntries < 100; ntries++) {
2119 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2120 			break;
2121 		DELAY(1);
2122 	}
2123 	if (ntries == 100) {
2124 		printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2125 		return 0;
2126 	}
2127 
2128 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2129 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2130 
2131 	for (ntries = 0; ntries < 100; ntries++) {
2132 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2133 		if (!(val & RT2661_BBP_BUSY))
2134 			return val & 0xff;
2135 		DELAY(1);
2136 	}
2137 
2138 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2139 	return 0;
2140 }
2141 
2142 void
2143 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2144 {
2145 	uint32_t tmp;
2146 	int ntries;
2147 
2148 	for (ntries = 0; ntries < 100; ntries++) {
2149 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2150 			break;
2151 		DELAY(1);
2152 	}
2153 	if (ntries == 100) {
2154 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2155 		return;
2156 	}
2157 
2158 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2159 	    (reg & 3);
2160 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2161 
2162 	/* remember last written value in sc */
2163 	sc->rf_regs[reg] = val;
2164 
2165 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2166 }
2167 
2168 int
2169 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2170 {
2171 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2172 		return EIO;	/* there is already a command pending */
2173 
2174 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2175 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2176 
2177 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2178 
2179 	return 0;
2180 }
2181 
2182 void
2183 rt2661_select_antenna(struct rt2661_softc *sc)
2184 {
2185 	uint8_t bbp4, bbp77;
2186 	uint32_t tmp;
2187 
2188 	bbp4  = rt2661_bbp_read(sc,  4);
2189 	bbp77 = rt2661_bbp_read(sc, 77);
2190 
2191 	/* TBD */
2192 
2193 	/* make sure Rx is disabled before switching antenna */
2194 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2195 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2196 
2197 	rt2661_bbp_write(sc,  4, bbp4);
2198 	rt2661_bbp_write(sc, 77, bbp77);
2199 
2200 	/* restore Rx filter */
2201 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2202 }
2203 
2204 /*
2205  * Enable multi-rate retries for frames sent at OFDM rates.
2206  * In 802.11b/g mode, allow fallback to CCK rates.
2207  */
2208 void
2209 rt2661_enable_mrr(struct rt2661_softc *sc)
2210 {
2211 	struct ieee80211com *ic = &sc->sc_ic;
2212 	uint32_t tmp;
2213 
2214 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2215 
2216 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2217 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2218 		tmp |= RT2661_MRR_CCK_FALLBACK;
2219 	tmp |= RT2661_MRR_ENABLED;
2220 
2221 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2222 }
2223 
2224 void
2225 rt2661_set_txpreamble(struct rt2661_softc *sc)
2226 {
2227 	uint32_t tmp;
2228 
2229 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2230 
2231 	tmp &= ~RT2661_SHORT_PREAMBLE;
2232 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2233 		tmp |= RT2661_SHORT_PREAMBLE;
2234 
2235 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2236 }
2237 
2238 void
2239 rt2661_set_basicrates(struct rt2661_softc *sc)
2240 {
2241 	struct ieee80211com *ic = &sc->sc_ic;
2242 
2243 	/* update basic rate set */
2244 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2245 		/* 11b basic rates: 1, 2Mbps */
2246 		RAL_WRITE(sc, RT2661_TXRX_CSR5, 0x3);
2247 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
2248 		/* 11a basic rates: 6, 12, 24Mbps */
2249 		RAL_WRITE(sc, RT2661_TXRX_CSR5, 0x150);
2250 	} else {
2251 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2252 		RAL_WRITE(sc, RT2661_TXRX_CSR5, 0xf);
2253 	}
2254 }
2255 
2256 /*
2257  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2258  * driver.
2259  */
2260 void
2261 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2262 {
2263 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2264 	uint32_t tmp;
2265 
2266 	/* update all BBP registers that depend on the band */
2267 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2268 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2269 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2270 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2271 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2272 	}
2273 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2274 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2275 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2276 	}
2277 
2278 	sc->bbp17 = bbp17;
2279 	rt2661_bbp_write(sc,  17, bbp17);
2280 	rt2661_bbp_write(sc,  96, bbp96);
2281 	rt2661_bbp_write(sc, 104, bbp104);
2282 
2283 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2284 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2285 		rt2661_bbp_write(sc, 75, 0x80);
2286 		rt2661_bbp_write(sc, 86, 0x80);
2287 		rt2661_bbp_write(sc, 88, 0x80);
2288 	}
2289 
2290 	rt2661_bbp_write(sc, 35, bbp35);
2291 	rt2661_bbp_write(sc, 97, bbp97);
2292 	rt2661_bbp_write(sc, 98, bbp98);
2293 
2294 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2295 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2296 	if (IEEE80211_IS_CHAN_2GHZ(c))
2297 		tmp |= RT2661_PA_PE_2GHZ;
2298 	else
2299 		tmp |= RT2661_PA_PE_5GHZ;
2300 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2301 
2302 	/* 802.11a uses a 16 microseconds short interframe space */
2303 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2304 }
2305 
2306 void
2307 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2308 {
2309 	struct ieee80211com *ic = &sc->sc_ic;
2310 	const struct rfprog *rfprog;
2311 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2312 	int8_t power;
2313 	u_int i, chan;
2314 
2315 	chan = ieee80211_chan2ieee(ic, c);
2316 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2317 		return;
2318 
2319 	/* select the appropriate RF settings based on what EEPROM says */
2320 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2321 
2322 	/* find the settings for this channel (we know it exists) */
2323 	for (i = 0; rfprog[i].chan != chan; i++);
2324 
2325 	power = sc->txpow[i];
2326 	if (power < 0) {
2327 		bbp94 += power;
2328 		power = 0;
2329 	} else if (power > 31) {
2330 		bbp94 += power - 31;
2331 		power = 31;
2332 	}
2333 
2334 	/*
2335 	 * If we are switching from the 2GHz band to the 5GHz band or
2336 	 * vice-versa, BBP registers need to be reprogrammed.
2337 	 */
2338 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
2339 		rt2661_select_band(sc, c);
2340 		rt2661_select_antenna(sc);
2341 	}
2342 	sc->sc_curchan = c;
2343 
2344 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2345 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2346 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2347 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2348 
2349 	DELAY(200);
2350 
2351 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2352 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2353 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2354 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2355 
2356 	DELAY(200);
2357 
2358 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2359 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2360 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2361 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2362 
2363 	/* enable smart mode for MIMO-capable RFs */
2364 	bbp3 = rt2661_bbp_read(sc, 3);
2365 
2366 	bbp3 &= ~RT2661_SMART_MODE;
2367 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2368 		bbp3 |= RT2661_SMART_MODE;
2369 
2370 	rt2661_bbp_write(sc, 3, bbp3);
2371 
2372 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2373 		rt2661_bbp_write(sc, 94, bbp94);
2374 
2375 	/* 5GHz radio needs a 1ms delay here */
2376 	if (IEEE80211_IS_CHAN_5GHZ(c))
2377 		DELAY(1000);
2378 }
2379 
2380 void
2381 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2382 {
2383 	uint32_t tmp;
2384 
2385 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2386 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2387 
2388 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2389 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2390 }
2391 
2392 void
2393 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2394 {
2395 	uint32_t tmp;
2396 
2397 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2398 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2399 
2400 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2401 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2402 }
2403 
2404 void
2405 rt2661_update_promisc(struct rt2661_softc *sc)
2406 {
2407 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2408 	uint32_t tmp;
2409 
2410 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2411 
2412 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2413 	if (!(ifp->if_flags & IFF_PROMISC))
2414 		tmp |= RT2661_DROP_NOT_TO_ME;
2415 
2416 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2417 
2418 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2419 	    "entering" : "leaving"));
2420 }
2421 
2422 void
2423 rt2661_updateslot(struct ieee80211com *ic)
2424 {
2425 	struct rt2661_softc *sc = ic->ic_if.if_softc;
2426 
2427 #ifndef IEEE80211_STA_ONLY
2428 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2429 		/*
2430 		 * In HostAP mode, we defer setting of new slot time until
2431 		 * updated ERP Information Element has propagated to all
2432 		 * associated STAs.
2433 		 */
2434 		sc->sc_flags |= RT2661_UPDATE_SLOT;
2435 	} else
2436 #endif
2437 		rt2661_set_slottime(sc);
2438 }
2439 
2440 void
2441 rt2661_set_slottime(struct rt2661_softc *sc)
2442 {
2443 	struct ieee80211com *ic = &sc->sc_ic;
2444 	uint8_t slottime;
2445 	uint32_t tmp;
2446 
2447 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2448 
2449 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2450 	tmp = (tmp & ~0xff) | slottime;
2451 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2452 
2453 	DPRINTF(("setting slot time to %uus\n", slottime));
2454 }
2455 
2456 const char *
2457 rt2661_get_rf(int rev)
2458 {
2459 	switch (rev) {
2460 	case RT2661_RF_5225:	return "RT5225";
2461 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2462 	case RT2661_RF_2527:	return "RT2527";
2463 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2464 	default:		return "unknown";
2465 	}
2466 }
2467 
2468 void
2469 rt2661_read_eeprom(struct rt2661_softc *sc)
2470 {
2471 	struct ieee80211com *ic = &sc->sc_ic;
2472 	uint16_t val;
2473 	int i;
2474 
2475 	/* read MAC address */
2476 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2477 	ic->ic_myaddr[0] = val & 0xff;
2478 	ic->ic_myaddr[1] = val >> 8;
2479 
2480 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2481 	ic->ic_myaddr[2] = val & 0xff;
2482 	ic->ic_myaddr[3] = val >> 8;
2483 
2484 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2485 	ic->ic_myaddr[4] = val & 0xff;
2486 	ic->ic_myaddr[5] = val >> 8;
2487 
2488 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2489 	/* XXX: test if different from 0xffff? */
2490 	sc->rf_rev   = (val >> 11) & 0x1f;
2491 	sc->hw_radio = (val >> 10) & 0x1;
2492 	sc->rx_ant   = (val >> 4)  & 0x3;
2493 	sc->tx_ant   = (val >> 2)  & 0x3;
2494 	sc->nb_ant   = val & 0x3;
2495 
2496 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2497 
2498 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2499 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2500 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2501 
2502 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2503 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2504 
2505 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2506 	if ((val & 0xff) != 0xff)
2507 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2508 
2509 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2510 	if ((val & 0xff) != 0xff)
2511 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2512 
2513 	/* adjust RSSI correction for external low-noise amplifier */
2514 	if (sc->ext_2ghz_lna)
2515 		sc->rssi_2ghz_corr -= 14;
2516 	if (sc->ext_5ghz_lna)
2517 		sc->rssi_5ghz_corr -= 14;
2518 
2519 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2520 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2521 
2522 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2523 	if ((val >> 8) != 0xff)
2524 		sc->rfprog = (val >> 8) & 0x3;
2525 	if ((val & 0xff) != 0xff)
2526 		sc->rffreq = val & 0xff;
2527 
2528 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2529 
2530 	/* read Tx power for all a/b/g channels */
2531 	for (i = 0; i < 19; i++) {
2532 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2533 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2534 		DPRINTF(("Channel=%d Tx power=%d\n",
2535 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2536 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2537 		DPRINTF(("Channel=%d Tx power=%d\n",
2538 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2539 	}
2540 
2541 	/* read vendor-specific BBP values */
2542 	for (i = 0; i < 16; i++) {
2543 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2544 		if (val == 0 || val == 0xffff)
2545 			continue;	/* skip invalid entries */
2546 		sc->bbp_prom[i].reg = val >> 8;
2547 		sc->bbp_prom[i].val = val & 0xff;
2548 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2549 		    sc->bbp_prom[i].val));
2550 	}
2551 }
2552 
2553 int
2554 rt2661_bbp_init(struct rt2661_softc *sc)
2555 {
2556 	int i, ntries;
2557 
2558 	/* wait for BBP to be ready */
2559 	for (ntries = 0; ntries < 100; ntries++) {
2560 		const uint8_t val = rt2661_bbp_read(sc, 0);
2561 		if (val != 0 && val != 0xff)
2562 			break;
2563 		DELAY(100);
2564 	}
2565 	if (ntries == 100) {
2566 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2567 		return EIO;
2568 	}
2569 
2570 	/* initialize BBP registers to default values */
2571 	for (i = 0; i < nitems(rt2661_def_bbp); i++) {
2572 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2573 		    rt2661_def_bbp[i].val);
2574 	}
2575 
2576 	/* write vendor-specific BBP values (from EEPROM) */
2577 	for (i = 0; i < 16; i++) {
2578 		if (sc->bbp_prom[i].reg == 0)
2579 			continue;
2580 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2581 	}
2582 
2583 	return 0;
2584 }
2585 
2586 int
2587 rt2661_init(struct ifnet *ifp)
2588 {
2589 	struct rt2661_softc *sc = ifp->if_softc;
2590 	struct ieee80211com *ic = &sc->sc_ic;
2591 	uint32_t tmp, sta[3];
2592 	int i, ntries;
2593 
2594 	/* for CardBus, power on the socket */
2595 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2596 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2597 			printf("%s: could not enable device\n",
2598 			    sc->sc_dev.dv_xname);
2599 			return EIO;
2600 		}
2601 		sc->sc_flags |= RT2661_ENABLED;
2602 	}
2603 
2604 	rt2661_stop(ifp, 0);
2605 
2606 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2607 		if (rt2661_load_microcode(sc) != 0) {
2608 			printf("%s: could not load 8051 microcode\n",
2609 			    sc->sc_dev.dv_xname);
2610 			rt2661_stop(ifp, 1);
2611 			return EIO;
2612 		}
2613 		sc->sc_flags |= RT2661_FWLOADED;
2614 	}
2615 
2616 	/* initialize Tx rings */
2617 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2618 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2619 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2620 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2621 
2622 	/* initialize Mgt ring */
2623 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2624 
2625 	/* initialize Rx ring */
2626 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2627 
2628 	/* initialize Tx rings sizes */
2629 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2630 	    RT2661_TX_RING_COUNT << 24 |
2631 	    RT2661_TX_RING_COUNT << 16 |
2632 	    RT2661_TX_RING_COUNT <<  8 |
2633 	    RT2661_TX_RING_COUNT);
2634 
2635 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2636 	    RT2661_TX_DESC_WSIZE << 16 |
2637 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2638 	    RT2661_MGT_RING_COUNT);
2639 
2640 	/* initialize Rx rings */
2641 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2642 	    RT2661_RX_DESC_BACK  << 16 |
2643 	    RT2661_RX_DESC_WSIZE <<  8 |
2644 	    RT2661_RX_RING_COUNT);
2645 
2646 	/* XXX: some magic here */
2647 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2648 
2649 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2650 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2651 
2652 	/* load base address of Rx ring */
2653 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2654 
2655 	/* initialize MAC registers to default values */
2656 	for (i = 0; i < nitems(rt2661_def_mac); i++)
2657 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2658 
2659 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2660 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2661 
2662 	/* set host ready */
2663 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2664 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2665 
2666 	/* wait for BBP/RF to wakeup */
2667 	for (ntries = 0; ntries < 1000; ntries++) {
2668 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2669 			break;
2670 		DELAY(1000);
2671 	}
2672 	if (ntries == 1000) {
2673 		printf("timeout waiting for BBP/RF to wakeup\n");
2674 		rt2661_stop(ifp, 1);
2675 		return EIO;
2676 	}
2677 
2678 	if (rt2661_bbp_init(sc) != 0) {
2679 		rt2661_stop(ifp, 1);
2680 		return EIO;
2681 	}
2682 
2683 	/* select default channel */
2684 	sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2685 	rt2661_select_band(sc, sc->sc_curchan);
2686 	rt2661_select_antenna(sc);
2687 	rt2661_set_chan(sc, sc->sc_curchan);
2688 
2689 	/* update Rx filter */
2690 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2691 
2692 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2693 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2694 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2695 		       RT2661_DROP_ACKCTS;
2696 #ifndef IEEE80211_STA_ONLY
2697 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2698 #endif
2699 			tmp |= RT2661_DROP_TODS;
2700 		if (!(ifp->if_flags & IFF_PROMISC))
2701 			tmp |= RT2661_DROP_NOT_TO_ME;
2702 	}
2703 
2704 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2705 
2706 	/* clear STA registers */
2707 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, nitems(sta));
2708 
2709 	/* initialize ASIC */
2710 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2711 
2712 	/* clear any pending interrupt */
2713 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2714 
2715 	/* enable interrupts */
2716 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2717 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2718 
2719 	/* kick Rx */
2720 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2721 
2722 	ifp->if_flags &= ~IFF_OACTIVE;
2723 	ifp->if_flags |= IFF_RUNNING;
2724 
2725 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2726 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2727 	else
2728 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2729 
2730 	return 0;
2731 }
2732 
2733 void
2734 rt2661_stop(struct ifnet *ifp, int disable)
2735 {
2736 	struct rt2661_softc *sc = ifp->if_softc;
2737 	struct ieee80211com *ic = &sc->sc_ic;
2738 	uint32_t tmp;
2739 	int ac;
2740 
2741 	sc->sc_tx_timer = 0;
2742 	ifp->if_timer = 0;
2743 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2744 
2745 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2746 	rt2661_amrr_node_free_all(sc);
2747 
2748 	/* abort Tx (for all 5 Tx rings) */
2749 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2750 
2751 	/* disable Rx (value remains after reset!) */
2752 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2753 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2754 
2755 	/* reset ASIC */
2756 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2757 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2758 
2759 	/* disable interrupts */
2760 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2761 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2762 
2763 	/* clear any pending interrupt */
2764 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2765 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2766 
2767 	/* reset Tx and Rx rings */
2768 	for (ac = 0; ac < 4; ac++)
2769 		rt2661_reset_tx_ring(sc, &sc->txq[ac]);
2770 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2771 	rt2661_reset_rx_ring(sc, &sc->rxq);
2772 
2773 	/* for CardBus, power down the socket */
2774 	if (disable && sc->sc_disable != NULL) {
2775 		if (sc->sc_flags & RT2661_ENABLED) {
2776 			(*sc->sc_disable)(sc);
2777 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2778 		}
2779 	}
2780 }
2781 
2782 int
2783 rt2661_load_microcode(struct rt2661_softc *sc)
2784 {
2785 	int ntries;
2786 
2787 	/* reset 8051 */
2788 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2789 
2790 	/* cancel any pending Host to MCU command */
2791 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2792 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2793 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2794 
2795 	/* write 8051's microcode */
2796 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2797 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, sc->ucode, sc->ucsize);
2798 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2799 
2800 	/* kick 8051's ass */
2801 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2802 
2803 	/* wait for 8051 to initialize */
2804 	for (ntries = 0; ntries < 500; ntries++) {
2805 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2806 			break;
2807 		DELAY(100);
2808 	}
2809 	if (ntries == 500) {
2810 		printf("%s: timeout waiting for MCU to initialize\n",
2811 		    sc->sc_dev.dv_xname);
2812 		return EIO;
2813 	}
2814 	return 0;
2815 }
2816 
2817 /*
2818  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2819  * false CCA count.  This function is called periodically (every seconds) when
2820  * in the RUN state.  Values taken from the reference driver.
2821  */
2822 void
2823 rt2661_rx_tune(struct rt2661_softc *sc)
2824 {
2825 	uint8_t bbp17;
2826 	uint16_t cca;
2827 	int lo, hi, dbm;
2828 
2829 	/*
2830 	 * Tuning range depends on operating band and on the presence of an
2831 	 * external low-noise amplifier.
2832 	 */
2833 	lo = 0x20;
2834 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2835 		lo += 0x08;
2836 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2837 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2838 		lo += 0x10;
2839 	hi = lo + 0x20;
2840 
2841 	dbm = sc->avg_rssi;
2842 	/* retrieve false CCA count since last call (clear on read) */
2843 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2844 
2845 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2846 
2847 	if (dbm < -74) {
2848 		/* very bad RSSI, tune using false CCA count */
2849 		bbp17 = sc->bbp17; /* current value */
2850 
2851 		hi -= 2 * (-74 - dbm);
2852 		if (hi < lo)
2853 			hi = lo;
2854 
2855 		if (bbp17 > hi)
2856 			bbp17 = hi;
2857 		else if (cca > 512)
2858 			bbp17 = min(bbp17 + 1, hi);
2859 		else if (cca < 100)
2860 			bbp17 = max(bbp17 - 1, lo);
2861 
2862 	} else if (dbm < -66) {
2863 		bbp17 = lo + 0x08;
2864 	} else if (dbm < -58) {
2865 		bbp17 = lo + 0x10;
2866 	} else if (dbm < -35) {
2867 		bbp17 = hi;
2868 	} else {	/* very good RSSI >= -35dBm */
2869 		bbp17 = 0x60;	/* very low sensitivity */
2870 	}
2871 
2872 	if (bbp17 != sc->bbp17) {
2873 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2874 		rt2661_bbp_write(sc, 17, bbp17);
2875 		sc->bbp17 = bbp17;
2876 	}
2877 }
2878 
2879 #ifdef notyet
2880 /*
2881  * Enter/Leave radar detection mode.
2882  * This is for 802.11h additional regulatory domains.
2883  */
2884 void
2885 rt2661_radar_start(struct rt2661_softc *sc)
2886 {
2887 	uint32_t tmp;
2888 
2889 	/* disable Rx */
2890 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2891 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2892 
2893 	rt2661_bbp_write(sc, 82, 0x20);
2894 	rt2661_bbp_write(sc, 83, 0x00);
2895 	rt2661_bbp_write(sc, 84, 0x40);
2896 
2897 	/* save current BBP registers values */
2898 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2899 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2900 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2901 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2902 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2903 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2904 
2905 	rt2661_bbp_write(sc, 18, 0xff);
2906 	rt2661_bbp_write(sc, 21, 0x3f);
2907 	rt2661_bbp_write(sc, 22, 0x3f);
2908 	rt2661_bbp_write(sc, 16, 0xbd);
2909 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2910 	rt2661_bbp_write(sc, 64, 0x21);
2911 
2912 	/* restore Rx filter */
2913 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2914 }
2915 
2916 int
2917 rt2661_radar_stop(struct rt2661_softc *sc)
2918 {
2919 	uint8_t bbp66;
2920 
2921 	/* read radar detection result */
2922 	bbp66 = rt2661_bbp_read(sc, 66);
2923 
2924 	/* restore BBP registers values */
2925 	rt2661_bbp_write(sc, 16, sc->bbp16);
2926 	rt2661_bbp_write(sc, 17, sc->bbp17);
2927 	rt2661_bbp_write(sc, 18, sc->bbp18);
2928 	rt2661_bbp_write(sc, 21, sc->bbp21);
2929 	rt2661_bbp_write(sc, 22, sc->bbp22);
2930 	rt2661_bbp_write(sc, 64, sc->bbp64);
2931 
2932 	return bbp66 == 1;
2933 }
2934 #endif
2935 
2936 #ifndef IEEE80211_STA_ONLY
2937 int
2938 rt2661_prepare_beacon(struct rt2661_softc *sc)
2939 {
2940 	struct ieee80211com *ic = &sc->sc_ic;
2941 	struct ieee80211_node *ni = ic->ic_bss;
2942 	struct rt2661_tx_desc desc;
2943 	struct mbuf *m0;
2944 	int rate;
2945 
2946 	m0 = ieee80211_beacon_alloc(ic, ni);
2947 	if (m0 == NULL) {
2948 		printf("%s: could not allocate beacon frame\n",
2949 		    sc->sc_dev.dv_xname);
2950 		return ENOBUFS;
2951 	}
2952 
2953 	/* send beacons at the lowest available rate */
2954 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2955 
2956 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2957 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT,
2958 	    RT2661_AMRR_INVALID_ID);
2959 
2960 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2961 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2962 
2963 	/* copy beacon header and payload into NIC memory */
2964 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2965 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2966 
2967 	m_freem(m0);
2968 
2969 	/*
2970 	 * Store offset of ERP Information Element so that we can update it
2971 	 * dynamically when the slot time changes.
2972 	 * XXX: this is ugly since it depends on how net80211 builds beacon
2973 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2974 	 */
2975 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
2976 		sc->erp_csr =
2977 		    RT2661_HW_BEACON_BASE0 + 24 +
2978 		    sizeof (struct ieee80211_frame) +
2979 		    8 + 2 + 2 +
2980 		    ((ic->ic_flags & IEEE80211_F_HIDENWID) ?
2981 			1 : 2 + ni->ni_esslen) +
2982 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2983 		    2 + 1 +
2984 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2985 		    2;
2986 	}
2987 
2988 	return 0;
2989 }
2990 #endif
2991 
2992 /*
2993  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2994  * and HostAP operating modes.
2995  */
2996 void
2997 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2998 {
2999 	struct ieee80211com *ic = &sc->sc_ic;
3000 	uint32_t tmp;
3001 
3002 #ifndef IEEE80211_STA_ONLY
3003 	if (ic->ic_opmode != IEEE80211_M_STA) {
3004 		/*
3005 		 * Change default 16ms TBTT adjustment to 8ms.
3006 		 * Must be done before enabling beacon generation.
3007 		 */
3008 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3009 	}
3010 #endif
3011 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3012 
3013 	/* set beacon interval (in 1/16ms unit) */
3014 	tmp |= ic->ic_bss->ni_intval * 16;
3015 
3016 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3017 	if (ic->ic_opmode == IEEE80211_M_STA)
3018 		tmp |= RT2661_TSF_MODE(1);
3019 #ifndef IEEE80211_STA_ONLY
3020 	else
3021 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3022 #endif
3023 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3024 }
3025 
3026 /*
3027  * Retrieve the "Received Signal Strength Indicator" from the raw values
3028  * contained in Rx descriptors.  The computation depends on which band the
3029  * frame was received.  Correction values taken from the reference driver.
3030  */
3031 int
3032 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3033 {
3034 	int lna, agc, rssi;
3035 
3036 	lna = (raw >> 5) & 0x3;
3037 	agc = raw & 0x1f;
3038 
3039 	rssi = 2 * agc;
3040 
3041 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3042 		rssi += sc->rssi_2ghz_corr;
3043 
3044 		if (lna == 1)
3045 			rssi -= 64;
3046 		else if (lna == 2)
3047 			rssi -= 74;
3048 		else if (lna == 3)
3049 			rssi -= 90;
3050 	} else {
3051 		rssi += sc->rssi_5ghz_corr;
3052 
3053 		if (lna == 1)
3054 			rssi -= 64;
3055 		else if (lna == 2)
3056 			rssi -= 86;
3057 		else if (lna == 3)
3058 			rssi -= 100;
3059 	}
3060 	return rssi;
3061 }
3062