xref: /openbsd-src/sys/dev/ic/rt2560.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: rt2560.c,v 1.65 2014/07/13 23:10:23 deraadt Exp $  */
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Ralink Technology RT2560 chipset driver
22  * http://www.ralinktech.com/
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/timeout.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 
38 #include <machine/bus.h>
39 #include <machine/endian.h>
40 #include <machine/intr.h>
41 
42 #if NBPFILTER > 0
43 #include <net/bpf.h>
44 #endif
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/if_ether.h>
54 #include <netinet/ip.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/ic/rt2560reg.h>
61 #include <dev/ic/rt2560var.h>
62 
63 #include <dev/pci/pcireg.h>
64 #include <dev/pci/pcivar.h>
65 #include <dev/pci/pcidevs.h>
66 
67 #ifdef RAL_DEBUG
68 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
69 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
70 int rt2560_debug = 1;
71 #else
72 #define DPRINTF(x)
73 #define DPRINTFN(n, x)
74 #endif
75 
76 int		rt2560_alloc_tx_ring(struct rt2560_softc *,
77 		    struct rt2560_tx_ring *, int);
78 void		rt2560_reset_tx_ring(struct rt2560_softc *,
79 		    struct rt2560_tx_ring *);
80 void		rt2560_free_tx_ring(struct rt2560_softc *,
81 		    struct rt2560_tx_ring *);
82 int		rt2560_alloc_rx_ring(struct rt2560_softc *,
83 		    struct rt2560_rx_ring *, int);
84 void		rt2560_reset_rx_ring(struct rt2560_softc *,
85 		    struct rt2560_rx_ring *);
86 void		rt2560_free_rx_ring(struct rt2560_softc *,
87 		    struct rt2560_rx_ring *);
88 struct		ieee80211_node *rt2560_node_alloc(struct ieee80211com *);
89 int		rt2560_media_change(struct ifnet *);
90 void		rt2560_next_scan(void *);
91 void		rt2560_iter_func(void *, struct ieee80211_node *);
92 void		rt2560_amrr_timeout(void *);
93 void		rt2560_newassoc(struct ieee80211com *, struct ieee80211_node *,
94 		    int);
95 int		rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
96 		    int);
97 uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
98 void		rt2560_encryption_intr(struct rt2560_softc *);
99 void		rt2560_tx_intr(struct rt2560_softc *);
100 void		rt2560_prio_intr(struct rt2560_softc *);
101 void		rt2560_decryption_intr(struct rt2560_softc *);
102 void		rt2560_rx_intr(struct rt2560_softc *);
103 #ifndef IEEE80211_STA_ONLY
104 void		rt2560_beacon_expire(struct rt2560_softc *);
105 #endif
106 void		rt2560_wakeup_expire(struct rt2560_softc *);
107 #if NBPFILTER > 0
108 uint8_t		rt2560_rxrate(const struct rt2560_rx_desc *);
109 #endif
110 int		rt2560_ack_rate(struct ieee80211com *, int);
111 uint16_t	rt2560_txtime(int, int, uint32_t);
112 uint8_t		rt2560_plcp_signal(int);
113 void		rt2560_setup_tx_desc(struct rt2560_softc *,
114 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
115 		    bus_addr_t);
116 #ifndef IEEE80211_STA_ONLY
117 int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
118 		    struct ieee80211_node *);
119 #endif
120 int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
121 		    struct ieee80211_node *);
122 int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
123 		    struct ieee80211_node *);
124 void		rt2560_start(struct ifnet *);
125 void		rt2560_watchdog(struct ifnet *);
126 int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
127 void		rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
128 uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
129 void		rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
130 void		rt2560_set_chan(struct rt2560_softc *,
131 		    struct ieee80211_channel *);
132 void		rt2560_disable_rf_tune(struct rt2560_softc *);
133 void		rt2560_enable_tsf_sync(struct rt2560_softc *);
134 void		rt2560_update_plcp(struct rt2560_softc *);
135 void		rt2560_updateslot(struct ieee80211com *);
136 void		rt2560_set_slottime(struct rt2560_softc *);
137 void		rt2560_set_basicrates(struct rt2560_softc *);
138 void		rt2560_update_led(struct rt2560_softc *, int, int);
139 void		rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
140 void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
141 void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
142 void		rt2560_update_promisc(struct rt2560_softc *);
143 void		rt2560_set_txantenna(struct rt2560_softc *, int);
144 void		rt2560_set_rxantenna(struct rt2560_softc *, int);
145 const char	*rt2560_get_rf(int);
146 void		rt2560_read_eeprom(struct rt2560_softc *);
147 int		rt2560_bbp_init(struct rt2560_softc *);
148 int		rt2560_init(struct ifnet *);
149 void		rt2560_stop(struct ifnet *, int);
150 
151 static const struct {
152 	uint32_t	reg;
153 	uint32_t	val;
154 } rt2560_def_mac[] = {
155 	RT2560_DEF_MAC
156 };
157 
158 static const struct {
159 	uint8_t	reg;
160 	uint8_t	val;
161 } rt2560_def_bbp[] = {
162 	RT2560_DEF_BBP
163 };
164 
165 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
166 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
167 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
168 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
169 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
170 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
171 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
172 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
173 
174 int
175 rt2560_attach(void *xsc, int id)
176 {
177 	struct rt2560_softc *sc = xsc;
178 	struct ieee80211com *ic = &sc->sc_ic;
179 	struct ifnet *ifp = &ic->ic_if;
180 	int error, i;
181 
182 	sc->amrr.amrr_min_success_threshold =  1;
183 	sc->amrr.amrr_max_success_threshold = 15;
184 	timeout_set(&sc->amrr_to, rt2560_amrr_timeout, sc);
185 	timeout_set(&sc->scan_to, rt2560_next_scan, sc);
186 
187 	/* retrieve RT2560 rev. no */
188 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
189 
190 	/* retrieve MAC address */
191 	rt2560_get_macaddr(sc, ic->ic_myaddr);
192 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
193 
194 	/* retrieve RF rev. no and various other things from EEPROM */
195 	rt2560_read_eeprom(sc);
196 
197 	printf("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->sc_dev.dv_xname,
198 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
199 
200 	/*
201 	 * Allocate Tx and Rx rings.
202 	 */
203 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
204 	if (error != 0) {
205 		printf("%s: could not allocate Tx ring\n",
206 		    sc->sc_dev.dv_xname);
207 		goto fail1;
208 	}
209 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
210 	if (error != 0) {
211 		printf("%s: could not allocate ATIM ring\n",
212 		    sc->sc_dev.dv_xname);
213 		goto fail2;
214 	}
215 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
216 	if (error != 0) {
217 		printf("%s: could not allocate Prio ring\n",
218 		    sc->sc_dev.dv_xname);
219 		goto fail3;
220 	}
221 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
222 	if (error != 0) {
223 		printf("%s: could not allocate Beacon ring\n",
224 		    sc->sc_dev.dv_xname);
225 		goto fail4;
226 	}
227 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
228 	if (error != 0) {
229 		printf("%s: could not allocate Rx ring\n",
230 		    sc->sc_dev.dv_xname);
231 		goto fail5;
232 	}
233 
234 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
235 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
236 	ic->ic_state = IEEE80211_S_INIT;
237 
238 	/* set device capabilities */
239 	ic->ic_caps =
240 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
241 #ifndef IEEE80211_STA_ONLY
242 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
243 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
244 #endif
245 	    IEEE80211_C_TXPMGT |	/* tx power management */
246 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
247 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
248 	    IEEE80211_C_WEP |		/* s/w WEP */
249 	    IEEE80211_C_RSN;		/* WPA/RSN */
250 
251 	/* set supported .11b and .11g rates */
252 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
253 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
254 
255 	/* set supported .11b and .11g channels (1 through 14) */
256 	for (i = 1; i <= 14; i++) {
257 		ic->ic_channels[i].ic_freq =
258 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
259 		ic->ic_channels[i].ic_flags =
260 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
261 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
262 	}
263 
264 	ifp->if_softc = sc;
265 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
266 	ifp->if_ioctl = rt2560_ioctl;
267 	ifp->if_start = rt2560_start;
268 	ifp->if_watchdog = rt2560_watchdog;
269 	IFQ_SET_READY(&ifp->if_snd);
270 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
271 
272 	if_attach(ifp);
273 	ieee80211_ifattach(ifp);
274 	ic->ic_node_alloc = rt2560_node_alloc;
275 	ic->ic_newassoc = rt2560_newassoc;
276 	ic->ic_updateslot = rt2560_updateslot;
277 
278 	/* override state transition machine */
279 	sc->sc_newstate = ic->ic_newstate;
280 	ic->ic_newstate = rt2560_newstate;
281 	ieee80211_media_init(ifp, rt2560_media_change, ieee80211_media_status);
282 
283 #if NBPFILTER > 0
284 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
285 	    sizeof (struct ieee80211_frame) + 64);
286 
287 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
288 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
289 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
290 
291 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
292 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
293 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
294 #endif
295 	return 0;
296 
297 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
298 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
299 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
300 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
301 fail1:	return ENXIO;
302 }
303 
304 int
305 rt2560_detach(void *xsc)
306 {
307 	struct rt2560_softc *sc = xsc;
308 	struct ifnet *ifp = &sc->sc_ic.ic_if;
309 
310 	timeout_del(&sc->scan_to);
311 	timeout_del(&sc->amrr_to);
312 
313 	ieee80211_ifdetach(ifp);	/* free all nodes */
314 	if_detach(ifp);
315 
316 	rt2560_free_tx_ring(sc, &sc->txq);
317 	rt2560_free_tx_ring(sc, &sc->atimq);
318 	rt2560_free_tx_ring(sc, &sc->prioq);
319 	rt2560_free_tx_ring(sc, &sc->bcnq);
320 	rt2560_free_rx_ring(sc, &sc->rxq);
321 
322 	return 0;
323 }
324 
325 void
326 rt2560_suspend(void *xsc)
327 {
328 	struct rt2560_softc *sc = xsc;
329 	struct ifnet *ifp = &sc->sc_ic.ic_if;
330 
331 	if (ifp->if_flags & IFF_RUNNING)
332 		rt2560_stop(ifp, 1);
333 }
334 
335 void
336 rt2560_wakeup(void *xsc)
337 {
338 	struct rt2560_softc *sc = xsc;
339 	struct ifnet *ifp = &sc->sc_ic.ic_if;
340 
341 	if (ifp->if_flags & IFF_UP)
342 		rt2560_init(ifp);
343 }
344 
345 int
346 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
347     int count)
348 {
349 	int i, nsegs, error;
350 
351 	ring->count = count;
352 	ring->queued = 0;
353 	ring->cur = ring->next = 0;
354 	ring->cur_encrypt = ring->next_encrypt = 0;
355 
356 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
357 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
358 	if (error != 0) {
359 		printf("%s: could not create desc DMA map\n",
360 		    sc->sc_dev.dv_xname);
361 		goto fail;
362 	}
363 
364 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
365 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
366 	if (error != 0) {
367 		printf("%s: could not allocate DMA memory\n",
368 		    sc->sc_dev.dv_xname);
369 		goto fail;
370 	}
371 
372 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
373 	    count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc,
374 	    BUS_DMA_NOWAIT);
375 	if (error != 0) {
376 		printf("%s: can't map desc DMA memory\n",
377 		    sc->sc_dev.dv_xname);
378 		goto fail;
379 	}
380 
381 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
382 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
383 	if (error != 0) {
384 		printf("%s: could not load desc DMA map\n",
385 		    sc->sc_dev.dv_xname);
386 		goto fail;
387 	}
388 
389 	ring->physaddr = ring->map->dm_segs->ds_addr;
390 
391 	ring->data = mallocarray(count, sizeof (struct rt2560_tx_data),
392 	    M_DEVBUF, M_NOWAIT | M_ZERO);
393 	if (ring->data == NULL) {
394 		printf("%s: could not allocate soft data\n",
395 		    sc->sc_dev.dv_xname);
396 		error = ENOMEM;
397 		goto fail;
398 	}
399 
400 	for (i = 0; i < count; i++) {
401 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
402 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
403 		    &ring->data[i].map);
404 		if (error != 0) {
405 			printf("%s: could not create DMA map\n",
406 			    sc->sc_dev.dv_xname);
407 			goto fail;
408 		}
409 	}
410 
411 	return 0;
412 
413 fail:	rt2560_free_tx_ring(sc, ring);
414 	return error;
415 }
416 
417 void
418 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
419 {
420 	int i;
421 
422 	for (i = 0; i < ring->count; i++) {
423 		struct rt2560_tx_desc *desc = &ring->desc[i];
424 		struct rt2560_tx_data *data = &ring->data[i];
425 
426 		if (data->m != NULL) {
427 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
428 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
429 			bus_dmamap_unload(sc->sc_dmat, data->map);
430 			m_freem(data->m);
431 			data->m = NULL;
432 		}
433 
434 		/*
435 		 * The node has already been freed at that point so don't call
436 		 * ieee80211_release_node() here.
437 		 */
438 		data->ni = NULL;
439 
440 		desc->flags = 0;
441 	}
442 
443 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
444 	    BUS_DMASYNC_PREWRITE);
445 
446 	ring->queued = 0;
447 	ring->cur = ring->next = 0;
448 	ring->cur_encrypt = ring->next_encrypt = 0;
449 }
450 
451 void
452 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
453 {
454 	int i;
455 
456 	if (ring->desc != NULL) {
457 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
458 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
459 		bus_dmamap_unload(sc->sc_dmat, ring->map);
460 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
461 		    ring->count * RT2560_TX_DESC_SIZE);
462 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
463 	}
464 
465 	if (ring->data != NULL) {
466 		for (i = 0; i < ring->count; i++) {
467 			struct rt2560_tx_data *data = &ring->data[i];
468 
469 			if (data->m != NULL) {
470 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
471 				    data->map->dm_mapsize,
472 				    BUS_DMASYNC_POSTWRITE);
473 				bus_dmamap_unload(sc->sc_dmat, data->map);
474 				m_freem(data->m);
475 			}
476 
477 			/*
478 			 * The node has already been freed at that point so
479 			 * don't call ieee80211_release_node() here.
480 			 */
481 			data->ni = NULL;
482 
483 			if (data->map != NULL)
484 				bus_dmamap_destroy(sc->sc_dmat, data->map);
485 		}
486 		free(ring->data, M_DEVBUF, 0);
487 	}
488 }
489 
490 int
491 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
492     int count)
493 {
494 	int i, nsegs, error;
495 
496 	ring->count = count;
497 	ring->cur = ring->next = 0;
498 	ring->cur_decrypt = 0;
499 
500 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
501 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
502 	if (error != 0) {
503 		printf("%s: could not create desc DMA map\n",
504 		    sc->sc_dev.dv_xname);
505 		goto fail;
506 	}
507 
508 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
509 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
510 	if (error != 0) {
511 		printf("%s: could not allocate DMA memory\n",
512 		    sc->sc_dev.dv_xname);
513 		goto fail;
514 	}
515 
516 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
517 	    count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc,
518 	    BUS_DMA_NOWAIT);
519 	if (error != 0) {
520 		printf("%s: can't map desc DMA memory\n",
521 		    sc->sc_dev.dv_xname);
522 		goto fail;
523 	}
524 
525 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
526 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
527 	if (error != 0) {
528 		printf("%s: could not load desc DMA map\n",
529 		    sc->sc_dev.dv_xname);
530 		goto fail;
531 	}
532 
533 	ring->physaddr = ring->map->dm_segs->ds_addr;
534 
535 	ring->data = mallocarray(count, sizeof (struct rt2560_rx_data),
536 	    M_DEVBUF, M_NOWAIT | M_ZERO);
537 	if (ring->data == NULL) {
538 		printf("%s: could not allocate soft data\n",
539 		    sc->sc_dev.dv_xname);
540 		error = ENOMEM;
541 		goto fail;
542 	}
543 
544 	/*
545 	 * Pre-allocate Rx buffers and populate Rx ring.
546 	 */
547 	for (i = 0; i < count; i++) {
548 		struct rt2560_rx_desc *desc = &sc->rxq.desc[i];
549 		struct rt2560_rx_data *data = &sc->rxq.data[i];
550 
551 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
552 		    0, BUS_DMA_NOWAIT, &data->map);
553 		if (error != 0) {
554 			printf("%s: could not create DMA map\n",
555 			    sc->sc_dev.dv_xname);
556 			goto fail;
557 		}
558 
559 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
560 		if (data->m == NULL) {
561 			printf("%s: could not allocate rx mbuf\n",
562 			    sc->sc_dev.dv_xname);
563 			error = ENOMEM;
564 			goto fail;
565 		}
566 		MCLGET(data->m, M_DONTWAIT);
567 		if (!(data->m->m_flags & M_EXT)) {
568 			printf("%s: could not allocate rx mbuf cluster\n",
569 			    sc->sc_dev.dv_xname);
570 			error = ENOMEM;
571 			goto fail;
572 		}
573 
574 		error = bus_dmamap_load(sc->sc_dmat, data->map,
575 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
576 		if (error != 0) {
577 			printf("%s: could not load rx buf DMA map",
578 			    sc->sc_dev.dv_xname);
579 			goto fail;
580 		}
581 
582 		desc->flags = htole32(RT2560_RX_BUSY);
583 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
584 	}
585 
586 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
587 	    BUS_DMASYNC_PREWRITE);
588 
589 	return 0;
590 
591 fail:	rt2560_free_rx_ring(sc, ring);
592 	return error;
593 }
594 
595 void
596 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
597 {
598 	int i;
599 
600 	for (i = 0; i < ring->count; i++) {
601 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
602 		ring->data[i].drop = 0;
603 	}
604 
605 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
606 	    BUS_DMASYNC_PREWRITE);
607 
608 	ring->cur = ring->next = 0;
609 	ring->cur_decrypt = 0;
610 }
611 
612 void
613 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
614 {
615 	int i;
616 
617 	if (ring->desc != NULL) {
618 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
619 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
620 		bus_dmamap_unload(sc->sc_dmat, ring->map);
621 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
622 		    ring->count * RT2560_RX_DESC_SIZE);
623 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
624 	}
625 
626 	if (ring->data != NULL) {
627 		for (i = 0; i < ring->count; i++) {
628 			struct rt2560_rx_data *data = &ring->data[i];
629 
630 			if (data->m != NULL) {
631 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
632 				    data->map->dm_mapsize,
633 				    BUS_DMASYNC_POSTREAD);
634 				bus_dmamap_unload(sc->sc_dmat, data->map);
635 				m_freem(data->m);
636 			}
637 
638 			if (data->map != NULL)
639 				bus_dmamap_destroy(sc->sc_dmat, data->map);
640 		}
641 		free(ring->data, M_DEVBUF, 0);
642 	}
643 }
644 
645 struct ieee80211_node *
646 rt2560_node_alloc(struct ieee80211com *ic)
647 {
648 	return malloc(sizeof (struct rt2560_node), M_DEVBUF,
649 	    M_NOWAIT | M_ZERO);
650 }
651 
652 int
653 rt2560_media_change(struct ifnet *ifp)
654 {
655 	int error;
656 
657 	error = ieee80211_media_change(ifp);
658 	if (error != ENETRESET)
659 		return error;
660 
661 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
662 		rt2560_init(ifp);
663 
664 	return 0;
665 }
666 
667 /*
668  * This function is called periodically (every 200ms) during scanning to
669  * switch from one channel to another.
670  */
671 void
672 rt2560_next_scan(void *arg)
673 {
674 	struct rt2560_softc *sc = arg;
675 	struct ieee80211com *ic = &sc->sc_ic;
676 	struct ifnet *ifp = &ic->ic_if;
677 	int s;
678 
679 	s = splnet();
680 	if (ic->ic_state == IEEE80211_S_SCAN)
681 		ieee80211_next_scan(ifp);
682 	splx(s);
683 }
684 
685 /*
686  * This function is called for each neighbor node.
687  */
688 void
689 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
690 {
691 	struct rt2560_softc *sc = arg;
692 	struct rt2560_node *rn = (struct rt2560_node *)ni;
693 
694 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
695 }
696 
697 void
698 rt2560_amrr_timeout(void *arg)
699 {
700 	struct rt2560_softc *sc = arg;
701 	struct ieee80211com *ic = &sc->sc_ic;
702 	int s;
703 
704 	s = splnet();
705 	if (ic->ic_opmode == IEEE80211_M_STA)
706 		rt2560_iter_func(sc, ic->ic_bss);
707 #ifndef IEEE80211_STA_ONLY
708 	else
709 		ieee80211_iterate_nodes(ic, rt2560_iter_func, sc);
710 #endif
711 	splx(s);
712 
713 	timeout_add_msec(&sc->amrr_to, 500);
714 }
715 
716 void
717 rt2560_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
718 {
719 	struct rt2560_softc *sc = ic->ic_softc;
720 	int i;
721 
722 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2560_node *)ni)->amn);
723 
724 	/* set rate to some reasonable initial value */
725 	for (i = ni->ni_rates.rs_nrates - 1;
726 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
727 	     i--);
728 	ni->ni_txrate = i;
729 }
730 
731 int
732 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
733 {
734 	struct rt2560_softc *sc = ic->ic_if.if_softc;
735 	enum ieee80211_state ostate;
736 	struct ieee80211_node *ni;
737 	int error = 0;
738 
739 	ostate = ic->ic_state;
740 	timeout_del(&sc->scan_to);
741 	timeout_del(&sc->amrr_to);
742 
743 	switch (nstate) {
744 	case IEEE80211_S_INIT:
745 		if (ostate == IEEE80211_S_RUN) {
746 			/* abort TSF synchronization */
747 			RAL_WRITE(sc, RT2560_CSR14, 0);
748 
749 			/* turn association led off */
750 			rt2560_update_led(sc, 0, 0);
751 		}
752 		break;
753 
754 	case IEEE80211_S_SCAN:
755 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
756 		timeout_add_msec(&sc->scan_to, 200);
757 		break;
758 
759 	case IEEE80211_S_AUTH:
760 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
761 		break;
762 
763 	case IEEE80211_S_ASSOC:
764 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
765 		break;
766 
767 	case IEEE80211_S_RUN:
768 		rt2560_set_chan(sc, ic->ic_bss->ni_chan);
769 
770 		ni = ic->ic_bss;
771 
772 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
773 			rt2560_update_plcp(sc);
774 			rt2560_set_slottime(sc);
775 			rt2560_set_basicrates(sc);
776 			rt2560_set_bssid(sc, ni->ni_bssid);
777 		}
778 
779 #ifndef IEEE80211_STA_ONLY
780 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
781 		    ic->ic_opmode == IEEE80211_M_IBSS) {
782 			struct mbuf *m = ieee80211_beacon_alloc(ic, ni);
783 			if (m == NULL) {
784 				printf("%s: could not allocate beacon\n",
785 				    sc->sc_dev.dv_xname);
786 				error = ENOBUFS;
787 				break;
788 			}
789 
790 			error = rt2560_tx_bcn(sc, m, ni);
791 			if (error != 0)
792 				break;
793 		}
794 #endif
795 
796 		/* turn assocation led on */
797 		rt2560_update_led(sc, 1, 0);
798 
799 		if (ic->ic_opmode == IEEE80211_M_STA) {
800 			/* fake a join to init the tx rate */
801 			rt2560_newassoc(ic, ni, 1);
802 		}
803 
804 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
805 			/* start automatic rate control timer */
806 			if (ic->ic_fixed_rate == -1)
807 				timeout_add_msec(&sc->amrr_to, 500);
808 
809 			rt2560_enable_tsf_sync(sc);
810 		}
811 		break;
812 	}
813 
814 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
815 }
816 
817 /*
818  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
819  * 93C66).
820  */
821 uint16_t
822 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
823 {
824 	uint32_t tmp;
825 	uint16_t val;
826 	int n;
827 
828 	/* clock C once before the first command */
829 	RT2560_EEPROM_CTL(sc, 0);
830 
831 	RT2560_EEPROM_CTL(sc, RT2560_S);
832 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
833 	RT2560_EEPROM_CTL(sc, RT2560_S);
834 
835 	/* write start bit (1) */
836 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
837 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
838 
839 	/* write READ opcode (10) */
840 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
841 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
842 	RT2560_EEPROM_CTL(sc, RT2560_S);
843 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
844 
845 	/* write address (A5-A0 or A7-A0) */
846 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
847 	for (; n >= 0; n--) {
848 		RT2560_EEPROM_CTL(sc, RT2560_S |
849 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
850 		RT2560_EEPROM_CTL(sc, RT2560_S |
851 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
852 	}
853 
854 	RT2560_EEPROM_CTL(sc, RT2560_S);
855 
856 	/* read data Q15-Q0 */
857 	val = 0;
858 	for (n = 15; n >= 0; n--) {
859 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
860 		tmp = RAL_READ(sc, RT2560_CSR21);
861 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
862 		RT2560_EEPROM_CTL(sc, RT2560_S);
863 	}
864 
865 	RT2560_EEPROM_CTL(sc, 0);
866 
867 	/* clear Chip Select and clock C */
868 	RT2560_EEPROM_CTL(sc, RT2560_S);
869 	RT2560_EEPROM_CTL(sc, 0);
870 	RT2560_EEPROM_CTL(sc, RT2560_C);
871 
872 	return val;
873 }
874 
875 /*
876  * Some frames were processed by the hardware cipher engine and are ready for
877  * transmission.
878  */
879 void
880 rt2560_encryption_intr(struct rt2560_softc *sc)
881 {
882 	int hw;
883 
884 	/* retrieve last descriptor index processed by cipher engine */
885 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
886 	    RT2560_TX_DESC_SIZE;
887 
888 	for (; sc->txq.next_encrypt != hw;) {
889 		struct rt2560_tx_desc *desc =
890 		    &sc->txq.desc[sc->txq.next_encrypt];
891 
892 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
893 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
894 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
895 
896 		if (letoh32(desc->flags) &
897 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
898 			break;
899 
900 		/* for TKIP, swap eiv field to fix a bug in ASIC */
901 		if ((letoh32(desc->flags) & RT2560_TX_CIPHER_MASK) ==
902 		    RT2560_TX_CIPHER_TKIP)
903 			desc->eiv = swap32(desc->eiv);
904 
905 		/* mark the frame ready for transmission */
906 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
907 
908 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
909 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
910 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
911 
912 		DPRINTFN(15, ("encryption done idx=%u\n",
913 		    sc->txq.next_encrypt));
914 
915 		sc->txq.next_encrypt =
916 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
917 	}
918 
919 	/* kick Tx */
920 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
921 }
922 
923 void
924 rt2560_tx_intr(struct rt2560_softc *sc)
925 {
926 	struct ieee80211com *ic = &sc->sc_ic;
927 	struct ifnet *ifp = &ic->ic_if;
928 
929 	for (;;) {
930 		struct rt2560_tx_desc *desc = &sc->txq.desc[sc->txq.next];
931 		struct rt2560_tx_data *data = &sc->txq.data[sc->txq.next];
932 		struct rt2560_node *rn;
933 
934 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
935 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
936 		    BUS_DMASYNC_POSTREAD);
937 
938 		if ((letoh32(desc->flags) & RT2560_TX_BUSY) ||
939 		    (letoh32(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
940 		    !(letoh32(desc->flags) & RT2560_TX_VALID))
941 			break;
942 
943 		rn = (struct rt2560_node *)data->ni;
944 
945 		switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) {
946 		case RT2560_TX_SUCCESS:
947 			DPRINTFN(10, ("data frame sent successfully\n"));
948 			rn->amn.amn_txcnt++;
949 			ifp->if_opackets++;
950 			break;
951 
952 		case RT2560_TX_SUCCESS_RETRY:
953 			DPRINTFN(9, ("data frame sent after %u retries\n",
954 			    (letoh32(desc->flags) >> 5) & 0x7));
955 			rn->amn.amn_txcnt++;
956 			rn->amn.amn_retrycnt++;
957 			ifp->if_opackets++;
958 			break;
959 
960 		case RT2560_TX_FAIL_RETRY:
961 			DPRINTFN(9, ("sending data frame failed (too much "
962 			    "retries)\n"));
963 			rn->amn.amn_txcnt++;
964 			rn->amn.amn_retrycnt++;
965 			ifp->if_oerrors++;
966 			break;
967 
968 		case RT2560_TX_FAIL_INVALID:
969 		case RT2560_TX_FAIL_OTHER:
970 		default:
971 			printf("%s: sending data frame failed 0x%08x\n",
972 			    sc->sc_dev.dv_xname, letoh32(desc->flags));
973 			ifp->if_oerrors++;
974 		}
975 
976 		/* descriptor is no longer valid */
977 		desc->flags &= ~htole32(RT2560_TX_VALID);
978 
979 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
980 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
981 		    BUS_DMASYNC_PREWRITE);
982 
983 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
984 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
985 		bus_dmamap_unload(sc->sc_dmat, data->map);
986 		m_freem(data->m);
987 		data->m = NULL;
988 		ieee80211_release_node(ic, data->ni);
989 		data->ni = NULL;
990 
991 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
992 
993 		sc->txq.queued--;
994 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
995 	}
996 
997 	if (sc->txq.queued == 0 && sc->prioq.queued == 0)
998 		sc->sc_tx_timer = 0;
999 	if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) {
1000 		sc->sc_flags &= ~RT2560_DATA_OACTIVE;
1001 		if (!(sc->sc_flags & (RT2560_DATA_OACTIVE|RT2560_PRIO_OACTIVE)))
1002 			ifp->if_flags &= ~IFF_OACTIVE;
1003 		rt2560_start(ifp);
1004 	}
1005 }
1006 
1007 void
1008 rt2560_prio_intr(struct rt2560_softc *sc)
1009 {
1010 	struct ieee80211com *ic = &sc->sc_ic;
1011 	struct ifnet *ifp = &ic->ic_if;
1012 
1013 	for (;;) {
1014 		struct rt2560_tx_desc *desc = &sc->prioq.desc[sc->prioq.next];
1015 		struct rt2560_tx_data *data = &sc->prioq.data[sc->prioq.next];
1016 
1017 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1018 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1019 		    BUS_DMASYNC_POSTREAD);
1020 
1021 		if ((letoh32(desc->flags) & RT2560_TX_BUSY) ||
1022 		    !(letoh32(desc->flags) & RT2560_TX_VALID))
1023 			break;
1024 
1025 		switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) {
1026 		case RT2560_TX_SUCCESS:
1027 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1028 			break;
1029 
1030 		case RT2560_TX_SUCCESS_RETRY:
1031 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1032 			    (letoh32(desc->flags) >> 5) & 0x7));
1033 			break;
1034 
1035 		case RT2560_TX_FAIL_RETRY:
1036 			DPRINTFN(9, ("sending mgt frame failed (too much "
1037 			    "retries)\n"));
1038 			break;
1039 
1040 		case RT2560_TX_FAIL_INVALID:
1041 		case RT2560_TX_FAIL_OTHER:
1042 		default:
1043 			printf("%s: sending mgt frame failed 0x%08x\n",
1044 			    sc->sc_dev.dv_xname, letoh32(desc->flags));
1045 		}
1046 
1047 		/* descriptor is no longer valid */
1048 		desc->flags &= ~htole32(RT2560_TX_VALID);
1049 
1050 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1051 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1052 		    BUS_DMASYNC_PREWRITE);
1053 
1054 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1055 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1056 		bus_dmamap_unload(sc->sc_dmat, data->map);
1057 		m_freem(data->m);
1058 		data->m = NULL;
1059 		ieee80211_release_node(ic, data->ni);
1060 		data->ni = NULL;
1061 
1062 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1063 
1064 		sc->prioq.queued--;
1065 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1066 	}
1067 
1068 	if (sc->txq.queued == 0 && sc->prioq.queued == 0)
1069 		sc->sc_tx_timer = 0;
1070 	if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) {
1071 		sc->sc_flags &= ~RT2560_PRIO_OACTIVE;
1072 		if (!(sc->sc_flags & (RT2560_DATA_OACTIVE|RT2560_PRIO_OACTIVE)))
1073 			ifp->if_flags &= ~IFF_OACTIVE;
1074 		rt2560_start(ifp);
1075 	}
1076 }
1077 
1078 /*
1079  * Some frames were processed by the hardware cipher engine and are ready for
1080  * transmission to the IEEE802.11 layer.
1081  */
1082 void
1083 rt2560_decryption_intr(struct rt2560_softc *sc)
1084 {
1085 	struct ieee80211com *ic = &sc->sc_ic;
1086 	struct ifnet *ifp = &ic->ic_if;
1087 	struct ieee80211_frame *wh;
1088 	struct ieee80211_rxinfo rxi;
1089 	struct ieee80211_node *ni;
1090 	struct mbuf *mnew, *m;
1091 	int hw, error;
1092 
1093 	/* retrieve last decriptor index processed by cipher engine */
1094 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1095 	    RT2560_RX_DESC_SIZE;
1096 
1097 	for (; sc->rxq.cur_decrypt != hw;) {
1098 		struct rt2560_rx_desc *desc =
1099 		    &sc->rxq.desc[sc->rxq.cur_decrypt];
1100 		struct rt2560_rx_data *data =
1101 		    &sc->rxq.data[sc->rxq.cur_decrypt];
1102 
1103 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1104 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1105 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1106 
1107 		if (letoh32(desc->flags) &
1108 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1109 			break;
1110 
1111 		if (data->drop) {
1112 			ifp->if_ierrors++;
1113 			goto skip;
1114 		}
1115 
1116 		if ((letoh32(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1117 		    (letoh32(desc->flags) & RT2560_RX_ICV_ERROR)) {
1118 			ifp->if_ierrors++;
1119 			goto skip;
1120 		}
1121 
1122 		/*
1123 		 * Try to allocate a new mbuf for this ring element and load it
1124 		 * before processing the current mbuf.  If the ring element
1125 		 * cannot be loaded, drop the received packet and reuse the old
1126 		 * mbuf.  In the unlikely case that the old mbuf can't be
1127 		 * reloaded either, explicitly panic.
1128 		 */
1129 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1130 		if (mnew == NULL) {
1131 			ifp->if_ierrors++;
1132 			goto skip;
1133 		}
1134 		MCLGET(mnew, M_DONTWAIT);
1135 		if (!(mnew->m_flags & M_EXT)) {
1136 			m_freem(mnew);
1137 			ifp->if_ierrors++;
1138 			goto skip;
1139 		}
1140 
1141 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1142 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1143 		bus_dmamap_unload(sc->sc_dmat, data->map);
1144 
1145 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1146 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1147 		if (error != 0) {
1148 			m_freem(mnew);
1149 
1150 			/* try to reload the old mbuf */
1151 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1152 			    mtod(data->m, void *), MCLBYTES, NULL,
1153 			    BUS_DMA_NOWAIT);
1154 			if (error != 0) {
1155 				/* very unlikely that it will fail... */
1156 				panic("%s: could not load old rx mbuf",
1157 				    sc->sc_dev.dv_xname);
1158 			}
1159 			/* physical address may have changed */
1160 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1161 			ifp->if_ierrors++;
1162 			goto skip;
1163 		}
1164 
1165 		/*
1166 		 * New mbuf successfully loaded, update Rx ring and continue
1167 		 * processing.
1168 		 */
1169 		m = data->m;
1170 		data->m = mnew;
1171 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1172 
1173 		/* finalize mbuf */
1174 		m->m_pkthdr.rcvif = ifp;
1175 		m->m_pkthdr.len = m->m_len =
1176 		    (letoh32(desc->flags) >> 16) & 0xfff;
1177 
1178 #if NBPFILTER > 0
1179 		if (sc->sc_drvbpf != NULL) {
1180 			struct mbuf mb;
1181 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1182 			uint32_t tsf_lo, tsf_hi;
1183 
1184 			/* get timestamp (low and high 32 bits) */
1185 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1186 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1187 
1188 			tap->wr_tsf =
1189 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1190 			tap->wr_flags = 0;
1191 			tap->wr_rate = rt2560_rxrate(desc);
1192 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1193 			tap->wr_chan_flags =
1194 			    htole16(ic->ic_ibss_chan->ic_flags);
1195 			tap->wr_antenna = sc->rx_ant;
1196 			tap->wr_antsignal = desc->rssi;
1197 
1198 			mb.m_data = (caddr_t)tap;
1199 			mb.m_len = sc->sc_txtap_len;
1200 			mb.m_next = m;
1201 			mb.m_nextpkt = NULL;
1202 			mb.m_type = 0;
1203 			mb.m_flags = 0;
1204 			bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1205 		}
1206 #endif
1207 		wh = mtod(m, struct ieee80211_frame *);
1208 		ni = ieee80211_find_rxnode(ic, wh);
1209 
1210 		/* send the frame to the 802.11 layer */
1211 		rxi.rxi_flags = 0;
1212 		rxi.rxi_rssi = desc->rssi;
1213 		rxi.rxi_tstamp = 0;	/* unused */
1214 		ieee80211_input(ifp, m, ni, &rxi);
1215 
1216 		/* node is no longer needed */
1217 		ieee80211_release_node(ic, ni);
1218 
1219 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1220 
1221 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1222 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1223 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1224 
1225 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1226 
1227 		sc->rxq.cur_decrypt =
1228 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1229 	}
1230 }
1231 
1232 /*
1233  * Some frames were received. Pass them to the hardware cipher engine before
1234  * sending them to the 802.11 layer.
1235  */
1236 void
1237 rt2560_rx_intr(struct rt2560_softc *sc)
1238 {
1239 	for (;;) {
1240 		struct rt2560_rx_desc *desc = &sc->rxq.desc[sc->rxq.cur];
1241 		struct rt2560_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1242 
1243 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1244 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1245 		    BUS_DMASYNC_POSTREAD);
1246 
1247 		if (letoh32(desc->flags) &
1248 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1249 			break;
1250 
1251 		data->drop = 0;
1252 
1253 		if (letoh32(desc->flags) &
1254 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1255 			/*
1256 			 * This should not happen since we did not request
1257 			 * to receive those frames when we filled RXCSR0.
1258 			 */
1259 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1260 			    letoh32(desc->flags)));
1261 			data->drop = 1;
1262 		}
1263 
1264 		if (((letoh32(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1265 			DPRINTFN(5, ("bad length\n"));
1266 			data->drop = 1;
1267 		}
1268 
1269 		/* mark the frame for decryption */
1270 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1271 
1272 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1273 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1274 		    BUS_DMASYNC_PREWRITE);
1275 
1276 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1277 
1278 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1279 	}
1280 
1281 	/* kick decrypt */
1282 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1283 }
1284 
1285 #ifndef IEEE80211_STA_ONLY
1286 /*
1287  * This function is called in HostAP or IBSS modes when it's time to send a
1288  * new beacon (every ni_intval milliseconds).
1289  */
1290 void
1291 rt2560_beacon_expire(struct rt2560_softc *sc)
1292 {
1293 	struct ieee80211com *ic = &sc->sc_ic;
1294 	struct rt2560_tx_data *data;
1295 
1296 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1297 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1298 		return;
1299 
1300 	data = &sc->bcnq.data[sc->bcnq.next];
1301 
1302 	if (sc->sc_flags & RT2560_UPDATE_SLOT) {
1303 		sc->sc_flags &= ~RT2560_UPDATE_SLOT;
1304 		sc->sc_flags |= RT2560_SET_SLOTTIME;
1305 	} else if (sc->sc_flags & RT2560_SET_SLOTTIME) {
1306 		sc->sc_flags &= ~RT2560_SET_SLOTTIME;
1307 		rt2560_set_slottime(sc);
1308 	}
1309 
1310 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1311 		/* update ERP Information Element */
1312 		*sc->erp = ic->ic_bss->ni_erp;
1313 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1314 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1315 	}
1316 
1317 #if defined(RT2560_DEBUG) && NBPFILTER > 0
1318 	if (ic->ic_rawbpf != NULL)
1319 		bpf_mtap(ic->ic_rawbpf, data->m, BPF_DIRECTION_OUT);
1320 #endif
1321 
1322 	DPRINTFN(15, ("beacon expired\n"));
1323 }
1324 #endif
1325 
1326 void
1327 rt2560_wakeup_expire(struct rt2560_softc *sc)
1328 {
1329 	DPRINTFN(15, ("wakeup expired\n"));
1330 }
1331 
1332 int
1333 rt2560_intr(void *arg)
1334 {
1335 	struct rt2560_softc *sc = arg;
1336 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1337 	uint32_t r;
1338 
1339 	r = RAL_READ(sc, RT2560_CSR7);
1340 	if (__predict_false(r == 0xffffffff))
1341 		return 0;	/* device likely went away */
1342 	if (r == 0)
1343 		return 0;	/* not for us */
1344 
1345 	/* disable interrupts */
1346 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1347 
1348 	/* acknowledge interrupts */
1349 	RAL_WRITE(sc, RT2560_CSR7, r);
1350 
1351 	/* don't re-enable interrupts if we're shutting down */
1352 	if (!(ifp->if_flags & IFF_RUNNING))
1353 		return 0;
1354 
1355 #ifndef IEEE80211_STA_ONLY
1356 	if (r & RT2560_BEACON_EXPIRE)
1357 		rt2560_beacon_expire(sc);
1358 #endif
1359 
1360 	if (r & RT2560_WAKEUP_EXPIRE)
1361 		rt2560_wakeup_expire(sc);
1362 
1363 	if (r & RT2560_ENCRYPTION_DONE)
1364 		rt2560_encryption_intr(sc);
1365 
1366 	if (r & RT2560_TX_DONE)
1367 		rt2560_tx_intr(sc);
1368 
1369 	if (r & RT2560_PRIO_DONE)
1370 		rt2560_prio_intr(sc);
1371 
1372 	if (r & RT2560_DECRYPTION_DONE)
1373 		rt2560_decryption_intr(sc);
1374 
1375 	if (r & RT2560_RX_DONE)
1376 		rt2560_rx_intr(sc);
1377 
1378 	/* re-enable interrupts */
1379 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1380 
1381 	return 1;
1382 }
1383 
1384 /* quickly determine if a given rate is CCK or OFDM */
1385 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1386 
1387 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1388 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1389 
1390 #define RAL_SIFS		10	/* us */
1391 
1392 #define RT2560_RXTX_TURNAROUND	10	/* us */
1393 
1394 /*
1395  * This function is only used by the Rx radiotap code. It returns the rate at
1396  * which a given frame was received.
1397  */
1398 #if NBPFILTER > 0
1399 uint8_t
1400 rt2560_rxrate(const struct rt2560_rx_desc *desc)
1401 {
1402 	if (letoh32(desc->flags) & RT2560_RX_OFDM) {
1403 		/* reverse function of rt2560_plcp_signal */
1404 		switch (desc->rate) {
1405 		case 0xb:	return 12;
1406 		case 0xf:	return 18;
1407 		case 0xa:	return 24;
1408 		case 0xe:	return 36;
1409 		case 0x9:	return 48;
1410 		case 0xd:	return 72;
1411 		case 0x8:	return 96;
1412 		case 0xc:	return 108;
1413 		}
1414 	} else {
1415 		if (desc->rate == 10)
1416 			return 2;
1417 		if (desc->rate == 20)
1418 			return 4;
1419 		if (desc->rate == 55)
1420 			return 11;
1421 		if (desc->rate == 110)
1422 			return 22;
1423 	}
1424 	return 2;	/* should not get there */
1425 }
1426 #endif
1427 
1428 /*
1429  * Return the expected ack rate for a frame transmitted at rate `rate'.
1430  */
1431 int
1432 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1433 {
1434 	switch (rate) {
1435 	/* CCK rates */
1436 	case 2:
1437 		return 2;
1438 	case 4:
1439 	case 11:
1440 	case 22:
1441 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1442 
1443 	/* OFDM rates */
1444 	case 12:
1445 	case 18:
1446 		return 12;
1447 	case 24:
1448 	case 36:
1449 		return 24;
1450 	case 48:
1451 	case 72:
1452 	case 96:
1453 	case 108:
1454 		return 48;
1455 	}
1456 
1457 	/* default to 1Mbps */
1458 	return 2;
1459 }
1460 
1461 /*
1462  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1463  * The function automatically determines the operating mode depending on the
1464  * given rate. `flags' indicates whether short preamble is in use or not.
1465  */
1466 uint16_t
1467 rt2560_txtime(int len, int rate, uint32_t flags)
1468 {
1469 	uint16_t txtime;
1470 
1471 	if (RAL_RATE_IS_OFDM(rate)) {
1472 		/* IEEE Std 802.11g-2003, pp. 44 */
1473 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1474 		txtime = 16 + 4 + 4 * txtime + 6;
1475 	} else {
1476 		/* IEEE Std 802.11b-1999, pp. 28 */
1477 		txtime = (16 * len + rate - 1) / rate;
1478 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1479 			txtime +=  72 + 24;
1480 		else
1481 			txtime += 144 + 48;
1482 	}
1483 	return txtime;
1484 }
1485 
1486 uint8_t
1487 rt2560_plcp_signal(int rate)
1488 {
1489 	switch (rate) {
1490 	/* CCK rates (returned values are device-dependent) */
1491 	case 2:		return 0x0;
1492 	case 4:		return 0x1;
1493 	case 11:	return 0x2;
1494 	case 22:	return 0x3;
1495 
1496 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1497 	case 12:	return 0xb;
1498 	case 18:	return 0xf;
1499 	case 24:	return 0xa;
1500 	case 36:	return 0xe;
1501 	case 48:	return 0x9;
1502 	case 72:	return 0xd;
1503 	case 96:	return 0x8;
1504 	case 108:	return 0xc;
1505 
1506 	/* unsupported rates (should not get there) */
1507 	default:	return 0xff;
1508 	}
1509 }
1510 
1511 void
1512 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1513     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1514 {
1515 	struct ieee80211com *ic = &sc->sc_ic;
1516 	uint16_t plcp_length;
1517 	int remainder;
1518 
1519 	desc->flags = htole32(flags);
1520 	desc->flags |= htole32(len << 16);
1521 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1522 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1523 
1524 	desc->physaddr = htole32(physaddr);
1525 	desc->wme = htole16(
1526 	    RT2560_AIFSN(2) |
1527 	    RT2560_LOGCWMIN(3) |
1528 	    RT2560_LOGCWMAX(8));
1529 
1530 	/* setup PLCP fields */
1531 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1532 	desc->plcp_service = 4;
1533 
1534 	len += IEEE80211_CRC_LEN;
1535 	if (RAL_RATE_IS_OFDM(rate)) {
1536 		desc->flags |= htole32(RT2560_TX_OFDM);
1537 
1538 		plcp_length = len & 0xfff;
1539 		desc->plcp_length_hi = plcp_length >> 6;
1540 		desc->plcp_length_lo = plcp_length & 0x3f;
1541 	} else {
1542 		plcp_length = (16 * len + rate - 1) / rate;
1543 		if (rate == 22) {
1544 			remainder = (16 * len) % 22;
1545 			if (remainder != 0 && remainder < 7)
1546 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1547 		}
1548 		desc->plcp_length_hi = plcp_length >> 8;
1549 		desc->plcp_length_lo = plcp_length & 0xff;
1550 
1551 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1552 			desc->plcp_signal |= 0x08;
1553 	}
1554 }
1555 
1556 #ifndef IEEE80211_STA_ONLY
1557 int
1558 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1559     struct ieee80211_node *ni)
1560 {
1561 	struct ieee80211com *ic = &sc->sc_ic;
1562 	struct rt2560_tx_desc *desc;
1563 	struct rt2560_tx_data *data;
1564 	int rate = 2, error;
1565 
1566 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1567 	data = &sc->bcnq.data[sc->bcnq.cur];
1568 
1569 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1570 	    BUS_DMA_NOWAIT);
1571 	if (error != 0) {
1572 		printf("%s: can't map mbuf (error %d)\n",
1573 		    sc->sc_dev.dv_xname, error);
1574 		m_freem(m0);
1575 		return error;
1576 	}
1577 
1578 	data->m = m0;
1579 	data->ni = ni;
1580 
1581 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1582 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1583 	    data->map->dm_segs->ds_addr);
1584 
1585 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1586 	    BUS_DMASYNC_PREWRITE);
1587 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1588 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1589 	    BUS_DMASYNC_PREWRITE);
1590 
1591 	/*
1592 	 * Store pointer to ERP Information Element so that we can update it
1593 	 * dynamically when the slot time changes.
1594 	 * XXX: this is ugly since it depends on how net80211 builds beacon
1595 	 * frames but ieee80211_beacon_alloc() don't store offsets for us.
1596 	 */
1597 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1598 		sc->erp =
1599 		    mtod(m0, uint8_t *) +
1600 		    sizeof (struct ieee80211_frame) +
1601 		    8 + 2 + 2 +
1602 		    ((ic->ic_flags & IEEE80211_F_HIDENWID) ?
1603 			1 : 2 + ni->ni_esslen) +
1604 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
1605 		    2 + 1 +
1606 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
1607 		    2;
1608 	}
1609 
1610 	return 0;
1611 }
1612 #endif
1613 
1614 int
1615 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1616     struct ieee80211_node *ni)
1617 {
1618 	struct ieee80211com *ic = &sc->sc_ic;
1619 	struct rt2560_tx_desc *desc;
1620 	struct rt2560_tx_data *data;
1621 	struct ieee80211_frame *wh;
1622 	uint16_t dur;
1623 	uint32_t flags = 0;
1624 	int rate = 2, error;
1625 
1626 	desc = &sc->prioq.desc[sc->prioq.cur];
1627 	data = &sc->prioq.data[sc->prioq.cur];
1628 
1629 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1630 	    BUS_DMA_NOWAIT);
1631 	if (error != 0) {
1632 		printf("%s: can't map mbuf (error %d)\n",
1633 		    sc->sc_dev.dv_xname, error);
1634 		m_freem(m0);
1635 		return error;
1636 	}
1637 
1638 #if NBPFILTER > 0
1639 	if (sc->sc_drvbpf != NULL) {
1640 		struct mbuf mb;
1641 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1642 
1643 		tap->wt_flags = 0;
1644 		tap->wt_rate = rate;
1645 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1646 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1647 		tap->wt_antenna = sc->tx_ant;
1648 
1649 		mb.m_data = (caddr_t)tap;
1650 		mb.m_len = sc->sc_txtap_len;
1651 		mb.m_next = m0;
1652 		mb.m_nextpkt = NULL;
1653 		mb.m_type = 0;
1654 		mb.m_flags = 0;
1655 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1656 	}
1657 #endif
1658 
1659 	data->m = m0;
1660 	data->ni = ni;
1661 
1662 	wh = mtod(m0, struct ieee80211_frame *);
1663 
1664 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1665 		flags |= RT2560_TX_NEED_ACK;
1666 
1667 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1668 		    RAL_SIFS;
1669 		*(uint16_t *)wh->i_dur = htole16(dur);
1670 
1671 #ifndef IEEE80211_STA_ONLY
1672 		/* tell hardware to set timestamp for probe responses */
1673 		if ((wh->i_fc[0] &
1674 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1675 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1676 			flags |= RT2560_TX_TIMESTAMP;
1677 #endif
1678 	}
1679 
1680 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1681 	    data->map->dm_segs->ds_addr);
1682 
1683 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1684 	    BUS_DMASYNC_PREWRITE);
1685 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1686 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1687 	    BUS_DMASYNC_PREWRITE);
1688 
1689 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1690 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1691 
1692 	/* kick prio */
1693 	sc->prioq.queued++;
1694 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1695 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1696 
1697 	return 0;
1698 }
1699 
1700 int
1701 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1702     struct ieee80211_node *ni)
1703 {
1704 	struct ieee80211com *ic = &sc->sc_ic;
1705 	struct rt2560_tx_ring *txq = &sc->txq;
1706 	struct rt2560_tx_desc *desc;
1707 	struct rt2560_tx_data *data;
1708 	struct ieee80211_frame *wh;
1709 	struct ieee80211_key *k;
1710 	struct mbuf *m1;
1711 	uint16_t dur;
1712 	uint32_t flags = 0;
1713 	int pktlen, rate, needcts = 0, needrts = 0, error;
1714 
1715 	wh = mtod(m0, struct ieee80211_frame *);
1716 
1717 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1718 		k = ieee80211_get_txkey(ic, wh, ni);
1719 
1720 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1721 			return ENOBUFS;
1722 
1723 		/* packet header may have moved, reset our local pointer */
1724 		wh = mtod(m0, struct ieee80211_frame *);
1725 	}
1726 
1727 	/* compute actual packet length (including CRC and crypto overhead) */
1728 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1729 
1730 	/* pickup a rate */
1731 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1732 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1733 	     IEEE80211_FC0_TYPE_MGT)) {
1734 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1735 		rate = ni->ni_rates.rs_rates[0];
1736 	} else if (ic->ic_fixed_rate != -1) {
1737 		rate = ic->ic_sup_rates[ic->ic_curmode].
1738 		    rs_rates[ic->ic_fixed_rate];
1739 	} else
1740 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1741 	if (rate == 0)
1742 		rate = 2;	/* XXX should not happen */
1743 	rate &= IEEE80211_RATE_VAL;
1744 
1745 	/*
1746 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1747 	 * chance to contend for the wireless medium.
1748 	 */
1749 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseq & 7))
1750 		flags |= RT2560_TX_IFS_SIFS;
1751 
1752 	/* check if RTS/CTS or CTS-to-self protection must be used */
1753 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1754 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1755 		if (pktlen > ic->ic_rtsthreshold) {
1756 			needrts = 1;	/* RTS/CTS based on frame length */
1757 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1758 		    RAL_RATE_IS_OFDM(rate)) {
1759 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1760 				needcts = 1;	/* CTS-to-self */
1761 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1762 				needrts = 1;	/* RTS/CTS */
1763 		}
1764 	}
1765 	if (needrts || needcts) {
1766 		struct mbuf *mprot;
1767 		int protrate, ackrate;
1768 
1769 		protrate = 2;	/* XXX */
1770 		ackrate  = rt2560_ack_rate(ic, rate);
1771 
1772 		dur = rt2560_txtime(pktlen, rate, ic->ic_flags) +
1773 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1774 		      2 * RAL_SIFS;
1775 		if (needrts) {
1776 			dur += rt2560_txtime(RAL_CTS_SIZE, rt2560_ack_rate(ic,
1777 			    protrate), ic->ic_flags) + RAL_SIFS;
1778 			mprot = ieee80211_get_rts(ic, wh, dur);
1779 		} else {
1780 			mprot = ieee80211_get_cts_to_self(ic, dur);
1781 		}
1782 		if (mprot == NULL) {
1783 			printf("%s: could not allocate protection frame\n",
1784 			    sc->sc_dev.dv_xname);
1785 			m_freem(m0);
1786 			return ENOBUFS;
1787 		}
1788 
1789 		desc = &txq->desc[txq->cur_encrypt];
1790 		data = &txq->data[txq->cur_encrypt];
1791 
1792 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, mprot,
1793 		    BUS_DMA_NOWAIT);
1794 		if (error != 0) {
1795 			printf("%s: can't map mbuf (error %d)\n",
1796 			    sc->sc_dev.dv_xname, error);
1797 			m_freem(mprot);
1798 			m_freem(m0);
1799 			return error;
1800 		}
1801 
1802 		data->m = mprot;
1803 		/* avoid multiple free() of the same node for each fragment */
1804 		data->ni = ieee80211_ref_node(ni);
1805 
1806 		/* XXX may want to pass the protection frame to BPF */
1807 
1808 		rt2560_setup_tx_desc(sc, desc,
1809 		    (needrts ? RT2560_TX_NEED_ACK : 0) | RT2560_TX_MORE_FRAG,
1810 		    mprot->m_pkthdr.len, protrate, 1,
1811 		    data->map->dm_segs->ds_addr);
1812 
1813 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1814 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1815 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1816 		    txq->cur_encrypt * RT2560_TX_DESC_SIZE,
1817 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1818 
1819 		txq->queued++;
1820 		if (++txq->cur_encrypt >= txq->count)
1821 			txq->cur_encrypt = 0;
1822 
1823 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1824 	}
1825 
1826 	data = &txq->data[txq->cur_encrypt];
1827 	desc = &txq->desc[txq->cur_encrypt];
1828 
1829 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1830 	    BUS_DMA_NOWAIT);
1831 	if (error != 0 && error != EFBIG) {
1832 		printf("%s: can't map mbuf (error %d)\n",
1833 		    sc->sc_dev.dv_xname, error);
1834 		m_freem(m0);
1835 		return error;
1836 	}
1837 	if (error != 0) {
1838 		/* too many fragments, linearize */
1839 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1840 		if (m1 == NULL) {
1841 			m_freem(m0);
1842 			return ENOBUFS;
1843 		}
1844 		if (m0->m_pkthdr.len > MHLEN) {
1845 			MCLGET(m1, M_DONTWAIT);
1846 			if (!(m1->m_flags & M_EXT)) {
1847 				m_freem(m0);
1848 				m_freem(m1);
1849 				return ENOBUFS;
1850 			}
1851 		}
1852 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m1, caddr_t));
1853 		m1->m_pkthdr.len = m1->m_len = m0->m_pkthdr.len;
1854 		m_freem(m0);
1855 		m0 = m1;
1856 
1857 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1858 		    BUS_DMA_NOWAIT);
1859 		if (error != 0) {
1860 			printf("%s: can't map mbuf (error %d)\n",
1861 			    sc->sc_dev.dv_xname, error);
1862 			m_freem(m0);
1863 			return error;
1864 		}
1865 
1866 		/* packet header have moved, reset our local pointer */
1867 		wh = mtod(m0, struct ieee80211_frame *);
1868 	}
1869 
1870 #if NBPFILTER > 0
1871 	if (sc->sc_drvbpf != NULL) {
1872 		struct mbuf mb;
1873 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1874 
1875 		tap->wt_flags = 0;
1876 		tap->wt_rate = rate;
1877 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1878 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1879 		tap->wt_antenna = sc->tx_ant;
1880 
1881 		mb.m_data = (caddr_t)tap;
1882 		mb.m_len = sc->sc_txtap_len;
1883 		mb.m_next = m0;
1884 		mb.m_nextpkt = NULL;
1885 		mb.m_type = 0;
1886 		mb.m_flags = 0;
1887 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1888 	}
1889 #endif
1890 
1891 	data->m = m0;
1892 	data->ni = ni;
1893 
1894 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1895 		flags |= RT2560_TX_NEED_ACK;
1896 
1897 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1898 		    ic->ic_flags) + RAL_SIFS;
1899 		*(uint16_t *)wh->i_dur = htole16(dur);
1900 	}
1901 
1902 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1903 	    data->map->dm_segs->ds_addr);
1904 
1905 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1906 	    BUS_DMASYNC_PREWRITE);
1907 	bus_dmamap_sync(sc->sc_dmat, txq->map,
1908 	    txq->cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1909 	    BUS_DMASYNC_PREWRITE);
1910 
1911 	DPRINTFN(10, ("sending frame len=%u idx=%u rate=%u\n",
1912 	    m0->m_pkthdr.len, txq->cur_encrypt, rate));
1913 
1914 	/* kick encrypt */
1915 	txq->queued++;
1916 	if (++txq->cur_encrypt >= txq->count)
1917 		txq->cur_encrypt = 0;
1918 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1919 
1920 	return 0;
1921 }
1922 
1923 void
1924 rt2560_start(struct ifnet *ifp)
1925 {
1926 	struct rt2560_softc *sc = ifp->if_softc;
1927 	struct ieee80211com *ic = &sc->sc_ic;
1928 	struct mbuf *m0;
1929 	struct ieee80211_node *ni;
1930 
1931 	/*
1932 	 * net80211 may still try to send management frames even if the
1933 	 * IFF_RUNNING flag is not set...
1934 	 */
1935 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1936 		return;
1937 
1938 	for (;;) {
1939 		IF_POLL(&ic->ic_mgtq, m0);
1940 		if (m0 != NULL) {
1941 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
1942 				ifp->if_flags |= IFF_OACTIVE;
1943 				sc->sc_flags |= RT2560_PRIO_OACTIVE;
1944 				break;
1945 			}
1946 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1947 
1948 			ni = m0->m_pkthdr.ph_cookie;
1949 #if NBPFILTER > 0
1950 			if (ic->ic_rawbpf != NULL)
1951 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1952 #endif
1953 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
1954 				break;
1955 
1956 		} else {
1957 			if (ic->ic_state != IEEE80211_S_RUN)
1958 				break;
1959 			IFQ_POLL(&ifp->if_snd, m0);
1960 			if (m0 == NULL)
1961 				break;
1962 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
1963 				ifp->if_flags |= IFF_OACTIVE;
1964 				sc->sc_flags |= RT2560_DATA_OACTIVE;
1965 				break;
1966 			}
1967 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1968 #if NBPFILTER > 0
1969 			if (ifp->if_bpf != NULL)
1970 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1971 #endif
1972 			m0 = ieee80211_encap(ifp, m0, &ni);
1973 			if (m0 == NULL)
1974 				continue;
1975 #if NBPFILTER > 0
1976 			if (ic->ic_rawbpf != NULL)
1977 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1978 #endif
1979 			if (rt2560_tx_data(sc, m0, ni) != 0) {
1980 				if (ni != NULL)
1981 					ieee80211_release_node(ic, ni);
1982 				ifp->if_oerrors++;
1983 				break;
1984 			}
1985 		}
1986 
1987 		sc->sc_tx_timer = 5;
1988 		ifp->if_timer = 1;
1989 	}
1990 }
1991 
1992 void
1993 rt2560_watchdog(struct ifnet *ifp)
1994 {
1995 	struct rt2560_softc *sc = ifp->if_softc;
1996 
1997 	ifp->if_timer = 0;
1998 
1999 	if (sc->sc_tx_timer > 0) {
2000 		if (--sc->sc_tx_timer == 0) {
2001 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2002 			rt2560_init(ifp);
2003 			ifp->if_oerrors++;
2004 			return;
2005 		}
2006 		ifp->if_timer = 1;
2007 	}
2008 
2009 	ieee80211_watchdog(ifp);
2010 }
2011 
2012 int
2013 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2014 {
2015 	struct rt2560_softc *sc = ifp->if_softc;
2016 	struct ieee80211com *ic = &sc->sc_ic;
2017 	struct ifaddr *ifa;
2018 	struct ifreq *ifr;
2019 	int s, error = 0;
2020 
2021 	s = splnet();
2022 
2023 	switch (cmd) {
2024 	case SIOCSIFADDR:
2025 		ifa = (struct ifaddr *)data;
2026 		ifp->if_flags |= IFF_UP;
2027 #ifdef INET
2028 		if (ifa->ifa_addr->sa_family == AF_INET)
2029 			arp_ifinit(&ic->ic_ac, ifa);
2030 #endif
2031 		/* FALLTHROUGH */
2032 	case SIOCSIFFLAGS:
2033 		if (ifp->if_flags & IFF_UP) {
2034 			if (ifp->if_flags & IFF_RUNNING)
2035 				rt2560_update_promisc(sc);
2036 			else
2037 				rt2560_init(ifp);
2038 		} else {
2039 			if (ifp->if_flags & IFF_RUNNING)
2040 				rt2560_stop(ifp, 1);
2041 		}
2042 		break;
2043 
2044 	case SIOCADDMULTI:
2045 	case SIOCDELMULTI:
2046 		ifr = (struct ifreq *)data;
2047 		error = (cmd == SIOCADDMULTI) ?
2048 		    ether_addmulti(ifr, &ic->ic_ac) :
2049 		    ether_delmulti(ifr, &ic->ic_ac);
2050 
2051 		if (error == ENETRESET)
2052 			error = 0;
2053 		break;
2054 
2055 	case SIOCS80211CHANNEL:
2056 		/*
2057 		 * This allows for fast channel switching in monitor mode
2058 		 * (used by kismet). In IBSS mode, we must explicitly reset
2059 		 * the interface to generate a new beacon frame.
2060 		 */
2061 		error = ieee80211_ioctl(ifp, cmd, data);
2062 		if (error == ENETRESET &&
2063 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2064 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2065 			    (IFF_UP | IFF_RUNNING))
2066 				rt2560_set_chan(sc, ic->ic_ibss_chan);
2067 			error = 0;
2068 		}
2069 		break;
2070 
2071 	default:
2072 		error = ieee80211_ioctl(ifp, cmd, data);
2073 	}
2074 
2075 	if (error == ENETRESET) {
2076 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2077 		    (IFF_UP | IFF_RUNNING))
2078 			rt2560_init(ifp);
2079 		error = 0;
2080 	}
2081 
2082 	splx(s);
2083 
2084 	return error;
2085 }
2086 
2087 void
2088 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2089 {
2090 	uint32_t tmp;
2091 	int ntries;
2092 
2093 	for (ntries = 0; ntries < 100; ntries++) {
2094 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2095 			break;
2096 		DELAY(1);
2097 	}
2098 	if (ntries == 100) {
2099 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2100 		return;
2101 	}
2102 
2103 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2104 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2105 
2106 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2107 }
2108 
2109 uint8_t
2110 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2111 {
2112 	uint32_t val;
2113 	int ntries;
2114 
2115 	for (ntries = 0; ntries < 100; ntries++) {
2116 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2117 			break;
2118 		DELAY(1);
2119 	}
2120 	if (ntries == 100) {
2121 		printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2122 		return 0;
2123 	}
2124 
2125 	val = RT2560_BBP_BUSY | reg << 8;
2126 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2127 
2128 	for (ntries = 0; ntries < 100; ntries++) {
2129 		val = RAL_READ(sc, RT2560_BBPCSR);
2130 		if (!(val & RT2560_BBP_BUSY))
2131 			return val & 0xff;
2132 		DELAY(1);
2133 	}
2134 
2135 	printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2136 	return 0;
2137 }
2138 
2139 void
2140 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2141 {
2142 	uint32_t tmp;
2143 	int ntries;
2144 
2145 	for (ntries = 0; ntries < 100; ntries++) {
2146 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2147 			break;
2148 		DELAY(1);
2149 	}
2150 	if (ntries == 100) {
2151 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2152 		return;
2153 	}
2154 
2155 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2156 	    (reg & 0x3);
2157 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2158 
2159 	/* remember last written value in sc */
2160 	sc->rf_regs[reg] = val;
2161 
2162 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2163 }
2164 
2165 void
2166 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2167 {
2168 	struct ieee80211com *ic = &sc->sc_ic;
2169 	uint8_t power, tmp;
2170 	u_int chan;
2171 
2172 	chan = ieee80211_chan2ieee(ic, c);
2173 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2174 		return;
2175 
2176 	power = min(sc->txpow[chan - 1], 31);
2177 
2178 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2179 
2180 	switch (sc->rf_rev) {
2181 	case RT2560_RF_2522:
2182 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2183 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2184 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2185 		break;
2186 
2187 	case RT2560_RF_2523:
2188 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2189 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2190 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2191 		rt2560_rf_write(sc, RT2560_RF4,
2192 		    (chan == 14) ? 0x00280 : 0x00286);
2193 		break;
2194 
2195 	case RT2560_RF_2524:
2196 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2197 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2198 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2199 		rt2560_rf_write(sc, RT2560_RF4,
2200 		    (chan == 14) ? 0x00280 : 0x00286);
2201 		break;
2202 
2203 	case RT2560_RF_2525:
2204 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2205 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2206 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2207 		rt2560_rf_write(sc, RT2560_RF4,
2208 		    (chan == 14) ? 0x00280 : 0x00286);
2209 
2210 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2211 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2212 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2213 		rt2560_rf_write(sc, RT2560_RF4,
2214 		    (chan == 14) ? 0x00280 : 0x00286);
2215 		break;
2216 
2217 	case RT2560_RF_2525E:
2218 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2219 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2220 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2221 		rt2560_rf_write(sc, RT2560_RF4,
2222 		    (chan == 14) ? 0x00286 : 0x00282);
2223 		break;
2224 
2225 	case RT2560_RF_2526:
2226 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2227 		rt2560_rf_write(sc, RT2560_RF4,
2228 		   (chan & 1) ? 0x00386 : 0x00381);
2229 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2230 
2231 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2232 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2233 		rt2560_rf_write(sc, RT2560_RF4,
2234 		    (chan & 1) ? 0x00386 : 0x00381);
2235 		break;
2236 	}
2237 
2238 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2239 	    ic->ic_state != IEEE80211_S_SCAN) {
2240 		/* set Japan filter bit for channel 14 */
2241 		tmp = rt2560_bbp_read(sc, 70);
2242 
2243 		tmp &= ~RT2560_JAPAN_FILTER;
2244 		if (chan == 14)
2245 			tmp |= RT2560_JAPAN_FILTER;
2246 
2247 		rt2560_bbp_write(sc, 70, tmp);
2248 
2249 		DELAY(1000); /* RF needs a 1ms delay here */
2250 		rt2560_disable_rf_tune(sc);
2251 
2252 		/* clear CRC errors */
2253 		RAL_READ(sc, RT2560_CNT0);
2254 	}
2255 }
2256 
2257 /*
2258  * Disable RF auto-tuning.
2259  */
2260 void
2261 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2262 {
2263 	uint32_t tmp;
2264 
2265 	if (sc->rf_rev != RT2560_RF_2523) {
2266 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2267 		rt2560_rf_write(sc, RT2560_RF1, tmp);
2268 	}
2269 
2270 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2271 	rt2560_rf_write(sc, RT2560_RF3, tmp);
2272 
2273 	DPRINTFN(2, ("disabling RF autotune\n"));
2274 }
2275 
2276 /*
2277  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2278  * synchronization.
2279  */
2280 void
2281 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2282 {
2283 	struct ieee80211com *ic = &sc->sc_ic;
2284 	uint16_t logcwmin, preload;
2285 	uint32_t tmp;
2286 
2287 	/* first, disable TSF synchronization */
2288 	RAL_WRITE(sc, RT2560_CSR14, 0);
2289 
2290 	tmp = 16 * ic->ic_bss->ni_intval;
2291 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2292 
2293 	RAL_WRITE(sc, RT2560_CSR13, 0);
2294 
2295 	logcwmin = 5;
2296 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2297 	tmp = logcwmin << 16 | preload;
2298 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2299 
2300 	/* finally, enable TSF synchronization */
2301 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2302 	if (ic->ic_opmode == IEEE80211_M_STA)
2303 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2304 #ifndef IEEE80211_STA_ONLY
2305 	else
2306 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2307 		       RT2560_ENABLE_BEACON_GENERATOR;
2308 #endif
2309 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2310 
2311 	DPRINTF(("enabling TSF synchronization\n"));
2312 }
2313 
2314 void
2315 rt2560_update_plcp(struct rt2560_softc *sc)
2316 {
2317 	struct ieee80211com *ic = &sc->sc_ic;
2318 
2319 	/* no short preamble for 1Mbps */
2320 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2321 
2322 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2323 		/* values taken from the reference driver */
2324 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2325 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2326 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2327 	} else {
2328 		/* same values as above or'ed 0x8 */
2329 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2330 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2331 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2332 	}
2333 
2334 	DPRINTF(("updating PLCP for %s preamble\n",
2335 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2336 }
2337 
2338 void
2339 rt2560_updateslot(struct ieee80211com *ic)
2340 {
2341 	struct rt2560_softc *sc = ic->ic_if.if_softc;
2342 
2343 #ifndef IEEE80211_STA_ONLY
2344 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2345 		/*
2346 		 * In HostAP mode, we defer setting of new slot time until
2347 		 * updated ERP Information Element has propagated to all
2348 		 * associated STAs.
2349 		 */
2350 		sc->sc_flags |= RT2560_UPDATE_SLOT;
2351 	} else
2352 #endif
2353 		rt2560_set_slottime(sc);
2354 }
2355 
2356 /*
2357  * IEEE 802.11a (and possibly 802.11g) use short slot time. Refer to
2358  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2359  */
2360 void
2361 rt2560_set_slottime(struct rt2560_softc *sc)
2362 {
2363 	struct ieee80211com *ic = &sc->sc_ic;
2364 	uint8_t slottime;
2365 	uint16_t sifs, pifs, difs, eifs;
2366 	uint32_t tmp;
2367 
2368 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2369 
2370 	/* define the MAC slot boundaries */
2371 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2372 	pifs = sifs + slottime;
2373 	difs = sifs + 2 * slottime;
2374 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2375 
2376 	tmp = RAL_READ(sc, RT2560_CSR11);
2377 	tmp = (tmp & ~0x1f00) | slottime << 8;
2378 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2379 
2380 	tmp = pifs << 16 | sifs;
2381 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2382 
2383 	tmp = eifs << 16 | difs;
2384 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2385 
2386 	DPRINTF(("setting slottime to %uus\n", slottime));
2387 }
2388 
2389 void
2390 rt2560_set_basicrates(struct rt2560_softc *sc)
2391 {
2392 	struct ieee80211com *ic = &sc->sc_ic;
2393 
2394 	/* update basic rate set */
2395 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2396 		/* 11b basic rates: 1, 2Mbps */
2397 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2398 	} else {
2399 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2400 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0xf);
2401 	}
2402 }
2403 
2404 void
2405 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2406 {
2407 	uint32_t tmp;
2408 
2409 	/* set ON period to 70ms and OFF period to 30ms */
2410 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2411 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2412 }
2413 
2414 void
2415 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2416 {
2417 	uint32_t tmp;
2418 
2419 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2420 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2421 
2422 	tmp = bssid[4] | bssid[5] << 8;
2423 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2424 
2425 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2426 }
2427 
2428 void
2429 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2430 {
2431 	uint32_t tmp;
2432 
2433 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2434 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2435 
2436 	tmp = addr[4] | addr[5] << 8;
2437 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2438 
2439 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2440 }
2441 
2442 void
2443 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2444 {
2445 	uint32_t tmp;
2446 
2447 	tmp = RAL_READ(sc, RT2560_CSR3);
2448 	addr[0] = tmp & 0xff;
2449 	addr[1] = (tmp >>  8) & 0xff;
2450 	addr[2] = (tmp >> 16) & 0xff;
2451 	addr[3] = (tmp >> 24);
2452 
2453 	tmp = RAL_READ(sc, RT2560_CSR4);
2454 	addr[4] = tmp & 0xff;
2455 	addr[5] = (tmp >> 8) & 0xff;
2456 }
2457 
2458 void
2459 rt2560_update_promisc(struct rt2560_softc *sc)
2460 {
2461 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2462 	uint32_t tmp;
2463 
2464 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2465 
2466 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2467 	if (!(ifp->if_flags & IFF_PROMISC))
2468 		tmp |= RT2560_DROP_NOT_TO_ME;
2469 
2470 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2471 
2472 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2473 	    "entering" : "leaving"));
2474 }
2475 
2476 void
2477 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2478 {
2479 	uint32_t tmp;
2480 	uint8_t tx;
2481 
2482 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2483 	if (antenna == 1)
2484 		tx |= RT2560_BBP_ANTA;
2485 	else if (antenna == 2)
2486 		tx |= RT2560_BBP_ANTB;
2487 	else
2488 		tx |= RT2560_BBP_DIVERSITY;
2489 
2490 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2491 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2492 	    sc->rf_rev == RT2560_RF_5222)
2493 		tx |= RT2560_BBP_FLIPIQ;
2494 
2495 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2496 
2497 	/* update values for CCK and OFDM in BBPCSR1 */
2498 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2499 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2500 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2501 }
2502 
2503 void
2504 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2505 {
2506 	uint8_t rx;
2507 
2508 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2509 	if (antenna == 1)
2510 		rx |= RT2560_BBP_ANTA;
2511 	else if (antenna == 2)
2512 		rx |= RT2560_BBP_ANTB;
2513 	else
2514 		rx |= RT2560_BBP_DIVERSITY;
2515 
2516 	/* need to force no I/Q flip for RF 2525e and 2526 */
2517 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2518 		rx &= ~RT2560_BBP_FLIPIQ;
2519 
2520 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2521 }
2522 
2523 const char *
2524 rt2560_get_rf(int rev)
2525 {
2526 	switch (rev) {
2527 	case RT2560_RF_2522:	return "RT2522";
2528 	case RT2560_RF_2523:	return "RT2523";
2529 	case RT2560_RF_2524:	return "RT2524";
2530 	case RT2560_RF_2525:	return "RT2525";
2531 	case RT2560_RF_2525E:	return "RT2525e";
2532 	case RT2560_RF_2526:	return "RT2526";
2533 	case RT2560_RF_5222:	return "RT5222";
2534 	default:		return "unknown";
2535 	}
2536 }
2537 
2538 void
2539 rt2560_read_eeprom(struct rt2560_softc *sc)
2540 {
2541 	uint16_t val;
2542 	int i;
2543 
2544 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2545 	sc->rf_rev =   (val >> 11) & 0x1f;
2546 	sc->hw_radio = (val >> 10) & 0x1;
2547 	sc->led_mode = (val >> 6)  & 0x7;
2548 	sc->rx_ant =   (val >> 4)  & 0x3;
2549 	sc->tx_ant =   (val >> 2)  & 0x3;
2550 	sc->nb_ant =   val & 0x3;
2551 
2552 	/* read default values for BBP registers */
2553 	for (i = 0; i < 16; i++) {
2554 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2555 		sc->bbp_prom[i].reg = val >> 8;
2556 		sc->bbp_prom[i].val = val & 0xff;
2557 	}
2558 
2559 	/* read Tx power for all b/g channels */
2560 	for (i = 0; i < 14 / 2; i++) {
2561 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2562 		sc->txpow[i * 2] = val >> 8;
2563 		sc->txpow[i * 2 + 1] = val & 0xff;
2564 	}
2565 }
2566 
2567 int
2568 rt2560_bbp_init(struct rt2560_softc *sc)
2569 {
2570 	int i, ntries;
2571 
2572 	/* wait for BBP to be ready */
2573 	for (ntries = 0; ntries < 100; ntries++) {
2574 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2575 			break;
2576 		DELAY(1);
2577 	}
2578 	if (ntries == 100) {
2579 		printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2580 		return EIO;
2581 	}
2582 
2583 	/* initialize BBP registers to default values */
2584 	for (i = 0; i < nitems(rt2560_def_bbp); i++) {
2585 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2586 		    rt2560_def_bbp[i].val);
2587 	}
2588 #if 0
2589 	/* initialize BBP registers to values stored in EEPROM */
2590 	for (i = 0; i < 16; i++) {
2591 		if (sc->bbp_prom[i].reg == 0xff)
2592 			continue;
2593 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2594 	}
2595 #endif
2596 
2597 	return 0;
2598 }
2599 
2600 int
2601 rt2560_init(struct ifnet *ifp)
2602 {
2603 	struct rt2560_softc *sc = ifp->if_softc;
2604 	struct ieee80211com *ic = &sc->sc_ic;
2605 	uint32_t tmp;
2606 	int i;
2607 
2608 	/* for CardBus, power on the socket */
2609 	if (!(sc->sc_flags & RT2560_ENABLED)) {
2610 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2611 			printf("%s: could not enable device\n",
2612 			    sc->sc_dev.dv_xname);
2613 			return EIO;
2614 		}
2615 		sc->sc_flags |= RT2560_ENABLED;
2616 	}
2617 
2618 	rt2560_stop(ifp, 0);
2619 
2620 	/* setup tx rings */
2621 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2622 	      RT2560_ATIM_RING_COUNT << 16 |
2623 	      RT2560_TX_RING_COUNT   <<  8 |
2624 	      RT2560_TX_DESC_SIZE;
2625 
2626 	/* rings _must_ be initialized in this _exact_ order! */
2627 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2628 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2629 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2630 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2631 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2632 
2633 	/* setup rx ring */
2634 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2635 
2636 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2637 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2638 
2639 	/* initialize MAC registers to default values */
2640 	for (i = 0; i < nitems(rt2560_def_mac); i++)
2641 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2642 
2643 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2644 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2645 
2646 	/* set basic rate set (will be updated later) */
2647 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2648 
2649 	rt2560_set_slottime(sc);
2650 	rt2560_update_plcp(sc);
2651 	rt2560_update_led(sc, 0, 0);
2652 
2653 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2654 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2655 
2656 	if (rt2560_bbp_init(sc) != 0) {
2657 		rt2560_stop(ifp, 1);
2658 		return EIO;
2659 	}
2660 
2661 	rt2560_set_txantenna(sc, 1);
2662 	rt2560_set_rxantenna(sc, 1);
2663 
2664 	/* set default BSS channel */
2665 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2666 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2667 
2668 	/* kick Rx */
2669 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2670 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2671 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2672 #ifndef IEEE80211_STA_ONLY
2673 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2674 #endif
2675 			tmp |= RT2560_DROP_TODS;
2676 		if (!(ifp->if_flags & IFF_PROMISC))
2677 			tmp |= RT2560_DROP_NOT_TO_ME;
2678 	}
2679 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2680 
2681 	/* clear old FCS and Rx FIFO errors */
2682 	RAL_READ(sc, RT2560_CNT0);
2683 	RAL_READ(sc, RT2560_CNT4);
2684 
2685 	/* clear any pending interrupts */
2686 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2687 
2688 	/* enable interrupts */
2689 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2690 
2691 	ifp->if_flags &= ~IFF_OACTIVE;
2692 	ifp->if_flags |= IFF_RUNNING;
2693 
2694 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2695 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2696 	else
2697 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2698 
2699 	return 0;
2700 }
2701 
2702 void
2703 rt2560_stop(struct ifnet *ifp, int disable)
2704 {
2705 	struct rt2560_softc *sc = ifp->if_softc;
2706 	struct ieee80211com *ic = &sc->sc_ic;
2707 
2708 	sc->sc_tx_timer = 0;
2709 	sc->sc_flags &= ~(RT2560_PRIO_OACTIVE|RT2560_DATA_OACTIVE);
2710 	ifp->if_timer = 0;
2711 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2712 
2713 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2714 
2715 	/* abort Tx */
2716 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2717 
2718 	/* disable Rx */
2719 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2720 
2721 	/* reset ASIC (and thus, BBP) */
2722 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2723 	RAL_WRITE(sc, RT2560_CSR1, 0);
2724 
2725 	/* disable interrupts */
2726 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2727 
2728 	/* clear any pending interrupt */
2729 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2730 
2731 	/* reset Tx and Rx rings */
2732 	rt2560_reset_tx_ring(sc, &sc->txq);
2733 	rt2560_reset_tx_ring(sc, &sc->atimq);
2734 	rt2560_reset_tx_ring(sc, &sc->prioq);
2735 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2736 	rt2560_reset_rx_ring(sc, &sc->rxq);
2737 
2738 	/* for CardBus, power down the socket */
2739 	if (disable && sc->sc_disable != NULL) {
2740 		if (sc->sc_flags & RT2560_ENABLED) {
2741 			(*sc->sc_disable)(sc);
2742 			sc->sc_flags &= ~RT2560_ENABLED;
2743 		}
2744 	}
2745 }
2746 
2747 struct cfdriver ral_cd = {
2748 	NULL, "ral", DV_IFNET
2749 };
2750