xref: /openbsd-src/sys/dev/ic/re.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: re.c,v 1.154 2014/07/08 05:35:18 dlg Exp $	*/
2 /*	$FreeBSD: if_re.c,v 1.31 2004/09/04 07:54:05 ru Exp $	*/
3 /*
4  * Copyright (c) 1997, 1998-2003
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
37  *
38  * Written by Bill Paul <wpaul@windriver.com>
39  * Senior Networking Software Engineer
40  * Wind River Systems
41  */
42 
43 /*
44  * This driver is designed to support RealTek's next generation of
45  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
46  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
47  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
48  *
49  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
50  * with the older 8139 family, however it also supports a special
51  * C+ mode of operation that provides several new performance enhancing
52  * features. These include:
53  *
54  *	o Descriptor based DMA mechanism. Each descriptor represents
55  *	  a single packet fragment. Data buffers may be aligned on
56  *	  any byte boundary.
57  *
58  *	o 64-bit DMA
59  *
60  *	o TCP/IP checksum offload for both RX and TX
61  *
62  *	o High and normal priority transmit DMA rings
63  *
64  *	o VLAN tag insertion and extraction
65  *
66  *	o TCP large send (segmentation offload)
67  *
68  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
69  * programming API is fairly straightforward. The RX filtering, EEPROM
70  * access and PHY access is the same as it is on the older 8139 series
71  * chips.
72  *
73  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
74  * same programming API and feature set as the 8139C+ with the following
75  * differences and additions:
76  *
77  *	o 1000Mbps mode
78  *
79  *	o Jumbo frames
80  *
81  * 	o GMII and TBI ports/registers for interfacing with copper
82  *	  or fiber PHYs
83  *
84  *      o RX and TX DMA rings can have up to 1024 descriptors
85  *        (the 8139C+ allows a maximum of 64)
86  *
87  *	o Slight differences in register layout from the 8139C+
88  *
89  * The TX start and timer interrupt registers are at different locations
90  * on the 8169 than they are on the 8139C+. Also, the status word in the
91  * RX descriptor has a slightly different bit layout. The 8169 does not
92  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
93  * copper gigE PHY.
94  *
95  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
96  * (the 'S' stands for 'single-chip'). These devices have the same
97  * programming API as the older 8169, but also have some vendor-specific
98  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
99  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
100  *
101  * This driver takes advantage of the RX and TX checksum offload and
102  * VLAN tag insertion/extraction features. It also implements TX
103  * interrupt moderation using the timer interrupt registers, which
104  * significantly reduces TX interrupt load. There is also support
105  * for jumbo frames, however the 8169/8169S/8110S can not transmit
106  * jumbo frames larger than 7440, so the max MTU possible with this
107  * driver is 7422 bytes.
108  */
109 
110 #include "bpfilter.h"
111 #include "vlan.h"
112 
113 #include <sys/param.h>
114 #include <sys/endian.h>
115 #include <sys/systm.h>
116 #include <sys/sockio.h>
117 #include <sys/mbuf.h>
118 #include <sys/malloc.h>
119 #include <sys/kernel.h>
120 #include <sys/device.h>
121 #include <sys/timeout.h>
122 #include <sys/socket.h>
123 
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_media.h>
127 
128 #ifdef INET
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/if_ether.h>
133 #endif
134 
135 #if NVLAN > 0
136 #include <net/if_types.h>
137 #include <net/if_vlan_var.h>
138 #endif
139 
140 #if NBPFILTER > 0
141 #include <net/bpf.h>
142 #endif
143 
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146 
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/revar.h>
152 
153 #ifdef RE_DEBUG
154 int redebug = 0;
155 #define DPRINTF(x)	do { if (redebug) printf x; } while (0)
156 #else
157 #define DPRINTF(x)
158 #endif
159 
160 static inline void re_set_bufaddr(struct rl_desc *, bus_addr_t);
161 
162 int	re_encap(struct rl_softc *, struct mbuf *, int *);
163 
164 int	re_newbuf(struct rl_softc *);
165 int	re_rx_list_init(struct rl_softc *);
166 void	re_rx_list_fill(struct rl_softc *);
167 int	re_tx_list_init(struct rl_softc *);
168 int	re_rxeof(struct rl_softc *);
169 int	re_txeof(struct rl_softc *);
170 void	re_tick(void *);
171 void	re_start(struct ifnet *);
172 int	re_ioctl(struct ifnet *, u_long, caddr_t);
173 void	re_watchdog(struct ifnet *);
174 int	re_ifmedia_upd(struct ifnet *);
175 void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176 
177 void	re_eeprom_putbyte(struct rl_softc *, int);
178 void	re_eeprom_getword(struct rl_softc *, int, u_int16_t *);
179 void	re_read_eeprom(struct rl_softc *, caddr_t, int, int);
180 
181 int	re_gmii_readreg(struct device *, int, int);
182 void	re_gmii_writereg(struct device *, int, int, int);
183 
184 int	re_miibus_readreg(struct device *, int, int);
185 void	re_miibus_writereg(struct device *, int, int, int);
186 void	re_miibus_statchg(struct device *);
187 
188 void	re_iff(struct rl_softc *);
189 
190 void	re_setup_hw_im(struct rl_softc *);
191 void	re_setup_sim_im(struct rl_softc *);
192 void	re_disable_hw_im(struct rl_softc *);
193 void	re_disable_sim_im(struct rl_softc *);
194 void	re_config_imtype(struct rl_softc *, int);
195 void	re_setup_intr(struct rl_softc *, int, int);
196 #ifndef SMALL_KERNEL
197 int	re_wol(struct ifnet*, int);
198 #endif
199 
200 struct cfdriver re_cd = {
201 	0, "re", DV_IFNET
202 };
203 
204 #define EE_SET(x)					\
205 	CSR_WRITE_1(sc, RL_EECMD,			\
206 		CSR_READ_1(sc, RL_EECMD) | x)
207 
208 #define EE_CLR(x)					\
209 	CSR_WRITE_1(sc, RL_EECMD,			\
210 		CSR_READ_1(sc, RL_EECMD) & ~x)
211 
212 static const struct re_revision {
213 	u_int32_t		re_chipid;
214 	const char		*re_name;
215 } re_revisions[] = {
216 	{ RL_HWREV_8100,	"RTL8100" },
217 	{ RL_HWREV_8100E,	"RTL8100E" },
218 	{ RL_HWREV_8100E_SPIN2, "RTL8100E 2" },
219 	{ RL_HWREV_8101,	"RTL8101" },
220 	{ RL_HWREV_8101E,	"RTL8101E" },
221 	{ RL_HWREV_8102E,	"RTL8102E" },
222 	{ RL_HWREV_8106E,	"RTL8106E" },
223 	{ RL_HWREV_8401E,	"RTL8401E" },
224 	{ RL_HWREV_8402,	"RTL8402" },
225 	{ RL_HWREV_8411,	"RTL8411" },
226 	{ RL_HWREV_8411B,	"RTL8411B" },
227 	{ RL_HWREV_8102EL,	"RTL8102EL" },
228 	{ RL_HWREV_8102EL_SPIN1, "RTL8102EL 1" },
229 	{ RL_HWREV_8103E,       "RTL8103E" },
230 	{ RL_HWREV_8110S,	"RTL8110S" },
231 	{ RL_HWREV_8139CPLUS,	"RTL8139C+" },
232 	{ RL_HWREV_8168B_SPIN1,	"RTL8168 1" },
233 	{ RL_HWREV_8168B_SPIN2,	"RTL8168 2" },
234 	{ RL_HWREV_8168B_SPIN3,	"RTL8168 3" },
235 	{ RL_HWREV_8168C,	"RTL8168C/8111C" },
236 	{ RL_HWREV_8168C_SPIN2,	"RTL8168C/8111C" },
237 	{ RL_HWREV_8168CP,	"RTL8168CP/8111CP" },
238 	{ RL_HWREV_8168F,	"RTL8168F/8111F" },
239 	{ RL_HWREV_8168G,	"RTL8168G/8111G" },
240 	{ RL_HWREV_8168GU,	"RTL8168GU/8111GU" },
241 	{ RL_HWREV_8105E,	"RTL8105E" },
242 	{ RL_HWREV_8105E_SPIN1,	"RTL8105E" },
243 	{ RL_HWREV_8168D,	"RTL8168D/8111D" },
244 	{ RL_HWREV_8168DP,      "RTL8168DP/8111DP" },
245 	{ RL_HWREV_8168E,       "RTL8168E/8111E" },
246 	{ RL_HWREV_8168E_VL,	"RTL8168E/8111E-VL" },
247 	{ RL_HWREV_8168EP,	"RTL8168EP/8111EP" },
248 	{ RL_HWREV_8169,	"RTL8169" },
249 	{ RL_HWREV_8169_8110SB,	"RTL8169/8110SB" },
250 	{ RL_HWREV_8169_8110SBL, "RTL8169SBL" },
251 	{ RL_HWREV_8169_8110SCd, "RTL8169/8110SCd" },
252 	{ RL_HWREV_8169_8110SCe, "RTL8169/8110SCe" },
253 	{ RL_HWREV_8169S,	"RTL8169S" },
254 
255 	{ 0, NULL }
256 };
257 
258 
259 static inline void
260 re_set_bufaddr(struct rl_desc *d, bus_addr_t addr)
261 {
262 	d->rl_bufaddr_lo = htole32((uint32_t)addr);
263 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
264 		d->rl_bufaddr_hi = htole32((uint64_t)addr >> 32);
265 	else
266 		d->rl_bufaddr_hi = 0;
267 }
268 
269 /*
270  * Send a read command and address to the EEPROM, check for ACK.
271  */
272 void
273 re_eeprom_putbyte(struct rl_softc *sc, int addr)
274 {
275 	int	d, i;
276 
277 	d = addr | (RL_9346_READ << sc->rl_eewidth);
278 
279 	/*
280 	 * Feed in each bit and strobe the clock.
281 	 */
282 
283 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
284 		if (d & i)
285 			EE_SET(RL_EE_DATAIN);
286 		else
287 			EE_CLR(RL_EE_DATAIN);
288 		DELAY(100);
289 		EE_SET(RL_EE_CLK);
290 		DELAY(150);
291 		EE_CLR(RL_EE_CLK);
292 		DELAY(100);
293 	}
294 }
295 
296 /*
297  * Read a word of data stored in the EEPROM at address 'addr.'
298  */
299 void
300 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
301 {
302 	int		i;
303 	u_int16_t	word = 0;
304 
305 	/*
306 	 * Send address of word we want to read.
307 	 */
308 	re_eeprom_putbyte(sc, addr);
309 
310 	/*
311 	 * Start reading bits from EEPROM.
312 	 */
313 	for (i = 0x8000; i; i >>= 1) {
314 		EE_SET(RL_EE_CLK);
315 		DELAY(100);
316 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
317 			word |= i;
318 		EE_CLR(RL_EE_CLK);
319 		DELAY(100);
320 	}
321 
322 	*dest = word;
323 }
324 
325 /*
326  * Read a sequence of words from the EEPROM.
327  */
328 void
329 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
330 {
331 	int		i;
332 	u_int16_t	word = 0, *ptr;
333 
334 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
335 
336 	DELAY(100);
337 
338 	for (i = 0; i < cnt; i++) {
339 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
340 		re_eeprom_getword(sc, off + i, &word);
341 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
342 		ptr = (u_int16_t *)(dest + (i * 2));
343 		*ptr = word;
344 	}
345 
346 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
347 }
348 
349 int
350 re_gmii_readreg(struct device *self, int phy, int reg)
351 {
352 	struct rl_softc	*sc = (struct rl_softc *)self;
353 	u_int32_t	rval;
354 	int		i;
355 
356 	if (phy != 7)
357 		return (0);
358 
359 	/* Let the rgephy driver read the GMEDIASTAT register */
360 
361 	if (reg == RL_GMEDIASTAT) {
362 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
363 		return (rval);
364 	}
365 
366 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
367 
368 	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
369 		rval = CSR_READ_4(sc, RL_PHYAR);
370 		if (rval & RL_PHYAR_BUSY)
371 			break;
372 		DELAY(25);
373 	}
374 
375 	if (i == RL_PHY_TIMEOUT) {
376 		printf ("%s: PHY read failed\n", sc->sc_dev.dv_xname);
377 		return (0);
378 	}
379 
380 	DELAY(20);
381 
382 	return (rval & RL_PHYAR_PHYDATA);
383 }
384 
385 void
386 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
387 {
388 	struct rl_softc	*sc = (struct rl_softc *)dev;
389 	u_int32_t	rval;
390 	int		i;
391 
392 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
393 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
394 
395 	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
396 		rval = CSR_READ_4(sc, RL_PHYAR);
397 		if (!(rval & RL_PHYAR_BUSY))
398 			break;
399 		DELAY(25);
400 	}
401 
402 	if (i == RL_PHY_TIMEOUT)
403 		printf ("%s: PHY write failed\n", sc->sc_dev.dv_xname);
404 
405 	DELAY(20);
406 }
407 
408 int
409 re_miibus_readreg(struct device *dev, int phy, int reg)
410 {
411 	struct rl_softc	*sc = (struct rl_softc *)dev;
412 	u_int16_t	rval = 0;
413 	u_int16_t	re8139_reg = 0;
414 	int		s;
415 
416 	s = splnet();
417 
418 	if (sc->sc_hwrev != RL_HWREV_8139CPLUS) {
419 		rval = re_gmii_readreg(dev, phy, reg);
420 		splx(s);
421 		return (rval);
422 	}
423 
424 	/* Pretend the internal PHY is only at address 0 */
425 	if (phy) {
426 		splx(s);
427 		return (0);
428 	}
429 	switch(reg) {
430 	case MII_BMCR:
431 		re8139_reg = RL_BMCR;
432 		break;
433 	case MII_BMSR:
434 		re8139_reg = RL_BMSR;
435 		break;
436 	case MII_ANAR:
437 		re8139_reg = RL_ANAR;
438 		break;
439 	case MII_ANER:
440 		re8139_reg = RL_ANER;
441 		break;
442 	case MII_ANLPAR:
443 		re8139_reg = RL_LPAR;
444 		break;
445 	case MII_PHYIDR1:
446 	case MII_PHYIDR2:
447 		splx(s);
448 		return (0);
449 	/*
450 	 * Allow the rlphy driver to read the media status
451 	 * register. If we have a link partner which does not
452 	 * support NWAY, this is the register which will tell
453 	 * us the results of parallel detection.
454 	 */
455 	case RL_MEDIASTAT:
456 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
457 		splx(s);
458 		return (rval);
459 	default:
460 		printf("%s: bad phy register %x\n", sc->sc_dev.dv_xname, reg);
461 		splx(s);
462 		return (0);
463 	}
464 	rval = CSR_READ_2(sc, re8139_reg);
465 	if (re8139_reg == RL_BMCR) {
466 		/* 8139C+ has different bit layout. */
467 		rval &= ~(BMCR_LOOP | BMCR_ISO);
468 	}
469 	splx(s);
470 	return (rval);
471 }
472 
473 void
474 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
475 {
476 	struct rl_softc	*sc = (struct rl_softc *)dev;
477 	u_int16_t	re8139_reg = 0;
478 	int		s;
479 
480 	s = splnet();
481 
482 	if (sc->sc_hwrev != RL_HWREV_8139CPLUS) {
483 		re_gmii_writereg(dev, phy, reg, data);
484 		splx(s);
485 		return;
486 	}
487 
488 	/* Pretend the internal PHY is only at address 0 */
489 	if (phy) {
490 		splx(s);
491 		return;
492 	}
493 	switch(reg) {
494 	case MII_BMCR:
495 		re8139_reg = RL_BMCR;
496 		/* 8139C+ has different bit layout. */
497 		data &= ~(BMCR_LOOP | BMCR_ISO);
498 		break;
499 	case MII_BMSR:
500 		re8139_reg = RL_BMSR;
501 		break;
502 	case MII_ANAR:
503 		re8139_reg = RL_ANAR;
504 		break;
505 	case MII_ANER:
506 		re8139_reg = RL_ANER;
507 		break;
508 	case MII_ANLPAR:
509 		re8139_reg = RL_LPAR;
510 		break;
511 	case MII_PHYIDR1:
512 	case MII_PHYIDR2:
513 		splx(s);
514 		return;
515 		break;
516 	default:
517 		printf("%s: bad phy register %x\n", sc->sc_dev.dv_xname, reg);
518 		splx(s);
519 		return;
520 	}
521 	CSR_WRITE_2(sc, re8139_reg, data);
522 	splx(s);
523 }
524 
525 void
526 re_miibus_statchg(struct device *dev)
527 {
528 }
529 
530 void
531 re_iff(struct rl_softc *sc)
532 {
533 	struct ifnet		*ifp = &sc->sc_arpcom.ac_if;
534 	int			h = 0;
535 	u_int32_t		hashes[2];
536 	u_int32_t		rxfilt;
537 	struct arpcom		*ac = &sc->sc_arpcom;
538 	struct ether_multi	*enm;
539 	struct ether_multistep	step;
540 
541 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
542 	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
543 	    RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI);
544 	ifp->if_flags &= ~IFF_ALLMULTI;
545 
546 	/*
547 	 * Always accept frames destined to our station address.
548 	 * Always accept broadcast frames.
549 	 */
550 	rxfilt |= RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
551 
552 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
553 		ifp->if_flags |= IFF_ALLMULTI;
554 		rxfilt |= RL_RXCFG_RX_MULTI;
555 		if (ifp->if_flags & IFF_PROMISC)
556 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
557 		hashes[0] = hashes[1] = 0xFFFFFFFF;
558 	} else {
559 		rxfilt |= RL_RXCFG_RX_MULTI;
560 		/* Program new filter. */
561 		bzero(hashes, sizeof(hashes));
562 
563 		ETHER_FIRST_MULTI(step, ac, enm);
564 		while (enm != NULL) {
565 			h = ether_crc32_be(enm->enm_addrlo,
566 			    ETHER_ADDR_LEN) >> 26;
567 
568 			if (h < 32)
569 				hashes[0] |= (1 << h);
570 			else
571 				hashes[1] |= (1 << (h - 32));
572 
573 			ETHER_NEXT_MULTI(step, enm);
574 		}
575 	}
576 
577 	/*
578 	 * For some unfathomable reason, RealTek decided to reverse
579 	 * the order of the multicast hash registers in the PCI Express
580 	 * parts. This means we have to write the hash pattern in reverse
581 	 * order for those devices.
582 	 */
583 	if (sc->rl_flags & RL_FLAG_INVMAR) {
584 		CSR_WRITE_4(sc, RL_MAR0, swap32(hashes[1]));
585 		CSR_WRITE_4(sc, RL_MAR4, swap32(hashes[0]));
586 	} else {
587 		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
588 		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
589 	}
590 
591 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
592 }
593 
594 void
595 re_reset(struct rl_softc *sc)
596 {
597 	int	i;
598 
599 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
600 
601 	for (i = 0; i < RL_TIMEOUT; i++) {
602 		DELAY(10);
603 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
604 			break;
605 	}
606 	if (i == RL_TIMEOUT)
607 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
608 
609 	if (sc->rl_flags & RL_FLAG_MACLDPS)
610 		CSR_WRITE_1(sc, RL_LDPS, 1);
611 }
612 
613 #ifdef __armish__
614 /*
615  * Thecus N2100 doesn't store the full mac address in eeprom
616  * so we read the old mac address from the device before the reset
617  * in hopes that the proper mac address is already there.
618  */
619 union {
620 	u_int32_t eaddr_word[2];
621 	u_char eaddr[ETHER_ADDR_LEN];
622 } boot_eaddr;
623 int boot_eaddr_valid;
624 #endif /* __armish__ */
625 /*
626  * Attach the interface. Allocate softc structures, do ifmedia
627  * setup and ethernet/BPF attach.
628  */
629 int
630 re_attach(struct rl_softc *sc, const char *intrstr)
631 {
632 	u_char		eaddr[ETHER_ADDR_LEN];
633 	u_int16_t	as[ETHER_ADDR_LEN / 2];
634 	struct ifnet	*ifp;
635 	u_int16_t	re_did = 0;
636 	int		error = 0, i;
637 	const struct re_revision *rr;
638 	const char	*re_name = NULL;
639 
640 	sc->sc_hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
641 
642 	switch (sc->sc_hwrev) {
643 	case RL_HWREV_8139CPLUS:
644 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_AUTOPAD;
645 		break;
646 	case RL_HWREV_8100E:
647 	case RL_HWREV_8100E_SPIN2:
648 	case RL_HWREV_8101E:
649 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
650 		    RL_FLAG_PHYWAKE;
651 		break;
652 	case RL_HWREV_8103E:
653 		sc->rl_flags |= RL_FLAG_MACSLEEP;
654 		/* FALLTHROUGH */
655 	case RL_HWREV_8102E:
656 	case RL_HWREV_8102EL:
657 	case RL_HWREV_8102EL_SPIN1:
658 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
659 		    RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
660 		    RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
661 		break;
662 	case RL_HWREV_8401E:
663 	case RL_HWREV_8402:
664 	case RL_HWREV_8105E:
665 	case RL_HWREV_8105E_SPIN1:
666 	case RL_HWREV_8106E:
667 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
668 		    RL_FLAG_PHYWAKE_PM | RL_FLAG_PAR | RL_FLAG_DESCV2 |
669 		    RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
670 		    RL_FLAG_NOJUMBO;
671 		break;
672 	case RL_HWREV_8168B_SPIN1:
673 	case RL_HWREV_8168B_SPIN2:
674 	case RL_HWREV_8168B_SPIN3:
675 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
676 		    RL_FLAG_MACSTAT | RL_FLAG_HWIM;
677 		break;
678 	case RL_HWREV_8168C_SPIN2:
679 		sc->rl_flags |= RL_FLAG_MACSLEEP;
680 		/* FALLTHROUGH */
681 	case RL_HWREV_8168C:
682 	case RL_HWREV_8168CP:
683 	case RL_HWREV_8168DP:
684 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
685 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
686 		    RL_FLAG_HWIM | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
687 		/*
688 		 * These controllers support jumbo frame but it seems
689 		 * that enabling it requires touching additional magic
690 		 * registers. Depending on MAC revisions some
691 		 * controllers need to disable checksum offload. So
692 		 * disable jumbo frame until I have better idea what
693 		 * it really requires to make it support.
694 		 * RTL8168C/CP : supports up to 6KB jumbo frame.
695 		 * RTL8111C/CP : supports up to 9KB jumbo frame.
696 		 */
697 		sc->rl_flags |= RL_FLAG_NOJUMBO;
698 		break;
699 	case RL_HWREV_8168D:
700 	case RL_HWREV_8168E:
701 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
702 		    RL_FLAG_PHYWAKE_PM | RL_FLAG_PAR | RL_FLAG_DESCV2 |
703 		    RL_FLAG_MACSTAT | RL_FLAG_HWIM | RL_FLAG_CMDSTOP |
704 		    RL_FLAG_AUTOPAD | RL_FLAG_NOJUMBO;
705 		break;
706 	case RL_HWREV_8168E_VL:
707 	case RL_HWREV_8168F:
708 		sc->rl_flags |= RL_FLAG_EARLYOFF;
709 		/* FALLTHROUGH */
710 	case RL_HWREV_8411:
711 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
712 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
713 		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_NOJUMBO;
714 		break;
715 	case RL_HWREV_8168EP:
716 	case RL_HWREV_8168G:
717 	case RL_HWREV_8411B:
718 	case RL_HWREV_8168GU:
719 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
720 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
721 		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_NOJUMBO |
722 		    RL_FLAG_EARLYOFFV2 | RL_FLAG_RXDV_GATED;
723 		break;
724 	case RL_HWREV_8169_8110SB:
725 	case RL_HWREV_8169_8110SBL:
726 	case RL_HWREV_8169_8110SCd:
727 	case RL_HWREV_8169_8110SCe:
728 		sc->rl_flags |= RL_FLAG_PHYWAKE;
729 		/* FALLTHROUGH */
730 	case RL_HWREV_8169:
731 	case RL_HWREV_8169S:
732 	case RL_HWREV_8110S:
733 		sc->rl_flags |= RL_FLAG_MACLDPS;
734 		break;
735 	default:
736 		break;
737 	}
738 
739 	/* Reset the adapter. */
740 	re_reset(sc);
741 
742 	sc->rl_tx_time = 5;		/* 125us */
743 	sc->rl_rx_time = 2;		/* 50us */
744 	if (sc->rl_flags & RL_FLAG_PCIE)
745 		sc->rl_sim_time = 75;	/* 75us */
746 	else
747 		sc->rl_sim_time = 125;	/* 125us */
748 	sc->rl_imtype = RL_IMTYPE_SIM;	/* simulated interrupt moderation */
749 
750 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
751 		sc->rl_bus_speed = 33; /* XXX */
752 	else if (sc->rl_flags & RL_FLAG_PCIE)
753 		sc->rl_bus_speed = 125;
754 	else {
755 		u_int8_t cfg2;
756 
757 		cfg2 = CSR_READ_1(sc, RL_CFG2);
758 		switch (cfg2 & RL_CFG2_PCI_MASK) {
759 		case RL_CFG2_PCI_33MHZ:
760  			sc->rl_bus_speed = 33;
761 			break;
762 		case RL_CFG2_PCI_66MHZ:
763 			sc->rl_bus_speed = 66;
764 			break;
765 		default:
766 			printf("%s: unknown bus speed, assume 33MHz\n",
767 			    sc->sc_dev.dv_xname);
768 			sc->rl_bus_speed = 33;
769 			break;
770 		}
771 
772 		if (cfg2 & RL_CFG2_PCI_64BIT)
773 			sc->rl_flags |= RL_FLAG_PCI64;
774 	}
775 
776 	re_config_imtype(sc, sc->rl_imtype);
777 
778 	if (sc->rl_flags & RL_FLAG_PAR) {
779 		/*
780 		 * XXX Should have a better way to extract station
781 		 * address from EEPROM.
782 		 */
783 		for (i = 0; i < ETHER_ADDR_LEN; i++)
784 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
785 	} else {
786 		sc->rl_eewidth = RL_9356_ADDR_LEN;
787 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
788 		if (re_did != 0x8129)
789 			sc->rl_eewidth = RL_9346_ADDR_LEN;
790 
791 		/*
792 		 * Get station address from the EEPROM.
793 		 */
794 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
795 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
796 			as[i] = letoh16(as[i]);
797 		bcopy(as, eaddr, sizeof(eaddr));
798 
799 #ifdef __armish__
800 		/*
801 		 * On the Thecus N2100, the MAC address in the EEPROM is
802 		 * always 00:14:fd:10:00:00.  The proper MAC address is
803 		 * stored in flash.  Fortunately RedBoot configures the
804 		 * proper MAC address (for the first onboard interface)
805 		 * which we can read from the IDR.
806 		 */
807 		if (eaddr[0] == 0x00 && eaddr[1] == 0x14 &&
808 		    eaddr[2] == 0xfd && eaddr[3] == 0x10 &&
809 		    eaddr[4] == 0x00 && eaddr[5] == 0x00) {
810 			if (boot_eaddr_valid == 0) {
811 				boot_eaddr.eaddr_word[1] =
812 				    letoh32(CSR_READ_4(sc, RL_IDR4));
813 				boot_eaddr.eaddr_word[0] =
814 				    letoh32(CSR_READ_4(sc, RL_IDR0));
815 				boot_eaddr_valid = 1;
816 			}
817 
818 			bcopy(boot_eaddr.eaddr, eaddr, sizeof(eaddr));
819 			eaddr[5] += sc->sc_dev.dv_unit;
820 		}
821 #endif
822 	}
823 
824 	/*
825 	 * Set RX length mask, TX poll request register
826 	 * and TX descriptor count.
827 	 */
828 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS) {
829 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
830 		sc->rl_txstart = RL_TXSTART;
831 		sc->rl_ldata.rl_tx_desc_cnt = RL_TX_DESC_CNT_8139;
832 	} else {
833 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
834 		sc->rl_txstart = RL_GTXSTART;
835 		sc->rl_ldata.rl_tx_desc_cnt = RL_TX_DESC_CNT_8169;
836 	}
837 
838 	bcopy(eaddr, (char *)&sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
839 
840 	for (rr = re_revisions; rr->re_name != NULL; rr++) {
841 		if (rr->re_chipid == sc->sc_hwrev)
842 			re_name = rr->re_name;
843 	}
844 
845 	if (re_name == NULL)
846 		printf(": unknown ASIC (0x%04x)", sc->sc_hwrev >> 16);
847 	else
848 		printf(": %s (0x%04x)", re_name, sc->sc_hwrev >> 16);
849 
850 	printf(", %s, address %s\n", intrstr,
851 	    ether_sprintf(sc->sc_arpcom.ac_enaddr));
852 
853 	if (sc->rl_ldata.rl_tx_desc_cnt >
854 	    PAGE_SIZE / sizeof(struct rl_desc)) {
855 		sc->rl_ldata.rl_tx_desc_cnt =
856 		    PAGE_SIZE / sizeof(struct rl_desc);
857 	}
858 
859 	/* Allocate DMA'able memory for the TX ring */
860 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RL_TX_LIST_SZ(sc),
861 		    RL_RING_ALIGN, 0, &sc->rl_ldata.rl_tx_listseg, 1,
862 		    &sc->rl_ldata.rl_tx_listnseg, BUS_DMA_NOWAIT |
863 		    BUS_DMA_ZERO)) != 0) {
864 		printf("%s: can't allocate tx listseg, error = %d\n",
865 		    sc->sc_dev.dv_xname, error);
866 		goto fail_0;
867 	}
868 
869 	/* Load the map for the TX ring. */
870 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rl_ldata.rl_tx_listseg,
871 		    sc->rl_ldata.rl_tx_listnseg, RL_TX_LIST_SZ(sc),
872 		    (caddr_t *)&sc->rl_ldata.rl_tx_list,
873 		    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
874 		printf("%s: can't map tx list, error = %d\n",
875 		    sc->sc_dev.dv_xname, error);
876 		goto fail_1;
877 	}
878 
879 	if ((error = bus_dmamap_create(sc->sc_dmat, RL_TX_LIST_SZ(sc), 1,
880 		    RL_TX_LIST_SZ(sc), 0, 0,
881 		    &sc->rl_ldata.rl_tx_list_map)) != 0) {
882 		printf("%s: can't create tx list map, error = %d\n",
883 		    sc->sc_dev.dv_xname, error);
884 		goto fail_2;
885 	}
886 
887 	if ((error = bus_dmamap_load(sc->sc_dmat,
888 		    sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
889 		    RL_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
890 		printf("%s: can't load tx list, error = %d\n",
891 		    sc->sc_dev.dv_xname, error);
892 		goto fail_3;
893 	}
894 
895 	/* Create DMA maps for TX buffers */
896 	for (i = 0; i < RL_TX_QLEN; i++) {
897 		error = bus_dmamap_create(sc->sc_dmat,
898 		    RL_JUMBO_FRAMELEN, RL_NTXSEGS, RL_JUMBO_FRAMELEN,
899 		    0, 0, &sc->rl_ldata.rl_txq[i].txq_dmamap);
900 		if (error) {
901 			printf("%s: can't create DMA map for TX\n",
902 			    sc->sc_dev.dv_xname);
903 			goto fail_4;
904 		}
905 	}
906 
907         /* Allocate DMA'able memory for the RX ring */
908 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RL_RX_DMAMEM_SZ,
909 		    RL_RING_ALIGN, 0, &sc->rl_ldata.rl_rx_listseg, 1,
910 		    &sc->rl_ldata.rl_rx_listnseg, BUS_DMA_NOWAIT |
911 		    BUS_DMA_ZERO)) != 0) {
912 		printf("%s: can't allocate rx listnseg, error = %d\n",
913 		    sc->sc_dev.dv_xname, error);
914 		goto fail_4;
915 	}
916 
917         /* Load the map for the RX ring. */
918 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rl_ldata.rl_rx_listseg,
919 		    sc->rl_ldata.rl_rx_listnseg, RL_RX_DMAMEM_SZ,
920 		    (caddr_t *)&sc->rl_ldata.rl_rx_list,
921 		    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
922 		printf("%s: can't map rx list, error = %d\n",
923 		    sc->sc_dev.dv_xname, error);
924 		goto fail_5;
925 
926 	}
927 
928 	if ((error = bus_dmamap_create(sc->sc_dmat, RL_RX_DMAMEM_SZ, 1,
929 		    RL_RX_DMAMEM_SZ, 0, 0,
930 		    &sc->rl_ldata.rl_rx_list_map)) != 0) {
931 		printf("%s: can't create rx list map, error = %d\n",
932 		    sc->sc_dev.dv_xname, error);
933 		goto fail_6;
934 	}
935 
936 	if ((error = bus_dmamap_load(sc->sc_dmat,
937 		    sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
938 		    RL_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
939 		printf("%s: can't load rx list, error = %d\n",
940 		    sc->sc_dev.dv_xname, error);
941 		goto fail_7;
942 	}
943 
944 	/* Create DMA maps for RX buffers */
945 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
946 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
947 		    0, 0, &sc->rl_ldata.rl_rxsoft[i].rxs_dmamap);
948 		if (error) {
949 			printf("%s: can't create DMA map for RX\n",
950 			    sc->sc_dev.dv_xname);
951 			goto fail_8;
952 		}
953 	}
954 
955 	ifp = &sc->sc_arpcom.ac_if;
956 	ifp->if_softc = sc;
957 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
958 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
959 	ifp->if_ioctl = re_ioctl;
960 	ifp->if_start = re_start;
961 	ifp->if_watchdog = re_watchdog;
962 	if ((sc->rl_flags & RL_FLAG_NOJUMBO) == 0)
963 		ifp->if_hardmtu = RL_JUMBO_MTU;
964 	IFQ_SET_MAXLEN(&ifp->if_snd, RL_TX_QLEN);
965 	IFQ_SET_READY(&ifp->if_snd);
966 
967 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_TCPv4 |
968 	    IFCAP_CSUM_UDPv4;
969 
970 	/*
971 	 * RTL8168/8111C generates wrong IP checksummed frame if the
972 	 * packet has IP options so disable TX IP checksum offloading.
973 	 */
974 	switch (sc->sc_hwrev) {
975 	case RL_HWREV_8168C:
976 	case RL_HWREV_8168C_SPIN2:
977 	case RL_HWREV_8168CP:
978 		break;
979 	default:
980 		ifp->if_capabilities |= IFCAP_CSUM_IPv4;
981 	}
982 
983 #if NVLAN > 0
984 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
985 #endif
986 
987 #ifndef SMALL_KERNEL
988 	ifp->if_capabilities |= IFCAP_WOL;
989 	ifp->if_wol = re_wol;
990 	re_wol(ifp, 0);
991 #endif
992 	timeout_set(&sc->timer_handle, re_tick, sc);
993 
994 	/* Take PHY out of power down mode. */
995 	if (sc->rl_flags & RL_FLAG_PHYWAKE_PM) {
996 		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
997 		if (sc->sc_hwrev == RL_HWREV_8401E)
998 			CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
999 	}
1000 	if (sc->rl_flags & RL_FLAG_PHYWAKE) {
1001 		re_gmii_writereg((struct device *)sc, 1, 0x1f, 0);
1002 		re_gmii_writereg((struct device *)sc, 1, 0x0e, 0);
1003 	}
1004 
1005 	/* Do MII setup */
1006 	sc->sc_mii.mii_ifp = ifp;
1007 	sc->sc_mii.mii_readreg = re_miibus_readreg;
1008 	sc->sc_mii.mii_writereg = re_miibus_writereg;
1009 	sc->sc_mii.mii_statchg = re_miibus_statchg;
1010 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, re_ifmedia_upd,
1011 	    re_ifmedia_sts);
1012 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1013 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
1014 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1015 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
1016 		ifmedia_add(&sc->sc_mii.mii_media,
1017 		    IFM_ETHER|IFM_NONE, 0, NULL);
1018 		ifmedia_set(&sc->sc_mii.mii_media,
1019 		    IFM_ETHER|IFM_NONE);
1020 	} else
1021 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1022 
1023 	/*
1024 	 * Call MI attach routine.
1025 	 */
1026 	re_reset(sc);
1027 	if_attach(ifp);
1028 	ether_ifattach(ifp);
1029 
1030 	return (0);
1031 
1032 fail_8:
1033 	/* Destroy DMA maps for RX buffers. */
1034 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1035 		if (sc->rl_ldata.rl_rxsoft[i].rxs_dmamap != NULL)
1036 			bus_dmamap_destroy(sc->sc_dmat,
1037 			    sc->rl_ldata.rl_rxsoft[i].rxs_dmamap);
1038 	}
1039 
1040 	/* Free DMA'able memory for the RX ring. */
1041 	bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map);
1042 fail_7:
1043 	bus_dmamap_destroy(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map);
1044 fail_6:
1045 	bus_dmamem_unmap(sc->sc_dmat,
1046 	    (caddr_t)sc->rl_ldata.rl_rx_list, RL_RX_DMAMEM_SZ);
1047 fail_5:
1048 	bus_dmamem_free(sc->sc_dmat,
1049 	    &sc->rl_ldata.rl_rx_listseg, sc->rl_ldata.rl_rx_listnseg);
1050 
1051 fail_4:
1052 	/* Destroy DMA maps for TX buffers. */
1053 	for (i = 0; i < RL_TX_QLEN; i++) {
1054 		if (sc->rl_ldata.rl_txq[i].txq_dmamap != NULL)
1055 			bus_dmamap_destroy(sc->sc_dmat,
1056 			    sc->rl_ldata.rl_txq[i].txq_dmamap);
1057 	}
1058 
1059 	/* Free DMA'able memory for the TX ring. */
1060 	bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map);
1061 fail_3:
1062 	bus_dmamap_destroy(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map);
1063 fail_2:
1064 	bus_dmamem_unmap(sc->sc_dmat,
1065 	    (caddr_t)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ(sc));
1066 fail_1:
1067 	bus_dmamem_free(sc->sc_dmat,
1068 	    &sc->rl_ldata.rl_tx_listseg, sc->rl_ldata.rl_tx_listnseg);
1069 fail_0:
1070  	return (1);
1071 }
1072 
1073 
1074 int
1075 re_newbuf(struct rl_softc *sc)
1076 {
1077 	struct mbuf	*m;
1078 	bus_dmamap_t	map;
1079 	struct rl_desc	*d;
1080 	struct rl_rxsoft *rxs;
1081 	u_int32_t	cmdstat;
1082 	int		error, idx;
1083 
1084 	m = MCLGETI(NULL, M_DONTWAIT, NULL, MCLBYTES);
1085 	if (!m)
1086 		return (ENOBUFS);
1087 
1088 	/*
1089 	 * Initialize mbuf length fields and fixup
1090 	 * alignment so that the frame payload is
1091 	 * longword aligned on strict alignment archs.
1092 	 */
1093 	m->m_len = m->m_pkthdr.len = RE_RX_DESC_BUFLEN;
1094 	m->m_data += RE_ETHER_ALIGN;
1095 
1096 	idx = sc->rl_ldata.rl_rx_prodidx;
1097 	rxs = &sc->rl_ldata.rl_rxsoft[idx];
1098 	map = rxs->rxs_dmamap;
1099 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1100 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1101 	if (error) {
1102 		m_freem(m);
1103 		return (ENOBUFS);
1104 	}
1105 
1106 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1107 	    BUS_DMASYNC_PREREAD);
1108 
1109 	d = &sc->rl_ldata.rl_rx_list[idx];
1110 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1111 	cmdstat = letoh32(d->rl_cmdstat);
1112 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1113 	if (cmdstat & RL_RDESC_STAT_OWN) {
1114 		printf("%s: tried to map busy RX descriptor\n",
1115 		    sc->sc_dev.dv_xname);
1116 		m_freem(m);
1117 		return (ENOBUFS);
1118 	}
1119 
1120 	rxs->rxs_mbuf = m;
1121 
1122 	d->rl_vlanctl = 0;
1123 	cmdstat = map->dm_segs[0].ds_len;
1124 	if (idx == (RL_RX_DESC_CNT - 1))
1125 		cmdstat |= RL_RDESC_CMD_EOR;
1126 	re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1127 	d->rl_cmdstat = htole32(cmdstat);
1128 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1129 	cmdstat |= RL_RDESC_CMD_OWN;
1130 	d->rl_cmdstat = htole32(cmdstat);
1131 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1132 
1133 	sc->rl_ldata.rl_rx_prodidx = RL_NEXT_RX_DESC(sc, idx);
1134 
1135 	return (0);
1136 }
1137 
1138 
1139 int
1140 re_tx_list_init(struct rl_softc *sc)
1141 {
1142 	int i;
1143 
1144 	memset(sc->rl_ldata.rl_tx_list, 0, RL_TX_LIST_SZ(sc));
1145 	for (i = 0; i < RL_TX_QLEN; i++) {
1146 		sc->rl_ldata.rl_txq[i].txq_mbuf = NULL;
1147 	}
1148 
1149 	bus_dmamap_sync(sc->sc_dmat,
1150 	    sc->rl_ldata.rl_tx_list_map, 0,
1151 	    sc->rl_ldata.rl_tx_list_map->dm_mapsize,
1152 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1153 	sc->rl_ldata.rl_txq_prodidx = 0;
1154 	sc->rl_ldata.rl_txq_considx = 0;
1155 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT(sc);
1156 	sc->rl_ldata.rl_tx_nextfree = 0;
1157 
1158 	return (0);
1159 }
1160 
1161 int
1162 re_rx_list_init(struct rl_softc *sc)
1163 {
1164 	bzero(sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1165 
1166 	sc->rl_ldata.rl_rx_prodidx = 0;
1167 	sc->rl_ldata.rl_rx_considx = 0;
1168 	sc->rl_head = sc->rl_tail = NULL;
1169 
1170 	if_rxr_init(&sc->rl_ldata.rl_rx_ring, 2, RL_RX_DESC_CNT);
1171 	re_rx_list_fill(sc);
1172 
1173 	return (0);
1174 }
1175 
1176 void
1177 re_rx_list_fill(struct rl_softc *sc)
1178 {
1179 	u_int slots;
1180 
1181 	for (slots = if_rxr_get(&sc->rl_ldata.rl_rx_ring, RL_RX_DESC_CNT);
1182 	    slots > 0; slots--) {
1183 		if (re_newbuf(sc) == ENOBUFS)
1184 			break;
1185 	}
1186 	if_rxr_put(&sc->rl_ldata.rl_rx_ring, slots);
1187 }
1188 
1189 /*
1190  * RX handler for C+ and 8169. For the gigE chips, we support
1191  * the reception of jumbo frames that have been fragmented
1192  * across multiple 2K mbuf cluster buffers.
1193  */
1194 int
1195 re_rxeof(struct rl_softc *sc)
1196 {
1197 	struct mbuf	*m;
1198 	struct ifnet	*ifp;
1199 	int		i, total_len, rx = 0;
1200 	struct rl_desc	*cur_rx;
1201 	struct rl_rxsoft *rxs;
1202 	u_int32_t	rxstat, rxvlan;
1203 
1204 	ifp = &sc->sc_arpcom.ac_if;
1205 
1206 	for (i = sc->rl_ldata.rl_rx_considx;
1207 	    if_rxr_inuse(&sc->rl_ldata.rl_rx_ring) > 0;
1208 	     i = RL_NEXT_RX_DESC(sc, i)) {
1209 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1210 		RL_RXDESCSYNC(sc, i,
1211 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1212 		rxstat = letoh32(cur_rx->rl_cmdstat);
1213 		rxvlan = letoh32(cur_rx->rl_vlanctl);
1214 		RL_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1215 		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1216 			break;
1217 		total_len = rxstat & sc->rl_rxlenmask;
1218 		rxs = &sc->rl_ldata.rl_rxsoft[i];
1219 		m = rxs->rxs_mbuf;
1220 		rxs->rxs_mbuf = NULL;
1221 		if_rxr_put(&sc->rl_ldata.rl_rx_ring, 1);
1222 		rx = 1;
1223 
1224 		/* Invalidate the RX mbuf and unload its map */
1225 
1226 		bus_dmamap_sync(sc->sc_dmat,
1227 		    rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1228 		    BUS_DMASYNC_POSTREAD);
1229 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1230 
1231 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1232 			m->m_len = RE_RX_DESC_BUFLEN;
1233 			if (sc->rl_head == NULL)
1234 				sc->rl_head = sc->rl_tail = m;
1235 			else {
1236 				m->m_flags &= ~M_PKTHDR;
1237 				sc->rl_tail->m_next = m;
1238 				sc->rl_tail = m;
1239 			}
1240 			continue;
1241 		}
1242 
1243 		/*
1244 		 * NOTE: for the 8139C+, the frame length field
1245 		 * is always 12 bits in size, but for the gigE chips,
1246 		 * it is 13 bits (since the max RX frame length is 16K).
1247 		 * Unfortunately, all 32 bits in the status word
1248 		 * were already used, so to make room for the extra
1249 		 * length bit, RealTek took out the 'frame alignment
1250 		 * error' bit and shifted the other status bits
1251 		 * over one slot. The OWN, EOR, FS and LS bits are
1252 		 * still in the same places. We have already extracted
1253 		 * the frame length and checked the OWN bit, so rather
1254 		 * than using an alternate bit mapping, we shift the
1255 		 * status bits one space to the right so we can evaluate
1256 		 * them using the 8169 status as though it was in the
1257 		 * same format as that of the 8139C+.
1258 		 */
1259 		if (sc->sc_hwrev != RL_HWREV_8139CPLUS)
1260 			rxstat >>= 1;
1261 
1262 		/*
1263 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1264 		 * set, but if CRC is clear, it will still be a valid frame.
1265 		 */
1266 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1267 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1268 			ifp->if_ierrors++;
1269 			/*
1270 			 * If this is part of a multi-fragment packet,
1271 			 * discard all the pieces.
1272 			 */
1273 			if (sc->rl_head != NULL) {
1274 				m_freem(sc->rl_head);
1275 				sc->rl_head = sc->rl_tail = NULL;
1276 			}
1277 			continue;
1278 		}
1279 
1280 		if (sc->rl_head != NULL) {
1281 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1282 			if (m->m_len == 0)
1283 				m->m_len = RE_RX_DESC_BUFLEN;
1284 			/*
1285 			 * Special case: if there's 4 bytes or less
1286 			 * in this buffer, the mbuf can be discarded:
1287 			 * the last 4 bytes is the CRC, which we don't
1288 			 * care about anyway.
1289 			 */
1290 			if (m->m_len <= ETHER_CRC_LEN) {
1291 				sc->rl_tail->m_len -=
1292 				    (ETHER_CRC_LEN - m->m_len);
1293 				m_freem(m);
1294 			} else {
1295 				m->m_len -= ETHER_CRC_LEN;
1296 				m->m_flags &= ~M_PKTHDR;
1297 				sc->rl_tail->m_next = m;
1298 			}
1299 			m = sc->rl_head;
1300 			sc->rl_head = sc->rl_tail = NULL;
1301 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1302 		} else
1303 			m->m_pkthdr.len = m->m_len =
1304 			    (total_len - ETHER_CRC_LEN);
1305 
1306 		ifp->if_ipackets++;
1307 		m->m_pkthdr.rcvif = ifp;
1308 
1309 		/* Do RX checksumming */
1310 
1311 		if (sc->rl_flags & RL_FLAG_DESCV2) {
1312 			/* Check IP header checksum */
1313 			if ((rxvlan & RL_RDESC_IPV4) &&
1314 			    !(rxstat & RL_RDESC_STAT_IPSUMBAD))
1315 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1316 
1317 			/* Check TCP/UDP checksum */
1318 			if ((rxvlan & (RL_RDESC_IPV4|RL_RDESC_IPV6)) &&
1319 			    (((rxstat & RL_RDESC_STAT_TCP) &&
1320 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1321 			    ((rxstat & RL_RDESC_STAT_UDP) &&
1322 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))))
1323 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
1324 				    M_UDP_CSUM_IN_OK;
1325 		} else {
1326 			/* Check IP header checksum */
1327 			if ((rxstat & RL_RDESC_STAT_PROTOID) &&
1328 			    !(rxstat & RL_RDESC_STAT_IPSUMBAD))
1329 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1330 
1331 			/* Check TCP/UDP checksum */
1332 			if ((RL_TCPPKT(rxstat) &&
1333 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1334 			    (RL_UDPPKT(rxstat) &&
1335 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD)))
1336 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
1337 				    M_UDP_CSUM_IN_OK;
1338 		}
1339 #if NVLAN > 0
1340 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1341 			m->m_pkthdr.ether_vtag =
1342 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1343 			m->m_flags |= M_VLANTAG;
1344 		}
1345 #endif
1346 
1347 #if NBPFILTER > 0
1348 		if (ifp->if_bpf)
1349 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1350 #endif
1351 		ether_input_mbuf(ifp, m);
1352 	}
1353 
1354 	sc->rl_ldata.rl_rx_considx = i;
1355 	re_rx_list_fill(sc);
1356 
1357 	return (rx);
1358 }
1359 
1360 int
1361 re_txeof(struct rl_softc *sc)
1362 {
1363 	struct ifnet	*ifp;
1364 	struct rl_txq	*txq;
1365 	uint32_t	txstat;
1366 	int		idx, descidx, tx = 0;
1367 
1368 	ifp = &sc->sc_arpcom.ac_if;
1369 
1370 	for (idx = sc->rl_ldata.rl_txq_considx;; idx = RL_NEXT_TXQ(sc, idx)) {
1371 		txq = &sc->rl_ldata.rl_txq[idx];
1372 
1373 		if (txq->txq_mbuf == NULL) {
1374 			KASSERT(idx == sc->rl_ldata.rl_txq_prodidx);
1375 			break;
1376 		}
1377 
1378 		descidx = txq->txq_descidx;
1379 		RL_TXDESCSYNC(sc, descidx,
1380 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1381 		txstat =
1382 		    letoh32(sc->rl_ldata.rl_tx_list[descidx].rl_cmdstat);
1383 		RL_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1384 		KASSERT((txstat & RL_TDESC_CMD_EOF) != 0);
1385 		if (txstat & RL_TDESC_CMD_OWN)
1386 			break;
1387 
1388 		tx = 1;
1389 		sc->rl_ldata.rl_tx_free += txq->txq_nsegs;
1390 		KASSERT(sc->rl_ldata.rl_tx_free <= RL_TX_DESC_CNT(sc));
1391 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1392 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1393 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1394 		m_freem(txq->txq_mbuf);
1395 		txq->txq_mbuf = NULL;
1396 
1397 		if (txstat & (RL_TDESC_STAT_EXCESSCOL | RL_TDESC_STAT_COLCNT))
1398 			ifp->if_collisions++;
1399 		if (txstat & RL_TDESC_STAT_TXERRSUM)
1400 			ifp->if_oerrors++;
1401 		else
1402 			ifp->if_opackets++;
1403 	}
1404 
1405 	sc->rl_ldata.rl_txq_considx = idx;
1406 
1407 	ifp->if_flags &= ~IFF_OACTIVE;
1408 
1409 	/*
1410 	 * Some chips will ignore a second TX request issued while an
1411 	 * existing transmission is in progress. If the transmitter goes
1412 	 * idle but there are still packets waiting to be sent, we need
1413 	 * to restart the channel here to flush them out. This only
1414 	 * seems to be required with the PCIe devices.
1415 	 */
1416 	if (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT(sc))
1417 		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1418 	else
1419 		ifp->if_timer = 0;
1420 
1421 	return (tx);
1422 }
1423 
1424 void
1425 re_tick(void *xsc)
1426 {
1427 	struct rl_softc	*sc = xsc;
1428 	struct mii_data	*mii;
1429 	struct ifnet	*ifp;
1430 	int s;
1431 
1432 	ifp = &sc->sc_arpcom.ac_if;
1433 	mii = &sc->sc_mii;
1434 
1435 	s = splnet();
1436 
1437 	mii_tick(mii);
1438 	if (sc->rl_flags & RL_FLAG_LINK) {
1439 		if (!(mii->mii_media_status & IFM_ACTIVE))
1440 			sc->rl_flags &= ~RL_FLAG_LINK;
1441 	} else {
1442 		if (mii->mii_media_status & IFM_ACTIVE &&
1443 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1444 			sc->rl_flags |= RL_FLAG_LINK;
1445 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1446 				re_start(ifp);
1447 		}
1448 	}
1449 	splx(s);
1450 
1451 	timeout_add_sec(&sc->timer_handle, 1);
1452 }
1453 
1454 int
1455 re_intr(void *arg)
1456 {
1457 	struct rl_softc	*sc = arg;
1458 	struct ifnet	*ifp;
1459 	u_int16_t	status;
1460 	int		claimed = 0, rx, tx;
1461 
1462 	ifp = &sc->sc_arpcom.ac_if;
1463 
1464 	if (!(ifp->if_flags & IFF_RUNNING))
1465 		return (0);
1466 
1467 	/* Disable interrupts. */
1468 	CSR_WRITE_2(sc, RL_IMR, 0);
1469 
1470 	rx = tx = 0;
1471 	status = CSR_READ_2(sc, RL_ISR);
1472 	/* If the card has gone away the read returns 0xffff. */
1473 	if (status == 0xffff)
1474 		return (0);
1475 	if (status)
1476 		CSR_WRITE_2(sc, RL_ISR, status);
1477 
1478 	if (status & RL_ISR_TIMEOUT_EXPIRED)
1479 		claimed = 1;
1480 
1481 	if (status & RL_INTRS_CPLUS) {
1482 		if (status & (sc->rl_rx_ack | RL_ISR_RX_ERR)) {
1483 			rx |= re_rxeof(sc);
1484 			claimed = 1;
1485 		}
1486 
1487 		if (status & (sc->rl_tx_ack | RL_ISR_TX_ERR)) {
1488 			tx |= re_txeof(sc);
1489 			claimed = 1;
1490 		}
1491 
1492 		if (status & RL_ISR_SYSTEM_ERR) {
1493 			re_reset(sc);
1494 			re_init(ifp);
1495 			claimed = 1;
1496 		}
1497 
1498 		if (status & RL_ISR_LINKCHG) {
1499 			timeout_del(&sc->timer_handle);
1500 			re_tick(sc);
1501 			claimed = 1;
1502 		}
1503 	}
1504 
1505 	if (sc->rl_imtype == RL_IMTYPE_SIM) {
1506 		if ((sc->rl_flags & RL_FLAG_TIMERINTR)) {
1507 			if ((tx | rx) == 0) {
1508 				/*
1509 				 * Nothing needs to be processed, fallback
1510 				 * to use TX/RX interrupts.
1511 				 */
1512 				re_setup_intr(sc, 1, RL_IMTYPE_NONE);
1513 
1514 				/*
1515 				 * Recollect, mainly to avoid the possible
1516 				 * race introduced by changing interrupt
1517 				 * masks.
1518 				 */
1519 				re_rxeof(sc);
1520 				tx = re_txeof(sc);
1521 			} else
1522 				CSR_WRITE_4(sc, RL_TIMERCNT, 1); /* reload */
1523 		} else if (tx | rx) {
1524 			/*
1525 			 * Assume that using simulated interrupt moderation
1526 			 * (hardware timer based) could reduce the interrupt
1527 			 * rate.
1528 			 */
1529 			re_setup_intr(sc, 1, RL_IMTYPE_SIM);
1530 		}
1531 	}
1532 
1533 	if (tx && !IFQ_IS_EMPTY(&ifp->if_snd))
1534 		re_start(ifp);
1535 
1536 	CSR_WRITE_2(sc, RL_IMR, sc->rl_intrs);
1537 
1538 	return (claimed);
1539 }
1540 
1541 int
1542 re_encap(struct rl_softc *sc, struct mbuf *m, int *idx)
1543 {
1544 	bus_dmamap_t	map;
1545 	int		error, seg, nsegs, uidx, startidx, curidx, lastidx, pad;
1546 	struct rl_desc	*d;
1547 	u_int32_t	cmdstat, vlanctl = 0, csum_flags = 0;
1548 	struct rl_txq	*txq;
1549 
1550 	/*
1551 	 * Set up checksum offload. Note: checksum offload bits must
1552 	 * appear in all descriptors of a multi-descriptor transmit
1553 	 * attempt. This is according to testing done with an 8169
1554 	 * chip. This is a requirement.
1555 	 */
1556 
1557 	/*
1558 	 * Set RL_TDESC_CMD_IPCSUM if any checksum offloading
1559 	 * is requested.  Otherwise, RL_TDESC_CMD_TCPCSUM/
1560 	 * RL_TDESC_CMD_UDPCSUM does not take affect.
1561 	 */
1562 
1563 	if ((m->m_pkthdr.csum_flags &
1564 	    (M_IPV4_CSUM_OUT|M_TCP_CSUM_OUT|M_UDP_CSUM_OUT)) != 0) {
1565 		if (sc->rl_flags & RL_FLAG_DESCV2) {
1566 			vlanctl |= RL_TDESC_CMD_IPCSUMV2;
1567 			if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1568 				vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
1569 			if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1570 				vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
1571 		} else {
1572 			csum_flags |= RL_TDESC_CMD_IPCSUM;
1573 			if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1574 				csum_flags |= RL_TDESC_CMD_TCPCSUM;
1575 			if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1576 				csum_flags |= RL_TDESC_CMD_UDPCSUM;
1577 		}
1578 	}
1579 
1580 	txq = &sc->rl_ldata.rl_txq[*idx];
1581 	map = txq->txq_dmamap;
1582 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1583 	    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1584 	if (error) {
1585 		/* XXX try to defrag if EFBIG? */
1586 		printf("%s: can't map mbuf (error %d)\n",
1587 		    sc->sc_dev.dv_xname, error);
1588 		return (error);
1589 	}
1590 
1591 	nsegs = map->dm_nsegs;
1592 	pad = 0;
1593 	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0 &&
1594 	    m->m_pkthdr.len <= RL_IP4CSUMTX_PADLEN &&
1595 	    (csum_flags & RL_TDESC_CMD_IPCSUM) != 0) {
1596 		pad = 1;
1597 		nsegs++;
1598 	}
1599 
1600 	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
1601 		error = EFBIG;
1602 		goto fail_unload;
1603 	}
1604 
1605 	/*
1606 	 * Make sure that the caches are synchronized before we
1607 	 * ask the chip to start DMA for the packet data.
1608 	 */
1609 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1610 		BUS_DMASYNC_PREWRITE);
1611 
1612 	/*
1613 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1614 	 * appear in all descriptors of a multi-descriptor
1615 	 * transmission attempt.
1616 	 */
1617 #if NVLAN > 0
1618 	if (m->m_flags & M_VLANTAG)
1619 		vlanctl |= swap16(m->m_pkthdr.ether_vtag) |
1620 		    RL_TDESC_VLANCTL_TAG;
1621 #endif
1622 
1623 	/*
1624 	 * Map the segment array into descriptors. Note that we set the
1625 	 * start-of-frame and end-of-frame markers for either TX or RX, but
1626 	 * they really only have meaning in the TX case. (In the RX case,
1627 	 * it's the chip that tells us where packets begin and end.)
1628 	 * We also keep track of the end of the ring and set the
1629 	 * end-of-ring bits as needed, and we set the ownership bits
1630 	 * in all except the very first descriptor. (The caller will
1631 	 * set this descriptor later when it start transmission or
1632 	 * reception.)
1633 	 */
1634 	curidx = startidx = sc->rl_ldata.rl_tx_nextfree;
1635 	lastidx = -1;
1636 	for (seg = 0; seg < map->dm_nsegs;
1637 	    seg++, curidx = RL_NEXT_TX_DESC(sc, curidx)) {
1638 		d = &sc->rl_ldata.rl_tx_list[curidx];
1639 		RL_TXDESCSYNC(sc, curidx,
1640 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1641 		cmdstat = letoh32(d->rl_cmdstat);
1642 		RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
1643 		if (cmdstat & RL_TDESC_STAT_OWN) {
1644 			printf("%s: tried to map busy TX descriptor\n",
1645 			    sc->sc_dev.dv_xname);
1646 			for (; seg > 0; seg --) {
1647 				uidx = (curidx + RL_TX_DESC_CNT(sc) - seg) %
1648 				    RL_TX_DESC_CNT(sc);
1649 				sc->rl_ldata.rl_tx_list[uidx].rl_cmdstat = 0;
1650 				RL_TXDESCSYNC(sc, uidx,
1651 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1652 			}
1653 			error = ENOBUFS;
1654 			goto fail_unload;
1655 		}
1656 
1657 		d->rl_vlanctl = htole32(vlanctl);
1658 		re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1659 		cmdstat = csum_flags | map->dm_segs[seg].ds_len;
1660 		if (seg == 0)
1661 			cmdstat |= RL_TDESC_CMD_SOF;
1662 		else
1663 			cmdstat |= RL_TDESC_CMD_OWN;
1664 		if (curidx == (RL_TX_DESC_CNT(sc) - 1))
1665 			cmdstat |= RL_TDESC_CMD_EOR;
1666 		if (seg == nsegs - 1) {
1667 			cmdstat |= RL_TDESC_CMD_EOF;
1668 			lastidx = curidx;
1669 		}
1670 		d->rl_cmdstat = htole32(cmdstat);
1671 		RL_TXDESCSYNC(sc, curidx,
1672 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1673 	}
1674 	if (pad) {
1675 		d = &sc->rl_ldata.rl_tx_list[curidx];
1676 		d->rl_vlanctl = htole32(vlanctl);
1677 		re_set_bufaddr(d, RL_TXPADDADDR(sc));
1678 		cmdstat = csum_flags |
1679 		    RL_TDESC_CMD_OWN | RL_TDESC_CMD_EOF |
1680 		    (RL_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1681 		if (curidx == (RL_TX_DESC_CNT(sc) - 1))
1682 			cmdstat |= RL_TDESC_CMD_EOR;
1683 		d->rl_cmdstat = htole32(cmdstat);
1684 		RL_TXDESCSYNC(sc, curidx,
1685 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1686 		lastidx = curidx;
1687 		curidx = RL_NEXT_TX_DESC(sc, curidx);
1688 	}
1689 	KASSERT(lastidx != -1);
1690 
1691 	/* Transfer ownership of packet to the chip. */
1692 
1693 	sc->rl_ldata.rl_tx_list[startidx].rl_cmdstat |=
1694 	    htole32(RL_TDESC_CMD_OWN);
1695 	RL_TXDESCSYNC(sc, startidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1696 
1697 	/* update info of TX queue and descriptors */
1698 	txq->txq_mbuf = m;
1699 	txq->txq_descidx = lastidx;
1700 	txq->txq_nsegs = nsegs;
1701 
1702 	sc->rl_ldata.rl_tx_free -= nsegs;
1703 	sc->rl_ldata.rl_tx_nextfree = curidx;
1704 
1705 	*idx = RL_NEXT_TXQ(sc, *idx);
1706 
1707 	return (0);
1708 
1709 fail_unload:
1710 	bus_dmamap_unload(sc->sc_dmat, map);
1711 
1712 	return (error);
1713 }
1714 
1715 /*
1716  * Main transmit routine for C+ and gigE NICs.
1717  */
1718 
1719 void
1720 re_start(struct ifnet *ifp)
1721 {
1722 	struct rl_softc	*sc;
1723 	int		idx, queued = 0;
1724 
1725 	sc = ifp->if_softc;
1726 
1727 	if (ifp->if_flags & IFF_OACTIVE)
1728 		return;
1729 	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1730 		return;
1731 
1732 	idx = sc->rl_ldata.rl_txq_prodidx;
1733 	for (;;) {
1734 		struct mbuf *m;
1735 		int error;
1736 
1737 		IFQ_POLL(&ifp->if_snd, m);
1738 		if (m == NULL)
1739 			break;
1740 
1741 		if (sc->rl_ldata.rl_txq[idx].txq_mbuf != NULL) {
1742 			KASSERT(idx == sc->rl_ldata.rl_txq_considx);
1743 			ifp->if_flags |= IFF_OACTIVE;
1744 			break;
1745 		}
1746 
1747 		error = re_encap(sc, m, &idx);
1748 		if (error == EFBIG &&
1749 		    sc->rl_ldata.rl_tx_free == RL_TX_DESC_CNT(sc)) {
1750 			IFQ_DEQUEUE(&ifp->if_snd, m);
1751 			m_freem(m);
1752 			ifp->if_oerrors++;
1753 			continue;
1754 		}
1755 		if (error) {
1756 			ifp->if_flags |= IFF_OACTIVE;
1757 			break;
1758 		}
1759 
1760 		IFQ_DEQUEUE(&ifp->if_snd, m);
1761 		queued++;
1762 
1763 #if NBPFILTER > 0
1764 		/*
1765 		 * If there's a BPF listener, bounce a copy of this frame
1766 		 * to him.
1767 		 */
1768 		if (ifp->if_bpf)
1769 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1770 #endif
1771 	}
1772 
1773 	if (queued == 0)
1774 		return;
1775 
1776 	sc->rl_ldata.rl_txq_prodidx = idx;
1777 
1778 	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1779 
1780 	/*
1781 	 * Set a timeout in case the chip goes out to lunch.
1782 	 */
1783 	ifp->if_timer = 5;
1784 }
1785 
1786 int
1787 re_init(struct ifnet *ifp)
1788 {
1789 	struct rl_softc *sc = ifp->if_softc;
1790 	u_int16_t	cfg;
1791 	uint32_t	rxcfg;
1792 	int		s;
1793 	union {
1794 		u_int32_t align_dummy;
1795 		u_char eaddr[ETHER_ADDR_LEN];
1796 	} eaddr;
1797 
1798 	s = splnet();
1799 
1800 	/*
1801 	 * Cancel pending I/O and free all RX/TX buffers.
1802 	 */
1803 	re_stop(ifp);
1804 
1805 	/*
1806 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
1807 	 * RX checksum offload. We must configure the C+ register
1808 	 * before all others.
1809 	 */
1810 	cfg = RL_CPLUSCMD_TXENB | RL_CPLUSCMD_PCI_MRW |
1811 	    RL_CPLUSCMD_RXCSUM_ENB;
1812 
1813 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1814 		cfg |= RL_CPLUSCMD_VLANSTRIP;
1815 
1816 	if (sc->rl_flags & RL_FLAG_MACSTAT)
1817 		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
1818 	else
1819 		cfg |= RL_CPLUSCMD_RXENB;
1820 
1821 	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
1822 
1823 	/*
1824 	 * Init our MAC address.  Even though the chipset
1825 	 * documentation doesn't mention it, we need to enter "Config
1826 	 * register write enable" mode to modify the ID registers.
1827 	 */
1828 	bcopy(sc->sc_arpcom.ac_enaddr, eaddr.eaddr, ETHER_ADDR_LEN);
1829 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1830 	CSR_WRITE_4(sc, RL_IDR4,
1831 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
1832 	CSR_WRITE_4(sc, RL_IDR0,
1833 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
1834 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1835 
1836 	/*
1837 	 * For C+ mode, initialize the RX descriptors and mbufs.
1838 	 */
1839 	re_rx_list_init(sc);
1840 	re_tx_list_init(sc);
1841 
1842 	/*
1843 	 * Load the addresses of the RX and TX lists into the chip.
1844 	 */
1845 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
1846 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_map->dm_segs[0].ds_addr));
1847 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
1848 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_map->dm_segs[0].ds_addr));
1849 
1850 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
1851 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_map->dm_segs[0].ds_addr));
1852 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
1853 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_map->dm_segs[0].ds_addr));
1854 
1855 	if (sc->rl_flags & RL_FLAG_RXDV_GATED)
1856 		CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
1857 		    ~0x00080000);
1858 
1859 	/*
1860 	 * Enable transmit and receive.
1861 	 */
1862 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1863 
1864 	/*
1865 	 * Set the initial TX and RX configuration.
1866 	 */
1867 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1868 
1869 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
1870 
1871 	rxcfg = RL_RXCFG_CONFIG;
1872 	if (sc->rl_flags & RL_FLAG_EARLYOFF)
1873 		rxcfg |= RL_RXCFG_EARLYOFF;
1874 	else if (sc->rl_flags & RL_FLAG_EARLYOFFV2)
1875 		rxcfg |= RL_RXCFG_EARLYOFFV2;
1876 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1877 
1878 	/* Program promiscuous mode and multicast filters. */
1879 	re_iff(sc);
1880 
1881 	/*
1882 	 * Enable interrupts.
1883 	 */
1884 	re_setup_intr(sc, 1, sc->rl_imtype);
1885 	CSR_WRITE_2(sc, RL_ISR, sc->rl_imtype);
1886 
1887 	/* Start RX/TX process. */
1888 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1889 #ifdef notdef
1890 	/* Enable receiver and transmitter. */
1891 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1892 #endif
1893 
1894 	/*
1895 	 * For 8169 gigE NICs, set the max allowed RX packet
1896 	 * size so we can receive jumbo frames.
1897 	 */
1898 	if (sc->sc_hwrev != RL_HWREV_8139CPLUS)
1899 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
1900 
1901 	mii_mediachg(&sc->sc_mii);
1902 
1903 	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
1904 
1905 	ifp->if_flags |= IFF_RUNNING;
1906 	ifp->if_flags &= ~IFF_OACTIVE;
1907 
1908 	splx(s);
1909 
1910 	sc->rl_flags &= ~RL_FLAG_LINK;
1911 
1912 	timeout_add_sec(&sc->timer_handle, 1);
1913 
1914 	return (0);
1915 }
1916 
1917 /*
1918  * Set media options.
1919  */
1920 int
1921 re_ifmedia_upd(struct ifnet *ifp)
1922 {
1923 	struct rl_softc	*sc;
1924 
1925 	sc = ifp->if_softc;
1926 
1927 	return (mii_mediachg(&sc->sc_mii));
1928 }
1929 
1930 /*
1931  * Report current media status.
1932  */
1933 void
1934 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1935 {
1936 	struct rl_softc	*sc;
1937 
1938 	sc = ifp->if_softc;
1939 
1940 	mii_pollstat(&sc->sc_mii);
1941 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1942 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1943 }
1944 
1945 int
1946 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1947 {
1948 	struct rl_softc	*sc = ifp->if_softc;
1949 	struct ifreq	*ifr = (struct ifreq *) data;
1950 	struct ifaddr *ifa = (struct ifaddr *)data;
1951 	int		s, error = 0;
1952 
1953 	s = splnet();
1954 
1955 	switch(command) {
1956 	case SIOCSIFADDR:
1957 		ifp->if_flags |= IFF_UP;
1958 		if (!(ifp->if_flags & IFF_RUNNING))
1959 			re_init(ifp);
1960 #ifdef INET
1961 		if (ifa->ifa_addr->sa_family == AF_INET)
1962 			arp_ifinit(&sc->sc_arpcom, ifa);
1963 #endif /* INET */
1964 		break;
1965 	case SIOCSIFFLAGS:
1966 		if (ifp->if_flags & IFF_UP) {
1967 			if (ifp->if_flags & IFF_RUNNING)
1968 				error = ENETRESET;
1969 			else
1970 				re_init(ifp);
1971 		} else {
1972 			if (ifp->if_flags & IFF_RUNNING)
1973 				re_stop(ifp);
1974 		}
1975 		break;
1976 	case SIOCGIFMEDIA:
1977 	case SIOCSIFMEDIA:
1978 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1979 		break;
1980 	default:
1981 		error = ether_ioctl(ifp, &sc->sc_arpcom, command, data);
1982 	}
1983 
1984 	if (error == ENETRESET) {
1985 		if (ifp->if_flags & IFF_RUNNING)
1986 			re_iff(sc);
1987 		error = 0;
1988 	}
1989 
1990 	splx(s);
1991 	return (error);
1992 }
1993 
1994 void
1995 re_watchdog(struct ifnet *ifp)
1996 {
1997 	struct rl_softc	*sc;
1998 	int	s;
1999 
2000 	sc = ifp->if_softc;
2001 	s = splnet();
2002 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2003 	ifp->if_oerrors++;
2004 
2005 	re_txeof(sc);
2006 	re_rxeof(sc);
2007 
2008 	re_init(ifp);
2009 
2010 	splx(s);
2011 }
2012 
2013 /*
2014  * Stop the adapter and free any mbufs allocated to the
2015  * RX and TX lists.
2016  */
2017 void
2018 re_stop(struct ifnet *ifp)
2019 {
2020 	struct rl_softc *sc;
2021 	int	i;
2022 
2023 	sc = ifp->if_softc;
2024 
2025 	ifp->if_timer = 0;
2026 	sc->rl_flags &= ~(RL_FLAG_LINK|RL_FLAG_TIMERINTR);
2027 
2028 	timeout_del(&sc->timer_handle);
2029 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2030 
2031 	mii_down(&sc->sc_mii);
2032 
2033 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2034 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2035 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2036 
2037 	if (sc->rl_head != NULL) {
2038 		m_freem(sc->rl_head);
2039 		sc->rl_head = sc->rl_tail = NULL;
2040 	}
2041 
2042 	/* Free the TX list buffers. */
2043 	for (i = 0; i < RL_TX_QLEN; i++) {
2044 		if (sc->rl_ldata.rl_txq[i].txq_mbuf != NULL) {
2045 			bus_dmamap_unload(sc->sc_dmat,
2046 			    sc->rl_ldata.rl_txq[i].txq_dmamap);
2047 			m_freem(sc->rl_ldata.rl_txq[i].txq_mbuf);
2048 			sc->rl_ldata.rl_txq[i].txq_mbuf = NULL;
2049 		}
2050 	}
2051 
2052 	/* Free the RX list buffers. */
2053 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2054 		if (sc->rl_ldata.rl_rxsoft[i].rxs_mbuf != NULL) {
2055 			bus_dmamap_unload(sc->sc_dmat,
2056 			    sc->rl_ldata.rl_rxsoft[i].rxs_dmamap);
2057 			m_freem(sc->rl_ldata.rl_rxsoft[i].rxs_mbuf);
2058 			sc->rl_ldata.rl_rxsoft[i].rxs_mbuf = NULL;
2059 		}
2060 	}
2061 }
2062 
2063 void
2064 re_setup_hw_im(struct rl_softc *sc)
2065 {
2066 	KASSERT(sc->rl_flags & RL_FLAG_HWIM);
2067 
2068 	/*
2069 	 * Interrupt moderation
2070 	 *
2071 	 * 0xABCD
2072 	 * A - unknown (maybe TX related)
2073 	 * B - TX timer (unit: 25us)
2074 	 * C - unknown (maybe RX related)
2075 	 * D - RX timer (unit: 25us)
2076 	 *
2077 	 *
2078 	 * re(4)'s interrupt moderation is actually controlled by
2079 	 * two variables, like most other NICs (bge, bnx etc.)
2080 	 * o  timer
2081 	 * o  number of packets [P]
2082 	 *
2083 	 * The logic relationship between these two variables is
2084 	 * similar to other NICs too:
2085 	 * if (timer expire || packets > [P])
2086 	 *     Interrupt is delivered
2087 	 *
2088 	 * Currently we only know how to set 'timer', but not
2089 	 * 'number of packets', which should be ~30, as far as I
2090 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
2091 	 */
2092 	CSR_WRITE_2(sc, RL_IM,
2093 		    RL_IM_RXTIME(sc->rl_rx_time) |
2094 		    RL_IM_TXTIME(sc->rl_tx_time) |
2095 		    RL_IM_MAGIC);
2096 }
2097 
2098 void
2099 re_disable_hw_im(struct rl_softc *sc)
2100 {
2101 	if (sc->rl_flags & RL_FLAG_HWIM)
2102 		CSR_WRITE_2(sc, RL_IM, 0);
2103 }
2104 
2105 void
2106 re_setup_sim_im(struct rl_softc *sc)
2107 {
2108 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
2109 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400); /* XXX */
2110 	else {
2111 		u_int32_t ticks;
2112 
2113 		/*
2114 		 * Datasheet says tick decreases at bus speed,
2115 		 * but it seems the clock runs a little bit
2116 		 * faster, so we do some compensation here.
2117 		 */
2118 		ticks = (sc->rl_sim_time * sc->rl_bus_speed * 8) / 5;
2119 		CSR_WRITE_4(sc, RL_TIMERINT_8169, ticks);
2120 	}
2121 	CSR_WRITE_4(sc, RL_TIMERCNT, 1); /* reload */
2122 	sc->rl_flags |= RL_FLAG_TIMERINTR;
2123 }
2124 
2125 void
2126 re_disable_sim_im(struct rl_softc *sc)
2127 {
2128 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
2129 		CSR_WRITE_4(sc, RL_TIMERINT, 0);
2130 	else
2131 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0);
2132 	sc->rl_flags &= ~RL_FLAG_TIMERINTR;
2133 }
2134 
2135 void
2136 re_config_imtype(struct rl_softc *sc, int imtype)
2137 {
2138 	switch (imtype) {
2139 	case RL_IMTYPE_HW:
2140 		KASSERT(sc->rl_flags & RL_FLAG_HWIM);
2141 		/* FALLTHROUGH */
2142 	case RL_IMTYPE_NONE:
2143 		sc->rl_intrs = RL_INTRS_CPLUS;
2144 		sc->rl_rx_ack = RL_ISR_RX_OK | RL_ISR_FIFO_OFLOW |
2145 				RL_ISR_RX_OVERRUN;
2146 		sc->rl_tx_ack = RL_ISR_TX_OK;
2147 		break;
2148 
2149 	case RL_IMTYPE_SIM:
2150 		sc->rl_intrs = RL_INTRS_TIMER;
2151 		sc->rl_rx_ack = RL_ISR_TIMEOUT_EXPIRED;
2152 		sc->rl_tx_ack = RL_ISR_TIMEOUT_EXPIRED;
2153 		break;
2154 
2155 	default:
2156 		panic("%s: unknown imtype %d",
2157 		      sc->sc_dev.dv_xname, imtype);
2158 	}
2159 }
2160 
2161 void
2162 re_setup_intr(struct rl_softc *sc, int enable_intrs, int imtype)
2163 {
2164 	re_config_imtype(sc, imtype);
2165 
2166 	if (enable_intrs)
2167 		CSR_WRITE_2(sc, RL_IMR, sc->rl_intrs);
2168 	else
2169 		CSR_WRITE_2(sc, RL_IMR, 0);
2170 
2171 	switch (imtype) {
2172 	case RL_IMTYPE_NONE:
2173 		re_disable_sim_im(sc);
2174 		re_disable_hw_im(sc);
2175 		break;
2176 
2177 	case RL_IMTYPE_HW:
2178 		KASSERT(sc->rl_flags & RL_FLAG_HWIM);
2179 		re_disable_sim_im(sc);
2180 		re_setup_hw_im(sc);
2181 		break;
2182 
2183 	case RL_IMTYPE_SIM:
2184 		re_disable_hw_im(sc);
2185 		re_setup_sim_im(sc);
2186 		break;
2187 
2188 	default:
2189 		panic("%s: unknown imtype %d",
2190 		      sc->sc_dev.dv_xname, imtype);
2191 	}
2192 }
2193 
2194 #ifndef SMALL_KERNEL
2195 int
2196 re_wol(struct ifnet *ifp, int enable)
2197 {
2198 	struct rl_softc *sc = ifp->if_softc;
2199 	int i;
2200 	u_int8_t val;
2201 	struct re_wolcfg {
2202 		u_int8_t	enable;
2203 		u_int8_t	reg;
2204 		u_int8_t	bit;
2205 	} re_wolcfg[] = {
2206 		/* Always disable all wake events expect magic packet. */
2207 		{ 0,	RL_CFG5,	RL_CFG5_WOL_UCAST },
2208 		{ 0,	RL_CFG5,	RL_CFG5_WOL_MCAST },
2209 		{ 0,	RL_CFG5,	RL_CFG5_WOL_BCAST },
2210 		{ 1,	RL_CFG3,	RL_CFG3_WOL_MAGIC },
2211 		{ 0,	RL_CFG3,	RL_CFG3_WOL_LINK }
2212 	};
2213 
2214 	if (enable) {
2215 		if ((CSR_READ_1(sc, RL_CFG1) & RL_CFG1_PME) == 0) {
2216 			printf("%s: power management is disabled, "
2217 			    "cannot do WOL\n", sc->sc_dev.dv_xname);
2218 			return (ENOTSUP);
2219 		}
2220 		if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_AUXPWR) == 0)
2221 			printf("%s: no auxiliary power, cannot do WOL from D3 "
2222 			    "(power-off) state\n", sc->sc_dev.dv_xname);
2223 	}
2224 
2225 	/* Temporarily enable write to configuration registers. */
2226 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2227 
2228 	for (i = 0; i < nitems(re_wolcfg); i++) {
2229 		val = CSR_READ_1(sc, re_wolcfg[i].reg);
2230 		if (enable && re_wolcfg[i].enable)
2231 			val |= re_wolcfg[i].bit;
2232 		else
2233 			val &= ~re_wolcfg[i].bit;
2234 		CSR_WRITE_1(sc, re_wolcfg[i].reg, val);
2235 	}
2236 
2237 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2238 
2239 	return (0);
2240 }
2241 #endif
2242