xref: /openbsd-src/sys/dev/ic/re.c (revision 2b0358df1d88d06ef4139321dd05bd5e05d91eaf)
1 /*	$OpenBSD: re.c,v 1.104 2009/02/12 11:55:29 martynas Exp $	*/
2 /*	$FreeBSD: if_re.c,v 1.31 2004/09/04 07:54:05 ru Exp $	*/
3 /*
4  * Copyright (c) 1997, 1998-2003
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
37  *
38  * Written by Bill Paul <wpaul@windriver.com>
39  * Senior Networking Software Engineer
40  * Wind River Systems
41  */
42 
43 /*
44  * This driver is designed to support RealTek's next generation of
45  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
46  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
47  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
48  *
49  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
50  * with the older 8139 family, however it also supports a special
51  * C+ mode of operation that provides several new performance enhancing
52  * features. These include:
53  *
54  *	o Descriptor based DMA mechanism. Each descriptor represents
55  *	  a single packet fragment. Data buffers may be aligned on
56  *	  any byte boundary.
57  *
58  *	o 64-bit DMA
59  *
60  *	o TCP/IP checksum offload for both RX and TX
61  *
62  *	o High and normal priority transmit DMA rings
63  *
64  *	o VLAN tag insertion and extraction
65  *
66  *	o TCP large send (segmentation offload)
67  *
68  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
69  * programming API is fairly straightforward. The RX filtering, EEPROM
70  * access and PHY access is the same as it is on the older 8139 series
71  * chips.
72  *
73  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
74  * same programming API and feature set as the 8139C+ with the following
75  * differences and additions:
76  *
77  *	o 1000Mbps mode
78  *
79  *	o Jumbo frames
80  *
81  * 	o GMII and TBI ports/registers for interfacing with copper
82  *	  or fiber PHYs
83  *
84  *      o RX and TX DMA rings can have up to 1024 descriptors
85  *        (the 8139C+ allows a maximum of 64)
86  *
87  *	o Slight differences in register layout from the 8139C+
88  *
89  * The TX start and timer interrupt registers are at different locations
90  * on the 8169 than they are on the 8139C+. Also, the status word in the
91  * RX descriptor has a slightly different bit layout. The 8169 does not
92  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
93  * copper gigE PHY.
94  *
95  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
96  * (the 'S' stands for 'single-chip'). These devices have the same
97  * programming API as the older 8169, but also have some vendor-specific
98  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
99  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
100  *
101  * This driver takes advantage of the RX and TX checksum offload and
102  * VLAN tag insertion/extraction features. It also implements TX
103  * interrupt moderation using the timer interrupt registers, which
104  * significantly reduces TX interrupt load. There is also support
105  * for jumbo frames, however the 8169/8169S/8110S can not transmit
106  * jumbo frames larger than 7440, so the max MTU possible with this
107  * driver is 7422 bytes.
108  */
109 
110 #include "bpfilter.h"
111 #include "vlan.h"
112 
113 #include <sys/param.h>
114 #include <sys/endian.h>
115 #include <sys/systm.h>
116 #include <sys/sockio.h>
117 #include <sys/mbuf.h>
118 #include <sys/malloc.h>
119 #include <sys/kernel.h>
120 #include <sys/device.h>
121 #include <sys/timeout.h>
122 #include <sys/socket.h>
123 
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_media.h>
127 
128 #ifdef INET
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/in_var.h>
132 #include <netinet/ip.h>
133 #include <netinet/if_ether.h>
134 #endif
135 
136 #if NVLAN > 0
137 #include <net/if_types.h>
138 #include <net/if_vlan_var.h>
139 #endif
140 
141 #if NBPFILTER > 0
142 #include <net/bpf.h>
143 #endif
144 
145 #include <dev/mii/mii.h>
146 #include <dev/mii/miivar.h>
147 
148 #include <dev/pci/pcireg.h>
149 #include <dev/pci/pcivar.h>
150 
151 #include <dev/ic/rtl81x9reg.h>
152 #include <dev/ic/revar.h>
153 
154 #ifdef RE_DEBUG
155 int redebug = 0;
156 #define DPRINTF(x)	do { if (redebug) printf x; } while (0)
157 #else
158 #define DPRINTF(x)
159 #endif
160 
161 static inline void re_set_bufaddr(struct rl_desc *, bus_addr_t);
162 
163 int	re_encap(struct rl_softc *, struct mbuf *, int *);
164 
165 int	re_newbuf(struct rl_softc *, int, struct mbuf *);
166 int	re_rx_list_init(struct rl_softc *);
167 int	re_tx_list_init(struct rl_softc *);
168 int	re_rxeof(struct rl_softc *);
169 int	re_txeof(struct rl_softc *);
170 void	re_tick(void *);
171 void	re_start(struct ifnet *);
172 int	re_ioctl(struct ifnet *, u_long, caddr_t);
173 void	re_watchdog(struct ifnet *);
174 int	re_ifmedia_upd(struct ifnet *);
175 void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176 
177 void	re_eeprom_putbyte(struct rl_softc *, int);
178 void	re_eeprom_getword(struct rl_softc *, int, u_int16_t *);
179 void	re_read_eeprom(struct rl_softc *, caddr_t, int, int);
180 
181 int	re_gmii_readreg(struct device *, int, int);
182 void	re_gmii_writereg(struct device *, int, int, int);
183 
184 int	re_miibus_readreg(struct device *, int, int);
185 void	re_miibus_writereg(struct device *, int, int, int);
186 void	re_miibus_statchg(struct device *);
187 
188 void	re_iff(struct rl_softc *);
189 void	re_reset(struct rl_softc *);
190 
191 void	re_setup_hw_im(struct rl_softc *);
192 void	re_setup_sim_im(struct rl_softc *);
193 void	re_disable_hw_im(struct rl_softc *);
194 void	re_disable_sim_im(struct rl_softc *);
195 void	re_config_imtype(struct rl_softc *, int);
196 void	re_setup_intr(struct rl_softc *, int, int);
197 
198 #ifdef RE_DIAG
199 int	re_diag(struct rl_softc *);
200 #endif
201 
202 struct cfdriver re_cd = {
203 	0, "re", DV_IFNET
204 };
205 
206 #define EE_SET(x)					\
207 	CSR_WRITE_1(sc, RL_EECMD,			\
208 		CSR_READ_1(sc, RL_EECMD) | x)
209 
210 #define EE_CLR(x)					\
211 	CSR_WRITE_1(sc, RL_EECMD,			\
212 		CSR_READ_1(sc, RL_EECMD) & ~x)
213 
214 static const struct re_revision {
215 	u_int32_t		re_chipid;
216 	const char		*re_name;
217 } re_revisions[] = {
218 	{ RL_HWREV_8100,	"RTL8100" },
219 	{ RL_HWREV_8100E_SPIN1,	"RTL8100E 1" },
220 	{ RL_HWREV_8100E_SPIN2, "RTL8100E 2" },
221 	{ RL_HWREV_8101,	"RTL8101" },
222 	{ RL_HWREV_8101E,	"RTL8101E" },
223 	{ RL_HWREV_8102E,	"RTL8102E" },
224 	{ RL_HWREV_8102EL,	"RTL8102EL" },
225 	{ RL_HWREV_8110S,	"RTL8110S" },
226 	{ RL_HWREV_8139CPLUS,	"RTL8139C+" },
227 	{ RL_HWREV_8168_SPIN1,	"RTL8168 1" },
228 	{ RL_HWREV_8168_SPIN2,	"RTL8168 2" },
229 	{ RL_HWREV_8168_SPIN3,	"RTL8168 3" },
230 	{ RL_HWREV_8168C,	"RTL8168C/8111C" },
231 	{ RL_HWREV_8168C_SPIN2,	"RTL8168C/8111C" },
232 	{ RL_HWREV_8168CP,	"RTL8168CP/8111CP" },
233 	{ RL_HWREV_8168D,	"RTL8168D/8111D" },
234 	{ RL_HWREV_8169,	"RTL8169" },
235 	{ RL_HWREV_8169_8110SB,	"RTL8169/8110SB" },
236 	{ RL_HWREV_8169_8110SBL, "RTL8169SBL" },
237 	{ RL_HWREV_8169_8110SCd, "RTL8169/8110SCd" },
238 	{ RL_HWREV_8169_8110SCe, "RTL8169/8110SCe" },
239 	{ RL_HWREV_8169S,	"RTL8169S" },
240 
241 	{ 0, NULL }
242 };
243 
244 
245 static inline void
246 re_set_bufaddr(struct rl_desc *d, bus_addr_t addr)
247 {
248 	d->rl_bufaddr_lo = htole32((uint32_t)addr);
249 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
250 		d->rl_bufaddr_hi = htole32((uint64_t)addr >> 32);
251 	else
252 		d->rl_bufaddr_hi = 0;
253 }
254 
255 /*
256  * Send a read command and address to the EEPROM, check for ACK.
257  */
258 void
259 re_eeprom_putbyte(struct rl_softc *sc, int addr)
260 {
261 	int	d, i;
262 
263 	d = addr | (RL_9346_READ << sc->rl_eewidth);
264 
265 	/*
266 	 * Feed in each bit and strobe the clock.
267 	 */
268 
269 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
270 		if (d & i)
271 			EE_SET(RL_EE_DATAIN);
272 		else
273 			EE_CLR(RL_EE_DATAIN);
274 		DELAY(100);
275 		EE_SET(RL_EE_CLK);
276 		DELAY(150);
277 		EE_CLR(RL_EE_CLK);
278 		DELAY(100);
279 	}
280 }
281 
282 /*
283  * Read a word of data stored in the EEPROM at address 'addr.'
284  */
285 void
286 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
287 {
288 	int		i;
289 	u_int16_t	word = 0;
290 
291 	/*
292 	 * Send address of word we want to read.
293 	 */
294 	re_eeprom_putbyte(sc, addr);
295 
296 	/*
297 	 * Start reading bits from EEPROM.
298 	 */
299 	for (i = 0x8000; i; i >>= 1) {
300 		EE_SET(RL_EE_CLK);
301 		DELAY(100);
302 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
303 			word |= i;
304 		EE_CLR(RL_EE_CLK);
305 		DELAY(100);
306 	}
307 
308 	*dest = word;
309 }
310 
311 /*
312  * Read a sequence of words from the EEPROM.
313  */
314 void
315 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
316 {
317 	int		i;
318 	u_int16_t	word = 0, *ptr;
319 
320 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
321 
322 	DELAY(100);
323 
324 	for (i = 0; i < cnt; i++) {
325 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
326 		re_eeprom_getword(sc, off + i, &word);
327 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
328 		ptr = (u_int16_t *)(dest + (i * 2));
329 		*ptr = word;
330 	}
331 
332 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
333 }
334 
335 int
336 re_gmii_readreg(struct device *self, int phy, int reg)
337 {
338 	struct rl_softc	*sc = (struct rl_softc *)self;
339 	u_int32_t	rval;
340 	int		i;
341 
342 	if (phy != 7)
343 		return (0);
344 
345 	/* Let the rgephy driver read the GMEDIASTAT register */
346 
347 	if (reg == RL_GMEDIASTAT) {
348 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
349 		return (rval);
350 	}
351 
352 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
353 	DELAY(1000);
354 
355 	for (i = 0; i < RL_TIMEOUT; i++) {
356 		rval = CSR_READ_4(sc, RL_PHYAR);
357 		if (rval & RL_PHYAR_BUSY)
358 			break;
359 		DELAY(100);
360 	}
361 
362 	if (i == RL_TIMEOUT) {
363 		printf ("%s: PHY read failed\n", sc->sc_dev.dv_xname);
364 		return (0);
365 	}
366 
367 	return (rval & RL_PHYAR_PHYDATA);
368 }
369 
370 void
371 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
372 {
373 	struct rl_softc	*sc = (struct rl_softc *)dev;
374 	u_int32_t	rval;
375 	int		i;
376 
377 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
378 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
379 	DELAY(1000);
380 
381 	for (i = 0; i < RL_TIMEOUT; i++) {
382 		rval = CSR_READ_4(sc, RL_PHYAR);
383 		if (!(rval & RL_PHYAR_BUSY))
384 			break;
385 		DELAY(100);
386 	}
387 
388 	if (i == RL_TIMEOUT)
389 		printf ("%s: PHY write failed\n", sc->sc_dev.dv_xname);
390 }
391 
392 int
393 re_miibus_readreg(struct device *dev, int phy, int reg)
394 {
395 	struct rl_softc	*sc = (struct rl_softc *)dev;
396 	u_int16_t	rval = 0;
397 	u_int16_t	re8139_reg = 0;
398 	int		s;
399 
400 	s = splnet();
401 
402 	if (sc->sc_hwrev != RL_HWREV_8139CPLUS) {
403 		rval = re_gmii_readreg(dev, phy, reg);
404 		splx(s);
405 		return (rval);
406 	}
407 
408 	/* Pretend the internal PHY is only at address 0 */
409 	if (phy) {
410 		splx(s);
411 		return (0);
412 	}
413 	switch(reg) {
414 	case MII_BMCR:
415 		re8139_reg = RL_BMCR;
416 		break;
417 	case MII_BMSR:
418 		re8139_reg = RL_BMSR;
419 		break;
420 	case MII_ANAR:
421 		re8139_reg = RL_ANAR;
422 		break;
423 	case MII_ANER:
424 		re8139_reg = RL_ANER;
425 		break;
426 	case MII_ANLPAR:
427 		re8139_reg = RL_LPAR;
428 		break;
429 	case MII_PHYIDR1:
430 	case MII_PHYIDR2:
431 		splx(s);
432 		return (0);
433 	/*
434 	 * Allow the rlphy driver to read the media status
435 	 * register. If we have a link partner which does not
436 	 * support NWAY, this is the register which will tell
437 	 * us the results of parallel detection.
438 	 */
439 	case RL_MEDIASTAT:
440 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
441 		splx(s);
442 		return (rval);
443 	default:
444 		printf("%s: bad phy register %x\n", sc->sc_dev.dv_xname, reg);
445 		splx(s);
446 		return (0);
447 	}
448 	rval = CSR_READ_2(sc, re8139_reg);
449 	if (re8139_reg == RL_BMCR) {
450 		/* 8139C+ has different bit layout. */
451 		rval &= ~(BMCR_LOOP | BMCR_ISO);
452 	}
453 	splx(s);
454 	return (rval);
455 }
456 
457 void
458 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
459 {
460 	struct rl_softc	*sc = (struct rl_softc *)dev;
461 	u_int16_t	re8139_reg = 0;
462 	int		s;
463 
464 	s = splnet();
465 
466 	if (sc->sc_hwrev != RL_HWREV_8139CPLUS) {
467 		re_gmii_writereg(dev, phy, reg, data);
468 		splx(s);
469 		return;
470 	}
471 
472 	/* Pretend the internal PHY is only at address 0 */
473 	if (phy) {
474 		splx(s);
475 		return;
476 	}
477 	switch(reg) {
478 	case MII_BMCR:
479 		re8139_reg = RL_BMCR;
480 		/* 8139C+ has different bit layout. */
481 		data &= ~(BMCR_LOOP | BMCR_ISO);
482 		break;
483 	case MII_BMSR:
484 		re8139_reg = RL_BMSR;
485 		break;
486 	case MII_ANAR:
487 		re8139_reg = RL_ANAR;
488 		break;
489 	case MII_ANER:
490 		re8139_reg = RL_ANER;
491 		break;
492 	case MII_ANLPAR:
493 		re8139_reg = RL_LPAR;
494 		break;
495 	case MII_PHYIDR1:
496 	case MII_PHYIDR2:
497 		splx(s);
498 		return;
499 		break;
500 	default:
501 		printf("%s: bad phy register %x\n", sc->sc_dev.dv_xname, reg);
502 		splx(s);
503 		return;
504 	}
505 	CSR_WRITE_2(sc, re8139_reg, data);
506 	splx(s);
507 }
508 
509 void
510 re_miibus_statchg(struct device *dev)
511 {
512 }
513 
514 void
515 re_iff(struct rl_softc *sc)
516 {
517 	struct ifnet		*ifp = &sc->sc_arpcom.ac_if;
518 	int			h = 0;
519 	u_int32_t		hashes[2] = { 0, 0 };
520 	u_int32_t		rxfilt;
521 	int			mcnt = 0;
522 	struct arpcom		*ac = &sc->sc_arpcom;
523 	struct ether_multi	*enm;
524 	struct ether_multistep	step;
525 
526 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
527 	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
528 	ifp->if_flags &= ~IFF_ALLMULTI;
529 
530 	if (ifp->if_flags & IFF_PROMISC ||
531 	    ac->ac_multirangecnt > 0) {
532 		ifp ->if_flags |= IFF_ALLMULTI;
533 		rxfilt |= RL_RXCFG_RX_MULTI;
534 		if (ifp->if_flags & IFF_PROMISC)
535 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
536 		hashes[0] = hashes[1] = 0xFFFFFFFF;
537 	} else {
538 		/* first, zot all the existing hash bits */
539 		CSR_WRITE_4(sc, RL_MAR0, 0);
540 		CSR_WRITE_4(sc, RL_MAR4, 0);
541 
542 		/* now program new ones */
543 		ETHER_FIRST_MULTI(step, ac, enm);
544 		while (enm != NULL) {
545 			h = ether_crc32_be(enm->enm_addrlo,
546 			    ETHER_ADDR_LEN) >> 26;
547 			if (h < 32)
548 				hashes[0] |= (1 << h);
549 			else
550 				hashes[1] |= (1 << (h - 32));
551 			mcnt++;
552 			ETHER_NEXT_MULTI(step, enm);
553 		}
554 
555 		if (mcnt)
556 			rxfilt |= RL_RXCFG_RX_MULTI;
557 	}
558 
559 	/*
560 	 * For some unfathomable reason, RealTek decided to reverse
561 	 * the order of the multicast hash registers in the PCI Express
562 	 * parts. This means we have to write the hash pattern in reverse
563 	 * order for those devices.
564 	 */
565 	if (sc->rl_flags & RL_FLAG_INVMAR) {
566 		CSR_WRITE_4(sc, RL_MAR0, swap32(hashes[1]));
567 		CSR_WRITE_4(sc, RL_MAR4, swap32(hashes[0]));
568 	} else {
569 		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
570 		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
571 	}
572 
573 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
574 }
575 
576 void
577 re_reset(struct rl_softc *sc)
578 {
579 	int	i;
580 
581 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
582 
583 	for (i = 0; i < RL_TIMEOUT; i++) {
584 		DELAY(10);
585 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
586 			break;
587 	}
588 	if (i == RL_TIMEOUT)
589 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
590 
591 	if (sc->rl_flags & RL_FLAG_MACLDPS)
592 		CSR_WRITE_1(sc, RL_LDPS, 1);
593 }
594 
595 #ifdef RE_DIAG
596 
597 /*
598  * The following routine is designed to test for a defect on some
599  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
600  * lines connected to the bus, however for a 32-bit only card, they
601  * should be pulled high. The result of this defect is that the
602  * NIC will not work right if you plug it into a 64-bit slot: DMA
603  * operations will be done with 64-bit transfers, which will fail
604  * because the 64-bit data lines aren't connected.
605  *
606  * There's no way to work around this (short of talking a soldering
607  * iron to the board), however we can detect it. The method we use
608  * here is to put the NIC into digital loopback mode, set the receiver
609  * to promiscuous mode, and then try to send a frame. We then compare
610  * the frame data we sent to what was received. If the data matches,
611  * then the NIC is working correctly, otherwise we know the user has
612  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
613  * slot. In the latter case, there's no way the NIC can work correctly,
614  * so we print out a message on the console and abort the device attach.
615  */
616 
617 int
618 re_diag(struct rl_softc *sc)
619 {
620 	struct ifnet		*ifp = &sc->sc_arpcom.ac_if;
621 	struct mbuf		*m0;
622 	struct ether_header	*eh;
623 	struct rl_rxsoft	*rxs;
624 	struct rl_desc		*cur_rx;
625 	bus_dmamap_t		dmamap;
626 	u_int16_t		status;
627 	u_int32_t		rxstat;
628 	int			total_len, i, s, error = 0, phyaddr;
629 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
630 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
631 
632 	DPRINTF(("inside re_diag\n"));
633 	/* Allocate a single mbuf */
634 
635 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
636 	if (m0 == NULL)
637 		return (ENOBUFS);
638 
639 	/*
640 	 * Initialize the NIC in test mode. This sets the chip up
641 	 * so that it can send and receive frames, but performs the
642 	 * following special functions:
643 	 * - Puts receiver in promiscuous mode
644 	 * - Enables digital loopback mode
645 	 * - Leaves interrupts turned off
646 	 */
647 
648 	ifp->if_flags |= IFF_PROMISC;
649 	sc->rl_testmode = 1;
650 	re_reset(sc);
651 	re_init(ifp);
652 	sc->rl_flags |= RL_FLAG_LINK;
653 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
654 		phyaddr = 0;
655 	else
656 		phyaddr = 1;
657 
658 	re_miibus_writereg((struct device *)sc, phyaddr, MII_BMCR,
659 	    BMCR_RESET);
660 	for (i = 0; i < RL_TIMEOUT; i++) {
661 		status = re_miibus_readreg((struct device *)sc,
662 		    phyaddr, MII_BMCR);
663 		if (!(status & BMCR_RESET))
664 			break;
665 	}
666 
667 	re_miibus_writereg((struct device *)sc, phyaddr, MII_BMCR,
668 	    BMCR_LOOP);
669 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
670 
671 	DELAY(100000);
672 
673 	/* Put some data in the mbuf */
674 
675 	eh = mtod(m0, struct ether_header *);
676 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
677 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
678 	eh->ether_type = htons(ETHERTYPE_IP);
679 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
680 
681 	/*
682 	 * Queue the packet, start transmission.
683 	 */
684 
685 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
686 	s = splnet();
687 	IFQ_ENQUEUE(&ifp->if_snd, m0, NULL, error);
688 	re_start(ifp);
689 	splx(s);
690 	m0 = NULL;
691 
692 	DPRINTF(("re_diag: transmission started\n"));
693 
694 	/* Wait for it to propagate through the chip */
695 
696 	DELAY(100000);
697 	for (i = 0; i < RL_TIMEOUT; i++) {
698 		status = CSR_READ_2(sc, RL_ISR);
699 		CSR_WRITE_2(sc, RL_ISR, status);
700 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
701 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
702 			break;
703 		DELAY(10);
704 	}
705 	if (i == RL_TIMEOUT) {
706 		printf("%s: diagnostic failed, failed to receive packet "
707 		    "in loopback mode\n", sc->sc_dev.dv_xname);
708 		error = EIO;
709 		goto done;
710 	}
711 
712 	/*
713 	 * The packet should have been dumped into the first
714 	 * entry in the RX DMA ring. Grab it from there.
715 	 */
716 
717 	rxs = &sc->rl_ldata.rl_rxsoft[0];
718 	dmamap = rxs->rxs_dmamap;
719 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
720 	    BUS_DMASYNC_POSTREAD);
721 	bus_dmamap_unload(sc->sc_dmat, dmamap);
722 
723 	m0 = rxs->rxs_mbuf;
724 	rxs->rxs_mbuf = NULL;
725 	eh = mtod(m0, struct ether_header *);
726 
727 	RL_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
728 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
729 	rxstat = letoh32(cur_rx->rl_cmdstat);
730 	total_len = rxstat & sc->rl_rxlenmask;
731 
732 	if (total_len != ETHER_MIN_LEN) {
733 		printf("%s: diagnostic failed, received short packet\n",
734 		    sc->sc_dev.dv_xname);
735 		error = EIO;
736 		goto done;
737 	}
738 
739 	DPRINTF(("re_diag: packet received\n"));
740 
741 	/* Test that the received packet data matches what we sent. */
742 
743 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
744 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
745 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
746 		printf("%s: WARNING, DMA FAILURE!\n", sc->sc_dev.dv_xname);
747 		printf("%s: expected TX data: %s",
748 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
749 		printf("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
750 		printf("%s: received RX data: %s",
751 		    sc->sc_dev.dv_xname,
752 		    ether_sprintf(eh->ether_dhost));
753 		printf("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
754 		    ntohs(eh->ether_type));
755 		printf("%s: You may have a defective 32-bit NIC plugged "
756 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
757 		printf("%s: Please re-install the NIC in a 32-bit slot "
758 		    "for proper operation.\n", sc->sc_dev.dv_xname);
759 		printf("%s: Read the re(4) man page for more details.\n",
760 		    sc->sc_dev.dv_xname);
761 		error = EIO;
762 	}
763 
764 done:
765 	/* Turn interface off, release resources */
766 	sc->rl_testmode = 0;
767 	sc->rl_flags &= ~RL_FLAG_LINK;
768 	ifp->if_flags &= ~IFF_PROMISC;
769 	re_stop(ifp, 1);
770 	if (m0 != NULL)
771 		m_freem(m0);
772 	DPRINTF(("leaving re_diag\n"));
773 
774 	return (error);
775 }
776 
777 #endif
778 
779 #ifdef __armish__
780 /*
781  * Thecus N2100 doesn't store the full mac address in eeprom
782  * so we read the old mac address from the device before the reset
783  * in hopes that the proper mac address is already there.
784  */
785 union {
786 	u_int32_t eaddr_word[2];
787 	u_char eaddr[ETHER_ADDR_LEN];
788 } boot_eaddr;
789 int boot_eaddr_valid;
790 #endif /* __armish__ */
791 /*
792  * Attach the interface. Allocate softc structures, do ifmedia
793  * setup and ethernet/BPF attach.
794  */
795 int
796 re_attach(struct rl_softc *sc, const char *intrstr)
797 {
798 	u_char		eaddr[ETHER_ADDR_LEN];
799 	u_int16_t	as[ETHER_ADDR_LEN / 2];
800 	struct ifnet	*ifp;
801 	u_int16_t	re_did = 0;
802 	int		error = 0, i;
803 	const struct re_revision *rr;
804 	const char	*re_name = NULL;
805 
806 	sc->sc_hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
807 
808 	switch (sc->sc_hwrev) {
809 	case RL_HWREV_8139CPLUS:
810 		sc->rl_flags |= RL_FLAG_NOJUMBO;
811 		break;
812 	case RL_HWREV_8100E_SPIN1:
813 	case RL_HWREV_8100E_SPIN2:
814 	case RL_HWREV_8101E:
815 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
816 		    RL_FLAG_PHYWAKE;
817 		break;
818 	case RL_HWREV_8102E:
819 	case RL_HWREV_8102EL:
820 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
821 		    RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
822 		    RL_FLAG_MACSTAT;
823 		break;
824 	case RL_HWREV_8168_SPIN1:
825 	case RL_HWREV_8168_SPIN2:
826 	case RL_HWREV_8168_SPIN3:
827 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
828 		    RL_FLAG_MACSTAT | RL_FLAG_HWIM;
829 		break;
830 	case RL_HWREV_8168C:
831 	case RL_HWREV_8168C_SPIN2:
832 	case RL_HWREV_8168CP:
833 	case RL_HWREV_8168D:
834 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
835 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
836 		    RL_FLAG_HWIM;
837 		/*
838 		 * These controllers support jumbo frame but it seems
839 		 * that enabling it requires touching additional magic
840 		 * registers. Depending on MAC revisions some
841 		 * controllers need to disable checksum offload. So
842 		 * disable jumbo frame until I have better idea what
843 		 * it really requires to make it support.
844 		 * RTL8168C/CP : supports up to 6KB jumbo frame.
845 		 * RTL8111C/CP : supports up to 9KB jumbo frame.
846 		 */
847 		sc->rl_flags |= RL_FLAG_NOJUMBO;
848 		break;
849 	case RL_HWREV_8169:
850 	case RL_HWREV_8169S:
851 	case RL_HWREV_8110S:
852 		sc->rl_flags |= RL_FLAG_MACLDPS;
853 		break;
854 	case RL_HWREV_8169_8110SB:
855 	case RL_HWREV_8169_8110SBL:
856 	case RL_HWREV_8169_8110SCd:
857 	case RL_HWREV_8169_8110SCe:
858 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACLDPS;
859 		break;
860 	default:
861 		break;
862 	}
863 
864 	/* Reset the adapter. */
865 	re_reset(sc);
866 
867 	sc->rl_tx_time = 5;		/* 125us */
868 	sc->rl_rx_time = 2;		/* 50us */
869 	if (sc->rl_flags & RL_FLAG_PCIE)
870 		sc->rl_sim_time = 75;	/* 75us */
871 	else
872 		sc->rl_sim_time = 125;	/* 125us */
873 	sc->rl_imtype = RL_IMTYPE_SIM;	/* simulated interrupt moderation */
874 
875 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
876 		sc->rl_bus_speed = 33; /* XXX */
877 	else if (sc->rl_flags & RL_FLAG_PCIE)
878 		sc->rl_bus_speed = 125;
879 	else {
880 		u_int8_t cfg2;
881 
882 		cfg2 = CSR_READ_1(sc, RL_CFG2);
883 		switch (cfg2 & RL_CFG2_PCI_MASK) {
884 		case RL_CFG2_PCI_33MHZ:
885  			sc->rl_bus_speed = 33;
886 			break;
887 		case RL_CFG2_PCI_66MHZ:
888 			sc->rl_bus_speed = 66;
889 			break;
890 		default:
891 			printf("%s: unknown bus speed, assume 33MHz\n",
892 			    sc->sc_dev.dv_xname);
893 			sc->rl_bus_speed = 33;
894 			break;
895 		}
896 
897 		if (cfg2 & RL_CFG2_PCI_64BIT)
898 			sc->rl_flags |= RL_FLAG_PCI64;
899 	}
900 
901 	re_config_imtype(sc, sc->rl_imtype);
902 
903 	if (sc->rl_flags & RL_FLAG_PAR) {
904 		/*
905 		 * XXX Should have a better way to extract station
906 		 * address from EEPROM.
907 		 */
908 		for (i = 0; i < ETHER_ADDR_LEN; i++)
909 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
910 	} else {
911 		sc->rl_eewidth = RL_9356_ADDR_LEN;
912 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
913 		if (re_did != 0x8129)
914 			sc->rl_eewidth = RL_9346_ADDR_LEN;
915 
916 		/*
917 		 * Get station address from the EEPROM.
918 		 */
919 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
920 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
921 			as[i] = letoh16(as[i]);
922 		bcopy(as, eaddr, sizeof(eaddr));
923 
924 #ifdef __armish__
925 		/*
926 		 * On the Thecus N2100, the MAC address in the EEPROM is
927 		 * always 00:14:fd:10:00:00.  The proper MAC address is
928 		 * stored in flash.  Fortunately RedBoot configures the
929 		 * proper MAC address (for the first onboard interface)
930 		 * which we can read from the IDR.
931 		 */
932 		if (eaddr[0] == 0x00 && eaddr[1] == 0x14 &&
933 		    eaddr[2] == 0xfd && eaddr[3] == 0x10 &&
934 		    eaddr[4] == 0x00 && eaddr[5] == 0x00) {
935 			if (boot_eaddr_valid == 0) {
936 				boot_eaddr.eaddr_word[1] =
937 				    letoh32(CSR_READ_4(sc, RL_IDR4));
938 				boot_eaddr.eaddr_word[0] =
939 				    letoh32(CSR_READ_4(sc, RL_IDR0));
940 				boot_eaddr_valid = 1;
941 			}
942 
943 			bcopy(boot_eaddr.eaddr, eaddr, sizeof(eaddr));
944 			eaddr[5] += sc->sc_dev.dv_unit;
945 		}
946 #endif
947 	}
948 
949 	/*
950 	 * Set RX length mask, TX poll request register
951 	 * and TX descriptor count.
952 	 */
953 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS) {
954 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
955 		sc->rl_txstart = RL_TXSTART;
956 		sc->rl_ldata.rl_tx_desc_cnt = RL_TX_DESC_CNT_8139;
957 	} else {
958 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
959 		sc->rl_txstart = RL_GTXSTART;
960 		sc->rl_ldata.rl_tx_desc_cnt = RL_TX_DESC_CNT_8169;
961 	}
962 
963 	bcopy(eaddr, (char *)&sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
964 
965 	for (rr = re_revisions; rr->re_name != NULL; rr++) {
966 		if (rr->re_chipid == sc->sc_hwrev)
967 			re_name = rr->re_name;
968 	}
969 
970 	if (re_name == NULL)
971 		printf(": unknown ASIC (0x%04x)", sc->sc_hwrev >> 16);
972 	else
973 		printf(": %s (0x%04x)", re_name, sc->sc_hwrev >> 16);
974 
975 	printf(", %s, address %s\n", intrstr,
976 	    ether_sprintf(sc->sc_arpcom.ac_enaddr));
977 
978 	if (sc->rl_ldata.rl_tx_desc_cnt >
979 	    PAGE_SIZE / sizeof(struct rl_desc)) {
980 		sc->rl_ldata.rl_tx_desc_cnt =
981 		    PAGE_SIZE / sizeof(struct rl_desc);
982 	}
983 
984 	/* Allocate DMA'able memory for the TX ring */
985 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RL_TX_LIST_SZ(sc),
986 		    RL_RING_ALIGN, 0, &sc->rl_ldata.rl_tx_listseg, 1,
987 		    &sc->rl_ldata.rl_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
988 		printf("%s: can't allocate tx listseg, error = %d\n",
989 		    sc->sc_dev.dv_xname, error);
990 		goto fail_0;
991 	}
992 
993 	/* Load the map for the TX ring. */
994 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rl_ldata.rl_tx_listseg,
995 		    sc->rl_ldata.rl_tx_listnseg, RL_TX_LIST_SZ(sc),
996 		    (caddr_t *)&sc->rl_ldata.rl_tx_list,
997 		    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
998 		printf("%s: can't map tx list, error = %d\n",
999 		    sc->sc_dev.dv_xname, error);
1000 		goto fail_1;
1001 	}
1002 	memset(sc->rl_ldata.rl_tx_list, 0, RL_TX_LIST_SZ(sc));
1003 
1004 	if ((error = bus_dmamap_create(sc->sc_dmat, RL_TX_LIST_SZ(sc), 1,
1005 		    RL_TX_LIST_SZ(sc), 0, 0,
1006 		    &sc->rl_ldata.rl_tx_list_map)) != 0) {
1007 		printf("%s: can't create tx list map, error = %d\n",
1008 		    sc->sc_dev.dv_xname, error);
1009 		goto fail_2;
1010 	}
1011 
1012 	if ((error = bus_dmamap_load(sc->sc_dmat,
1013 		    sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1014 		    RL_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
1015 		printf("%s: can't load tx list, error = %d\n",
1016 		    sc->sc_dev.dv_xname, error);
1017 		goto fail_3;
1018 	}
1019 
1020 	/* Create DMA maps for TX buffers */
1021 	for (i = 0; i < RL_TX_QLEN; i++) {
1022 		error = bus_dmamap_create(sc->sc_dmat,
1023 		    RL_JUMBO_FRAMELEN,
1024 		    RL_TX_DESC_CNT(sc) - RL_NTXDESC_RSVD, RL_TDESC_CMD_FRAGLEN,
1025 		    0, 0, &sc->rl_ldata.rl_txq[i].txq_dmamap);
1026 		if (error) {
1027 			printf("%s: can't create DMA map for TX\n",
1028 			    sc->sc_dev.dv_xname);
1029 			goto fail_4;
1030 		}
1031 	}
1032 
1033         /* Allocate DMA'able memory for the RX ring */
1034 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RL_RX_DMAMEM_SZ,
1035 		    RL_RING_ALIGN, 0, &sc->rl_ldata.rl_rx_listseg, 1,
1036 		    &sc->rl_ldata.rl_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
1037 		printf("%s: can't allocate rx listnseg, error = %d\n",
1038 		    sc->sc_dev.dv_xname, error);
1039 		goto fail_4;
1040 	}
1041 
1042         /* Load the map for the RX ring. */
1043 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rl_ldata.rl_rx_listseg,
1044 		    sc->rl_ldata.rl_rx_listnseg, RL_RX_DMAMEM_SZ,
1045 		    (caddr_t *)&sc->rl_ldata.rl_rx_list,
1046 		    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
1047 		printf("%s: can't map rx list, error = %d\n",
1048 		    sc->sc_dev.dv_xname, error);
1049 		goto fail_5;
1050 
1051 	}
1052 	memset(sc->rl_ldata.rl_rx_list, 0, RL_RX_DMAMEM_SZ);
1053 
1054 	if ((error = bus_dmamap_create(sc->sc_dmat, RL_RX_DMAMEM_SZ, 1,
1055 		    RL_RX_DMAMEM_SZ, 0, 0,
1056 		    &sc->rl_ldata.rl_rx_list_map)) != 0) {
1057 		printf("%s: can't create rx list map, error = %d\n",
1058 		    sc->sc_dev.dv_xname, error);
1059 		goto fail_6;
1060 	}
1061 
1062 	if ((error = bus_dmamap_load(sc->sc_dmat,
1063 		    sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1064 		    RL_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
1065 		printf("%s: can't load rx list, error = %d\n",
1066 		    sc->sc_dev.dv_xname, error);
1067 		goto fail_7;
1068 	}
1069 
1070 	/* Create DMA maps for RX buffers */
1071 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1072 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
1073 		    0, 0, &sc->rl_ldata.rl_rxsoft[i].rxs_dmamap);
1074 		if (error) {
1075 			printf("%s: can't create DMA map for RX\n",
1076 			    sc->sc_dev.dv_xname);
1077 			goto fail_8;
1078 		}
1079 	}
1080 
1081 	ifp = &sc->sc_arpcom.ac_if;
1082 	ifp->if_softc = sc;
1083 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
1084 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1085 	ifp->if_ioctl = re_ioctl;
1086 	ifp->if_start = re_start;
1087 	ifp->if_watchdog = re_watchdog;
1088 	ifp->if_init = re_init;
1089 	if ((sc->rl_flags & RL_FLAG_NOJUMBO) == 0)
1090 		ifp->if_hardmtu = RL_JUMBO_MTU;
1091 	IFQ_SET_MAXLEN(&ifp->if_snd, RL_TX_QLEN);
1092 	IFQ_SET_READY(&ifp->if_snd);
1093 
1094 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
1095 			       IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1096 
1097 #if NVLAN > 0
1098 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
1099 #endif
1100 
1101 	timeout_set(&sc->timer_handle, re_tick, sc);
1102 
1103 	/* Take PHY out of power down mode. */
1104 	if (sc->rl_flags & RL_FLAG_PHYWAKE) {
1105 		re_gmii_writereg((struct device *)sc, 1, 0x1f, 0);
1106 		re_gmii_writereg((struct device *)sc, 1, 0x0e, 0);
1107 	}
1108 
1109 	/* Do MII setup */
1110 	sc->sc_mii.mii_ifp = ifp;
1111 	sc->sc_mii.mii_readreg = re_miibus_readreg;
1112 	sc->sc_mii.mii_writereg = re_miibus_writereg;
1113 	sc->sc_mii.mii_statchg = re_miibus_statchg;
1114 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, re_ifmedia_upd,
1115 	    re_ifmedia_sts);
1116 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1117 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
1118 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1119 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
1120 		ifmedia_add(&sc->sc_mii.mii_media,
1121 		    IFM_ETHER|IFM_NONE, 0, NULL);
1122 		ifmedia_set(&sc->sc_mii.mii_media,
1123 		    IFM_ETHER|IFM_NONE);
1124 	} else
1125 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1126 
1127 	/*
1128 	 * Call MI attach routine.
1129 	 */
1130 	re_reset(sc);
1131 	if_attach(ifp);
1132 	ether_ifattach(ifp);
1133 
1134 #ifdef RE_DIAG
1135 	/*
1136 	 * Perform hardware diagnostic on the original RTL8169.
1137 	 * Some 32-bit cards were incorrectly wired and would
1138 	 * malfunction if plugged into a 64-bit slot.
1139 	 */
1140 	if (sc->sc_hwrev == RL_HWREV_8169) {
1141 		error = re_diag(sc);
1142 		if (error) {
1143 			printf("%s: attach aborted due to hardware diag failure\n",
1144 			    sc->sc_dev.dv_xname);
1145 			ether_ifdetach(ifp);
1146 			goto fail_8;
1147 		}
1148 	}
1149 #endif
1150 
1151 	return (0);
1152 
1153 fail_8:
1154 	/* Destroy DMA maps for RX buffers. */
1155 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1156 		if (sc->rl_ldata.rl_rxsoft[i].rxs_dmamap != NULL)
1157 			bus_dmamap_destroy(sc->sc_dmat,
1158 			    sc->rl_ldata.rl_rxsoft[i].rxs_dmamap);
1159 	}
1160 
1161 	/* Free DMA'able memory for the RX ring. */
1162 	bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map);
1163 fail_7:
1164 	bus_dmamap_destroy(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map);
1165 fail_6:
1166 	bus_dmamem_unmap(sc->sc_dmat,
1167 	    (caddr_t)sc->rl_ldata.rl_rx_list, RL_RX_DMAMEM_SZ);
1168 fail_5:
1169 	bus_dmamem_free(sc->sc_dmat,
1170 	    &sc->rl_ldata.rl_rx_listseg, sc->rl_ldata.rl_rx_listnseg);
1171 
1172 fail_4:
1173 	/* Destroy DMA maps for TX buffers. */
1174 	for (i = 0; i < RL_TX_QLEN; i++) {
1175 		if (sc->rl_ldata.rl_txq[i].txq_dmamap != NULL)
1176 			bus_dmamap_destroy(sc->sc_dmat,
1177 			    sc->rl_ldata.rl_txq[i].txq_dmamap);
1178 	}
1179 
1180 	/* Free DMA'able memory for the TX ring. */
1181 	bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map);
1182 fail_3:
1183 	bus_dmamap_destroy(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map);
1184 fail_2:
1185 	bus_dmamem_unmap(sc->sc_dmat,
1186 	    (caddr_t)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ(sc));
1187 fail_1:
1188 	bus_dmamem_free(sc->sc_dmat,
1189 	    &sc->rl_ldata.rl_tx_listseg, sc->rl_ldata.rl_tx_listnseg);
1190 fail_0:
1191  	return (1);
1192 }
1193 
1194 
1195 int
1196 re_newbuf(struct rl_softc *sc, int idx, struct mbuf *m)
1197 {
1198 	struct mbuf	*n = NULL;
1199 	bus_dmamap_t	map;
1200 	struct rl_desc	*d;
1201 	struct rl_rxsoft *rxs;
1202 	u_int32_t	cmdstat;
1203 	int		error;
1204 
1205 	if (m == NULL) {
1206 		MGETHDR(n, M_DONTWAIT, MT_DATA);
1207 		if (n == NULL)
1208 			return (ENOBUFS);
1209 
1210 		MCLGET(n, M_DONTWAIT);
1211 		if (!(n->m_flags & M_EXT)) {
1212 			m_freem(n);
1213 			return (ENOBUFS);
1214 		}
1215 		m = n;
1216 	} else
1217 		m->m_data = m->m_ext.ext_buf;
1218 
1219 	/*
1220 	 * Initialize mbuf length fields and fixup
1221 	 * alignment so that the frame payload is
1222 	 * longword aligned on strict alignment archs.
1223 	 */
1224 	m->m_len = m->m_pkthdr.len = RE_RX_DESC_BUFLEN;
1225 	m->m_data += RE_ETHER_ALIGN;
1226 
1227 	rxs = &sc->rl_ldata.rl_rxsoft[idx];
1228 	map = rxs->rxs_dmamap;
1229 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1230 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1231 
1232 	if (error)
1233 		goto out;
1234 
1235 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1236 	    BUS_DMASYNC_PREREAD);
1237 
1238 	d = &sc->rl_ldata.rl_rx_list[idx];
1239 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1240 	cmdstat = letoh32(d->rl_cmdstat);
1241 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1242 	if (cmdstat & RL_RDESC_STAT_OWN) {
1243 		printf("%s: tried to map busy RX descriptor\n",
1244 		    sc->sc_dev.dv_xname);
1245 		goto out;
1246 	}
1247 
1248 	rxs->rxs_mbuf = m;
1249 
1250 	d->rl_vlanctl = 0;
1251 	cmdstat = map->dm_segs[0].ds_len;
1252 	if (idx == (RL_RX_DESC_CNT - 1))
1253 		cmdstat |= RL_RDESC_CMD_EOR;
1254 	re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1255 	d->rl_cmdstat = htole32(cmdstat);
1256 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1257 	cmdstat |= RL_RDESC_CMD_OWN;
1258 	d->rl_cmdstat = htole32(cmdstat);
1259 	RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1260 
1261 	return (0);
1262  out:
1263 	if (n != NULL)
1264 		m_freem(n);
1265 	return (ENOMEM);
1266 }
1267 
1268 
1269 int
1270 re_tx_list_init(struct rl_softc *sc)
1271 {
1272 	int i;
1273 
1274 	memset(sc->rl_ldata.rl_tx_list, 0, RL_TX_LIST_SZ(sc));
1275 	for (i = 0; i < RL_TX_QLEN; i++) {
1276 		sc->rl_ldata.rl_txq[i].txq_mbuf = NULL;
1277 	}
1278 
1279 	bus_dmamap_sync(sc->sc_dmat,
1280 	    sc->rl_ldata.rl_tx_list_map, 0,
1281 	    sc->rl_ldata.rl_tx_list_map->dm_mapsize,
1282 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1283 	sc->rl_ldata.rl_txq_prodidx = 0;
1284 	sc->rl_ldata.rl_txq_considx = 0;
1285 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT(sc);
1286 	sc->rl_ldata.rl_tx_nextfree = 0;
1287 
1288 	return (0);
1289 }
1290 
1291 int
1292 re_rx_list_init(struct rl_softc *sc)
1293 {
1294 	int	i;
1295 
1296 	memset((char *)sc->rl_ldata.rl_rx_list, 0, RL_RX_LIST_SZ);
1297 
1298 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1299 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1300 			return (ENOBUFS);
1301 	}
1302 
1303 	sc->rl_ldata.rl_rx_prodidx = 0;
1304 	sc->rl_head = sc->rl_tail = NULL;
1305 
1306 	return (0);
1307 }
1308 
1309 /*
1310  * RX handler for C+ and 8169. For the gigE chips, we support
1311  * the reception of jumbo frames that have been fragmented
1312  * across multiple 2K mbuf cluster buffers.
1313  */
1314 int
1315 re_rxeof(struct rl_softc *sc)
1316 {
1317 	struct mbuf	*m;
1318 	struct ifnet	*ifp;
1319 	int		i, total_len, rx = 0;
1320 	struct rl_desc	*cur_rx;
1321 	struct rl_rxsoft *rxs;
1322 	u_int32_t	rxstat, rxvlan;
1323 
1324 	ifp = &sc->sc_arpcom.ac_if;
1325 
1326 	for (i = sc->rl_ldata.rl_rx_prodidx;; i = RL_NEXT_RX_DESC(sc, i)) {
1327 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1328 		RL_RXDESCSYNC(sc, i,
1329 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1330 		rxstat = letoh32(cur_rx->rl_cmdstat);
1331 		rxvlan = letoh32(cur_rx->rl_vlanctl);
1332 		RL_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1333 		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1334 			break;
1335 		total_len = rxstat & sc->rl_rxlenmask;
1336 		rxs = &sc->rl_ldata.rl_rxsoft[i];
1337 		m = rxs->rxs_mbuf;
1338 		rx = 1;
1339 
1340 		/* Invalidate the RX mbuf and unload its map */
1341 
1342 		bus_dmamap_sync(sc->sc_dmat,
1343 		    rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1344 		    BUS_DMASYNC_POSTREAD);
1345 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1346 
1347 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1348 			m->m_len = RE_RX_DESC_BUFLEN;
1349 			if (sc->rl_head == NULL)
1350 				sc->rl_head = sc->rl_tail = m;
1351 			else {
1352 				m->m_flags &= ~M_PKTHDR;
1353 				sc->rl_tail->m_next = m;
1354 				sc->rl_tail = m;
1355 			}
1356 			re_newbuf(sc, i, NULL);
1357 			continue;
1358 		}
1359 
1360 		/*
1361 		 * NOTE: for the 8139C+, the frame length field
1362 		 * is always 12 bits in size, but for the gigE chips,
1363 		 * it is 13 bits (since the max RX frame length is 16K).
1364 		 * Unfortunately, all 32 bits in the status word
1365 		 * were already used, so to make room for the extra
1366 		 * length bit, RealTek took out the 'frame alignment
1367 		 * error' bit and shifted the other status bits
1368 		 * over one slot. The OWN, EOR, FS and LS bits are
1369 		 * still in the same places. We have already extracted
1370 		 * the frame length and checked the OWN bit, so rather
1371 		 * than using an alternate bit mapping, we shift the
1372 		 * status bits one space to the right so we can evaluate
1373 		 * them using the 8169 status as though it was in the
1374 		 * same format as that of the 8139C+.
1375 		 */
1376 		if (sc->sc_hwrev != RL_HWREV_8139CPLUS)
1377 			rxstat >>= 1;
1378 
1379 		/*
1380 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1381 		 * set, but if CRC is clear, it will still be a valid frame.
1382 		 */
1383 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1384 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1385 			ifp->if_ierrors++;
1386 			/*
1387 			 * If this is part of a multi-fragment packet,
1388 			 * discard all the pieces.
1389 			 */
1390 			if (sc->rl_head != NULL) {
1391 				m_freem(sc->rl_head);
1392 				sc->rl_head = sc->rl_tail = NULL;
1393 			}
1394 			re_newbuf(sc, i, m);
1395 			continue;
1396 		}
1397 
1398 		/*
1399 		 * If allocating a replacement mbuf fails,
1400 		 * reload the current one.
1401 		 */
1402 
1403 		if (re_newbuf(sc, i, NULL)) {
1404 			ifp->if_ierrors++;
1405 			if (sc->rl_head != NULL) {
1406 				m_freem(sc->rl_head);
1407 				sc->rl_head = sc->rl_tail = NULL;
1408 			}
1409 			re_newbuf(sc, i, m);
1410 			continue;
1411 		}
1412 
1413 		if (sc->rl_head != NULL) {
1414 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1415 			if (m->m_len == 0)
1416 				m->m_len = RE_RX_DESC_BUFLEN;
1417 			/*
1418 			 * Special case: if there's 4 bytes or less
1419 			 * in this buffer, the mbuf can be discarded:
1420 			 * the last 4 bytes is the CRC, which we don't
1421 			 * care about anyway.
1422 			 */
1423 			if (m->m_len <= ETHER_CRC_LEN) {
1424 				sc->rl_tail->m_len -=
1425 				    (ETHER_CRC_LEN - m->m_len);
1426 				m_freem(m);
1427 			} else {
1428 				m->m_len -= ETHER_CRC_LEN;
1429 				m->m_flags &= ~M_PKTHDR;
1430 				sc->rl_tail->m_next = m;
1431 			}
1432 			m = sc->rl_head;
1433 			sc->rl_head = sc->rl_tail = NULL;
1434 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1435 		} else
1436 			m->m_pkthdr.len = m->m_len =
1437 			    (total_len - ETHER_CRC_LEN);
1438 
1439 		ifp->if_ipackets++;
1440 		m->m_pkthdr.rcvif = ifp;
1441 
1442 		/* Do RX checksumming */
1443 
1444 		if (sc->rl_flags & RL_FLAG_DESCV2) {
1445 			/* Check IP header checksum */
1446 			if ((rxstat & RL_RDESC_STAT_PROTOID) &&
1447 			    !(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
1448 			    (rxvlan & RL_RDESC_IPV4))
1449 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1450 
1451 			/* Check TCP/UDP checksum */
1452 			if (((rxstat & RL_RDESC_STAT_TCP) &&
1453 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1454 			    ((rxstat & RL_RDESC_STAT_UDP) &&
1455 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD)))
1456 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
1457 				    M_UDP_CSUM_IN_OK;
1458 		} else {
1459 			/* Check IP header checksum */
1460 			if ((rxstat & RL_RDESC_STAT_PROTOID) &&
1461 			    !(rxstat & RL_RDESC_STAT_IPSUMBAD))
1462 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1463 
1464 			/* Check TCP/UDP checksum */
1465 			if ((RL_TCPPKT(rxstat) &&
1466 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1467 			    (RL_UDPPKT(rxstat) &&
1468 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD)))
1469 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
1470 				    M_UDP_CSUM_IN_OK;
1471 		}
1472 #if NVLAN > 0
1473 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1474 			m->m_pkthdr.ether_vtag =
1475 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1476 			m->m_flags |= M_VLANTAG;
1477 		}
1478 #endif
1479 
1480 #if NBPFILTER > 0
1481 		if (ifp->if_bpf)
1482 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1483 #endif
1484 		ether_input_mbuf(ifp, m);
1485 	}
1486 
1487 	sc->rl_ldata.rl_rx_prodidx = i;
1488 
1489 	return (rx);
1490 }
1491 
1492 int
1493 re_txeof(struct rl_softc *sc)
1494 {
1495 	struct ifnet	*ifp;
1496 	struct rl_txq	*txq;
1497 	uint32_t	txstat;
1498 	int		idx, descidx, tx = 0;
1499 
1500 	ifp = &sc->sc_arpcom.ac_if;
1501 
1502 	for (idx = sc->rl_ldata.rl_txq_considx;; idx = RL_NEXT_TXQ(sc, idx)) {
1503 		txq = &sc->rl_ldata.rl_txq[idx];
1504 
1505 		if (txq->txq_mbuf == NULL) {
1506 			KASSERT(idx == sc->rl_ldata.rl_txq_prodidx);
1507 			break;
1508 		}
1509 
1510 		descidx = txq->txq_descidx;
1511 		RL_TXDESCSYNC(sc, descidx,
1512 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1513 		txstat =
1514 		    letoh32(sc->rl_ldata.rl_tx_list[descidx].rl_cmdstat);
1515 		RL_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1516 		KASSERT((txstat & RL_TDESC_CMD_EOF) != 0);
1517 		if (txstat & RL_TDESC_CMD_OWN)
1518 			break;
1519 
1520 		tx = 1;
1521 		sc->rl_ldata.rl_tx_free += txq->txq_nsegs;
1522 		KASSERT(sc->rl_ldata.rl_tx_free <= RL_TX_DESC_CNT(sc));
1523 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1524 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1525 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1526 		m_freem(txq->txq_mbuf);
1527 		txq->txq_mbuf = NULL;
1528 
1529 		if (txstat & (RL_TDESC_STAT_EXCESSCOL | RL_TDESC_STAT_COLCNT))
1530 			ifp->if_collisions++;
1531 		if (txstat & RL_TDESC_STAT_TXERRSUM)
1532 			ifp->if_oerrors++;
1533 		else
1534 			ifp->if_opackets++;
1535 	}
1536 
1537 	sc->rl_ldata.rl_txq_considx = idx;
1538 
1539 	if (sc->rl_ldata.rl_tx_free > RL_NTXDESC_RSVD)
1540 		ifp->if_flags &= ~IFF_OACTIVE;
1541 
1542 	/*
1543 	 * Some chips will ignore a second TX request issued while an
1544 	 * existing transmission is in progress. If the transmitter goes
1545 	 * idle but there are still packets waiting to be sent, we need
1546 	 * to restart the channel here to flush them out. This only
1547 	 * seems to be required with the PCIe devices.
1548 	 */
1549 	if (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT(sc))
1550 		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1551 	else
1552 		ifp->if_timer = 0;
1553 
1554 	return (tx);
1555 }
1556 
1557 void
1558 re_tick(void *xsc)
1559 {
1560 	struct rl_softc	*sc = xsc;
1561 	struct mii_data	*mii;
1562 	struct ifnet	*ifp;
1563 	int s;
1564 
1565 	ifp = &sc->sc_arpcom.ac_if;
1566 	mii = &sc->sc_mii;
1567 
1568 	s = splnet();
1569 
1570 	mii_tick(mii);
1571 	if (sc->rl_flags & RL_FLAG_LINK) {
1572 		if (!(mii->mii_media_status & IFM_ACTIVE))
1573 			sc->rl_flags &= ~RL_FLAG_LINK;
1574 	} else {
1575 		if (mii->mii_media_status & IFM_ACTIVE &&
1576 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1577 			sc->rl_flags |= RL_FLAG_LINK;
1578 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1579 				re_start(ifp);
1580 		}
1581 	}
1582 	splx(s);
1583 
1584 	timeout_add_sec(&sc->timer_handle, 1);
1585 }
1586 
1587 int
1588 re_intr(void *arg)
1589 {
1590 	struct rl_softc	*sc = arg;
1591 	struct ifnet	*ifp;
1592 	u_int16_t	status;
1593 	int		claimed = 0, rx, tx;
1594 
1595 	ifp = &sc->sc_arpcom.ac_if;
1596 
1597 	if (!(ifp->if_flags & IFF_RUNNING))
1598 		return (0);
1599 
1600 	rx = tx = 0;
1601 	for (;;) {
1602 
1603 		status = CSR_READ_2(sc, RL_ISR);
1604 		/* If the card has gone away the read returns 0xffff. */
1605 		if (status == 0xffff)
1606 			break;
1607 		if (status)
1608 			CSR_WRITE_2(sc, RL_ISR, status);
1609 
1610 		if ((status & RL_INTRS_CPLUS) == 0)
1611 			break;
1612 
1613 		if (status & (sc->rl_rx_ack | RL_ISR_RX_ERR)) {
1614 			rx |= re_rxeof(sc);
1615 			claimed = 1;
1616 		}
1617 
1618 		if (status & (sc->rl_tx_ack | RL_ISR_TX_ERR)) {
1619 			tx |= re_txeof(sc);
1620 			claimed = 1;
1621 		}
1622 
1623 		if (status & RL_ISR_SYSTEM_ERR) {
1624 			re_reset(sc);
1625 			re_init(ifp);
1626 			claimed = 1;
1627 		}
1628 
1629 		if (status & RL_ISR_LINKCHG) {
1630 			timeout_del(&sc->timer_handle);
1631 			re_tick(sc);
1632 			claimed = 1;
1633 		}
1634 	}
1635 
1636 	if (sc->rl_imtype == RL_IMTYPE_SIM) {
1637 		if ((sc->rl_flags & RL_FLAG_TIMERINTR)) {
1638 			if ((tx | rx) == 0) {
1639 				/*
1640 				 * Nothing needs to be processed, fallback
1641 				 * to use TX/RX interrupts.
1642 				 */
1643 				re_setup_intr(sc, 1, RL_IMTYPE_NONE);
1644 
1645 				/*
1646 				 * Recollect, mainly to avoid the possible
1647 				 * race introduced by changing interrupt
1648 				 * masks.
1649 				 */
1650 				re_rxeof(sc);
1651 				tx = re_txeof(sc);
1652 			} else
1653 				CSR_WRITE_4(sc, RL_TIMERCNT, 1); /* reload */
1654 		} else if (tx | rx) {
1655 			/*
1656 			 * Assume that using simulated interrupt moderation
1657 			 * (hardware timer based) could reduce the interrupt
1658 			 * rate.
1659 			 */
1660 			re_setup_intr(sc, 1, RL_IMTYPE_SIM);
1661 		}
1662 	}
1663 
1664 	if (tx && !IFQ_IS_EMPTY(&ifp->if_snd))
1665 		re_start(ifp);
1666 
1667 	return (claimed);
1668 }
1669 
1670 int
1671 re_encap(struct rl_softc *sc, struct mbuf *m, int *idx)
1672 {
1673 	bus_dmamap_t	map;
1674 	int		error, seg, nsegs, uidx, startidx, curidx, lastidx, pad;
1675 	struct rl_desc	*d;
1676 	u_int32_t	cmdstat, vlanctl = 0, csum_flags = 0;
1677 	struct rl_txq	*txq;
1678 
1679 	if (sc->rl_ldata.rl_tx_free <= RL_NTXDESC_RSVD)
1680 		return (EFBIG);
1681 
1682 	/*
1683 	 * Set up checksum offload. Note: checksum offload bits must
1684 	 * appear in all descriptors of a multi-descriptor transmit
1685 	 * attempt. This is according to testing done with an 8169
1686 	 * chip. This is a requirement.
1687 	 */
1688 
1689 	/*
1690 	 * Set RL_TDESC_CMD_IPCSUM if any checksum offloading
1691 	 * is requested.  Otherwise, RL_TDESC_CMD_TCPCSUM/
1692 	 * RL_TDESC_CMD_UDPCSUM does not take affect.
1693 	 */
1694 
1695 	if ((m->m_pkthdr.csum_flags &
1696 	    (M_IPV4_CSUM_OUT|M_TCPV4_CSUM_OUT|M_UDPV4_CSUM_OUT)) != 0) {
1697 		if (sc->rl_flags & RL_FLAG_DESCV2) {
1698 			vlanctl |= RL_TDESC_CMD_IPCSUMV2;
1699 			if (m->m_pkthdr.csum_flags & M_TCPV4_CSUM_OUT)
1700 				vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
1701 			if (m->m_pkthdr.csum_flags & M_UDPV4_CSUM_OUT)
1702 				vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
1703 		} else {
1704 			csum_flags |= RL_TDESC_CMD_IPCSUM;
1705 			if (m->m_pkthdr.csum_flags & M_TCPV4_CSUM_OUT)
1706 				csum_flags |= RL_TDESC_CMD_TCPCSUM;
1707 			if (m->m_pkthdr.csum_flags & M_UDPV4_CSUM_OUT)
1708 				csum_flags |= RL_TDESC_CMD_UDPCSUM;
1709 		}
1710 	}
1711 
1712 	txq = &sc->rl_ldata.rl_txq[*idx];
1713 	map = txq->txq_dmamap;
1714 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1715 	    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1716 	if (error) {
1717 		/* XXX try to defrag if EFBIG? */
1718 		printf("%s: can't map mbuf (error %d)\n",
1719 		    sc->sc_dev.dv_xname, error);
1720 		return (error);
1721 	}
1722 
1723 	nsegs = map->dm_nsegs;
1724 	pad = 0;
1725 	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0 &&
1726 	    m->m_pkthdr.len <= RL_IP4CSUMTX_PADLEN &&
1727 	    (csum_flags & RL_TDESC_CMD_IPCSUM) != 0) {
1728 		pad = 1;
1729 		nsegs++;
1730 	}
1731 
1732 	if (nsegs > sc->rl_ldata.rl_tx_free - RL_NTXDESC_RSVD) {
1733 		error = EFBIG;
1734 		goto fail_unload;
1735 	}
1736 
1737 	/*
1738 	 * Make sure that the caches are synchronized before we
1739 	 * ask the chip to start DMA for the packet data.
1740 	 */
1741 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1742 		BUS_DMASYNC_PREWRITE);
1743 
1744 	/*
1745 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1746 	 * appear in all descriptors of a multi-descriptor
1747 	 * transmission attempt.
1748 	 */
1749 #if NVLAN > 0
1750 	if (m->m_flags & M_VLANTAG)
1751 		vlanctl |= swap16(m->m_pkthdr.ether_vtag) |
1752 		    RL_TDESC_VLANCTL_TAG;
1753 #endif
1754 
1755 	/*
1756 	 * Map the segment array into descriptors. Note that we set the
1757 	 * start-of-frame and end-of-frame markers for either TX or RX, but
1758 	 * they really only have meaning in the TX case. (In the RX case,
1759 	 * it's the chip that tells us where packets begin and end.)
1760 	 * We also keep track of the end of the ring and set the
1761 	 * end-of-ring bits as needed, and we set the ownership bits
1762 	 * in all except the very first descriptor. (The caller will
1763 	 * set this descriptor later when it start transmission or
1764 	 * reception.)
1765 	 */
1766 	curidx = startidx = sc->rl_ldata.rl_tx_nextfree;
1767 	lastidx = -1;
1768 	for (seg = 0; seg < map->dm_nsegs;
1769 	    seg++, curidx = RL_NEXT_TX_DESC(sc, curidx)) {
1770 		d = &sc->rl_ldata.rl_tx_list[curidx];
1771 		RL_TXDESCSYNC(sc, curidx,
1772 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1773 		cmdstat = letoh32(d->rl_cmdstat);
1774 		RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
1775 		if (cmdstat & RL_TDESC_STAT_OWN) {
1776 			printf("%s: tried to map busy TX descriptor\n",
1777 			    sc->sc_dev.dv_xname);
1778 			for (; seg > 0; seg --) {
1779 				uidx = (curidx + RL_TX_DESC_CNT(sc) - seg) %
1780 				    RL_TX_DESC_CNT(sc);
1781 				sc->rl_ldata.rl_tx_list[uidx].rl_cmdstat = 0;
1782 				RL_TXDESCSYNC(sc, uidx,
1783 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1784 			}
1785 			error = ENOBUFS;
1786 			goto fail_unload;
1787 		}
1788 
1789 		d->rl_vlanctl = htole32(vlanctl);
1790 		re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1791 		cmdstat = csum_flags | map->dm_segs[seg].ds_len;
1792 		if (seg == 0)
1793 			cmdstat |= RL_TDESC_CMD_SOF;
1794 		else
1795 			cmdstat |= RL_TDESC_CMD_OWN;
1796 		if (curidx == (RL_TX_DESC_CNT(sc) - 1))
1797 			cmdstat |= RL_TDESC_CMD_EOR;
1798 		if (seg == nsegs - 1) {
1799 			cmdstat |= RL_TDESC_CMD_EOF;
1800 			lastidx = curidx;
1801 		}
1802 		d->rl_cmdstat = htole32(cmdstat);
1803 		RL_TXDESCSYNC(sc, curidx,
1804 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1805 	}
1806 	if (pad) {
1807 		bus_addr_t paddaddr;
1808 
1809 		d = &sc->rl_ldata.rl_tx_list[curidx];
1810 		d->rl_vlanctl = htole32(vlanctl);
1811 		paddaddr = RL_TXPADDADDR(sc);
1812 		re_set_bufaddr(d, paddaddr);
1813 		cmdstat = csum_flags |
1814 		    RL_TDESC_CMD_OWN | RL_TDESC_CMD_EOF |
1815 		    (RL_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1816 		if (curidx == (RL_TX_DESC_CNT(sc) - 1))
1817 			cmdstat |= RL_TDESC_CMD_EOR;
1818 		d->rl_cmdstat = htole32(cmdstat);
1819 		RL_TXDESCSYNC(sc, curidx,
1820 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1821 		lastidx = curidx;
1822 		curidx = RL_NEXT_TX_DESC(sc, curidx);
1823 	}
1824 	KASSERT(lastidx != -1);
1825 
1826 	/* Transfer ownership of packet to the chip. */
1827 
1828 	sc->rl_ldata.rl_tx_list[startidx].rl_cmdstat |=
1829 	    htole32(RL_TDESC_CMD_OWN);
1830 	RL_TXDESCSYNC(sc, startidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1831 
1832 	/* update info of TX queue and descriptors */
1833 	txq->txq_mbuf = m;
1834 	txq->txq_descidx = lastidx;
1835 	txq->txq_nsegs = nsegs;
1836 
1837 	sc->rl_ldata.rl_tx_free -= nsegs;
1838 	sc->rl_ldata.rl_tx_nextfree = curidx;
1839 
1840 	*idx = RL_NEXT_TXQ(sc, *idx);
1841 
1842 	return (0);
1843 
1844 fail_unload:
1845 	bus_dmamap_unload(sc->sc_dmat, map);
1846 
1847 	return (error);
1848 }
1849 
1850 /*
1851  * Main transmit routine for C+ and gigE NICs.
1852  */
1853 
1854 void
1855 re_start(struct ifnet *ifp)
1856 {
1857 	struct rl_softc	*sc;
1858 	int		idx, queued = 0;
1859 
1860 	sc = ifp->if_softc;
1861 
1862 	if (ifp->if_flags & IFF_OACTIVE)
1863 		return;
1864 	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1865 		return;
1866 
1867 	idx = sc->rl_ldata.rl_txq_prodidx;
1868 	for (;;) {
1869 		struct mbuf *m;
1870 		int error;
1871 
1872 		IFQ_POLL(&ifp->if_snd, m);
1873 		if (m == NULL)
1874 			break;
1875 
1876 		if (sc->rl_ldata.rl_txq[idx].txq_mbuf != NULL) {
1877 			KASSERT(idx == sc->rl_ldata.rl_txq_considx);
1878 			ifp->if_flags |= IFF_OACTIVE;
1879 			break;
1880 		}
1881 
1882 		error = re_encap(sc, m, &idx);
1883 		if (error == EFBIG &&
1884 		    sc->rl_ldata.rl_tx_free == RL_TX_DESC_CNT(sc)) {
1885 			IFQ_DEQUEUE(&ifp->if_snd, m);
1886 			m_freem(m);
1887 			ifp->if_oerrors++;
1888 			continue;
1889 		}
1890 		if (error) {
1891 			ifp->if_flags |= IFF_OACTIVE;
1892 			break;
1893 		}
1894 
1895 		IFQ_DEQUEUE(&ifp->if_snd, m);
1896 		queued++;
1897 
1898 #if NBPFILTER > 0
1899 		/*
1900 		 * If there's a BPF listener, bounce a copy of this frame
1901 		 * to him.
1902 		 */
1903 		if (ifp->if_bpf)
1904 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1905 #endif
1906 	}
1907 
1908 	if (queued == 0)
1909 		return;
1910 
1911 	sc->rl_ldata.rl_txq_prodidx = idx;
1912 
1913 	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1914 
1915 	/*
1916 	 * Set a timeout in case the chip goes out to lunch.
1917 	 */
1918 	ifp->if_timer = 5;
1919 }
1920 
1921 int
1922 re_init(struct ifnet *ifp)
1923 {
1924 	struct rl_softc *sc = ifp->if_softc;
1925 	u_int32_t	rxcfg = 0;
1926 	u_int16_t	cfg;
1927 	int		s;
1928 	union {
1929 		u_int32_t align_dummy;
1930 		u_char eaddr[ETHER_ADDR_LEN];
1931 	} eaddr;
1932 
1933 	s = splnet();
1934 
1935 	/*
1936 	 * Cancel pending I/O and free all RX/TX buffers.
1937 	 */
1938 	re_stop(ifp, 0);
1939 
1940 	/*
1941 	 * Enable C+ RX and TX mode, as well as RX checksum offload.
1942 	 * We must configure the C+ register before all others.
1943 	 */
1944 	cfg = RL_CPLUSCMD_PCI_MRW;
1945 	if (ifp->if_capabilities & IFCAP_CSUM_IPv4)
1946 		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
1947 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1948 		cfg |= RL_CPLUSCMD_VLANSTRIP;
1949 	if (sc->rl_flags & RL_FLAG_MACSTAT) {
1950 		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
1951 		/* XXX magic. */
1952 		cfg |= 0x0001;
1953 	} else {
1954 		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
1955 	}
1956 	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
1957 
1958 	/*
1959 	 * Init our MAC address.  Even though the chipset
1960 	 * documentation doesn't mention it, we need to enter "Config
1961 	 * register write enable" mode to modify the ID registers.
1962 	 */
1963 	bcopy(sc->sc_arpcom.ac_enaddr, eaddr.eaddr, ETHER_ADDR_LEN);
1964 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1965 	CSR_WRITE_4(sc, RL_IDR4,
1966 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
1967 	CSR_WRITE_4(sc, RL_IDR0,
1968 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
1969 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1970 
1971 	/*
1972 	 * For C+ mode, initialize the RX descriptors and mbufs.
1973 	 */
1974 	re_rx_list_init(sc);
1975 	re_tx_list_init(sc);
1976 
1977 	/*
1978 	 * Load the addresses of the RX and TX lists into the chip.
1979 	 */
1980 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
1981 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_map->dm_segs[0].ds_addr));
1982 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
1983 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_map->dm_segs[0].ds_addr));
1984 
1985 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
1986 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_map->dm_segs[0].ds_addr));
1987 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
1988 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_map->dm_segs[0].ds_addr));
1989 
1990 	/*
1991 	 * Enable transmit and receive.
1992 	 */
1993 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1994 
1995 	/*
1996 	 * Set the initial TX and RX configuration.
1997 	 */
1998 	if (sc->rl_testmode) {
1999 		if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
2000 			CSR_WRITE_4(sc, RL_TXCFG,
2001 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2002 		else
2003 			CSR_WRITE_4(sc, RL_TXCFG,
2004 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2005 	} else
2006 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2007 
2008 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2009 
2010 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2011 
2012 	/* Set the individual bit to receive frames for this host only. */
2013 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2014 	rxcfg |= RL_RXCFG_RX_INDIV;
2015 
2016 	/*
2017 	 * Set capture broadcast bit to capture broadcast frames.
2018 	 */
2019 	if (ifp->if_flags & IFF_BROADCAST)
2020 		rxcfg |= RL_RXCFG_RX_BROAD;
2021 	else
2022 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2023 
2024 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2025 
2026 	/* Program promiscuous mode and multicast filters. */
2027 	re_iff(sc);
2028 
2029 	/*
2030 	 * Enable interrupts.
2031 	 */
2032 	if (sc->rl_testmode)
2033 		CSR_WRITE_2(sc, RL_IMR, 0);
2034 	else
2035 		re_setup_intr(sc, 1, sc->rl_imtype);
2036 	CSR_WRITE_2(sc, RL_ISR, sc->rl_imtype);
2037 
2038 	/* Start RX/TX process. */
2039 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2040 #ifdef notdef
2041 	/* Enable receiver and transmitter. */
2042 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2043 #endif
2044 
2045 	/*
2046 	 * For 8169 gigE NICs, set the max allowed RX packet
2047 	 * size so we can receive jumbo frames.
2048 	 */
2049 	if (sc->sc_hwrev != RL_HWREV_8139CPLUS)
2050 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2051 
2052 	if (sc->rl_testmode)
2053 		return (0);
2054 
2055 	mii_mediachg(&sc->sc_mii);
2056 
2057 	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2058 
2059 	ifp->if_flags |= IFF_RUNNING;
2060 	ifp->if_flags &= ~IFF_OACTIVE;
2061 
2062 	splx(s);
2063 
2064 	sc->rl_flags &= ~RL_FLAG_LINK;
2065 
2066 	timeout_add_sec(&sc->timer_handle, 1);
2067 
2068 	return (0);
2069 }
2070 
2071 /*
2072  * Set media options.
2073  */
2074 int
2075 re_ifmedia_upd(struct ifnet *ifp)
2076 {
2077 	struct rl_softc	*sc;
2078 
2079 	sc = ifp->if_softc;
2080 
2081 	return (mii_mediachg(&sc->sc_mii));
2082 }
2083 
2084 /*
2085  * Report current media status.
2086  */
2087 void
2088 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2089 {
2090 	struct rl_softc	*sc;
2091 
2092 	sc = ifp->if_softc;
2093 
2094 	mii_pollstat(&sc->sc_mii);
2095 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2096 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2097 }
2098 
2099 int
2100 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2101 {
2102 	struct rl_softc	*sc = ifp->if_softc;
2103 	struct ifreq	*ifr = (struct ifreq *) data;
2104 	struct ifaddr *ifa = (struct ifaddr *)data;
2105 	int		s, error = 0;
2106 
2107 	s = splnet();
2108 
2109 	switch(command) {
2110 	case SIOCSIFADDR:
2111 		ifp->if_flags |= IFF_UP;
2112 		if (!(ifp->if_flags & IFF_RUNNING))
2113 			re_init(ifp);
2114 #ifdef INET
2115 		if (ifa->ifa_addr->sa_family == AF_INET)
2116 			arp_ifinit(&sc->sc_arpcom, ifa);
2117 #endif /* INET */
2118 		break;
2119 	case SIOCSIFFLAGS:
2120 		if (ifp->if_flags & IFF_UP) {
2121 			if (ifp->if_flags & IFF_RUNNING)
2122 				re_iff(sc);
2123 			else
2124 				re_init(ifp);
2125 		} else {
2126 			if (ifp->if_flags & IFF_RUNNING)
2127 				re_stop(ifp, 1);
2128 		}
2129 		sc->if_flags = ifp->if_flags;
2130 		break;
2131 	case SIOCGIFMEDIA:
2132 	case SIOCSIFMEDIA:
2133 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
2134 		break;
2135 	default:
2136 		error = ether_ioctl(ifp, &sc->sc_arpcom, command, data);
2137 	}
2138 
2139 	if (error == ENETRESET) {
2140 		if (ifp->if_flags & IFF_RUNNING)
2141 			re_iff(sc);
2142 		error = 0;
2143 	}
2144 
2145 	splx(s);
2146 	return (error);
2147 }
2148 
2149 void
2150 re_watchdog(struct ifnet *ifp)
2151 {
2152 	struct rl_softc	*sc;
2153 	int	s;
2154 
2155 	sc = ifp->if_softc;
2156 	s = splnet();
2157 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2158 	ifp->if_oerrors++;
2159 
2160 	re_txeof(sc);
2161 	re_rxeof(sc);
2162 
2163 	re_init(ifp);
2164 
2165 	splx(s);
2166 }
2167 
2168 /*
2169  * Stop the adapter and free any mbufs allocated to the
2170  * RX and TX lists.
2171  */
2172 void
2173 re_stop(struct ifnet *ifp, int disable)
2174 {
2175 	struct rl_softc *sc;
2176 	int	i;
2177 
2178 	sc = ifp->if_softc;
2179 
2180 	ifp->if_timer = 0;
2181 	sc->rl_flags &= ~(RL_FLAG_LINK|RL_FLAG_TIMERINTR);
2182 
2183 	timeout_del(&sc->timer_handle);
2184 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2185 
2186 	mii_down(&sc->sc_mii);
2187 
2188 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2189 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2190 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2191 
2192 	if (sc->rl_head != NULL) {
2193 		m_freem(sc->rl_head);
2194 		sc->rl_head = sc->rl_tail = NULL;
2195 	}
2196 
2197 	/* Free the TX list buffers. */
2198 	for (i = 0; i < RL_TX_QLEN; i++) {
2199 		if (sc->rl_ldata.rl_txq[i].txq_mbuf != NULL) {
2200 			bus_dmamap_unload(sc->sc_dmat,
2201 			    sc->rl_ldata.rl_txq[i].txq_dmamap);
2202 			m_freem(sc->rl_ldata.rl_txq[i].txq_mbuf);
2203 			sc->rl_ldata.rl_txq[i].txq_mbuf = NULL;
2204 		}
2205 	}
2206 
2207 	/* Free the RX list buffers. */
2208 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2209 		if (sc->rl_ldata.rl_rxsoft[i].rxs_mbuf != NULL) {
2210 			bus_dmamap_unload(sc->sc_dmat,
2211 			    sc->rl_ldata.rl_rxsoft[i].rxs_dmamap);
2212 			m_freem(sc->rl_ldata.rl_rxsoft[i].rxs_mbuf);
2213 			sc->rl_ldata.rl_rxsoft[i].rxs_mbuf = NULL;
2214 		}
2215 	}
2216 }
2217 
2218 void
2219 re_setup_hw_im(struct rl_softc *sc)
2220 {
2221 	KASSERT(sc->rl_flags & RL_FLAG_HWIM);
2222 
2223 	/*
2224 	 * Interrupt moderation
2225 	 *
2226 	 * 0xABCD
2227 	 * A - unknown (maybe TX related)
2228 	 * B - TX timer (unit: 25us)
2229 	 * C - unknown (maybe RX related)
2230 	 * D - RX timer (unit: 25us)
2231 	 *
2232 	 *
2233 	 * re(4)'s interrupt moderation is actually controlled by
2234 	 * two variables, like most other NICs (bge, bnx etc.)
2235 	 * o  timer
2236 	 * o  number of packets [P]
2237 	 *
2238 	 * The logic relationship between these two variables is
2239 	 * similar to other NICs too:
2240 	 * if (timer expire || packets > [P])
2241 	 *     Interrupt is delivered
2242 	 *
2243 	 * Currently we only know how to set 'timer', but not
2244 	 * 'number of packets', which should be ~30, as far as I
2245 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
2246 	 */
2247 	CSR_WRITE_2(sc, RL_IM,
2248 		    RL_IM_RXTIME(sc->rl_rx_time) |
2249 		    RL_IM_TXTIME(sc->rl_tx_time) |
2250 		    RL_IM_MAGIC);
2251 }
2252 
2253 void
2254 re_disable_hw_im(struct rl_softc *sc)
2255 {
2256 	if (sc->rl_flags & RL_FLAG_HWIM)
2257 		CSR_WRITE_2(sc, RL_IM, 0);
2258 }
2259 
2260 void
2261 re_setup_sim_im(struct rl_softc *sc)
2262 {
2263 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
2264 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400); /* XXX */
2265 	else {
2266 		u_int32_t ticks;
2267 
2268 		/*
2269 		 * Datasheet says tick decreases at bus speed,
2270 		 * but it seems the clock runs a little bit
2271 		 * faster, so we do some compensation here.
2272 		 */
2273 		ticks = (sc->rl_sim_time * sc->rl_bus_speed * 8) / 5;
2274 		CSR_WRITE_4(sc, RL_TIMERINT_8169, ticks);
2275 	}
2276 	CSR_WRITE_4(sc, RL_TIMERCNT, 1); /* reload */
2277 	sc->rl_flags |= RL_FLAG_TIMERINTR;
2278 }
2279 
2280 void
2281 re_disable_sim_im(struct rl_softc *sc)
2282 {
2283 	if (sc->sc_hwrev == RL_HWREV_8139CPLUS)
2284 		CSR_WRITE_4(sc, RL_TIMERINT, 0);
2285 	else
2286 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0);
2287 	sc->rl_flags &= ~RL_FLAG_TIMERINTR;
2288 }
2289 
2290 void
2291 re_config_imtype(struct rl_softc *sc, int imtype)
2292 {
2293 	switch (imtype) {
2294 	case RL_IMTYPE_HW:
2295 		KASSERT(sc->rl_flags & RL_FLAG_HWIM);
2296 		/* FALL THROUGH */
2297 	case RL_IMTYPE_NONE:
2298 		sc->rl_intrs = RL_INTRS_CPLUS;
2299 		sc->rl_rx_ack = RL_ISR_RX_OK | RL_ISR_FIFO_OFLOW |
2300 				RL_ISR_RX_OVERRUN;
2301 		sc->rl_tx_ack = RL_ISR_TX_OK;
2302 		break;
2303 
2304 	case RL_IMTYPE_SIM:
2305 		sc->rl_intrs = RL_INTRS_TIMER;
2306 		sc->rl_rx_ack = RL_ISR_TIMEOUT_EXPIRED;
2307 		sc->rl_tx_ack = RL_ISR_TIMEOUT_EXPIRED;
2308 		break;
2309 
2310 	default:
2311 		panic("%s: unknown imtype %d\n",
2312 		      sc->sc_dev.dv_xname, imtype);
2313 	}
2314 }
2315 
2316 void
2317 re_setup_intr(struct rl_softc *sc, int enable_intrs, int imtype)
2318 {
2319 	re_config_imtype(sc, imtype);
2320 
2321 	if (enable_intrs)
2322 		CSR_WRITE_2(sc, RL_IMR, sc->rl_intrs);
2323 	else
2324 		CSR_WRITE_2(sc, RL_IMR, 0);
2325 
2326 	switch (imtype) {
2327 	case RL_IMTYPE_NONE:
2328 		re_disable_sim_im(sc);
2329 		re_disable_hw_im(sc);
2330 		break;
2331 
2332 	case RL_IMTYPE_HW:
2333 		KASSERT(sc->rl_flags & RL_FLAG_HWIM);
2334 		re_disable_sim_im(sc);
2335 		re_setup_hw_im(sc);
2336 		break;
2337 
2338 	case RL_IMTYPE_SIM:
2339 		re_disable_hw_im(sc);
2340 		re_setup_sim_im(sc);
2341 		break;
2342 
2343 	default:
2344 		panic("%s: unknown imtype %d\n",
2345 		      sc->sc_dev.dv_xname, imtype);
2346 	}
2347 }
2348