xref: /openbsd-src/sys/dev/ic/elink3.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: elink3.c,v 1.79 2013/08/07 01:06:29 bluhm Exp $	*/
2 /*	$NetBSD: elink3.c,v 1.32 1997/05/14 00:22:00 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
6  * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by Herb Peyerl.
20  * 4. The name of Herb Peyerl may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include "bpfilter.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/socket.h>
41 #include <sys/ioctl.h>
42 #include <sys/errno.h>
43 #include <sys/syslog.h>
44 #include <sys/selinfo.h>
45 #include <sys/timeout.h>
46 #include <sys/device.h>
47 
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_types.h>
51 #include <net/netisr.h>
52 #include <net/if_media.h>
53 
54 #ifdef INET
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/ip.h>
58 #include <netinet/if_ether.h>
59 #endif
60 
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64 
65 #include <machine/cpu.h>
66 #include <machine/bus.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 
71 #include <dev/ic/elink3var.h>
72 #include <dev/ic/elink3reg.h>
73 
74 /*
75  * Structure to map media-present bits in boards to
76  * ifmedia codes and printable media names. Used for table-driven
77  * ifmedia initialization.
78  */
79 struct ep_media {
80 	int	epm_eeprom_data;	/* bitmask for eeprom config */
81 	int	epm_conn;		/* sc->ep_connectors code for medium */
82 	char   *epm_name;		/* name of medium */
83 	int	epm_ifmedia;		/* ifmedia word for medium */
84 	int	epm_ifdata;
85 };
86 
87 /*
88  * ep_media table for Vortex/Demon/Boomerang:
89  * map from media-present bits in register RESET_OPTIONS+2
90  * to  ifmedia "media words" and printable names.
91  *
92  * XXX indexed directly by INTERNAL_CONFIG default_media field,
93  * (i.e., EPMEDIA_ constants)  forcing order of entries.
94  *  Note that 3 is reserved.
95  */
96 const struct ep_media ep_vortex_media[] = {
97   { EP_PCI_UTP,        EPC_UTP, "utp",	    IFM_ETHER|IFM_10_T,
98        EPMEDIA_10BASE_T },
99   { EP_PCI_AUI,        EPC_AUI, "aui",	    IFM_ETHER|IFM_10_5,
100        EPMEDIA_AUI },
101   { 0,                 0,  	"reserved", IFM_NONE,  EPMEDIA_RESV1 },
102   { EP_PCI_BNC,        EPC_BNC, "bnc",	    IFM_ETHER|IFM_10_2,
103        EPMEDIA_10BASE_2 },
104   { EP_PCI_100BASE_TX, EPC_100TX, "100-TX", IFM_ETHER|IFM_100_TX,
105        EPMEDIA_100BASE_TX },
106   { EP_PCI_100BASE_FX, EPC_100FX, "100-FX", IFM_ETHER|IFM_100_FX,
107        EPMEDIA_100BASE_FX },
108   { EP_PCI_100BASE_MII,EPC_MII,   "mii",    IFM_ETHER|IFM_100_TX,
109        EPMEDIA_MII },
110   { EP_PCI_100BASE_T4, EPC_100T4, "100-T4", IFM_ETHER|IFM_100_T4,
111        EPMEDIA_100BASE_T4 }
112 };
113 
114 /*
115  * ep_media table for 3c509/3c509b/3c579/3c589:
116  * map from media-present bits in register CNFG_CNTRL
117  * (window 0, offset ?) to  ifmedia "media words" and printable names.
118  */
119 struct ep_media ep_isa_media[] = {
120   { EP_W0_CC_UTP,  EPC_UTP, "utp",   IFM_ETHER|IFM_10_T, EPMEDIA_10BASE_T },
121   { EP_W0_CC_AUI,  EPC_AUI, "aui",   IFM_ETHER|IFM_10_5, EPMEDIA_AUI },
122   { EP_W0_CC_BNC,  EPC_BNC, "bnc",   IFM_ETHER|IFM_10_2, EPMEDIA_10BASE_2 },
123 };
124 
125 /* Map vortex reset_options bits to if_media codes. */
126 const u_int ep_default_to_media[] = {
127 	IFM_ETHER | IFM_10_T,
128 	IFM_ETHER | IFM_10_5,
129 	0, 			/* reserved by 3Com */
130 	IFM_ETHER | IFM_10_2,
131 	IFM_ETHER | IFM_100_TX,
132 	IFM_ETHER | IFM_100_FX,
133 	IFM_ETHER | IFM_100_TX,	/* XXX really MII: need to talk to PHY */
134 	IFM_ETHER | IFM_100_T4,
135 };
136 
137 struct cfdriver ep_cd = {
138 	NULL, "ep", DV_IFNET
139 };
140 
141 void ep_vortex_probemedia(struct ep_softc *sc);
142 void ep_isa_probemedia(struct ep_softc *sc);
143 
144 void eptxstat(struct ep_softc *);
145 int epstatus(struct ep_softc *);
146 int epioctl(struct ifnet *, u_long, caddr_t);
147 void epstart(struct ifnet *);
148 void epwatchdog(struct ifnet *);
149 void epreset(struct ep_softc *);
150 void epread(struct ep_softc *);
151 struct mbuf *epget(struct ep_softc *, int);
152 void epmbuffill(void *);
153 void epmbufempty(struct ep_softc *);
154 void epsetfilter(struct ep_softc *);
155 void ep_roadrunner_mii_enable(struct ep_softc *);
156 int epsetmedia(struct ep_softc *, int);
157 
158 /* ifmedia callbacks */
159 int ep_media_change(struct ifnet *);
160 void ep_media_status(struct ifnet *, struct ifmediareq *);
161 
162 /* MII callbacks */
163 int ep_mii_readreg(struct device *, int, int);
164 void ep_mii_writereg(struct device *, int, int, int);
165 void ep_statchg(struct device *);
166 
167 void    ep_mii_setbit(struct ep_softc *, u_int16_t);
168 void    ep_mii_clrbit(struct ep_softc *, u_int16_t);
169 u_int16_t ep_mii_readbit(struct ep_softc *, u_int16_t);
170 void    ep_mii_sync(struct ep_softc *);
171 void    ep_mii_sendbits(struct ep_softc *, u_int32_t, int);
172 
173 int epbusyeeprom(struct ep_softc *);
174 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
175 
176 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd,u_int arg);
177 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
178 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
179 static __inline int ep_w1_reg(struct ep_softc *, int);
180 
181 /*
182  * Issue a (reset) command, and be sure it has completed.
183  * Used for global reset, TX_RESET, RX_RESET.
184  */
185 static inline void
186 ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
187 {
188 	bus_space_tag_t iot = sc->sc_iot;
189 	bus_space_handle_t ioh = sc->sc_ioh;
190 
191 	bus_space_write_2(iot, ioh, cmd, arg);
192 	ep_finish_reset(iot, ioh);
193 }
194 
195 /*
196  * Wait for any pending reset to complete.
197  */
198 static inline void
199 ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
200 {
201 	int i;
202 
203 	for (i = 0; i < 10000; i++) {
204 		if ((bus_space_read_2(iot, ioh, EP_STATUS) &
205 		    S_COMMAND_IN_PROGRESS) == 0)
206 			break;
207 		DELAY(10);
208 	}
209 }
210 
211 static inline void
212 ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
213 {
214 	int i;
215 
216 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
217 
218 	/*
219 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
220 	 * every received packet (adding latency and limiting pkt-recv rate).
221 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
222 	 * is about right.
223 	 */
224 	for (i = 0; i < 8000; i++) {
225 		if ((bus_space_read_2(iot, ioh, EP_STATUS) &
226 		    S_COMMAND_IN_PROGRESS) == 0)
227 			return;
228 	}
229 
230 	/* not fast enough, do DELAY()s */
231 	ep_finish_reset(iot, ioh);
232 }
233 
234 /*
235  * Some chips (i.e., 3c574 RoadRunner) have Window 1 registers offset.
236  */
237 static __inline int
238 ep_w1_reg(struct ep_softc *sc, int reg)
239 {
240 	switch (sc->ep_chipset) {
241 	case EP_CHIPSET_ROADRUNNER:
242 		switch (reg) {
243 		case EP_W1_FREE_TX:
244 		case EP_W1_RUNNER_RDCTL:
245 		case EP_W1_RUNNER_WRCTL:
246 			return (reg);
247 		}
248 		return (reg + 0x10);
249 	}
250 	return (reg);
251 }
252 
253 /*
254  * Back-end attach and configure.
255  */
256 void
257 epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
258 {
259 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
260 	bus_space_tag_t iot = sc->sc_iot;
261 	bus_space_handle_t ioh = sc->sc_ioh;
262 	u_int16_t i;
263 
264 	sc->ep_chipset = chipset;
265 
266 	/*
267 	 * We could have been groveling around in other register
268 	 * windows in the front-end; make sure we're in window 0
269 	 * to read the EEPROM.
270 	 */
271 	GO_WINDOW(0);
272 
273 	if (enaddr == NULL) {
274 		/*
275 		 * Read the station address from the eeprom.
276 		 */
277 		for (i = 0; i < 3; i++) {
278 			u_int16_t x = ep_read_eeprom(sc, i);
279 
280 			sc->sc_arpcom.ac_enaddr[(i << 1)] = x >> 8;
281 			sc->sc_arpcom.ac_enaddr[(i << 1) + 1] = x;
282 		}
283 	} else {
284 		bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
285 	}
286 
287 	printf(" address %s", ether_sprintf(sc->sc_arpcom.ac_enaddr));
288 	if (sc->ep_flags & EP_FLAGS_MII)
289 		printf("\n");
290 	else
291 		printf(", ");
292 
293 	/*
294 	 * Vortex-based (3c59x pci,eisa) cards allow FDDI-sized (4500) byte
295 	 * packets.  Commands only take an 11-bit parameter, and  11 bits
296 	 * isn't enough to hold a full-size packet length.
297 	 * Commands to these cards implicitly upshift a packet size
298 	 * or threshold by 2 bits.
299 	 * To detect  cards with large-packet support, we probe by setting
300 	 * the transmit threshold register, then change windows and
301 	 * read back the threshold register directly, and see if the
302 	 * threshold value was shifted or not.
303 	 */
304 	bus_space_write_2(iot, ioh, EP_COMMAND,
305 			  SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
306 	GO_WINDOW(5);
307 	i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
308 	GO_WINDOW(1);
309 	switch (i)  {
310 	case EP_LARGEWIN_PROBE:
311 	case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
312 		sc->txashift = 0;
313 		break;
314 
315 	case (EP_LARGEWIN_PROBE << 2):
316 		sc->txashift = 2;
317 		/* XXX does the 3c515 support Vortex-style RESET_OPTIONS? */
318 		break;
319 
320 	default:
321 		printf("wrote %x to TX_AVAIL_THRESH, read back %x. "
322 		    "Interface disabled\n", EP_THRESH_DISABLE, (int) i);
323 		return;
324 	}
325 
326 	timeout_set(&sc->sc_epmbuffill_tmo, epmbuffill, sc);
327 
328 	/*
329 	 * Ensure Tx-available interrupts are enabled for
330 	 * start the interface.
331 	 * XXX should be in epinit()?
332 	 */
333 	bus_space_write_2(iot, ioh, EP_COMMAND,
334 	    SET_TX_AVAIL_THRESH | (1600 >> sc->txashift));
335 
336 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
337 	ifp->if_softc = sc;
338 	ifp->if_start = epstart;
339 	ifp->if_ioctl = epioctl;
340 	ifp->if_watchdog = epwatchdog;
341 	ifp->if_flags =
342 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
343 	/* 64 packets are around 100ms on 10Mbps */
344 	IFQ_SET_MAXLEN(&ifp->if_snd, 64);
345 	IFQ_SET_READY(&ifp->if_snd);
346 
347 	if_attach(ifp);
348 	ether_ifattach(ifp);
349 
350 	/*
351 	 * Finish configuration:
352 	 * determine chipset if the front-end couldn't do so,
353 	 * show board details, set media.
354 	 */
355 
356 	GO_WINDOW(0);
357 
358 	ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
359 	    ep_media_status);
360 	sc->sc_mii.mii_ifp = ifp;
361 	sc->sc_mii.mii_readreg = ep_mii_readreg;
362 	sc->sc_mii.mii_writereg = ep_mii_writereg;
363 	sc->sc_mii.mii_statchg = ep_statchg;
364 
365 	/*
366 	 * If we've got an indirect (ISA, PCMCIA?) board, the chipset
367 	 * is unknown.  If the board has large-packet support, it's a
368 	 * Vortex/Boomerang, otherwise it's a 3c509.
369 	 * XXX use eeprom capability word instead?
370 	 */
371 	if (sc->ep_chipset == EP_CHIPSET_UNKNOWN && sc->txashift)  {
372 		printf("warning: unknown chipset, possibly 3c515?\n");
373 #ifdef notyet
374 		sc->sc_chipset = EP_CHIPSET_VORTEX;
375 #endif	/* notyet */
376 	}
377 
378 	/*
379 	 * Ascertain which media types are present and inform ifmedia.
380 	 */
381 	switch (sc->ep_chipset) {
382 	case EP_CHIPSET_ROADRUNNER:
383 		if (sc->ep_flags & EP_FLAGS_MII) {
384 			ep_roadrunner_mii_enable(sc);
385 			GO_WINDOW(0);
386 		}
387 		/* FALLTHROUGH */
388 
389 	case EP_CHIPSET_BOOMERANG:
390 		/*
391 		 * If the device has MII, probe it.  We won't be using
392 		 * any `native' media in this case, only PHYs.  If
393 		 * we don't, just treat the Boomerang like the Vortex.
394 		 */
395 		if (sc->ep_flags & EP_FLAGS_MII) {
396 			mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
397 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
398 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
399 				ifmedia_add(&sc->sc_mii.mii_media,
400 				    IFM_ETHER|IFM_NONE, 0, NULL);
401 				ifmedia_set(&sc->sc_mii.mii_media,
402 				    IFM_ETHER|IFM_NONE);
403 			} else {
404 				ifmedia_set(&sc->sc_mii.mii_media,
405 				    IFM_ETHER|IFM_AUTO);
406 			}
407 			break;
408 		}
409 		/* FALLTHROUGH */
410 
411 	/* on a direct bus, the attach routine can tell, but check anyway. */
412 	case EP_CHIPSET_VORTEX:
413 	case EP_CHIPSET_BOOMERANG2:
414 		ep_vortex_probemedia(sc);
415 		break;
416 
417 	/* on ISA we can't yet tell 3c509 from 3c515. Assume the former. */
418 	case EP_CHIPSET_3C509:
419 	default:
420 		ep_isa_probemedia(sc);
421 		break;
422 	}
423 
424 	GO_WINDOW(1);		/* Window 1 is operating window */
425 
426 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
427 
428 	ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
429 	ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
430 }
431 
432 int
433 ep_detach(struct device *self)
434 {
435 	struct ep_softc *sc = (struct ep_softc *)self;
436 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
437 
438 	if (sc->ep_flags & EP_FLAGS_MII)
439 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
440 
441 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
442 
443 	ether_ifdetach(ifp);
444 	if_detach(ifp);
445 
446 	return (0);
447 }
448 
449 /*
450  * Find supported media on 3c509-generation hardware that doesn't have
451  * a "reset_options" register in window 3.
452  * Use the config_cntrl register  in window 0 instead.
453  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
454  * that implement  CONFIG_CTRL.  We don't have a good way to set the
455  * default active medium; punt to ifconfig instead.
456  *
457  * XXX what about 3c515, pcmcia 10/100?
458  */
459 void
460 ep_isa_probemedia(struct ep_softc *sc)
461 {
462 	bus_space_tag_t iot = sc->sc_iot;
463 	bus_space_handle_t ioh = sc->sc_ioh;
464 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
465 	int	conn, i;
466 	u_int16_t ep_w0_config, port;
467 
468 	conn = 0;
469 	GO_WINDOW(0);
470 	ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
471 	for (i = 0; i < nitems(ep_isa_media); i++) {
472 		struct ep_media * epm = ep_isa_media + i;
473 
474 		if ((ep_w0_config & epm->epm_eeprom_data) != 0) {
475 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0);
476 			if (conn)
477 				printf("/");
478 			printf("%s", epm->epm_name);
479 			conn |= epm->epm_conn;
480 		}
481 	}
482 	sc->ep_connectors = conn;
483 
484 	/* get default medium from EEPROM */
485 	if (epbusyeeprom(sc))
486 		return;		/* XXX why is eeprom busy? */
487 	bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
488 	    READ_EEPROM | EEPROM_ADDR_CFG);
489 	if (epbusyeeprom(sc))
490 		return;		/* XXX why is  eeprom busy? */
491 	port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
492 	port = port >> 14;
493 
494 	printf(" (default %s)\n", ep_vortex_media[port].epm_name);
495 
496 	/* tell ifconfig what currently-active media is. */
497 	ifmedia_set(ifm, ep_default_to_media[port]);
498 
499 	/* XXX autoselect not yet implemented */
500 }
501 
502 
503 /*
504  * Find media present on large-packet-capable elink3 devices.
505  * Show onboard configuration of large-packet-capable elink3 devices
506  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
507  * Use media and card-version info in window 3 instead.
508  *
509  * XXX how much of this works with 3c515, pcmcia 10/100?
510  */
511 void
512 ep_vortex_probemedia(struct ep_softc *sc)
513 {
514 	bus_space_tag_t iot = sc->sc_iot;
515 	bus_space_handle_t ioh = sc->sc_ioh;
516 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
517 	u_int config1, conn;
518 	int reset_options;
519 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
520 	int autoselect;		/* boolean: should default to autoselect */
521 	const char *medium_name;
522 	register int i;
523 
524 	GO_WINDOW(3);
525 	config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
526 	reset_options  = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
527 	GO_WINDOW(0);
528 
529 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
530         autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
531 
532 	/* set available media options */
533 	conn = 0;
534 	for (i = 0; i < nitems(ep_vortex_media); i++) {
535 		const struct ep_media *epm = ep_vortex_media + i;
536 
537 		if ((reset_options & epm->epm_eeprom_data) != 0) {
538 			if (conn)
539 				printf("/");
540 			printf("%s", epm->epm_name);
541 			conn |= epm->epm_conn;
542 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0);
543 		}
544 	}
545 
546 	sc->ep_connectors = conn;
547 
548 	/* Show  eeprom's idea of default media.  */
549 	medium_name = (default_media > nitems(ep_vortex_media) - 1)
550 		? "(unknown/impossible media)"
551 		: ep_vortex_media[default_media].epm_name;
552 	printf(" default %s%s",
553 	       medium_name, (autoselect) ? "/autoselect" : "");
554 /*	sc->sc_media = ep_vortex_media[default_media].epm_ifdata;*/
555 
556 #ifdef notyet
557 	/*
558 	 * Set default: either the active interface the card
559 	 * reads  from the EEPROM, or if autoselect is true,
560 	 * whatever we find is actually connected.
561 	 *
562 	 * XXX autoselect not yet implemented.
563 	 */
564 #endif	/* notyet */
565 
566 	/* tell ifconfig what currently-active media is. */
567 	ifmedia_set(ifm, ep_default_to_media[default_media]);
568 }
569 
570 /*
571  * Bring device up.
572  *
573  * The order in here seems important. Otherwise we may not receive
574  * interrupts. ?!
575  */
576 void
577 epinit(struct ep_softc *sc)
578 {
579 	register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
580 	bus_space_tag_t iot = sc->sc_iot;
581 	bus_space_handle_t ioh = sc->sc_ioh;
582 	int i;
583 
584 	/* make sure any pending reset has completed before touching board */
585 	ep_finish_reset(iot, ioh);
586 
587 	/* cancel any pending I/O */
588 	epstop(sc);
589 
590 	if (sc->bustype != EP_BUS_PCI) {
591 		GO_WINDOW(0);
592 		bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
593 		bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
594 	}
595 
596 	if (sc->bustype == EP_BUS_PCMCIA) {
597 		bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
598 	}
599 
600 	GO_WINDOW(2);
601 	for (i = 0; i < 6; i++)	/* Reload the ether_addr. */
602 		bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
603 		    sc->sc_arpcom.ac_enaddr[i]);
604 
605 	if (sc->bustype == EP_BUS_PCI || sc->bustype == EP_BUS_EISA)
606 		/*
607 		 * Reset the station-address receive filter.
608 		 * A bug workaround for busmastering  (Vortex, Demon) cards.
609 		 */
610 		for (i = 0; i < 6; i++)
611 			bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
612 
613 	ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
614 	ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
615 
616 	GO_WINDOW(1);		/* Window 1 is operating window */
617 	for (i = 0; i < 31; i++)
618 		bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS));
619 
620 	/* Set threshold for for Tx-space available interrupt. */
621 	bus_space_write_2(iot, ioh, EP_COMMAND,
622 	    SET_TX_AVAIL_THRESH | (1600 >> sc->txashift));
623 
624 	if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
625 		/* Enable options in the PCMCIA LAN COR register, via
626 		 * RoadRunner Window 1.
627 		 *
628 		 * XXX MAGIC CONSTANTS!
629 		 */
630 		u_int16_t cor;
631 
632 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, (1 << 11));
633 
634 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
635 		bus_space_write_2(iot, ioh, 0, cor);
636 
637 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
638 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
639 
640 		if (sc->ep_flags & EP_FLAGS_MII) {
641 			ep_roadrunner_mii_enable(sc);
642 			GO_WINDOW(1);
643 		}
644 	}
645 
646 	/* Enable interrupts. */
647 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK |
648 	    S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
649 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK |
650 	    S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
651 
652 	/*
653 	 * Attempt to get rid of any stray interrupts that occurred during
654 	 * configuration.  On the i386 this isn't possible because one may
655 	 * already be queued.  However, a single stray interrupt is
656 	 * unimportant.
657 	 */
658 	bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
659 
660 	epsetfilter(sc);
661 	epsetmedia(sc, sc->sc_mii.mii_media.ifm_cur->ifm_data);
662 
663 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
664 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
665 
666 	epmbuffill(sc);
667 
668 	/* Interface is now `running', with no output active. */
669 	ifp->if_flags |= IFF_RUNNING;
670 	ifp->if_flags &= ~IFF_OACTIVE;
671 
672 	/* Attempt to start output, if any. */
673 	epstart(ifp);
674 }
675 
676 /*
677  * Set multicast receive filter.
678  * elink3 hardware has no selective multicast filter in hardware.
679  * Enable reception of all multicasts and filter in software.
680  */
681 void
682 epsetfilter(struct ep_softc *sc)
683 {
684 	register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
685 
686 	GO_WINDOW(1);		/* Window 1 is operating window */
687 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
688 	    FIL_INDIVIDUAL | FIL_BRDCST |
689 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
690 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
691 }
692 
693 
694 int
695 ep_media_change(struct ifnet *ifp)
696 {
697 	register struct ep_softc *sc = ifp->if_softc;
698 
699 	return	epsetmedia(sc, sc->sc_mii.mii_media.ifm_cur->ifm_data);
700 }
701 
702 /*
703  * Reset and enable the MII on the RoadRunner.
704  */
705 void
706 ep_roadrunner_mii_enable(struct ep_softc *sc)
707 {
708 	bus_space_tag_t iot = sc->sc_iot;
709 	bus_space_handle_t ioh = sc->sc_ioh;
710 
711 	GO_WINDOW(3);
712 	bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
713 	    EP_PCI_100BASE_MII|EP_RUNNER_ENABLE_MII);
714 	delay(1000);
715 	bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
716 	    EP_PCI_100BASE_MII|EP_RUNNER_MII_RESET|EP_RUNNER_ENABLE_MII);
717 	ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
718 	ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
719 	delay(1000);
720 	bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
721 	    EP_PCI_100BASE_MII|EP_RUNNER_ENABLE_MII);
722 }
723 
724 /*
725  * Set active media to a specific given EPMEDIA_<> value.
726  * For vortex/demon/boomerang cards, update media field in w3_internal_config,
727  *       and power on selected transceiver.
728  * For 3c509-generation cards (3c509/3c579/3c589/3c509B),
729  *	update media field in w0_address_config, and power on selected xcvr.
730  */
731 int
732 epsetmedia(struct ep_softc *sc, int medium)
733 {
734 	bus_space_tag_t iot = sc->sc_iot;
735 	bus_space_handle_t ioh = sc->sc_ioh;
736 	int w4_media;
737 	int config0, config1;
738 
739 	/*
740 	 * you can `ifconfig (link0|-link0) ep0' to get the following
741 	 * behaviour:
742 	 *	-link0	disable AUI/UTP. enable BNC.
743 	 *	link0	disable BNC. enable AUI.
744 	 *	link1	if the card has a UTP connector, and link0 is
745 	 *		set too, then you get the UTP port.
746 	 */
747 
748 	/*
749 	 * First, change the media-control bits in EP_W4_MEDIA_TYPE.
750 	 */
751 
752 	 /* Turn everything off.  First turn off linkbeat and UTP. */
753 	GO_WINDOW(4);
754 	w4_media = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE);
755 	w4_media =  w4_media & ~(ENABLE_UTP|SQE_ENABLE);
756 	bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, w4_media);
757 
758 	/* Turn off coax */
759 	bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
760 	delay(1000);
761 
762 	/* If the device has MII, select it, and then tell the
763 	 * PHY which media to use.
764 	 */
765 	if (sc->ep_flags & EP_FLAGS_MII) {
766 		GO_WINDOW(3);
767 
768 		if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
769 			int resopt;
770 
771 			resopt = bus_space_read_2(iot, ioh,
772 			    EP_W3_RESET_OPTIONS);
773 			bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
774 			    resopt | EP_RUNNER_ENABLE_MII);
775 		}
776 
777 		config0 = (u_int)bus_space_read_2(iot, ioh,
778 		    EP_W3_INTERNAL_CONFIG);
779 		config1 = (u_int)bus_space_read_2(iot, ioh,
780 		    EP_W3_INTERNAL_CONFIG + 2);
781 
782 		config1 = config1 & ~CONFIG_MEDIAMASK;
783 		config1 |= (EPMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
784 
785 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
786 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
787 		GO_WINDOW(1);	/* back to operating window */
788 
789 		mii_mediachg(&sc->sc_mii);
790 		return (0);
791 	}
792 
793 	/*
794 	 * Now turn on the selected media/transceiver.
795 	 */
796 	GO_WINDOW(4);
797 	switch (medium) {
798 	case EPMEDIA_10BASE_T:
799 		bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, (ENABLE_UTP |
800 		    (sc->bustype == EP_BUS_PCMCIA ? MEDIA_LED : 0)));
801 		break;
802 
803 	case EPMEDIA_10BASE_2:
804 		bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
805 		DELAY(1000);	/* 50ms not enough? */
806 		break;
807 
808 	/* XXX following only for new-generation cards */
809 	case EPMEDIA_100BASE_TX:
810 	case EPMEDIA_100BASE_FX:
811 	case EPMEDIA_100BASE_T4:	/* XXX check documentation */
812 		bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
813 		    w4_media | LINKBEAT_ENABLE);
814 		DELAY(1000);	/* not strictly necessary? */
815 		break;
816 
817 	case EPMEDIA_AUI:
818 		bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
819 		    w4_media | SQE_ENABLE);
820 		DELAY(1000);	/*  not strictly necessary? */
821 		break;
822 	case EPMEDIA_MII:
823 		break;
824 	default:
825 #if defined(EP_DEBUG)
826 		printf("%s unknown media 0x%x\n", sc->sc_dev.dv_xname, medium);
827 #endif
828 		break;
829 
830 	}
831 
832 	/*
833 	 * Tell the chip which PHY [sic] to use.
834 	 */
835 	switch (sc->ep_chipset) {
836 	case EP_CHIPSET_VORTEX:
837 	case EP_CHIPSET_BOOMERANG2:
838 		GO_WINDOW(3);
839 		config0 = (u_int)bus_space_read_2(iot, ioh,
840 		    EP_W3_INTERNAL_CONFIG);
841 		config1 = (u_int)bus_space_read_2(iot, ioh,
842 		    EP_W3_INTERNAL_CONFIG + 2);
843 
844 #if defined(EP_DEBUG)
845 		printf("%s:  read 0x%x, 0x%x from EP_W3_CONFIG register\n",
846 		       sc->sc_dev.dv_xname, config0, config1);
847 #endif
848 		config1 = config1 & ~CONFIG_MEDIAMASK;
849 		config1 |= (medium << CONFIG_MEDIAMASK_SHIFT);
850 
851 #if defined(EP_DEBUG)
852 		printf("epsetmedia: %s: medium 0x%x, 0x%x to EP_W3_CONFIG\n",
853 		    sc->sc_dev.dv_xname, medium, config1);
854 #endif
855 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
856 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
857 		break;
858 
859 	default:
860 		GO_WINDOW(0);
861 		config0 = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG);
862 		config0 &= 0x3fff;
863 		bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,
864 		    config0 | (medium << 14));
865 		DELAY(1000);
866 		break;
867 	}
868 
869 	GO_WINDOW(1);		/* Window 1 is operating window */
870 	return (0);
871 }
872 
873 
874 /*
875  * Get currently-selected media from card.
876  * (if_media callback, may be called before interface is brought up).
877  */
878 void
879 ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
880 {
881 	register struct ep_softc *sc = ifp->if_softc;
882 	bus_space_tag_t iot = sc->sc_iot;
883 	bus_space_handle_t ioh = sc->sc_ioh;
884 	u_int config1;
885 	u_int ep_mediastatus;
886 
887 	/*
888 	 * If we have MII, go ask the PHY what's going on.
889 	 */
890 	if (sc->ep_flags & EP_FLAGS_MII) {
891 		mii_pollstat(&sc->sc_mii);
892 		req->ifm_active = sc->sc_mii.mii_media_active;
893 		req->ifm_status = sc->sc_mii.mii_media_status;
894 		return;
895 	}
896 
897 	/* XXX read from softc when we start autosensing media */
898 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
899 
900 	switch (sc->ep_chipset) {
901 	case EP_CHIPSET_VORTEX:
902 	case EP_CHIPSET_BOOMERANG:
903 		GO_WINDOW(3);
904 		delay(5000);
905 
906 		config1 = bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
907 		GO_WINDOW(1);
908 
909 		config1 =
910 		    (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
911 		req->ifm_active = ep_default_to_media[config1];
912 
913 		/* XXX check full-duplex bits? */
914 
915 		GO_WINDOW(4);
916 		req->ifm_status = IFM_AVALID;	/* XXX */
917 		ep_mediastatus = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE);
918 		if (ep_mediastatus & LINKBEAT_DETECT)
919 			req->ifm_status |= IFM_ACTIVE; 	/* XXX  automedia */
920 
921 		break;
922 
923 	case EP_CHIPSET_UNKNOWN:
924 	case EP_CHIPSET_3C509:
925 		req->ifm_status = 0;	/* XXX */
926 		break;
927 
928 	default:
929 		printf("%s: media_status on unknown chipset 0x%x\n",
930 		       ifp->if_xname, sc->ep_chipset);
931 		break;
932 	}
933 
934 	/* XXX look for softc heartbeat for other chips or media */
935 
936 	GO_WINDOW(1);
937 	return;
938 }
939 
940 
941 
942 /*
943  * Start outputting on the interface.
944  * Always called as splnet().
945  */
946 void
947 epstart(struct ifnet *ifp)
948 {
949 	register struct ep_softc *sc = ifp->if_softc;
950 	bus_space_tag_t iot = sc->sc_iot;
951 	bus_space_handle_t ioh = sc->sc_ioh;
952 	struct mbuf *m, *m0;
953 	caddr_t data;
954 	int sh, len, pad, txreg;
955 
956 	/* Don't transmit if interface is busy or not running */
957 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
958 		return;
959 
960 startagain:
961 	/* Sneak a peek at the next packet */
962 	IFQ_POLL(&ifp->if_snd, m0);
963 	if (m0 == NULL)
964 		return;
965 
966 	/* We need to use m->m_pkthdr.len, so require the header */
967 	if ((m0->m_flags & M_PKTHDR) == 0)
968 		panic("epstart: no header mbuf");
969 	len = m0->m_pkthdr.len;
970 
971 	pad = (4 - len) & 3;
972 
973 	/*
974 	 * The 3c509 automatically pads short packets to minimum ethernet
975 	 * length, but we drop packets that are too large. Perhaps we should
976 	 * truncate them instead?
977 	 */
978 	if (len + pad > ETHER_MAX_LEN) {
979 		/* packet is obviously too large: toss it */
980 		++ifp->if_oerrors;
981 		IFQ_DEQUEUE(&ifp->if_snd, m0);
982 		m_freem(m0);
983 		goto readcheck;
984 	}
985 
986 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_FREE_TX)) <
987 	    len + pad + 4) {
988 		bus_space_write_2(iot, ioh, EP_COMMAND,
989 		    SET_TX_AVAIL_THRESH | ((len + pad + 4) >> sc->txashift));
990 		/* not enough room in FIFO */
991 		ifp->if_flags |= IFF_OACTIVE;
992 		return;
993 	} else {
994 		bus_space_write_2(iot, ioh, EP_COMMAND,
995 		    SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE);
996 	}
997 
998 	IFQ_DEQUEUE(&ifp->if_snd, m0);
999 	if (m0 == NULL)
1000 		return;
1001 
1002 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
1003 	    ((len / 4 + sc->tx_start_thresh) /*>> sc->txashift*/));
1004 
1005 #if NBPFILTER > 0
1006 	if (ifp->if_bpf)
1007 		bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1008 #endif
1009 
1010 	/*
1011 	 * Do the output at splhigh() so that an interrupt from another device
1012 	 * won't cause a FIFO underrun.
1013 	 */
1014 	sh = splhigh();
1015 
1016 	txreg = ep_w1_reg(sc, EP_W1_TX_PIO_WR_1);
1017 
1018 	bus_space_write_2(iot, ioh, txreg, len);
1019 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1020 	if (EP_IS_BUS_32(sc->bustype)) {
1021 		for (m = m0; m; ) {
1022 			data = mtod(m, u_int8_t *);
1023 			if (m->m_len > 3 && ALIGNED_POINTER(data, uint32_t)) {
1024 				bus_space_write_raw_multi_4(iot, ioh, txreg,
1025 				    data, m->m_len & ~3);
1026 				if (m->m_len & 3)
1027 					bus_space_write_multi_1(iot, ioh, txreg,
1028 					    data + (m->m_len & ~3),
1029 					    m->m_len & 3);
1030 			} else
1031 				bus_space_write_multi_1(iot, ioh, txreg,
1032 				    data, m->m_len);
1033 			MFREE(m, m0);
1034 			m = m0;
1035 		}
1036 	} else {
1037 		for (m = m0; m; ) {
1038 			data = mtod(m, u_int8_t *);
1039 			if (m->m_len > 1 && ALIGNED_POINTER(data, uint16_t)) {
1040 				bus_space_write_raw_multi_2(iot, ioh, txreg,
1041 				    data, m->m_len & ~1);
1042 				if (m->m_len & 1)
1043 					bus_space_write_1(iot, ioh, txreg,
1044 					     *(data + m->m_len - 1));
1045 			} else
1046 				bus_space_write_multi_1(iot, ioh, txreg,
1047 				    data, m->m_len);
1048 			MFREE(m, m0);
1049 			m = m0;
1050 		}
1051 	}
1052 	while (pad--)
1053 		bus_space_write_1(iot, ioh, txreg, 0);
1054 
1055 	splx(sh);
1056 
1057 	++ifp->if_opackets;
1058 
1059 readcheck:
1060 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS)) &
1061 	    ERR_INCOMPLETE) == 0) {
1062 		/* We received a complete packet. */
1063 		u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
1064 
1065 		if ((status & S_INTR_LATCH) == 0) {
1066 			/*
1067 			 * No interrupt, read the packet and continue
1068 			 * Is  this supposed to happen? Is my motherboard
1069 			 * completely busted?
1070 			 */
1071 			epread(sc);
1072 		} else
1073 			/* Got an interrupt, return to get it serviced. */
1074 			return;
1075 	} else {
1076 		/* Check if we are stuck and reset [see XXX comment] */
1077 		if (epstatus(sc)) {
1078 #ifdef EP_DEBUG
1079 			if (ifp->if_flags & IFF_DEBUG)
1080 				printf("%s: adapter reset\n",
1081 				    sc->sc_dev.dv_xname);
1082 #endif
1083 			epreset(sc);
1084 		}
1085 	}
1086 
1087 	goto startagain;
1088 }
1089 
1090 
1091 /*
1092  * XXX: The 3c509 card can get in a mode where both the fifo status bit
1093  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1094  *	We detect this situation and we reset the adapter.
1095  *	It happens at times when there is a lot of broadcast traffic
1096  *	on the cable (once in a blue moon).
1097  */
1098 int
1099 epstatus(struct ep_softc *sc)
1100 {
1101 	bus_space_tag_t iot = sc->sc_iot;
1102 	bus_space_handle_t ioh = sc->sc_ioh;
1103 	u_int16_t fifost;
1104 
1105 	/*
1106 	 * Check the FIFO status and act accordingly
1107 	 */
1108 	GO_WINDOW(4);
1109 	fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
1110 	GO_WINDOW(1);
1111 
1112 	if (fifost & FIFOS_RX_UNDERRUN) {
1113 #ifdef EP_DEBUG
1114 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1115 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1116 #endif
1117 		epreset(sc);
1118 		return 0;
1119 	}
1120 
1121 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1122 #ifdef EP_DEBUG
1123 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1124 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1125 #endif
1126 		return 1;
1127 	}
1128 
1129 	if (fifost & FIFOS_RX_OVERRUN) {
1130 #ifdef EP_DEBUG
1131 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1132 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1133 #endif
1134 		return 1;
1135 	}
1136 
1137 	if (fifost & FIFOS_TX_OVERRUN) {
1138 #ifdef EP_DEBUG
1139 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1140 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1141 #endif
1142 		epreset(sc);
1143 		return 0;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 
1150 void
1151 eptxstat(struct ep_softc *sc)
1152 {
1153 	bus_space_tag_t iot = sc->sc_iot;
1154 	bus_space_handle_t ioh = sc->sc_ioh;
1155 	int i;
1156 
1157 	/*
1158 	 * We need to read+write TX_STATUS until we get a 0 status
1159 	 * in order to turn off the interrupt flag.
1160 	 */
1161 	while ((i = bus_space_read_1(iot, ioh,
1162 	    ep_w1_reg(sc, EP_W1_TX_STATUS))) & TXS_COMPLETE) {
1163 		bus_space_write_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS),
1164 		    0x0);
1165 
1166 		if (i & TXS_JABBER) {
1167 			++sc->sc_arpcom.ac_if.if_oerrors;
1168 #ifdef EP_DEBUG
1169 			if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1170 				printf("%s: jabber (%x)\n",
1171 				       sc->sc_dev.dv_xname, i);
1172 #endif
1173 			epreset(sc);
1174 		} else if (i & TXS_UNDERRUN) {
1175 			++sc->sc_arpcom.ac_if.if_oerrors;
1176 #ifdef EP_DEBUG
1177 			if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1178 				printf("%s: fifo underrun (%x) @%d\n",
1179 				       sc->sc_dev.dv_xname, i,
1180 				       sc->tx_start_thresh);
1181 #endif
1182 			if (sc->tx_succ_ok < 100)
1183 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
1184 					    sc->tx_start_thresh + 20);
1185 			sc->tx_succ_ok = 0;
1186 			epreset(sc);
1187 		} else if (i & TXS_MAX_COLLISION) {
1188 			++sc->sc_arpcom.ac_if.if_collisions;
1189 			bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
1190 			sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
1191 		} else
1192 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1193 	}
1194 }
1195 
1196 int
1197 epintr(void *arg)
1198 {
1199 	register struct ep_softc *sc = arg;
1200 	bus_space_tag_t iot = sc->sc_iot;
1201 	bus_space_handle_t ioh = sc->sc_ioh;
1202 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1203 	u_int16_t status;
1204 	int ret = 0;
1205 
1206 	for (;;) {
1207 		bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1208 
1209 		status = bus_space_read_2(iot, ioh, EP_STATUS);
1210 
1211 		if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1212 			       S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
1213 			break;
1214 
1215 		ret = 1;
1216 
1217 		/*
1218 		 * Acknowledge any interrupts.  It's important that we do this
1219 		 * first, since there would otherwise be a race condition.
1220 		 * Due to the i386 interrupt queueing, we may get spurious
1221 		 * interrupts occasionally.
1222 		 */
1223 		bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status);
1224 
1225 		if (status & S_RX_COMPLETE)
1226 			epread(sc);
1227 		if (status & S_TX_AVAIL) {
1228 			ifp->if_flags &= ~IFF_OACTIVE;
1229 			epstart(ifp);
1230 		}
1231 		if (status & S_CARD_FAILURE) {
1232 			epreset(sc);
1233 			return (1);
1234 		}
1235 		if (status & S_TX_COMPLETE) {
1236 			eptxstat(sc);
1237 			epstart(ifp);
1238 		}
1239 	}
1240 
1241 	/* no more interrupts */
1242 	return (ret);
1243 }
1244 
1245 void
1246 epread(struct ep_softc *sc)
1247 {
1248 	bus_space_tag_t iot = sc->sc_iot;
1249 	bus_space_handle_t ioh = sc->sc_ioh;
1250 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1251 	struct mbuf *m;
1252 	int len;
1253 
1254 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS));
1255 
1256 again:
1257 #ifdef EP_DEBUG
1258 	if (ifp->if_flags & IFF_DEBUG) {
1259 		int err = len & ERR_MASK;
1260 		char *s = NULL;
1261 
1262 		if (len & ERR_INCOMPLETE)
1263 			s = "incomplete packet";
1264 		else if (err == ERR_OVERRUN)
1265 			s = "packet overrun";
1266 		else if (err == ERR_RUNT)
1267 			s = "runt packet";
1268 		else if (err == ERR_ALIGNMENT)
1269 			s = "bad alignment";
1270 		else if (err == ERR_CRC)
1271 			s = "bad crc";
1272 		else if (err == ERR_OVERSIZE)
1273 			s = "oversized packet";
1274 		else if (err == ERR_DRIBBLE)
1275 			s = "dribble bits";
1276 
1277 		if (s)
1278 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1279 	}
1280 #endif
1281 
1282 	if (len & ERR_INCOMPLETE)
1283 		return;
1284 
1285 	if (len & ERR_RX) {
1286 		++ifp->if_ierrors;
1287 		goto abort;
1288 	}
1289 
1290 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
1291 
1292 	/* Pull packet off interface. */
1293 	m = epget(sc, len);
1294 	if (m == NULL) {
1295 		ifp->if_ierrors++;
1296 		goto abort;
1297 	}
1298 
1299 	++ifp->if_ipackets;
1300 
1301 #if NBPFILTER > 0
1302 	/*
1303 	 * Check if there's a BPF listener on this interface.
1304 	 * If so, hand off the raw packet to BPF.
1305 	 */
1306 	if (ifp->if_bpf)
1307 		bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
1308 #endif
1309 
1310 	ether_input_mbuf(ifp, m);
1311 
1312 	/*
1313 	 * In periods of high traffic we can actually receive enough
1314 	 * packets so that the fifo overrun bit will be set at this point,
1315 	 * even though we just read a packet. In this case we
1316 	 * are not going to receive any more interrupts. We check for
1317 	 * this condition and read again until the fifo is not full.
1318 	 * We could simplify this test by not using epstatus(), but
1319 	 * rechecking the RX_STATUS register directly. This test could
1320 	 * result in unnecessary looping in cases where there is a new
1321 	 * packet but the fifo is not full, but it will not fix the
1322 	 * stuck behavior.
1323 	 *
1324 	 * Even with this improvement, we still get packet overrun errors
1325 	 * which are hurting performance. Maybe when I get some more time
1326 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1327 	 */
1328 	if (epstatus(sc)) {
1329 		len = bus_space_read_2(iot, ioh,
1330 		    ep_w1_reg(sc, EP_W1_RX_STATUS));
1331 		/* Check if we are stuck and reset [see XXX comment] */
1332 		if (len & ERR_INCOMPLETE) {
1333 #ifdef EP_DEBUG
1334 			if (ifp->if_flags & IFF_DEBUG)
1335 				printf("%s: adapter reset\n",
1336 				    sc->sc_dev.dv_xname);
1337 #endif
1338 			epreset(sc);
1339 			return;
1340 		}
1341 		goto again;
1342 	}
1343 
1344 	return;
1345 
1346 abort:
1347 	ep_discard_rxtop(iot, ioh);
1348 }
1349 
1350 struct mbuf *
1351 epget(struct ep_softc *sc, int totlen)
1352 {
1353 	bus_space_tag_t iot = sc->sc_iot;
1354 	bus_space_handle_t ioh = sc->sc_ioh;
1355 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1356 	struct mbuf *m;
1357 	caddr_t data;
1358 	int len, pad, off, sh, rxreg;
1359 
1360 	splassert(IPL_NET);
1361 
1362 	m = sc->mb[sc->next_mb];
1363 	sc->mb[sc->next_mb] = NULL;
1364 	if (m == NULL) {
1365 		m = MCLGETI(NULL, M_DONTWAIT, NULL, MCLBYTES);
1366 		/* If the queue is no longer full, refill. */
1367 		if (!timeout_pending(&sc->sc_epmbuffill_tmo))
1368 			timeout_add(&sc->sc_epmbuffill_tmo, 1);
1369 	}
1370 	if (!m)
1371 		return (NULL);
1372 
1373 	sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1374 
1375 	len = MCLBYTES;
1376 	m->m_pkthdr.rcvif = ifp;
1377 	m->m_pkthdr.len = totlen;
1378 	m->m_len = totlen;
1379 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1380 	m->m_data += pad;
1381 	len -= pad;
1382 
1383 	/*
1384 	 * We read the packet at splhigh() so that an interrupt from another
1385 	 * device doesn't cause the card's buffer to overflow while we're
1386 	 * reading it.  We may still lose packets at other times.
1387 	 */
1388 	sh = splhigh();
1389 
1390 	rxreg = ep_w1_reg(sc, EP_W1_RX_PIO_RD_1);
1391 
1392 	off = 0;
1393 	while (totlen) {
1394 		len = min(totlen, M_TRAILINGSPACE(m));
1395 		if (len == 0)
1396 			panic("ep_get: packet does not fit in MCLBYTES");
1397 
1398 		data = mtod(m, u_int8_t *);
1399 		if (EP_IS_BUS_32(sc->bustype))
1400 			pad = 4 - ((u_long)(data + off) & 0x3);
1401 		else
1402 			pad = (u_long)(data + off) & 0x1;
1403 
1404 		if (pad) {
1405 			if (pad < len)
1406 				pad = len;
1407 			bus_space_read_multi_1(iot, ioh, rxreg,
1408 			    data + off, pad);
1409 			len = pad;
1410 		} else if (EP_IS_BUS_32(sc->bustype) && len > 3 &&
1411 		    ALIGNED_POINTER(data, uint32_t)) {
1412 			len &= ~3;
1413 			bus_space_read_raw_multi_4(iot, ioh, rxreg,
1414 			    data + off, len);
1415 		} else if (len > 1 && ALIGNED_POINTER(data, uint16_t)) {
1416 			len &= ~1;
1417 			bus_space_read_raw_multi_2(iot, ioh, rxreg,
1418 			    data + off, len);
1419 		} else
1420 			bus_space_read_multi_1(iot, ioh, rxreg,
1421 			    data + off, len);
1422 
1423 		off += len;
1424 		totlen -= len;
1425 	}
1426 
1427 	ep_discard_rxtop(iot, ioh);
1428 
1429 	splx(sh);
1430 
1431 	return m;
1432 }
1433 
1434 int
1435 epioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1436 {
1437 	struct ep_softc *sc = ifp->if_softc;
1438 	struct ifaddr *ifa = (struct ifaddr *)data;
1439 	struct ifreq *ifr = (struct ifreq *)data;
1440 	int s, error = 0;
1441 
1442 	s = splnet();
1443 
1444 	switch (cmd) {
1445 	case SIOCSIFADDR:
1446 		ifp->if_flags |= IFF_UP;
1447 
1448 		switch (ifa->ifa_addr->sa_family) {
1449 #ifdef INET
1450 		case AF_INET:
1451 			epinit(sc);
1452 			arp_ifinit(&sc->sc_arpcom, ifa);
1453 			break;
1454 #endif
1455 		default:
1456 			epinit(sc);
1457 			break;
1458 		}
1459 		break;
1460 
1461 	case SIOCSIFMEDIA:
1462 	case SIOCGIFMEDIA:
1463 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1464 		break;
1465 
1466 	case SIOCSIFFLAGS:
1467 		if ((ifp->if_flags & IFF_UP) == 0 &&
1468 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1469 			/*
1470 			 * If interface is marked down and it is running, then
1471 			 * stop it.
1472 			 */
1473 			epstop(sc);
1474 			ifp->if_flags &= ~IFF_RUNNING;
1475 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1476 			   (ifp->if_flags & IFF_RUNNING) == 0) {
1477 			/*
1478 			 * If interface is marked up and it is stopped, then
1479 			 * start it.
1480 			 */
1481 			epinit(sc);
1482 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1483 			/*
1484 			 * Reset the interface to pick up changes in any other
1485 			 * flags that affect hardware registers.
1486 			 */
1487 			epinit(sc);
1488 		}
1489 		break;
1490 
1491 	default:
1492 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1493 	}
1494 
1495 	if (error == ENETRESET) {
1496 		if (ifp->if_flags & IFF_RUNNING)
1497 			epreset(sc);
1498 		error = 0;
1499 	}
1500 
1501 	splx(s);
1502 	return (error);
1503 }
1504 
1505 void
1506 epreset(struct ep_softc *sc)
1507 {
1508 	int s;
1509 
1510 	s = splnet();
1511 	epinit(sc);
1512 	splx(s);
1513 }
1514 
1515 void
1516 epwatchdog(struct ifnet *ifp)
1517 {
1518 	struct ep_softc *sc = ifp->if_softc;
1519 
1520 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1521 	++sc->sc_arpcom.ac_if.if_oerrors;
1522 
1523 	epreset(sc);
1524 }
1525 
1526 void
1527 epstop(struct ep_softc *sc)
1528 {
1529 	bus_space_tag_t iot = sc->sc_iot;
1530 	bus_space_handle_t ioh = sc->sc_ioh;
1531 
1532 	if (sc->ep_flags & EP_FLAGS_MII) {
1533 		mii_down(&sc->sc_mii);
1534 	}
1535 
1536 	if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
1537 		/* Clear the FIFO buffer count, thus halting
1538 		 * any currently-running transactions.
1539 		 */
1540 		GO_WINDOW(1);		/* sanity */
1541 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
1542 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
1543 	}
1544 
1545 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
1546 	ep_discard_rxtop(iot, ioh);
1547 
1548 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
1549 	bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
1550 
1551 	ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
1552 	ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
1553 
1554 	bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1555 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
1556 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
1557 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
1558 
1559 	epmbufempty(sc);
1560 }
1561 
1562 /*
1563  * We get eeprom data from the id_port given an offset into the
1564  * eeprom.  Basically; after the ID_sequence is sent to all of
1565  * the cards; they enter the ID_CMD state where they will accept
1566  * command requests. 0x80-0xbf loads the eeprom data.  We then
1567  * read the port 16 times and with every read; the cards check
1568  * for contention (ie: if one card writes a 0 bit and another
1569  * writes a 1 bit then the host sees a 0. At the end of the cycle;
1570  * each card compares the data on the bus; if there is a difference
1571  * then that card goes into ID_WAIT state again). In the meantime;
1572  * one bit of data is returned in the AX register which is conveniently
1573  * returned to us by bus_space_read_1().  Hence; we read 16 times getting one
1574  * bit of data with each read.
1575  *
1576  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1577  */
1578 u_int16_t
1579 epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
1580 {
1581 	u_int16_t data = 0;
1582 	int i;
1583 
1584 	bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1585 	delay(1000);
1586 	for (i = 0; i < 16; i++)
1587 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1588 	return (data);
1589 }
1590 
1591 int
1592 epbusyeeprom(struct ep_softc *sc)
1593 {
1594 	bus_space_tag_t iot = sc->sc_iot;
1595 	bus_space_handle_t ioh = sc->sc_ioh;
1596 	int i = 100, j;
1597 
1598 	while (i--) {
1599 		j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
1600 		if (j & EEPROM_BUSY)
1601 			delay(100);
1602 		else
1603 			break;
1604 	}
1605 	if (!i) {
1606 		printf("\n%s: eeprom failed to come ready\n",
1607 		    sc->sc_dev.dv_xname);
1608 		return (1);
1609 	}
1610 	if (sc->bustype != EP_BUS_PCMCIA && sc->bustype != EP_BUS_PCI &&
1611 	    (j & EEPROM_TST_MODE)) {
1612 		printf("\n%s: erase pencil mark, or disable PnP mode!\n",
1613 		    sc->sc_dev.dv_xname);
1614 		return (1);
1615 	}
1616 	return (0);
1617 }
1618 
1619 u_int16_t
1620 ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
1621 {
1622 	u_int16_t readcmd;
1623 
1624 	/*
1625 	 * RoadRunner has a larger EEPROM, so a different read command
1626 	 * is required.
1627 	 */
1628 	if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER)
1629 		readcmd = READ_EEPROM_RR;
1630 	else
1631 		readcmd = READ_EEPROM;
1632 
1633 	if (epbusyeeprom(sc))
1634 		return (0);			/* XXX why is eeprom busy? */
1635 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W0_EEPROM_COMMAND,
1636 	    readcmd | offset);
1637 	if (epbusyeeprom(sc))
1638 		return (0);			/* XXX why is eeprom busy? */
1639 
1640 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W0_EEPROM_DATA));
1641 }
1642 
1643 void
1644 epmbuffill(void *v)
1645 {
1646 	struct ep_softc *sc = v;
1647 	int s, i;
1648 
1649 	s = splnet();
1650 	for (i = 0; i < MAX_MBS; i++) {
1651 		if (sc->mb[i] == NULL) {
1652 			sc->mb[i] = MCLGETI(NULL, M_DONTWAIT, NULL, MCLBYTES);
1653 			if (sc->mb[i] == NULL)
1654 				break;
1655 		}
1656 	}
1657 	/* If the queue was not filled, try again. */
1658 	if (i < MAX_MBS)
1659 		timeout_add(&sc->sc_epmbuffill_tmo, 1);
1660 	splx(s);
1661 }
1662 
1663 void
1664 epmbufempty(struct ep_softc *sc)
1665 {
1666 	int s, i;
1667 
1668 	s = splnet();
1669 	for (i = 0; i<MAX_MBS; i++) {
1670 		if (sc->mb[i]) {
1671 			m_freem(sc->mb[i]);
1672 			sc->mb[i] = NULL;
1673 		}
1674 	}
1675 	sc->next_mb = 0;
1676 	timeout_del(&sc->sc_epmbuffill_tmo);
1677 	splx(s);
1678 }
1679 
1680 void
1681 ep_mii_setbit(struct ep_softc *sc, u_int16_t bit)
1682 {
1683         u_int16_t val;
1684 
1685         /* We assume we're already in Window 4 */
1686         val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
1687         bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
1688             val | bit);
1689 }
1690 
1691 void
1692 ep_mii_clrbit(struct ep_softc *sc, u_int16_t bit)
1693 {
1694         u_int16_t val;
1695 
1696         /* We assume we're already in Window 4 */
1697         val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
1698         bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
1699             val & ~bit);
1700 }
1701 
1702 u_int16_t
1703 ep_mii_readbit(struct ep_softc *sc, u_int16_t bit)
1704 {
1705 
1706         /* We assume we're already in Window 4 */
1707         return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT) &
1708             bit);
1709 }
1710 
1711 void
1712 ep_mii_sync(struct ep_softc *sc)
1713 {
1714         int i;
1715 
1716         /* We assume we're already in Window 4 */
1717         ep_mii_clrbit(sc, PHYSMGMT_DIR);
1718         for (i = 0; i < 32; i++) {
1719                 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1720                 ep_mii_setbit(sc, PHYSMGMT_CLK);
1721         }
1722 }
1723 
1724 void
1725 ep_mii_sendbits(struct ep_softc *sc, u_int32_t data, int nbits)
1726 {
1727         int i;
1728 
1729         /* We assume we're already in Window 4 */
1730         ep_mii_setbit(sc, PHYSMGMT_DIR);
1731         for (i = 1 << (nbits - 1); i; i = i >> 1) {
1732                 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1733                 ep_mii_readbit(sc, PHYSMGMT_CLK);
1734                 if (data & i)
1735                         ep_mii_setbit(sc, PHYSMGMT_DATA);
1736                 else
1737                         ep_mii_clrbit(sc, PHYSMGMT_DATA);
1738                 ep_mii_setbit(sc, PHYSMGMT_CLK);
1739                 ep_mii_readbit(sc, PHYSMGMT_CLK);
1740         }
1741 }
1742 
1743 int
1744 ep_mii_readreg(struct device *self, int phy, int reg)
1745 {
1746         struct ep_softc *sc = (struct ep_softc *)self;
1747         int val = 0, i, err;
1748 
1749         /*
1750          * Read the PHY register by manually driving the MII control lines.
1751          */
1752 
1753         GO_WINDOW(4);
1754 
1755         bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT, 0);
1756 
1757         ep_mii_sync(sc);
1758         ep_mii_sendbits(sc, MII_COMMAND_START, 2);
1759         ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
1760         ep_mii_sendbits(sc, phy, 5);
1761         ep_mii_sendbits(sc, reg, 5);
1762 
1763         ep_mii_clrbit(sc, PHYSMGMT_DIR);
1764         ep_mii_clrbit(sc, PHYSMGMT_CLK);
1765         ep_mii_setbit(sc, PHYSMGMT_CLK);
1766         ep_mii_clrbit(sc, PHYSMGMT_CLK);
1767 
1768         err = ep_mii_readbit(sc, PHYSMGMT_DATA);
1769         ep_mii_setbit(sc, PHYSMGMT_CLK);
1770 
1771         /* Even if an error occurs, must still clock out the cycle. */
1772         for (i = 0; i < 16; i++) {
1773                 val <<= 1;
1774                 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1775                 if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
1776                         val |= 1;
1777                 ep_mii_setbit(sc, PHYSMGMT_CLK);
1778         }
1779         ep_mii_clrbit(sc, PHYSMGMT_CLK);
1780         ep_mii_setbit(sc, PHYSMGMT_CLK);
1781 
1782         GO_WINDOW(1);   /* back to operating window */
1783 
1784         return (err ? 0 : val);
1785 }
1786 
1787 void
1788 ep_mii_writereg(struct device *self, int phy, int reg, int val)
1789 {
1790         struct ep_softc *sc = (struct ep_softc *)self;
1791 
1792         /*
1793          * Write the PHY register by manually driving the MII control lines.
1794          */
1795 
1796         GO_WINDOW(4);
1797 
1798         ep_mii_sync(sc);
1799         ep_mii_sendbits(sc, MII_COMMAND_START, 2);
1800         ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
1801         ep_mii_sendbits(sc, phy, 5);
1802         ep_mii_sendbits(sc, reg, 5);
1803         ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
1804         ep_mii_sendbits(sc, val, 16);
1805 
1806         ep_mii_clrbit(sc, PHYSMGMT_CLK);
1807         ep_mii_setbit(sc, PHYSMGMT_CLK);
1808 
1809         GO_WINDOW(1);   /* back to operating window */
1810 }
1811 
1812 void
1813 ep_statchg(struct device *self)
1814 {
1815         struct ep_softc *sc = (struct ep_softc *)self;
1816         bus_space_tag_t iot = sc->sc_iot;
1817         bus_space_handle_t ioh = sc->sc_ioh;
1818         int mctl;
1819 
1820         /* XXX Update ifp->if_baudrate */
1821 
1822         GO_WINDOW(3);
1823         mctl = bus_space_read_2(iot, ioh, EP_W3_MAC_CONTROL);
1824         if (sc->sc_mii.mii_media_active & IFM_FDX)
1825                 mctl |= MAC_CONTROL_FDX;
1826         else
1827                 mctl &= ~MAC_CONTROL_FDX;
1828         bus_space_write_2(iot, ioh, EP_W3_MAC_CONTROL, mctl);
1829         GO_WINDOW(1);   /* back to operating window */
1830 }
1831