xref: /openbsd-src/sys/dev/ic/dc.c (revision b2ea75c1b17e1a9a339660e7ed45cd24946b230e)
1 /*	$OpenBSD: dc.c,v 1.32 2001/08/12 20:12:12 mickey Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_dc.c,v 1.43 2001/01/19 23:55:07 wpaul Exp $
35  */
36 
37 /*
38  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
39  * series chips and several workalikes including the following:
40  *
41  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
42  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
43  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
44  * ASIX Electronics AX88140A (www.asix.com.tw)
45  * ASIX Electronics AX88141 (www.asix.com.tw)
46  * ADMtek AL981 (www.admtek.com.tw)
47  * ADMtek AN983 (www.admtek.com.tw)
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217, EN2242 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  *
52  * Datasheets for the 21143 are available at developer.intel.com.
53  * Datasheets for the clone parts can be found at their respective sites.
54  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
55  * The PNIC II is essentially a Macronix 98715A chip; the only difference
56  * worth noting is that its multicast hash table is only 128 bits wide
57  * instead of 512.
58  *
59  * Written by Bill Paul <wpaul@ee.columbia.edu>
60  * Electrical Engineering Department
61  * Columbia University, New York City
62  */
63 
64 /*
65  * The Intel 21143 is the successor to the DEC 21140. It is basically
66  * the same as the 21140 but with a few new features. The 21143 supports
67  * three kinds of media attachments:
68  *
69  * o MII port, for 10Mbps and 100Mbps support and NWAY
70  *   autonegotiation provided by an external PHY.
71  * o SYM port, for symbol mode 100Mbps support.
72  * o 10baseT port.
73  * o AUI/BNC port.
74  *
75  * The 100Mbps SYM port and 10baseT port can be used together in
76  * combination with the internal NWAY support to create a 10/100
77  * autosensing configuration.
78  *
79  * Note that not all tulip workalikes are handled in this driver: we only
80  * deal with those which are relatively well behaved. The Winbond is
81  * handled separately due to its different register offsets and the
82  * special handling needed for its various bugs. The PNIC is handled
83  * here, but I'm not thrilled about it.
84  *
85  * All of the workalike chips use some form of MII transceiver support
86  * with the exception of the Macronix chips, which also have a SYM port.
87  * The ASIX AX88140A is also documented to have a SYM port, but all
88  * the cards I've seen use an MII transceiver, probably because the
89  * AX88140A doesn't support internal NWAY.
90  */
91 
92 #include "bpfilter.h"
93 #include "vlan.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/mbuf.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/ioctl.h>
101 #include <sys/errno.h>
102 #include <sys/malloc.h>
103 #include <sys/kernel.h>
104 #include <sys/device.h>
105 #include <sys/timeout.h>
106 
107 #include <net/if.h>
108 #include <net/if_dl.h>
109 #include <net/if_types.h>
110 
111 #ifdef INET
112 #include <netinet/in.h>
113 #include <netinet/in_systm.h>
114 #include <netinet/in_var.h>
115 #include <netinet/ip.h>
116 #include <netinet/if_ether.h>
117 #endif
118 
119 #include <net/if_media.h>
120 
121 #if NBPFILTER > 0
122 #include <net/bpf.h>
123 #endif
124 
125 #include <vm/vm.h>		/* for vtophys */
126 
127 #include <dev/mii/mii.h>
128 #include <dev/mii/miivar.h>
129 
130 #include <machine/bus.h>
131 #include <dev/pci/pcidevs.h>
132 
133 #define DC_USEIOSPACE
134 #ifdef __alpha__
135 #define SRM_MEDIA
136 #endif
137 
138 #include <dev/ic/dcreg.h>
139 
140 int dc_intr		__P((void *));
141 void dc_shutdown	__P((void *));
142 struct dc_type *dc_devtype	__P((void *));
143 int dc_newbuf		__P((struct dc_softc *, int, struct mbuf *));
144 int dc_encap		__P((struct dc_softc *, struct mbuf *, u_int32_t *));
145 int dc_coal		__P((struct dc_softc *, struct mbuf **));
146 
147 void dc_pnic_rx_bug_war	__P((struct dc_softc *, int));
148 int dc_rx_resync	__P((struct dc_softc *));
149 void dc_rxeof		__P((struct dc_softc *));
150 void dc_txeof		__P((struct dc_softc *));
151 void dc_tick		__P((void *));
152 void dc_start		__P((struct ifnet *));
153 int dc_ioctl		__P((struct ifnet *, u_long, caddr_t));
154 void dc_init		__P((void *));
155 void dc_stop		__P((struct dc_softc *));
156 void dc_watchdog		__P((struct ifnet *));
157 int dc_ifmedia_upd	__P((struct ifnet *));
158 void dc_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
159 
160 void dc_delay		__P((struct dc_softc *));
161 void dc_eeprom_width	__P((struct dc_softc *));
162 void dc_eeprom_idle	__P((struct dc_softc *));
163 void dc_eeprom_putbyte	__P((struct dc_softc *, int));
164 void dc_eeprom_getword	__P((struct dc_softc *, int, u_int16_t *));
165 void dc_eeprom_getword_pnic	__P((struct dc_softc *, int, u_int16_t *));
166 void dc_read_eeprom	__P((struct dc_softc *, caddr_t, int, int, int));
167 
168 void dc_mii_writebit	__P((struct dc_softc *, int));
169 int dc_mii_readbit	__P((struct dc_softc *));
170 void dc_mii_sync	__P((struct dc_softc *));
171 void dc_mii_send	__P((struct dc_softc *, u_int32_t, int));
172 int dc_mii_readreg	__P((struct dc_softc *, struct dc_mii_frame *));
173 int dc_mii_writereg	__P((struct dc_softc *, struct dc_mii_frame *));
174 int dc_miibus_readreg	__P((struct device *, int, int));
175 void dc_miibus_writereg	__P((struct device *, int, int, int));
176 void dc_miibus_statchg	__P((struct device *));
177 
178 void dc_setcfg		__P((struct dc_softc *, int));
179 u_int32_t dc_crc_le	__P((struct dc_softc *, caddr_t));
180 u_int32_t dc_crc_be	__P((caddr_t));
181 void dc_setfilt_21143	__P((struct dc_softc *));
182 void dc_setfilt_asix	__P((struct dc_softc *));
183 void dc_setfilt_admtek	__P((struct dc_softc *));
184 void dc_setfilt_xircom	__P((struct dc_softc *));
185 
186 void dc_setfilt		__P((struct dc_softc *));
187 
188 void dc_reset		__P((struct dc_softc *));
189 int dc_list_rx_init	__P((struct dc_softc *));
190 int dc_list_tx_init	__P((struct dc_softc *));
191 
192 void dc_read_srom		__P((struct dc_softc *, int));
193 void dc_parse_21143_srom	__P((struct dc_softc *));
194 void dc_decode_leaf_sia		__P((struct dc_softc *,
195 				     struct dc_eblock_sia *));
196 void dc_decode_leaf_mii		__P((struct dc_softc *,
197 				     struct dc_eblock_mii *));
198 void dc_decode_leaf_sym		__P((struct dc_softc *,
199 				     struct dc_eblock_sym *));
200 void dc_apply_fixup		__P((struct dc_softc *, int));
201 
202 #define DC_SETBIT(sc, reg, x)				\
203 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
204 
205 #define DC_CLRBIT(sc, reg, x)				\
206 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
207 
208 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
209 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
210 
211 void dc_delay(sc)
212 	struct dc_softc		*sc;
213 {
214 	int			idx;
215 
216 	for (idx = (300 / 33) + 1; idx > 0; idx--)
217 		CSR_READ_4(sc, DC_BUSCTL);
218 }
219 
220 void dc_eeprom_width(sc)
221 	struct dc_softc		*sc;
222 {
223 	int i;
224 
225 	/* Force EEPROM to idle state. */
226 	dc_eeprom_idle(sc);
227 
228 	/* Enter EEPROM access mode. */
229 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
230 	dc_delay(sc);
231 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
232 	dc_delay(sc);
233 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
234 	dc_delay(sc);
235 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
236 	dc_delay(sc);
237 
238 	for (i = 3; i--;) {
239 		if (6 & (1 << i))
240 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
241 		else
242 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
243 		dc_delay(sc);
244 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
245 		dc_delay(sc);
246 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
247 		dc_delay(sc);
248 	}
249 
250 	for (i = 1; i <= 12; i++) {
251 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
252 		dc_delay(sc);
253 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
254 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
255 			dc_delay(sc);
256 			break;
257 		}
258 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
259 		dc_delay(sc);
260 	}
261 
262 	/* Turn off EEPROM access mode. */
263 	dc_eeprom_idle(sc);
264 
265 	if (i < 4 || i > 12)
266 		sc->dc_romwidth = 6;
267 	else
268 		sc->dc_romwidth = i;
269 
270 	/* Enter EEPROM access mode. */
271 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
272 	dc_delay(sc);
273 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
274 	dc_delay(sc);
275 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
276 	dc_delay(sc);
277 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
278 	dc_delay(sc);
279 
280 	/* Turn off EEPROM access mode. */
281 	dc_eeprom_idle(sc);
282 }
283 
284 void dc_eeprom_idle(sc)
285 	struct dc_softc		*sc;
286 {
287 	register int		i;
288 
289 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
290 	dc_delay(sc);
291 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
292 	dc_delay(sc);
293 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
294 	dc_delay(sc);
295 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
296 	dc_delay(sc);
297 
298 	for (i = 0; i < 25; i++) {
299 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
300 		dc_delay(sc);
301 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
302 		dc_delay(sc);
303 	}
304 
305 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
306 	dc_delay(sc);
307 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
308 	dc_delay(sc);
309 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
310 
311 	return;
312 }
313 
314 /*
315  * Send a read command and address to the EEPROM, check for ACK.
316  */
317 void dc_eeprom_putbyte(sc, addr)
318 	struct dc_softc		*sc;
319 	int			addr;
320 {
321 	register int		d, i;
322 
323 	d = DC_EECMD_READ >> 6;
324 
325 	for (i = 3; i--; ) {
326 		if (d & (1 << i))
327 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
328 		else
329 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
330 		dc_delay(sc);
331 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
332 		dc_delay(sc);
333 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
334 		dc_delay(sc);
335 	}
336 
337 	/*
338 	 * Feed in each bit and strobe the clock.
339 	 */
340 	for (i = sc->dc_romwidth; i--;) {
341 		if (addr & (1 << i)) {
342 			SIO_SET(DC_SIO_EE_DATAIN);
343 		} else {
344 			SIO_CLR(DC_SIO_EE_DATAIN);
345 		}
346 		dc_delay(sc);
347 		SIO_SET(DC_SIO_EE_CLK);
348 		dc_delay(sc);
349 		SIO_CLR(DC_SIO_EE_CLK);
350 		dc_delay(sc);
351 	}
352 
353 	return;
354 }
355 
356 /*
357  * Read a word of data stored in the EEPROM at address 'addr.'
358  * The PNIC 82c168/82c169 has its own non-standard way to read
359  * the EEPROM.
360  */
361 void dc_eeprom_getword_pnic(sc, addr, dest)
362 	struct dc_softc		*sc;
363 	int			addr;
364 	u_int16_t		*dest;
365 {
366 	register int		i;
367 	u_int32_t		r;
368 
369 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
370 
371 	for (i = 0; i < DC_TIMEOUT; i++) {
372 		DELAY(1);
373 		r = CSR_READ_4(sc, DC_SIO);
374 		if (!(r & DC_PN_SIOCTL_BUSY)) {
375 			*dest = (u_int16_t)(r & 0xFFFF);
376 			return;
377 		}
378 	}
379 
380 	return;
381 }
382 
383 /*
384  * Read a word of data stored in the EEPROM at address 'addr.'
385  */
386 void dc_eeprom_getword(sc, addr, dest)
387 	struct dc_softc		*sc;
388 	int			addr;
389 	u_int16_t		*dest;
390 {
391 	register int		i;
392 	u_int16_t		word = 0;
393 
394 	/* Force EEPROM to idle state. */
395 	dc_eeprom_idle(sc);
396 
397 	/* Enter EEPROM access mode. */
398 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
399 	dc_delay(sc);
400 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
401 	dc_delay(sc);
402 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
403 	dc_delay(sc);
404 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
405 	dc_delay(sc);
406 
407 	/*
408 	 * Send address of word we want to read.
409 	 */
410 	dc_eeprom_putbyte(sc, addr);
411 
412 	/*
413 	 * Start reading bits from EEPROM.
414 	 */
415 	for (i = 0x8000; i; i >>= 1) {
416 		SIO_SET(DC_SIO_EE_CLK);
417 		dc_delay(sc);
418 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
419 			word |= i;
420 		dc_delay(sc);
421 		SIO_CLR(DC_SIO_EE_CLK);
422 		dc_delay(sc);
423 	}
424 
425 	/* Turn off EEPROM access mode. */
426 	dc_eeprom_idle(sc);
427 
428 	*dest = word;
429 
430 	return;
431 }
432 
433 /*
434  * Read a sequence of words from the EEPROM.
435  */
436 void dc_read_eeprom(sc, dest, off, cnt, swap)
437 	struct dc_softc		*sc;
438 	caddr_t			dest;
439 	int			off;
440 	int			cnt;
441 	int			swap;
442 {
443 	int			i;
444 	u_int16_t		word = 0, *ptr;
445 
446 	for (i = 0; i < cnt; i++) {
447 		if (DC_IS_PNIC(sc))
448 			dc_eeprom_getword_pnic(sc, off + i, &word);
449 		else
450 			dc_eeprom_getword(sc, off + i, &word);
451 		ptr = (u_int16_t *)(dest + (i * 2));
452 		if (swap)
453 			*ptr = ntohs(word);
454 		else
455 			*ptr = word;
456 	}
457 
458 	return;
459 }
460 
461 /*
462  * The following two routines are taken from the Macronix 98713
463  * Application Notes pp.19-21.
464  */
465 /*
466  * Write a bit to the MII bus.
467  */
468 void dc_mii_writebit(sc, bit)
469 	struct dc_softc		*sc;
470 	int			bit;
471 {
472 	if (bit)
473 		CSR_WRITE_4(sc, DC_SIO,
474 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
475 	else
476 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
477 
478 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
479 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
480 
481 	return;
482 }
483 
484 /*
485  * Read a bit from the MII bus.
486  */
487 int dc_mii_readbit(sc)
488 	struct dc_softc		*sc;
489 {
490 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
491 	CSR_READ_4(sc, DC_SIO);
492 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
493 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
494 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
495 		return(1);
496 
497 	return(0);
498 }
499 
500 /*
501  * Sync the PHYs by setting data bit and strobing the clock 32 times.
502  */
503 void dc_mii_sync(sc)
504 	struct dc_softc		*sc;
505 {
506 	register int		i;
507 
508 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
509 
510 	for (i = 0; i < 32; i++)
511 		dc_mii_writebit(sc, 1);
512 
513 	return;
514 }
515 
516 /*
517  * Clock a series of bits through the MII.
518  */
519 void dc_mii_send(sc, bits, cnt)
520 	struct dc_softc		*sc;
521 	u_int32_t		bits;
522 	int			cnt;
523 {
524 	int			i;
525 
526 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
527 		dc_mii_writebit(sc, bits & i);
528 }
529 
530 /*
531  * Read an PHY register through the MII.
532  */
533 int dc_mii_readreg(sc, frame)
534 	struct dc_softc		*sc;
535 	struct dc_mii_frame	*frame;
536 
537 {
538 	int			i, ack, s;
539 
540 	s = splimp();
541 
542 	/*
543 	 * Set up frame for RX.
544 	 */
545 	frame->mii_stdelim = DC_MII_STARTDELIM;
546 	frame->mii_opcode = DC_MII_READOP;
547 	frame->mii_turnaround = 0;
548 	frame->mii_data = 0;
549 
550 	/*
551 	 * Sync the PHYs.
552 	 */
553 	dc_mii_sync(sc);
554 
555 	/*
556 	 * Send command/address info.
557 	 */
558 	dc_mii_send(sc, frame->mii_stdelim, 2);
559 	dc_mii_send(sc, frame->mii_opcode, 2);
560 	dc_mii_send(sc, frame->mii_phyaddr, 5);
561 	dc_mii_send(sc, frame->mii_regaddr, 5);
562 
563 #ifdef notdef
564 	/* Idle bit */
565 	dc_mii_writebit(sc, 1);
566 	dc_mii_writebit(sc, 0);
567 #endif
568 
569 	/* Check for ack */
570 	ack = dc_mii_readbit(sc);
571 
572 	/*
573 	 * Now try reading data bits. If the ack failed, we still
574 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
575 	 */
576 	if (ack) {
577 		for(i = 0; i < 16; i++) {
578 			dc_mii_readbit(sc);
579 		}
580 		goto fail;
581 	}
582 
583 	for (i = 0x8000; i; i >>= 1) {
584 		if (!ack) {
585 			if (dc_mii_readbit(sc))
586 				frame->mii_data |= i;
587 		}
588 	}
589 
590 fail:
591 
592 	dc_mii_writebit(sc, 0);
593 	dc_mii_writebit(sc, 0);
594 
595 	splx(s);
596 
597 	if (ack)
598 		return(1);
599 	return(0);
600 }
601 
602 /*
603  * Write to a PHY register through the MII.
604  */
605 int dc_mii_writereg(sc, frame)
606 	struct dc_softc		*sc;
607 	struct dc_mii_frame	*frame;
608 
609 {
610 	int			s;
611 
612 	s = splimp();
613 	/*
614 	 * Set up frame for TX.
615 	 */
616 
617 	frame->mii_stdelim = DC_MII_STARTDELIM;
618 	frame->mii_opcode = DC_MII_WRITEOP;
619 	frame->mii_turnaround = DC_MII_TURNAROUND;
620 
621 	/*
622 	 * Sync the PHYs.
623 	 */
624 	dc_mii_sync(sc);
625 
626 	dc_mii_send(sc, frame->mii_stdelim, 2);
627 	dc_mii_send(sc, frame->mii_opcode, 2);
628 	dc_mii_send(sc, frame->mii_phyaddr, 5);
629 	dc_mii_send(sc, frame->mii_regaddr, 5);
630 	dc_mii_send(sc, frame->mii_turnaround, 2);
631 	dc_mii_send(sc, frame->mii_data, 16);
632 
633 	/* Idle bit. */
634 	dc_mii_writebit(sc, 0);
635 	dc_mii_writebit(sc, 0);
636 
637 	splx(s);
638 
639 	return(0);
640 }
641 
642 int dc_miibus_readreg(self, phy, reg)
643 	struct device		*self;
644 	int			phy, reg;
645 {
646 	struct dc_mii_frame	frame;
647 	struct dc_softc		*sc = (struct dc_softc *)self;
648 	int			i, rval, phy_reg;
649 
650 	bzero((char *)&frame, sizeof(frame));
651 
652 	/*
653 	 * Note: both the AL981 and AN983 have internal PHYs,
654 	 * however the AL981 provides direct access to the PHY
655 	 * registers while the AN983 uses a serial MII interface.
656 	 * The AN983's MII interface is also buggy in that you
657 	 * can read from any MII address (0 to 31), but only address 1
658 	 * behaves normally. To deal with both cases, we pretend
659 	 * that the PHY is at MII address 1.
660 	 */
661 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
662 		return(0);
663 
664 	if (sc->dc_pmode != DC_PMODE_MII) {
665 		if (phy == (MII_NPHY - 1)) {
666 			switch(reg) {
667 			case MII_BMSR:
668 			/*
669 			 * Fake something to make the probe
670 			 * code think there's a PHY here.
671 			 */
672 				return(BMSR_MEDIAMASK);
673 				break;
674 			case MII_PHYIDR1:
675 				if (DC_IS_PNIC(sc))
676 					return(PCI_VENDOR_LITEON);
677 				return(PCI_VENDOR_DEC);
678 				break;
679 			case MII_PHYIDR2:
680 				if (DC_IS_PNIC(sc))
681 					return(PCI_PRODUCT_LITEON_PNIC);
682 				return(PCI_PRODUCT_DEC_21142);
683 				break;
684 			default:
685 				return(0);
686 				break;
687 			}
688 		} else
689 			return(0);
690 	}
691 
692 	if (DC_IS_PNIC(sc)) {
693 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
694 		    (phy << 23) | (reg << 18));
695 		for (i = 0; i < DC_TIMEOUT; i++) {
696 			DELAY(1);
697 			rval = CSR_READ_4(sc, DC_PN_MII);
698 			if (!(rval & DC_PN_MII_BUSY)) {
699 				rval &= 0xFFFF;
700 				return(rval == 0xFFFF ? 0 : rval);
701 			}
702 		}
703 		return(0);
704 	}
705 
706 	if (DC_IS_COMET(sc)) {
707 		switch(reg) {
708 		case MII_BMCR:
709 			phy_reg = DC_AL_BMCR;
710 			break;
711 		case MII_BMSR:
712 			phy_reg = DC_AL_BMSR;
713 			break;
714 		case MII_PHYIDR1:
715 			phy_reg = DC_AL_VENID;
716 			break;
717 		case MII_PHYIDR2:
718 			phy_reg = DC_AL_DEVID;
719 			break;
720 		case MII_ANAR:
721 			phy_reg = DC_AL_ANAR;
722 			break;
723 		case MII_ANLPAR:
724 			phy_reg = DC_AL_LPAR;
725 			break;
726 		case MII_ANER:
727 			phy_reg = DC_AL_ANER;
728 			break;
729 		default:
730 			printf("dc%d: phy_read: bad phy register %x\n",
731 			    sc->dc_unit, reg);
732 			return(0);
733 			break;
734 		}
735 
736 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
737 
738 		if (rval == 0xFFFF)
739 			return(0);
740 		return(rval);
741 	}
742 
743 	frame.mii_phyaddr = phy;
744 	frame.mii_regaddr = reg;
745 	if (sc->dc_type == DC_TYPE_98713) {
746 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
747 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
748 	}
749 	dc_mii_readreg(sc, &frame);
750 	if (sc->dc_type == DC_TYPE_98713)
751 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
752 
753 	return(frame.mii_data);
754 }
755 
756 void dc_miibus_writereg(self, phy, reg, data)
757 	struct device		*self;
758 	int			phy, reg, data;
759 {
760 	struct dc_softc		*sc = (struct dc_softc *)self;
761 	struct dc_mii_frame	frame;
762 	int			i, phy_reg;
763 
764 	bzero((char *)&frame, sizeof(frame));
765 
766 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
767 		return;
768 
769 	if (DC_IS_PNIC(sc)) {
770 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
771 		    (phy << 23) | (reg << 10) | data);
772 		for (i = 0; i < DC_TIMEOUT; i++) {
773 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
774 				break;
775 		}
776 		return;
777 	}
778 
779 	if (DC_IS_COMET(sc)) {
780 		switch(reg) {
781 		case MII_BMCR:
782 			phy_reg = DC_AL_BMCR;
783 			break;
784 		case MII_BMSR:
785 			phy_reg = DC_AL_BMSR;
786 			break;
787 		case MII_PHYIDR1:
788 			phy_reg = DC_AL_VENID;
789 			break;
790 		case MII_PHYIDR2:
791 			phy_reg = DC_AL_DEVID;
792 			break;
793 		case MII_ANAR:
794 			phy_reg = DC_AL_ANAR;
795 			break;
796 		case MII_ANLPAR:
797 			phy_reg = DC_AL_LPAR;
798 			break;
799 		case MII_ANER:
800 			phy_reg = DC_AL_ANER;
801 			break;
802 		default:
803 			printf("dc%d: phy_write: bad phy register %x\n",
804 			    sc->dc_unit, reg);
805 			return;
806 			break;
807 		}
808 
809 		CSR_WRITE_4(sc, phy_reg, data);
810 		return;
811 	}
812 
813 	frame.mii_phyaddr = phy;
814 	frame.mii_regaddr = reg;
815 	frame.mii_data = data;
816 
817 	if (sc->dc_type == DC_TYPE_98713) {
818 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
819 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
820 	}
821 	dc_mii_writereg(sc, &frame);
822 	if (sc->dc_type == DC_TYPE_98713)
823 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
824 
825 	return;
826 }
827 
828 void dc_miibus_statchg(self)
829 	struct device *self;
830 {
831 	struct dc_softc *sc = (struct dc_softc *)self;
832 	struct mii_data *mii;
833 	struct ifmedia *ifm;
834 
835 	if (DC_IS_ADMTEK(sc))
836 		return;
837 
838 	mii = &sc->sc_mii;
839 	ifm = &mii->mii_media;
840 	if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
841 		dc_setcfg(sc, ifm->ifm_media);
842 		sc->dc_if_media = ifm->ifm_media;
843 	} else {
844 		dc_setcfg(sc, mii->mii_media_active);
845 		sc->dc_if_media = mii->mii_media_active;
846 	}
847 
848 	return;
849 }
850 
851 #define DC_POLY		0xEDB88320
852 #define DC_BITS_512	9
853 #define DC_BITS_128	7
854 #define DC_BITS_64	6
855 
856 u_int32_t dc_crc_le(sc, addr)
857 	struct dc_softc		*sc;
858 	caddr_t			addr;
859 {
860 	u_int32_t		idx, bit, data, crc;
861 
862 	/* Compute CRC for the address value. */
863 	crc = 0xFFFFFFFF; /* initial value */
864 
865 	for (idx = 0; idx < 6; idx++) {
866 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
867 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
868 	}
869 
870 	/*
871 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
872 	 * chips is only 128 bits wide.
873 	 */
874 	if (sc->dc_flags & DC_128BIT_HASH)
875 		return (crc & ((1 << DC_BITS_128) - 1));
876 
877 	/* The hash table on the MX98715BEC is only 64 bits wide. */
878 	if (sc->dc_flags & DC_64BIT_HASH)
879 		return (crc & ((1 << DC_BITS_64) - 1));
880 
881 	/* Xircom's hash filtering table is different (read: weird) */
882 	/* Xircom uses the LEAST significant bits */
883 	if (DC_IS_XIRCOM(sc)) {
884 		if ((crc & 0x180) == 0x180)
885 			return (crc & 0x0F) + (crc	& 0x70)*3 + (14 << 4);
886 		else
887 			return (crc & 0x1F) + ((crc>>1) & 0xF0)*3 + (12 << 4);
888 	}
889 
890 	return (crc & ((1 << DC_BITS_512) - 1));
891 }
892 
893 /*
894  * Calculate CRC of a multicast group address, return the lower 6 bits.
895  */
896 u_int32_t dc_crc_be(addr)
897 	caddr_t			addr;
898 {
899 	u_int32_t		crc, carry;
900 	int			i, j;
901 	u_int8_t		c;
902 
903 	/* Compute CRC for the address value. */
904 	crc = 0xFFFFFFFF; /* initial value */
905 
906 	for (i = 0; i < 6; i++) {
907 		c = *(addr + i);
908 		for (j = 0; j < 8; j++) {
909 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
910 			crc <<= 1;
911 			c >>= 1;
912 			if (carry)
913 				crc = (crc ^ 0x04c11db6) | carry;
914 		}
915 	}
916 
917 	/* return the filter bit position */
918 	return((crc >> 26) & 0x0000003F);
919 }
920 
921 /*
922  * 21143-style RX filter setup routine. Filter programming is done by
923  * downloading a special setup frame into the TX engine. 21143, Macronix,
924  * PNIC, PNIC II and Davicom chips are programmed this way.
925  *
926  * We always program the chip using 'hash perfect' mode, i.e. one perfect
927  * address (our node address) and a 512-bit hash filter for multicast
928  * frames. We also sneak the broadcast address into the hash filter since
929  * we need that too.
930  */
931 void dc_setfilt_21143(sc)
932 	struct dc_softc		*sc;
933 {
934 	struct dc_desc		*sframe;
935 	u_int32_t		h, *sp;
936 	struct arpcom		*ac = &sc->arpcom;
937 	struct ether_multi	*enm;
938 	struct ether_multistep	step;
939 	struct ifnet		*ifp;
940 	int			i;
941 
942 	ifp = &sc->arpcom.ac_if;
943 
944 	i = sc->dc_cdata.dc_tx_prod;
945 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
946 	sc->dc_cdata.dc_tx_cnt++;
947 	sframe = &sc->dc_ldata->dc_tx_list[i];
948 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
949 	bzero((char *)sp, DC_SFRAME_LEN);
950 
951 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
952 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
953 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
954 
955 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
956 
957 	/* If we want promiscuous mode, set the allframes bit. */
958 	if (ifp->if_flags & IFF_PROMISC)
959 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
960 	else
961 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
962 
963 	if (ifp->if_flags & IFF_ALLMULTI)
964 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
965 	else
966 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
967 
968 	ETHER_FIRST_MULTI(step, ac, enm);
969 	while (enm != NULL) {
970 		h = dc_crc_le(sc, enm->enm_addrlo);
971 		sp[h >> 4] |= 1 << (h & 0xF);
972 		ETHER_NEXT_MULTI(step, enm);
973 	}
974 
975 	if (ifp->if_flags & IFF_BROADCAST) {
976 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
977 		sp[h >> 4] |= 1 << (h & 0xF);
978 	}
979 
980 	/* Set our MAC address */
981 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
982 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
983 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
984 
985 	sframe->dc_status = DC_TXSTAT_OWN;
986 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
987 
988 	/*
989 	 * The PNIC takes an exceedingly long time to process its
990 	 * setup frame; wait 10ms after posting the setup frame
991 	 * before proceeding, just so it has time to swallow its
992 	 * medicine.
993 	 */
994 	DELAY(10000);
995 
996 	ifp->if_timer = 5;
997 
998 	return;
999 }
1000 
1001 void dc_setfilt_admtek(sc)
1002 	struct dc_softc		*sc;
1003 {
1004 	struct ifnet		*ifp;
1005 	struct arpcom		*ac = &sc->arpcom;
1006 	struct ether_multi	*enm;
1007 	struct ether_multistep	step;
1008 	int			h = 0;
1009 	u_int32_t		hashes[2] = { 0, 0 };
1010 
1011 	ifp = &sc->arpcom.ac_if;
1012 
1013 	/* Init our MAC address */
1014 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1015 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1016 
1017 	/* If we want promiscuous mode, set the allframes bit. */
1018 	if (ifp->if_flags & IFF_PROMISC)
1019 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1020 	else
1021 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1022 
1023 	if (ifp->if_flags & IFF_ALLMULTI)
1024 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1025 	else
1026 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1027 
1028 	/* first, zot all the existing hash bits */
1029 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1030 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1031 
1032 	/*
1033 	 * If we're already in promisc or allmulti mode, we
1034 	 * don't have to bother programming the multicast filter.
1035 	 */
1036 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1037 		return;
1038 
1039 	/* now program new ones */
1040 	ETHER_FIRST_MULTI(step, ac, enm);
1041 	while (enm != NULL) {
1042 		h = dc_crc_be(enm->enm_addrlo);
1043 		if (h < 32)
1044 			hashes[0] |= (1 << h);
1045 		else
1046 			hashes[1] |= (1 << (h - 32));
1047 		ETHER_NEXT_MULTI(step, enm);
1048 	}
1049 
1050 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1051 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1052 
1053 	return;
1054 }
1055 
1056 void dc_setfilt_asix(sc)
1057 	struct dc_softc		*sc;
1058 {
1059 	struct ifnet		*ifp;
1060 	struct arpcom		*ac = &sc->arpcom;
1061 	struct ether_multi	*enm;
1062 	struct ether_multistep	step;
1063 	int			h = 0;
1064 	u_int32_t		hashes[2] = { 0, 0 };
1065 
1066 	ifp = &sc->arpcom.ac_if;
1067 
1068 	/* Init our MAC address */
1069 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1070 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1071 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1072 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1073 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1074 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1075 
1076 	/* If we want promiscuous mode, set the allframes bit. */
1077 	if (ifp->if_flags & IFF_PROMISC)
1078 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1079 	else
1080 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1081 
1082 	if (ifp->if_flags & IFF_ALLMULTI)
1083 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1084 	else
1085 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1086 
1087 	/*
1088 	 * The ASIX chip has a special bit to enable reception
1089 	 * of broadcast frames.
1090 	 */
1091 	if (ifp->if_flags & IFF_BROADCAST)
1092 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1093 	else
1094 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1095 
1096 	/* first, zot all the existing hash bits */
1097 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1098 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1099 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1100 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1101 
1102 	/*
1103 	 * If we're already in promisc or allmulti mode, we
1104 	 * don't have to bother programming the multicast filter.
1105 	 */
1106 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1107 		return;
1108 
1109 	/* now program new ones */
1110 	ETHER_FIRST_MULTI(step, ac, enm);
1111 	while (enm != NULL) {
1112 		h = dc_crc_be(enm->enm_addrlo);
1113 		if (h < 32)
1114 			hashes[0] |= (1 << h);
1115 		else
1116 			hashes[1] |= (1 << (h - 32));
1117 		ETHER_NEXT_MULTI(step, enm);
1118 	}
1119 
1120 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1121 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1122 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1123 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1124 
1125 	return;
1126 }
1127 
1128 void dc_setfilt_xircom(sc)
1129 	struct dc_softc		*sc;
1130 {
1131 	struct dc_desc		*sframe;
1132 	struct arpcom		*ac = &sc->arpcom;
1133 	struct ether_multi	*enm;
1134 	struct ether_multistep	step;
1135 	u_int32_t		h, *sp;
1136 	struct ifnet		*ifp;
1137 	int			i;
1138 
1139 	ifp = &sc->arpcom.ac_if;
1140 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1141 
1142 	i = sc->dc_cdata.dc_tx_prod;
1143 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1144 	sc->dc_cdata.dc_tx_cnt++;
1145 	sframe = &sc->dc_ldata->dc_tx_list[i];
1146 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1147 	bzero((char *)sp, DC_SFRAME_LEN);
1148 
1149 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1150 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1151 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1152 
1153 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1154 
1155 	/* If we want promiscuous mode, set the allframes bit. */
1156 	if (ifp->if_flags & IFF_PROMISC)
1157 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1158 	else
1159 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1160 
1161 	if (ifp->if_flags & IFF_ALLMULTI)
1162 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1163 	else
1164 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1165 
1166 	/* now program new ones */
1167 	ETHER_FIRST_MULTI(step, ac, enm);
1168 	while (enm != NULL) {
1169 		h = dc_crc_le(sc, enm->enm_addrlo);
1170 		sp[h >> 4] |= 1 << (h & 0xF);
1171 		ETHER_NEXT_MULTI(step, enm);
1172 	}
1173 
1174 	if (ifp->if_flags & IFF_BROADCAST) {
1175 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1176 		sp[h >> 4] |= 1 << (h & 0xF);
1177 	}
1178 
1179 	/* Set our MAC address */
1180 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1181 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1182 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1183 
1184 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1185 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1186 	ifp->if_flags |= IFF_RUNNING;
1187 	sframe->dc_status = DC_TXSTAT_OWN;
1188 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1189 
1190 	/*
1191 	 * wait some time...
1192 	 */
1193 	DELAY(1000);
1194 
1195 	ifp->if_timer = 5;
1196 
1197 	return;
1198 }
1199 
1200 void dc_setfilt(sc)
1201 	struct dc_softc		*sc;
1202 {
1203 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1204 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc))
1205 		dc_setfilt_21143(sc);
1206 
1207 	if (DC_IS_ASIX(sc))
1208 		dc_setfilt_asix(sc);
1209 
1210 	if (DC_IS_ADMTEK(sc))
1211 		dc_setfilt_admtek(sc);
1212 
1213 	if (DC_IS_XIRCOM(sc))
1214 		dc_setfilt_xircom(sc);
1215 
1216 	return;
1217 }
1218 
1219 /*
1220  * In order to fiddle with the
1221  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1222  * first have to put the transmit and/or receive logic in the idle state.
1223  */
1224 void dc_setcfg(sc, media)
1225 	struct dc_softc		*sc;
1226 	int			media;
1227 {
1228 	int			i, restart = 0;
1229 	u_int32_t		isr;
1230 
1231 	if (IFM_SUBTYPE(media) == IFM_NONE)
1232 		return;
1233 
1234 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1235 		restart = 1;
1236 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1237 
1238 		for (i = 0; i < DC_TIMEOUT; i++) {
1239 			DELAY(10);
1240 			isr = CSR_READ_4(sc, DC_ISR);
1241 			if (isr & DC_ISR_TX_IDLE ||
1242 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1243 				break;
1244 		}
1245 
1246 		if (i == DC_TIMEOUT)
1247 			printf("dc%d: failed to force tx and "
1248 				"rx to idle state\n", sc->dc_unit);
1249 
1250 	}
1251 
1252 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1253 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1254 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1255 		if (sc->dc_pmode == DC_PMODE_MII) {
1256 			int watchdogreg;
1257 
1258 			if (DC_IS_INTEL(sc)) {
1259 			/* there's a write enable bit here that reads as 1 */
1260 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1261 				watchdogreg &= ~DC_WDOG_CTLWREN;
1262 				watchdogreg |= DC_WDOG_JABBERDIS;
1263 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1264 			} else {
1265 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1266 			}
1267 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1268 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1269 			if (sc->dc_type == DC_TYPE_98713)
1270 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1271 				    DC_NETCFG_SCRAMBLER));
1272 			if (!DC_IS_DAVICOM(sc))
1273 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1274 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1275 			if (DC_IS_INTEL(sc))
1276 				dc_apply_fixup(sc, IFM_AUTO);
1277 		} else {
1278 			if (DC_IS_PNIC(sc)) {
1279 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1280 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1281 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1282 			}
1283 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1284 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1285 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1286 			if (DC_IS_INTEL(sc))
1287 				dc_apply_fixup(sc,
1288 				    (media & IFM_GMASK) == IFM_FDX ?
1289 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1290 		}
1291 	}
1292 
1293 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1294 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1295 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1296 		if (sc->dc_pmode == DC_PMODE_MII) {
1297 			int watchdogreg;
1298 
1299 			if (DC_IS_INTEL(sc)) {
1300 			/* there's a write enable bit here that reads as 1 */
1301 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1302 				watchdogreg &= ~DC_WDOG_CTLWREN;
1303 				watchdogreg |= DC_WDOG_JABBERDIS;
1304 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1305 			} else {
1306 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1307 			}
1308 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1309 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1310 			if (sc->dc_type == DC_TYPE_98713)
1311 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1312 			if (!DC_IS_DAVICOM(sc))
1313 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1314 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1315 			if (DC_IS_INTEL(sc))
1316 				dc_apply_fixup(sc, IFM_AUTO);
1317 		} else {
1318 			if (DC_IS_PNIC(sc)) {
1319 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1320 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1321 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1322 			}
1323 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1324 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1325 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1326 			if (DC_IS_INTEL(sc)) {
1327 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1328 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1329 				if ((media & IFM_GMASK) == IFM_FDX)
1330 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1331 				else
1332 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1333 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1334 				DC_CLRBIT(sc, DC_10BTCTRL,
1335 				    DC_TCTL_AUTONEGENBL);
1336 				dc_apply_fixup(sc,
1337 				    (media & IFM_GMASK) == IFM_FDX ?
1338 				    IFM_10_T|IFM_FDX : IFM_10_T);
1339 				DELAY(20000);
1340 			}
1341 		}
1342 	}
1343 
1344 	/*
1345 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1346 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1347 	 * on the external MII port.
1348 	 */
1349 	if (DC_IS_DAVICOM(sc)) {
1350 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1351 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1352 			sc->dc_link = 1;
1353 		} else {
1354 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1355 		}
1356 	}
1357 
1358 	if ((media & IFM_GMASK) == IFM_FDX) {
1359 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1360 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1361 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1362 	} else {
1363 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1364 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1365 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1366 	}
1367 
1368 	if (restart)
1369 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1370 
1371 	return;
1372 }
1373 
1374 void dc_reset(sc)
1375 	struct dc_softc		*sc;
1376 {
1377 	register int		i;
1378 
1379 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1380 
1381 	for (i = 0; i < DC_TIMEOUT; i++) {
1382 		DELAY(10);
1383 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1384 			break;
1385 	}
1386 
1387 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) ||
1388 	    DC_IS_INTEL(sc)) {
1389 		DELAY(10000);
1390 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1391 		i = 0;
1392 	}
1393 
1394 	if (i == DC_TIMEOUT)
1395 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1396 
1397 	/* Wait a little while for the chip to get its brains in order. */
1398 	DELAY(1000);
1399 
1400 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1401 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1402 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1403 
1404 	/*
1405 	 * Bring the SIA out of reset. In some cases, it looks
1406 	 * like failing to unreset the SIA soon enough gets it
1407 	 * into a state where it will never come out of reset
1408 	 * until we reset the whole chip again.
1409 	 */
1410 	if (DC_IS_INTEL(sc)) {
1411 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1412 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1413 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1414 	}
1415 
1416 	return;
1417 }
1418 
1419 void dc_apply_fixup(sc, media)
1420 	struct dc_softc		*sc;
1421 	int			media;
1422 {
1423 	struct dc_mediainfo	*m;
1424 	u_int8_t		*p;
1425 	int			i;
1426 	u_int32_t		reg;
1427 
1428 	m = sc->dc_mi;
1429 
1430 	while (m != NULL) {
1431 		if (m->dc_media == media)
1432 			break;
1433 		m = m->dc_next;
1434 	}
1435 
1436 	if (m == NULL)
1437 		return;
1438 
1439 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1440 		reg = (p[0] | (p[1] << 8)) << 16;
1441 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1442 	}
1443 
1444 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1445 		reg = (p[0] | (p[1] << 8)) << 16;
1446 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1447 	}
1448 
1449 	return;
1450 }
1451 
1452 void dc_decode_leaf_sia(sc, l)
1453 	struct dc_softc		*sc;
1454 	struct dc_eblock_sia	*l;
1455 {
1456 	struct dc_mediainfo	*m;
1457 
1458 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1459 	bzero(m, sizeof(struct dc_mediainfo));
1460 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1461 		m->dc_media = IFM_10_T;
1462 
1463 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1464 		m->dc_media = IFM_10_T|IFM_FDX;
1465 
1466 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1467 		m->dc_media = IFM_10_2;
1468 
1469 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1470 		m->dc_media = IFM_10_5;
1471 
1472 	m->dc_gp_len = 2;
1473 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1474 
1475 	m->dc_next = sc->dc_mi;
1476 	sc->dc_mi = m;
1477 
1478 	sc->dc_pmode = DC_PMODE_SIA;
1479 
1480 	return;
1481 }
1482 
1483 void dc_decode_leaf_sym(sc, l)
1484 	struct dc_softc		*sc;
1485 	struct dc_eblock_sym	*l;
1486 {
1487 	struct dc_mediainfo	*m;
1488 
1489 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1490 	bzero(m, sizeof(struct dc_mediainfo));
1491 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1492 		m->dc_media = IFM_100_TX;
1493 
1494 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1495 		m->dc_media = IFM_100_TX|IFM_FDX;
1496 
1497 	m->dc_gp_len = 2;
1498 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1499 
1500 	m->dc_next = sc->dc_mi;
1501 	sc->dc_mi = m;
1502 
1503 	sc->dc_pmode = DC_PMODE_SYM;
1504 
1505 	return;
1506 }
1507 
1508 void dc_decode_leaf_mii(sc, l)
1509 	struct dc_softc		*sc;
1510 	struct dc_eblock_mii	*l;
1511 {
1512 	u_int8_t		*p;
1513 	struct dc_mediainfo	*m;
1514 
1515 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1516 	bzero(m, sizeof(struct dc_mediainfo));
1517 	/* We abuse IFM_AUTO to represent MII. */
1518 	m->dc_media = IFM_AUTO;
1519 	m->dc_gp_len = l->dc_gpr_len;
1520 
1521 	p = (u_int8_t *)l;
1522 	p += sizeof(struct dc_eblock_mii);
1523 	m->dc_gp_ptr = p;
1524 	p += 2 * l->dc_gpr_len;
1525 	m->dc_reset_len = *p;
1526 	p++;
1527 	m->dc_reset_ptr = p;
1528 
1529 	m->dc_next = sc->dc_mi;
1530 	sc->dc_mi = m;
1531 
1532 	return;
1533 }
1534 
1535 void dc_read_srom(sc, bits)
1536 	struct dc_softc		*sc;
1537 	int			bits;
1538 {
1539 	int size;
1540 
1541 	size = 2 << bits;
1542 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1543 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1544 }
1545 
1546 void dc_parse_21143_srom(sc)
1547 	struct dc_softc		*sc;
1548 {
1549 	struct dc_leaf_hdr	*lhdr;
1550 	struct dc_eblock_hdr	*hdr;
1551 	int			i, loff;
1552 	char			*ptr;
1553 
1554 	loff = sc->dc_srom[27];
1555 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1556 
1557 	ptr = (char *)lhdr;
1558 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1559 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1560 		hdr = (struct dc_eblock_hdr *)ptr;
1561 		switch(hdr->dc_type) {
1562 		case DC_EBLOCK_MII:
1563 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1564 			break;
1565 		case DC_EBLOCK_SIA:
1566 			dc_decode_leaf_sia(sc, (struct dc_eblock_sia *)hdr);
1567 			break;
1568 		case DC_EBLOCK_SYM:
1569 			dc_decode_leaf_sym(sc, (struct dc_eblock_sym *)hdr);
1570 			break;
1571 		default:
1572 			/* Don't care. Yet. */
1573 			break;
1574 		}
1575 		ptr += (hdr->dc_len & 0x7F);
1576 		ptr++;
1577 	}
1578 
1579 	return;
1580 }
1581 
1582 /*
1583  * Attach the interface. Allocate softc structures, do ifmedia
1584  * setup and ethernet/BPF attach.
1585  */
1586 void dc_attach(sc)
1587 	struct dc_softc *sc;
1588 {
1589 	struct ifnet		*ifp;
1590 	int			error = 0, mac_offset, tmp;
1591 
1592 	/*
1593 	 * Get station address from the EEPROM.
1594 	 */
1595 	switch(sc->dc_type) {
1596 	case DC_TYPE_98713:
1597 	case DC_TYPE_98713A:
1598 	case DC_TYPE_987x5:
1599 	case DC_TYPE_PNICII:
1600 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1601 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1602 		dc_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1603 		    (mac_offset / 2), 3, 0);
1604 		break;
1605 	case DC_TYPE_PNIC:
1606 		dc_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0, 3, 1);
1607 		break;
1608 	case DC_TYPE_DM9102:
1609 	case DC_TYPE_21143:
1610 	case DC_TYPE_ASIX:
1611 		dc_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1612 		    DC_EE_NODEADDR, 3, 0);
1613 		break;
1614 	case DC_TYPE_AL981:
1615 	case DC_TYPE_AN983:
1616 		dc_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1617 		    DC_AL_EE_NODEADDR, 3, 0);
1618 		break;
1619 	case DC_TYPE_XIRCOM:
1620 		break;
1621 	default:
1622 		dc_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1623 		    DC_EE_NODEADDR, 3, 0);
1624 		break;
1625 	}
1626 
1627 	/*
1628 	 * A 21143 or clone chip was detected. Inform the world.
1629 	 */
1630 	printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
1631 
1632 	sc->dc_ldata_ptr = malloc(sizeof(struct dc_list_data), M_DEVBUF,
1633 				M_NOWAIT);
1634 	if (sc->dc_ldata_ptr == NULL) {
1635 		printf("%s: no memory for list buffers!\n", sc->dc_unit);
1636 		goto fail;
1637 	}
1638 
1639 	sc->dc_ldata = (struct dc_list_data *)sc->dc_ldata_ptr;
1640 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
1641 
1642 	ifp = &sc->arpcom.ac_if;
1643 	ifp->if_softc = sc;
1644 	ifp->if_mtu = ETHERMTU;
1645 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1646 	ifp->if_ioctl = dc_ioctl;
1647 	ifp->if_output = ether_output;
1648 	ifp->if_start = dc_start;
1649 	ifp->if_watchdog = dc_watchdog;
1650 	ifp->if_baudrate = 10000000;
1651 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
1652 	IFQ_SET_READY(&ifp->if_snd);
1653 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1654 
1655 #if NVLAN > 0
1656 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1657 #endif
1658 
1659 	/* Do MII setup. If this is a 21143, check for a PHY on the
1660 	 * MII bus after applying any necessary fixups to twiddle the
1661 	 * GPIO bits. If we don't end up finding a PHY, restore the
1662 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
1663 	 * driver instead.
1664 	 */
1665 	if (DC_IS_INTEL(sc)) {
1666 		dc_apply_fixup(sc, IFM_AUTO);
1667 		tmp = sc->dc_pmode;
1668 		sc->dc_pmode = DC_PMODE_MII;
1669 	}
1670 
1671 	sc->sc_mii.mii_ifp = ifp;
1672 	sc->sc_mii.mii_readreg = dc_miibus_readreg;
1673 	sc->sc_mii.mii_writereg = dc_miibus_writereg;
1674 	sc->sc_mii.mii_statchg = dc_miibus_statchg;
1675 	ifmedia_init(&sc->sc_mii.mii_media, 0, dc_ifmedia_upd, dc_ifmedia_sts);
1676 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1677 	    MII_OFFSET_ANY, 0);
1678 
1679 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1680 		error = ENXIO;
1681 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1682 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1683 	} else
1684 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1685 
1686 	if (DC_IS_DAVICOM(sc) && sc->dc_revision >= DC_REVISION_DM9102A)
1687 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_HPNA_1,0,NULL);
1688 
1689 	if (DC_IS_INTEL(sc)) {
1690 		if (error) {
1691 			sc->dc_pmode = tmp;
1692 			if (sc->dc_pmode != DC_PMODE_SIA)
1693 				sc->dc_pmode = DC_PMODE_SYM;
1694 			sc->dc_flags |= DC_21143_NWAY;
1695 			mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
1696 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
1697 			error = 0;
1698 		} else {
1699 			/* we have a PHY, so we must clear this bit */
1700 			sc->dc_flags &= ~DC_TULIP_LEDS;
1701 		}
1702 	}
1703 
1704 	if (error) {
1705 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
1706 		error = ENXIO;
1707 		goto fail;
1708 	}
1709 
1710 	if (DC_IS_XIRCOM(sc)) {
1711 		/*
1712 		 * setup General Purpose Port mode and data so the tulip
1713 		 * can talk to the MII.
1714 		 */
1715 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
1716 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
1717 		DELAY(10);
1718 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
1719 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
1720 		DELAY(10);
1721 	}
1722 
1723 	/*
1724 	 * Call MI attach routines.
1725 	 */
1726 	if_attach(ifp);
1727 	ether_ifattach(ifp);
1728 
1729 	sc->sc_dhook = shutdownhook_establish(dc_shutdown, sc);
1730 
1731 fail:
1732 	return;
1733 }
1734 
1735 int dc_detach(sc)
1736 	struct dc_softc		*sc;
1737 {
1738 	struct ifnet *ifp = &sc->arpcom.ac_if;
1739 
1740 	if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL)
1741 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1742 
1743 	if (sc->dc_srom)
1744 		free(sc->dc_srom, M_DEVBUF);
1745 
1746 	timeout_del(&sc->dc_tick_tmo);
1747 
1748 	ether_ifdetach(ifp);
1749 	if_detach(ifp);
1750 
1751 	shutdownhook_disestablish(sc->sc_dhook);
1752 
1753 	return (0);
1754 }
1755 
1756 /*
1757  * Initialize the transmit descriptors.
1758  */
1759 int dc_list_tx_init(sc)
1760 	struct dc_softc		*sc;
1761 {
1762 	struct dc_chain_data	*cd;
1763 	struct dc_list_data	*ld;
1764 	int			i;
1765 
1766 	cd = &sc->dc_cdata;
1767 	ld = sc->dc_ldata;
1768 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1769 		if (i == (DC_TX_LIST_CNT - 1)) {
1770 			ld->dc_tx_list[i].dc_next =
1771 			    vtophys(&ld->dc_tx_list[0]);
1772 		} else {
1773 			ld->dc_tx_list[i].dc_next =
1774 			    vtophys(&ld->dc_tx_list[i + 1]);
1775 		}
1776 		cd->dc_tx_chain[i] = NULL;
1777 		ld->dc_tx_list[i].dc_data = 0;
1778 		ld->dc_tx_list[i].dc_ctl = 0;
1779 	}
1780 
1781 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
1782 
1783 	return(0);
1784 }
1785 
1786 
1787 /*
1788  * Initialize the RX descriptors and allocate mbufs for them. Note that
1789  * we arrange the descriptors in a closed ring, so that the last descriptor
1790  * points back to the first.
1791  */
1792 int dc_list_rx_init(sc)
1793 	struct dc_softc		*sc;
1794 {
1795 	struct dc_chain_data	*cd;
1796 	struct dc_list_data	*ld;
1797 	int			i;
1798 
1799 	cd = &sc->dc_cdata;
1800 	ld = sc->dc_ldata;
1801 
1802 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1803 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
1804 			return(ENOBUFS);
1805 		if (i == (DC_RX_LIST_CNT - 1)) {
1806 			ld->dc_rx_list[i].dc_next =
1807 			    vtophys(&ld->dc_rx_list[0]);
1808 		} else {
1809 			ld->dc_rx_list[i].dc_next =
1810 			    vtophys(&ld->dc_rx_list[i + 1]);
1811 		}
1812 	}
1813 
1814 	cd->dc_rx_prod = 0;
1815 
1816 	return(0);
1817 }
1818 
1819 /*
1820  * Initialize an RX descriptor and attach an MBUF cluster.
1821  */
1822 int dc_newbuf(sc, i, m)
1823 	struct dc_softc		*sc;
1824 	int			i;
1825 	struct mbuf		*m;
1826 {
1827 	struct mbuf		*m_new = NULL;
1828 	struct dc_desc		*c;
1829 
1830 	c = &sc->dc_ldata->dc_rx_list[i];
1831 
1832 	if (m == NULL) {
1833 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1834 		if (m_new == NULL) {
1835 			printf("dc%d: no memory for rx list "
1836 			    "-- packet dropped!\n", sc->dc_unit);
1837 			return(ENOBUFS);
1838 		}
1839 
1840 		MCLGET(m_new, M_DONTWAIT);
1841 		if (!(m_new->m_flags & M_EXT)) {
1842 			printf("dc%d: no memory for rx list "
1843 			    "-- packet dropped!\n", sc->dc_unit);
1844 			m_freem(m_new);
1845 			return(ENOBUFS);
1846 		}
1847 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1848 	} else {
1849 		m_new = m;
1850 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1851 		m_new->m_data = m_new->m_ext.ext_buf;
1852 	}
1853 
1854 	m_adj(m_new, sizeof(u_int64_t));
1855 
1856 	/*
1857 	 * If this is a PNIC chip, zero the buffer. This is part
1858 	 * of the workaround for the receive bug in the 82c168 and
1859 	 * 82c169 chips.
1860 	 */
1861 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
1862 		bzero((char *)mtod(m_new, char *), m_new->m_len);
1863 
1864 	sc->dc_cdata.dc_rx_chain[i] = m_new;
1865 	c->dc_data = vtophys(mtod(m_new, caddr_t));
1866 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
1867 	c->dc_status = DC_RXSTAT_OWN;
1868 
1869 	return(0);
1870 }
1871 
1872 /*
1873  * Grrrrr.
1874  * The PNIC chip has a terrible bug in it that manifests itself during
1875  * periods of heavy activity. The exact mode of failure if difficult to
1876  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
1877  * will happen on slow machines. The bug is that sometimes instead of
1878  * uploading one complete frame during reception, it uploads what looks
1879  * like the entire contents of its FIFO memory. The frame we want is at
1880  * the end of the whole mess, but we never know exactly how much data has
1881  * been uploaded, so salvaging the frame is hard.
1882  *
1883  * There is only one way to do it reliably, and it's disgusting.
1884  * Here's what we know:
1885  *
1886  * - We know there will always be somewhere between one and three extra
1887  *   descriptors uploaded.
1888  *
1889  * - We know the desired received frame will always be at the end of the
1890  *   total data upload.
1891  *
1892  * - We know the size of the desired received frame because it will be
1893  *   provided in the length field of the status word in the last descriptor.
1894  *
1895  * Here's what we do:
1896  *
1897  * - When we allocate buffers for the receive ring, we bzero() them.
1898  *   This means that we know that the buffer contents should be all
1899  *   zeros, except for data uploaded by the chip.
1900  *
1901  * - We also force the PNIC chip to upload frames that include the
1902  *   ethernet CRC at the end.
1903  *
1904  * - We gather all of the bogus frame data into a single buffer.
1905  *
1906  * - We then position a pointer at the end of this buffer and scan
1907  *   backwards until we encounter the first non-zero byte of data.
1908  *   This is the end of the received frame. We know we will encounter
1909  *   some data at the end of the frame because the CRC will always be
1910  *   there, so even if the sender transmits a packet of all zeros,
1911  *   we won't be fooled.
1912  *
1913  * - We know the size of the actual received frame, so we subtract
1914  *   that value from the current pointer location. This brings us
1915  *   to the start of the actual received packet.
1916  *
1917  * - We copy this into an mbuf and pass it on, along with the actual
1918  *   frame length.
1919  *
1920  * The performance hit is tremendous, but it beats dropping frames all
1921  * the time.
1922  */
1923 
1924 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
1925 void dc_pnic_rx_bug_war(sc, idx)
1926 	struct dc_softc		*sc;
1927 	int			idx;
1928 {
1929 	struct dc_desc		*cur_rx;
1930 	struct dc_desc		*c = NULL;
1931 	struct mbuf		*m = NULL;
1932 	unsigned char		*ptr;
1933 	int			i, total_len;
1934 	u_int32_t		rxstat = 0;
1935 
1936 	i = sc->dc_pnic_rx_bug_save;
1937 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
1938 	ptr = sc->dc_pnic_rx_buf;
1939 	bzero(ptr, sizeof(DC_RXLEN * 5));
1940 
1941 	/* Copy all the bytes from the bogus buffers. */
1942 	while (1) {
1943 		c = &sc->dc_ldata->dc_rx_list[i];
1944 		rxstat = c->dc_status;
1945 		m = sc->dc_cdata.dc_rx_chain[i];
1946 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
1947 		ptr += DC_RXLEN;
1948 		/* If this is the last buffer, break out. */
1949 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
1950 			break;
1951 		dc_newbuf(sc, i, m);
1952 		DC_INC(i, DC_RX_LIST_CNT);
1953 	}
1954 
1955 	/* Find the length of the actual receive frame. */
1956 	total_len = DC_RXBYTES(rxstat);
1957 
1958 	/* Scan backwards until we hit a non-zero byte. */
1959 	while(*ptr == 0x00)
1960 		ptr--;
1961 
1962 	/* Round off. */
1963 	if ((unsigned long)(ptr) & 0x3)
1964 		ptr -= 1;
1965 
1966 	/* Now find the start of the frame. */
1967 	ptr -= total_len;
1968 	if (ptr < sc->dc_pnic_rx_buf)
1969 		ptr = sc->dc_pnic_rx_buf;
1970 
1971 	/*
1972 	 * Now copy the salvaged frame to the last mbuf and fake up
1973 	 * the status word to make it look like a successful
1974  	 * frame reception.
1975 	 */
1976 	dc_newbuf(sc, i, m);
1977 	bcopy(ptr, mtod(m, char *), total_len);
1978 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
1979 
1980 	return;
1981 }
1982 
1983 /*
1984  * This routine searches the RX ring for dirty descriptors in the
1985  * event that the rxeof routine falls out of sync with the chip's
1986  * current descriptor pointer. This may happen sometimes as a result
1987  * of a "no RX buffer available" condition that happens when the chip
1988  * consumes all of the RX buffers before the driver has a chance to
1989  * process the RX ring. This routine may need to be called more than
1990  * once to bring the driver back in sync with the chip, however we
1991  * should still be getting RX DONE interrupts to drive the search
1992  * for new packets in the RX ring, so we should catch up eventually.
1993  */
1994 int dc_rx_resync(sc)
1995 	struct dc_softc		*sc;
1996 {
1997 	int			i, pos;
1998 	struct dc_desc		*cur_rx;
1999 
2000 	pos = sc->dc_cdata.dc_rx_prod;
2001 
2002 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2003 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2004 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2005 			break;
2006 		DC_INC(pos, DC_RX_LIST_CNT);
2007 	}
2008 
2009 	/* If the ring really is empty, then just return. */
2010 	if (i == DC_RX_LIST_CNT)
2011 		return(0);
2012 
2013 	/* We've fallen behing the chip: catch it. */
2014 	sc->dc_cdata.dc_rx_prod = pos;
2015 
2016 	return(EAGAIN);
2017 }
2018 
2019 /*
2020  * A frame has been uploaded: pass the resulting mbuf chain up to
2021  * the higher level protocols.
2022  */
2023 void dc_rxeof(sc)
2024 	struct dc_softc		*sc;
2025 {
2026 	struct mbuf		*m;
2027 	struct ifnet		*ifp;
2028 	struct dc_desc		*cur_rx;
2029 	int			i, total_len = 0;
2030 	u_int32_t		rxstat;
2031 
2032 	ifp = &sc->arpcom.ac_if;
2033 	i = sc->dc_cdata.dc_rx_prod;
2034 
2035 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2036 		struct mbuf		*m0 = NULL;
2037 
2038 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2039 		rxstat = cur_rx->dc_status;
2040 		m = sc->dc_cdata.dc_rx_chain[i];
2041 		total_len = DC_RXBYTES(rxstat);
2042 
2043 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2044 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2045 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2046 					sc->dc_pnic_rx_bug_save = i;
2047 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2048 					DC_INC(i, DC_RX_LIST_CNT);
2049 					continue;
2050 				}
2051 				dc_pnic_rx_bug_war(sc, i);
2052 				rxstat = cur_rx->dc_status;
2053 				total_len = DC_RXBYTES(rxstat);
2054 			}
2055 		}
2056 
2057 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2058 
2059 		/*
2060 		 * If an error occurs, update stats, clear the
2061 		 * status word and leave the mbuf cluster in place:
2062 		 * it should simply get re-used next time this descriptor
2063 	 	 * comes up in the ring.
2064 		 */
2065 		if (rxstat & DC_RXSTAT_RXERR
2066 #if NVLAN > 0
2067 		/*
2068 		 * If VLANs are enabled, allow frames up to 4 bytes
2069 		 * longer than the MTU. This should really check if
2070 		 * the giant packet has a vlan tag
2071 		 */
2072 		 && ((rxstat & (DC_RXSTAT_GIANT|DC_RXSTAT_LASTFRAG)) == 0
2073 		 && total_len <= ifp->if_mtu + 4)
2074 #endif
2075 		    ) {
2076 			ifp->if_ierrors++;
2077 			if (rxstat & DC_RXSTAT_COLLSEEN)
2078 				ifp->if_collisions++;
2079 			dc_newbuf(sc, i, m);
2080 			if (rxstat & DC_RXSTAT_CRCERR) {
2081 				DC_INC(i, DC_RX_LIST_CNT);
2082 				continue;
2083 			} else {
2084 				dc_init(sc);
2085 				return;
2086 			}
2087 		}
2088 
2089 		/* No errors; receive the packet. */
2090 		total_len -= ETHER_CRC_LEN;
2091 
2092 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2093 		    total_len + ETHER_ALIGN, 0, ifp, NULL);
2094 		dc_newbuf(sc, i, m);
2095 		DC_INC(i, DC_RX_LIST_CNT);
2096 		if (m0 == NULL) {
2097 			ifp->if_ierrors++;
2098 			continue;
2099 		}
2100 		m_adj(m0, ETHER_ALIGN);
2101 		m = m0;
2102 
2103 		ifp->if_ipackets++;
2104 
2105 #if NBPFILTER > 0
2106 		if (ifp->if_bpf)
2107 			bpf_mtap(ifp->if_bpf, m);
2108 #endif
2109 		ether_input_mbuf(ifp, m);
2110 	}
2111 
2112 	sc->dc_cdata.dc_rx_prod = i;
2113 
2114 	return;
2115 }
2116 
2117 /*
2118  * A frame was downloaded to the chip. It's safe for us to clean up
2119  * the list buffers.
2120  */
2121 
2122 void dc_txeof(sc)
2123 	struct dc_softc		*sc;
2124 {
2125 	struct dc_desc		*cur_tx = NULL;
2126 	struct ifnet		*ifp;
2127 	int			idx;
2128 
2129 	ifp = &sc->arpcom.ac_if;
2130 
2131 	/* Clear the timeout timer. */
2132 	ifp->if_timer = 0;
2133 
2134 	/*
2135 	 * Go through our tx list and free mbufs for those
2136 	 * frames that have been transmitted.
2137 	 */
2138 	idx = sc->dc_cdata.dc_tx_cons;
2139 	while(idx != sc->dc_cdata.dc_tx_prod) {
2140 		u_int32_t		txstat;
2141 
2142 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2143 		txstat = cur_tx->dc_status;
2144 
2145 		if (txstat & DC_TXSTAT_OWN)
2146 			break;
2147 
2148 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2149 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2150 			sc->dc_cdata.dc_tx_cnt--;
2151 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2152 				/*
2153 				 * Yes, the PNIC is so brain damaged
2154 				 * that it will sometimes generate a TX
2155 				 * underrun error while DMAing the RX
2156 				 * filter setup frame. If we detect this,
2157 				 * we have to send the setup frame again,
2158 				 * or else the filter won't be programmed
2159 				 * correctly.
2160 				 */
2161 				if (DC_IS_PNIC(sc)) {
2162 					if (txstat & DC_TXSTAT_ERRSUM)
2163 						dc_setfilt(sc);
2164 				}
2165 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2166 			}
2167 			DC_INC(idx, DC_TX_LIST_CNT);
2168 			continue;
2169 		}
2170 
2171 		if (DC_IS_XIRCOM(sc)) {
2172 			/*
2173 			 * XXX: Why does my Xircom taunt me so?
2174 			 * For some reason it likes setting the CARRLOST flag
2175 			 * even when the carrier is there. wtf?! */
2176 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2177 			    sc->dc_pmode == DC_PMODE_MII &&
2178 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2179 			    DC_TXSTAT_NOCARRIER)))
2180 				txstat &= ~DC_TXSTAT_ERRSUM;
2181 		} else {
2182 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2183 			    sc->dc_pmode == DC_PMODE_MII &&
2184 		    	    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2185 		    	    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2186 				txstat &= ~DC_TXSTAT_ERRSUM;
2187 		}
2188 
2189 		if (txstat & DC_TXSTAT_ERRSUM) {
2190 			ifp->if_oerrors++;
2191 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2192 				ifp->if_collisions++;
2193 			if (txstat & DC_TXSTAT_LATECOLL)
2194 				ifp->if_collisions++;
2195 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2196 				dc_init(sc);
2197 				return;
2198 			}
2199 		}
2200 
2201 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2202 
2203 		ifp->if_opackets++;
2204 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2205 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2206 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2207 		}
2208 
2209 		sc->dc_cdata.dc_tx_cnt--;
2210 		DC_INC(idx, DC_TX_LIST_CNT);
2211 	}
2212 
2213 	sc->dc_cdata.dc_tx_cons = idx;
2214 	if (cur_tx != NULL)
2215 		ifp->if_flags &= ~IFF_OACTIVE;
2216 
2217 	return;
2218 }
2219 
2220 void dc_tick(xsc)
2221 	void			*xsc;
2222 {
2223 	struct dc_softc		*sc = (struct dc_softc *)xsc;
2224 	struct mii_data		*mii;
2225 	struct ifnet		*ifp;
2226 	int			s;
2227 	u_int32_t		r;
2228 
2229 	s = splimp();
2230 
2231 	ifp = &sc->arpcom.ac_if;
2232 	mii = &sc->sc_mii;
2233 
2234 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2235 		if (sc->dc_flags & DC_21143_NWAY) {
2236 			r = CSR_READ_4(sc, DC_10BTSTAT);
2237 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2238 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2239 				sc->dc_link = 0;
2240 				mii_mediachg(mii);
2241 			}
2242 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2243 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2244 				sc->dc_link = 0;
2245 				mii_mediachg(mii);
2246 			}
2247 			if (sc->dc_link == 0)
2248 				mii_tick(mii);
2249 		} else {
2250 			r = CSR_READ_4(sc, DC_ISR);
2251 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2252 			    sc->dc_cdata.dc_tx_cnt == 0 && !DC_IS_ASIX(sc))
2253 				mii_tick(mii);
2254 			if (!(mii->mii_media_status & IFM_ACTIVE))
2255 				sc->dc_link = 0;
2256 		}
2257 	} else
2258 		mii_tick(mii);
2259 
2260 	/*
2261 	 * When the init routine completes, we expect to be able to send
2262 	 * packets right away, and in fact the network code will send a
2263 	 * gratuitous ARP the moment the init routine marks the interface
2264 	 * as running. However, even though the MAC may have been initialized,
2265 	 * there may be a delay of a few seconds before the PHY completes
2266 	 * autonegotiation and the link is brought up. Any transmissions
2267 	 * made during that delay will be lost. Dealing with this is tricky:
2268 	 * we can't just pause in the init routine while waiting for the
2269 	 * PHY to come ready since that would bring the whole system to
2270 	 * a screeching halt for several seconds.
2271 	 *
2272 	 * What we do here is prevent the TX start routine from sending
2273 	 * any packets until a link has been established. After the
2274 	 * interface has been initialized, the tick routine will poll
2275 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2276 	 * that time, packets will stay in the send queue, and once the
2277 	 * link comes up, they will be flushed out to the wire.
2278 	 */
2279 	if (!sc->dc_link) {
2280 		mii_pollstat(mii);
2281 		if (mii->mii_media_status & IFM_ACTIVE &&
2282 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2283 			sc->dc_link++;
2284 			if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2285 				dc_start(ifp);
2286 		}
2287 	}
2288 
2289 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2290 		timeout_add(&sc->dc_tick_tmo, hz / 10);
2291 	else
2292 		timeout_add(&sc->dc_tick_tmo, hz);
2293 
2294 	splx(s);
2295 
2296 	return;
2297 }
2298 
2299 int dc_intr(arg)
2300 	void			*arg;
2301 {
2302 	struct dc_softc		*sc;
2303 	struct ifnet		*ifp;
2304 	u_int32_t		status;
2305 	int			claimed = 0;
2306 
2307 	sc = arg;
2308 	ifp = &sc->arpcom.ac_if;
2309 
2310 	/* Supress unwanted interrupts */
2311 	if (!(ifp->if_flags & IFF_UP)) {
2312 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2313 			dc_stop(sc);
2314 		return claimed;
2315 	}
2316 
2317 	/* Disable interrupts. */
2318 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2319 
2320 	while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
2321 	    status != 0xFFFFFFFF) {
2322 
2323 		claimed = 1;
2324 
2325 		CSR_WRITE_4(sc, DC_ISR, status);
2326 		if ((status & DC_INTRS) == 0) {
2327 			claimed = 0;
2328 			break;
2329 		}
2330 
2331 		if (status & DC_ISR_RX_OK) {
2332 			int		curpkts;
2333 			curpkts = ifp->if_ipackets;
2334 			dc_rxeof(sc);
2335 			if (curpkts == ifp->if_ipackets) {
2336 				while(dc_rx_resync(sc))
2337 					dc_rxeof(sc);
2338 			}
2339 		}
2340 
2341 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2342 			dc_txeof(sc);
2343 
2344 		if (status & DC_ISR_TX_IDLE) {
2345 			dc_txeof(sc);
2346 			if (sc->dc_cdata.dc_tx_cnt) {
2347 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2348 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2349 			}
2350 		}
2351 
2352 		if (status & DC_ISR_TX_UNDERRUN) {
2353 			u_int32_t		cfg;
2354 
2355 			printf("dc%d: TX underrun -- ", sc->dc_unit);
2356 			if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc))
2357 				dc_init(sc);
2358 			cfg = CSR_READ_4(sc, DC_NETCFG);
2359 			cfg &= ~DC_NETCFG_TX_THRESH;
2360 			if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2361 				printf("using store and forward mode\n");
2362 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2363 			} else if (sc->dc_flags & DC_TX_STORENFWD) {
2364 				printf("resetting\n");
2365 			} else {
2366 				sc->dc_txthresh += 0x4000;
2367 				printf("increasing TX threshold\n");
2368 				CSR_WRITE_4(sc, DC_NETCFG, cfg);
2369 				DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2370 				DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2371 			}
2372 		}
2373 
2374 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2375 		    || (status & DC_ISR_RX_NOBUF)) {
2376 			int		curpkts;
2377 			curpkts = ifp->if_ipackets;
2378 			dc_rxeof(sc);
2379 			if (curpkts == ifp->if_ipackets) {
2380 				while(dc_rx_resync(sc))
2381 					dc_rxeof(sc);
2382 			}
2383 		}
2384 
2385 		if (status & DC_ISR_BUS_ERR) {
2386 			dc_reset(sc);
2387 			dc_init(sc);
2388 		}
2389 	}
2390 
2391 	/* Re-enable interrupts. */
2392 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2393 
2394 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2395 		dc_start(ifp);
2396 
2397 	return (claimed);
2398 }
2399 
2400 /*
2401  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2402  * pointers to the fragment pointers.
2403  */
2404 int dc_encap(sc, m_head, txidx)
2405 	struct dc_softc		*sc;
2406 	struct mbuf		*m_head;
2407 	u_int32_t		*txidx;
2408 {
2409 	struct dc_desc		*f = NULL;
2410 	struct mbuf		*m;
2411 	int			frag, cur, cnt = 0;
2412 
2413 	/*
2414  	 * Start packing the mbufs in this chain into
2415 	 * the fragment pointers. Stop when we run out
2416  	 * of fragments or hit the end of the mbuf chain.
2417 	 */
2418 	m = m_head;
2419 	cur = frag = *txidx;
2420 
2421 	for (m = m_head; m != NULL; m = m->m_next) {
2422 		if (m->m_len != 0) {
2423 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2424 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2425 				    frag == (DC_TX_LIST_CNT - 1))
2426 					return(ENOBUFS);
2427 			}
2428 			if ((DC_TX_LIST_CNT -
2429 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2430 				return(ENOBUFS);
2431 
2432 			f = &sc->dc_ldata->dc_tx_list[frag];
2433 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2434 			if (cnt == 0) {
2435 				f->dc_status = 0;
2436 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2437 			} else
2438 				f->dc_status = DC_TXSTAT_OWN;
2439 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2440 			cur = frag;
2441 			DC_INC(frag, DC_TX_LIST_CNT);
2442 			cnt++;
2443 		}
2444 	}
2445 
2446 	if (m != NULL)
2447 		return(ENOBUFS);
2448 
2449 	sc->dc_cdata.dc_tx_cnt += cnt;
2450 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2451 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2452 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2453 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2454 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2455 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2456 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2457 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2458 #ifdef ALTQ
2459 	else if ((sc->dc_flags & DC_TX_USE_TX_INTR) &&
2460 		 TBR_IS_ENABLED(&sc->arpcom.ac_if.if_snd))
2461 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2462 #endif
2463 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2464 	*txidx = frag;
2465 
2466 	return(0);
2467 }
2468 
2469 /*
2470  * Coalesce an mbuf chain into a single mbuf cluster buffer.
2471  * Needed for some really badly behaved chips that just can't
2472  * do scatter/gather correctly.
2473  */
2474 int dc_coal(sc, m_head)
2475 	struct dc_softc		*sc;
2476 	struct mbuf		**m_head;
2477 {
2478 	struct mbuf		*m_new, *m;
2479 
2480 	m = *m_head;
2481 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
2482 	if (m_new == NULL) {
2483 		printf("dc%d: no memory for tx list", sc->dc_unit);
2484 		return(ENOBUFS);
2485 	}
2486 	if (m->m_pkthdr.len > MHLEN) {
2487 		MCLGET(m_new, M_DONTWAIT);
2488 		if (!(m_new->m_flags & M_EXT)) {
2489 			m_freem(m_new);
2490 			printf("dc%d: no memory for tx list", sc->dc_unit);
2491 			return(ENOBUFS);
2492 		}
2493 	}
2494 	m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
2495 	m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
2496 	m_freem(m);
2497 	*m_head = m_new;
2498 
2499 	return(0);
2500 }
2501 
2502 /*
2503  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2504  * to the mbuf data regions directly in the transmit lists. We also save a
2505  * copy of the pointers since the transmit list fragment pointers are
2506  * physical addresses.
2507  */
2508 
2509 void dc_start(ifp)
2510 	struct ifnet		*ifp;
2511 {
2512 	struct dc_softc		*sc;
2513 	struct mbuf		*m_head = NULL;
2514 	int			idx;
2515 
2516 	sc = ifp->if_softc;
2517 
2518 	if (!sc->dc_link)
2519 		return;
2520 
2521 	if (ifp->if_flags & IFF_OACTIVE)
2522 		return;
2523 
2524 	idx = sc->dc_cdata.dc_tx_prod;
2525 
2526 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2527 		IFQ_POLL(&ifp->if_snd, m_head);
2528 		if (m_head == NULL)
2529 			break;
2530 
2531 		if (sc->dc_flags & DC_TX_COALESCE) {
2532 #ifdef ALTQ
2533 			/* note: dc_coal breaks the poll-and-dequeue rule.
2534 			 * if dc_coal fails, we lose the packet.
2535 			 */
2536 #endif
2537 			IFQ_DEQUEUE(&ifp->if_snd, m_head);
2538 			if (dc_coal(sc, &m_head)) {
2539 				ifp->if_flags |= IFF_OACTIVE;
2540 				break;
2541 			}
2542 		}
2543 
2544 		if (dc_encap(sc, m_head, &idx)) {
2545 			ifp->if_flags |= IFF_OACTIVE;
2546 			break;
2547 		}
2548 
2549 		/* now we are committed to transmit the packet */
2550 		if (sc->dc_flags & DC_TX_COALESCE) {
2551 			/* if mbuf is coalesced, it is already dequeued */
2552 		} else
2553 			IFQ_DEQUEUE(&ifp->if_snd, m_head);
2554 
2555 		/*
2556 		 * If there's a BPF listener, bounce a copy of this frame
2557 		 * to him.
2558 		 */
2559 #if NBPFILTER > 0
2560 		if (ifp->if_bpf)
2561 			bpf_mtap(ifp->if_bpf, m_head);
2562 #endif
2563 		if (sc->dc_flags & DC_TX_ONE) {
2564 			ifp->if_flags |= IFF_OACTIVE;
2565 			break;
2566 		}
2567 	}
2568 	if (idx == sc->dc_cdata.dc_tx_prod)
2569 		return;
2570 
2571 	/* Transmit */
2572 	sc->dc_cdata.dc_tx_prod = idx;
2573 	if (!(sc->dc_flags & DC_TX_POLL))
2574 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2575 
2576 	/*
2577 	 * Set a timeout in case the chip goes out to lunch.
2578 	 */
2579 	ifp->if_timer = 5;
2580 
2581 	return;
2582 }
2583 
2584 void dc_init(xsc)
2585 	void			*xsc;
2586 {
2587 	struct dc_softc		*sc = xsc;
2588 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2589 	struct mii_data		*mii;
2590 	int			s;
2591 
2592 	s = splimp();
2593 
2594 	mii = &sc->sc_mii;
2595 
2596 	/*
2597 	 * Cancel pending I/O and free all RX/TX buffers.
2598 	 */
2599 	dc_stop(sc);
2600 	dc_reset(sc);
2601 
2602 	/*
2603 	 * Set cache alignment and burst length.
2604 	 */
2605 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
2606 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
2607 	else
2608 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
2609 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
2610 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
2611 	} else {
2612 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
2613 	}
2614 	if (sc->dc_flags & DC_TX_POLL)
2615 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
2616 	switch(sc->dc_cachesize) {
2617 	case 32:
2618 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
2619 		break;
2620 	case 16:
2621 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
2622 		break;
2623 	case 8:
2624 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
2625 		break;
2626 	case 0:
2627 	default:
2628 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
2629 		break;
2630 	}
2631 
2632 	if (sc->dc_flags & DC_TX_STORENFWD)
2633 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2634 	else {
2635 		if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
2636 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2637 		} else {
2638 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2639 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2640 		}
2641 	}
2642 
2643 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
2644 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
2645 
2646 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2647 		/*
2648 		 * The app notes for the 98713 and 98715A say that
2649 		 * in order to have the chips operate properly, a magic
2650 		 * number must be written to CSR16. Macronix does not
2651 		 * document the meaning of these bits so there's no way
2652 		 * to know exactly what they do. The 98713 has a magic
2653 		 * number all its own; the rest all use a different one.
2654 		 */
2655 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
2656 		if (sc->dc_type == DC_TYPE_98713)
2657 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
2658 		else
2659 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
2660 	}
2661 
2662 	if (DC_IS_XIRCOM(sc)) {
2663 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2664 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2665 		DELAY(10);
2666 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2667 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2668 		DELAY(10);
2669 	}
2670 
2671 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2672 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_72BYTES);
2673 
2674 	/* Init circular RX list. */
2675 	if (dc_list_rx_init(sc) == ENOBUFS) {
2676 		printf("dc%d: initialization failed: no "
2677 		    "memory for rx buffers\n", sc->dc_unit);
2678 		dc_stop(sc);
2679 		(void)splx(s);
2680 		return;
2681 	}
2682 
2683 	/*
2684 	 * Init tx descriptors.
2685 	 */
2686 	dc_list_tx_init(sc);
2687 
2688 	/*
2689 	 * Load the address of the RX list.
2690 	 */
2691 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
2692 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
2693 
2694 	/*
2695 	 * Enable interrupts.
2696 	 */
2697 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2698 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
2699 
2700 	/* Enable transmitter. */
2701 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2702 
2703 	/*
2704 	 * If this is an Intel 21143 and we're not using the
2705 	 * MII port, program the LED control pins so we get
2706 	 * link and activity indications.
2707 	 */
2708 	if (sc->dc_flags & DC_TULIP_LEDS) {
2709 		CSR_WRITE_4(sc, DC_WATCHDOG,
2710 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
2711 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
2712 	}
2713 
2714 	/*
2715 	 * Load the RX/multicast filter. We do this sort of late
2716 	 * because the filter programming scheme on the 21143 and
2717 	 * some clones requires DMAing a setup frame via the TX
2718 	 * engine, and we need the transmitter enabled for that.
2719 	 */
2720 	dc_setfilt(sc);
2721 
2722 	/* Enable receiver. */
2723 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
2724 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
2725 
2726 	mii_mediachg(mii);
2727 	dc_setcfg(sc, sc->dc_if_media);
2728 
2729 	ifp->if_flags |= IFF_RUNNING;
2730 	ifp->if_flags &= ~IFF_OACTIVE;
2731 
2732 	(void)splx(s);
2733 
2734 	timeout_set(&sc->dc_tick_tmo, dc_tick, sc);
2735 
2736 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
2737 		sc->dc_link = 1;
2738 	else {
2739 		if (sc->dc_flags & DC_21143_NWAY)
2740 			timeout_add(&sc->dc_tick_tmo, hz / 10);
2741 		else
2742 			timeout_add(&sc->dc_tick_tmo, hz);
2743 	}
2744 
2745 #ifdef SRM_MEDIA
2746 	if(sc->dc_srm_media) {
2747 		struct ifreq ifr;
2748 
2749 		ifr.ifr_media = sc->dc_srm_media;
2750 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
2751 		sc->dc_srm_media = 0;
2752 	}
2753 #endif
2754 
2755 	return;
2756 }
2757 
2758 /*
2759  * Set media options.
2760  */
2761 int dc_ifmedia_upd(ifp)
2762 	struct ifnet		*ifp;
2763 {
2764 	struct dc_softc		*sc;
2765 	struct mii_data		*mii;
2766 	struct ifmedia *ifm;
2767 
2768 	sc = ifp->if_softc;
2769 	mii = &sc->sc_mii;
2770 	mii_mediachg(mii);
2771 
2772 	ifm = &mii->mii_media;
2773 
2774 	if (DC_IS_DAVICOM(sc) &&
2775 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
2776 		dc_setcfg(sc, ifm->ifm_media);
2777 	else
2778 		sc->dc_link = 0;
2779 
2780 	return(0);
2781 }
2782 
2783 /*
2784  * Report current media status.
2785  */
2786 void dc_ifmedia_sts(ifp, ifmr)
2787 	struct ifnet		*ifp;
2788 	struct ifmediareq	*ifmr;
2789 {
2790 	struct dc_softc		*sc;
2791 	struct mii_data		*mii;
2792 	struct ifmedia		*ifm;
2793 
2794 	sc = ifp->if_softc;
2795 	mii = &sc->sc_mii;
2796 	mii_pollstat(mii);
2797 	ifm = &mii->mii_media;
2798 	if (DC_IS_DAVICOM(sc)) {
2799 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
2800 			ifmr->ifm_active = ifm->ifm_media;
2801 			ifmr->ifm_status = 0;
2802 			return;
2803 		}
2804 	}
2805 	ifmr->ifm_active = mii->mii_media_active;
2806 	ifmr->ifm_status = mii->mii_media_status;
2807 
2808 	return;
2809 }
2810 
2811 int dc_ioctl(ifp, command, data)
2812 	struct ifnet		*ifp;
2813 	u_long			command;
2814 	caddr_t			data;
2815 {
2816 	struct dc_softc		*sc = ifp->if_softc;
2817 	struct ifreq		*ifr = (struct ifreq *) data;
2818 	struct ifaddr		*ifa = (struct ifaddr *)data;
2819 	struct mii_data		*mii;
2820 	int			s, error = 0;
2821 
2822 	s = splimp();
2823 
2824 	if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) {
2825 		splx(s);
2826 		return error;
2827 	}
2828 
2829 	switch(command) {
2830 	case SIOCSIFADDR:
2831 		ifp->if_flags |= IFF_UP;
2832 		switch (ifa->ifa_addr->sa_family) {
2833 		case AF_INET:
2834 			dc_init(sc);
2835 			arp_ifinit(&sc->arpcom, ifa);
2836 			break;
2837 		default:
2838 			dc_init(sc);
2839 			break;
2840 		}
2841 		break;
2842 	case SIOCSIFFLAGS:
2843 		if (ifp->if_flags & IFF_UP) {
2844 			if (ifp->if_flags & IFF_RUNNING &&
2845 			    ifp->if_flags & IFF_PROMISC &&
2846 			    !(sc->dc_if_flags & IFF_PROMISC)) {
2847 				dc_setfilt(sc);
2848 			} else if (ifp->if_flags & IFF_RUNNING &&
2849 			    !(ifp->if_flags & IFF_PROMISC) &&
2850 			    sc->dc_if_flags & IFF_PROMISC) {
2851 				dc_setfilt(sc);
2852 			} else if (!(ifp->if_flags & IFF_RUNNING)) {
2853 				sc->dc_txthresh = 0;
2854 				dc_init(sc);
2855 			}
2856 		} else {
2857 			if (ifp->if_flags & IFF_RUNNING)
2858 				dc_stop(sc);
2859 		}
2860 		sc->dc_if_flags = ifp->if_flags;
2861 		error = 0;
2862 		break;
2863 	case SIOCADDMULTI:
2864 	case SIOCDELMULTI:
2865 		error = (command == SIOCADDMULTI) ?
2866 		    ether_addmulti(ifr, &sc->arpcom) :
2867 		    ether_delmulti(ifr, &sc->arpcom);
2868 
2869 		if (error == ENETRESET) {
2870 			/*
2871 			 * Multicast list has changed; set the hardware
2872 			 * filter accordingly.
2873 			 */
2874 			dc_setfilt(sc);
2875 			error = 0;
2876 		}
2877 		break;
2878 	case SIOCGIFMEDIA:
2879 	case SIOCSIFMEDIA:
2880 		mii = &sc->sc_mii;
2881 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2882 #ifdef SRM_MEDIA
2883 		if (sc->dc_srm_media)
2884 			sc->dc_srm_media = 0;
2885 #endif
2886 		break;
2887 	default:
2888 		error = EINVAL;
2889 		break;
2890 	}
2891 
2892 	(void)splx(s);
2893 
2894 	return(error);
2895 }
2896 
2897 void dc_watchdog(ifp)
2898 	struct ifnet		*ifp;
2899 {
2900 	struct dc_softc		*sc;
2901 
2902 	sc = ifp->if_softc;
2903 
2904 	ifp->if_oerrors++;
2905 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
2906 
2907 	dc_stop(sc);
2908 	dc_reset(sc);
2909 	dc_init(sc);
2910 
2911 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2912 		dc_start(ifp);
2913 
2914 	return;
2915 }
2916 
2917 /*
2918  * Stop the adapter and free any mbufs allocated to the
2919  * RX and TX lists.
2920  */
2921 void dc_stop(sc)
2922 	struct dc_softc		*sc;
2923 {
2924 	register int		i;
2925 	struct ifnet		*ifp;
2926 
2927 	ifp = &sc->arpcom.ac_if;
2928 	ifp->if_timer = 0;
2929 
2930 	timeout_del(&sc->dc_tick_tmo);
2931 
2932 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
2933 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2934 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
2935 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
2936 	sc->dc_link = 0;
2937 
2938 	/*
2939 	 * Free data in the RX lists.
2940 	 */
2941 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2942 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
2943 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
2944 			sc->dc_cdata.dc_rx_chain[i] = NULL;
2945 		}
2946 	}
2947 	bzero((char *)&sc->dc_ldata->dc_rx_list,
2948 		sizeof(sc->dc_ldata->dc_rx_list));
2949 
2950 	/*
2951 	 * Free the TX list buffers.
2952 	 */
2953 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2954 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
2955 			if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
2956 			    DC_TXCTL_SETUP) {
2957 				sc->dc_cdata.dc_tx_chain[i] = NULL;
2958 				continue;
2959 			}
2960 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
2961 			sc->dc_cdata.dc_tx_chain[i] = NULL;
2962 		}
2963 	}
2964 
2965 	bzero((char *)&sc->dc_ldata->dc_tx_list,
2966 		sizeof(sc->dc_ldata->dc_tx_list));
2967 
2968 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2969 
2970 	return;
2971 }
2972 
2973 /*
2974  * Stop all chip I/O so that the kernel's probe routines don't
2975  * get confused by errant DMAs when rebooting.
2976  */
2977 void dc_shutdown(v)
2978 	void			*v;
2979 {
2980 	struct dc_softc		*sc = (struct dc_softc *)v;
2981 
2982 	dc_stop(sc);
2983 }
2984 
2985 struct cfdriver dc_cd = {
2986 	0, "dc", DV_IFNET
2987 };
2988 
2989