xref: /openbsd-src/sys/dev/ic/ath.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*      $OpenBSD: ath.c,v 1.80 2009/01/21 21:53:59 grange Exp $  */
2 /*	$NetBSD: ath.c,v 1.37 2004/08/18 21:59:39 dyoung Exp $	*/
3 
4 /*-
5  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
16  *    redistribution must be conditioned upon including a substantially
17  *    similar Disclaimer requirement for further binary redistribution.
18  * 3. Neither the names of the above-listed copyright holders nor the names
19  *    of any contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * NO WARRANTY
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
26  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
27  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
31  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGES.
34  */
35 
36 /*
37  * Driver for the Atheros Wireless LAN controller.
38  *
39  * This software is derived from work of Atsushi Onoe; his contribution
40  * is greatly appreciated. It has been modified for OpenBSD to use an
41  * open source HAL instead of the original binary-only HAL.
42  */
43 
44 #include "bpfilter.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/sysctl.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/lock.h>
52 #include <sys/kernel.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/device.h>
56 #include <sys/errno.h>
57 #include <sys/timeout.h>
58 #include <sys/gpio.h>
59 
60 #include <machine/endian.h>
61 #include <machine/bus.h>
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_arp.h>
67 #include <net/if_llc.h>
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/if_ether.h>
74 #endif
75 
76 #include <net80211/ieee80211_var.h>
77 #include <net80211/ieee80211_rssadapt.h>
78 
79 #include <dev/pci/pcidevs.h>
80 #include <dev/gpio/gpiovar.h>
81 
82 #include <dev/ic/athvar.h>
83 
84 int	ath_init(struct ifnet *);
85 int	ath_init1(struct ath_softc *);
86 int	ath_intr1(struct ath_softc *);
87 void	ath_stop(struct ifnet *);
88 void	ath_start(struct ifnet *);
89 void	ath_reset(struct ath_softc *, int);
90 int	ath_media_change(struct ifnet *);
91 void	ath_watchdog(struct ifnet *);
92 int	ath_ioctl(struct ifnet *, u_long, caddr_t);
93 void	ath_fatal_proc(void *, int);
94 void	ath_rxorn_proc(void *, int);
95 void	ath_bmiss_proc(void *, int);
96 u_int   ath_chan2flags(struct ieee80211com *, struct ieee80211_channel *);
97 int	ath_initkeytable(struct ath_softc *);
98 void    ath_mcastfilter_accum(caddr_t, u_int32_t (*)[2]);
99 void    ath_mcastfilter_compute(struct ath_softc *, u_int32_t (*)[2]);
100 u_int32_t ath_calcrxfilter(struct ath_softc *);
101 void	ath_mode_init(struct ath_softc *);
102 #ifndef IEEE80211_STA_ONLY
103 int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
104 void	ath_beacon_proc(void *, int);
105 void	ath_beacon_free(struct ath_softc *);
106 #endif
107 void	ath_beacon_config(struct ath_softc *);
108 int	ath_desc_alloc(struct ath_softc *);
109 void	ath_desc_free(struct ath_softc *);
110 struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
111 struct mbuf *ath_getmbuf(int, int, u_int);
112 void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
113 void	ath_node_copy(struct ieee80211com *,
114 	    struct ieee80211_node *, const struct ieee80211_node *);
115 u_int8_t ath_node_getrssi(struct ieee80211com *,
116 	    const struct ieee80211_node *);
117 int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
118 void	ath_rx_proc(void *, int);
119 int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
120 	    struct ath_buf *, struct mbuf *);
121 void	ath_tx_proc(void *, int);
122 int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
123 void	ath_draintxq(struct ath_softc *);
124 void	ath_stoprecv(struct ath_softc *);
125 int	ath_startrecv(struct ath_softc *);
126 void	ath_next_scan(void *);
127 int	ath_set_slot_time(struct ath_softc *);
128 void	ath_calibrate(void *);
129 void	ath_ledstate(struct ath_softc *, enum ieee80211_state);
130 int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
131 void	ath_newassoc(struct ieee80211com *,
132 	    struct ieee80211_node *, int);
133 int	ath_getchannels(struct ath_softc *, HAL_BOOL outdoor,
134 	    HAL_BOOL xchanmode);
135 int	ath_rate_setup(struct ath_softc *sc, u_int mode);
136 void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
137 void	ath_rssadapt_updatenode(void *, struct ieee80211_node *);
138 void	ath_rssadapt_updatestats(void *);
139 #ifndef IEEE80211_STA_ONLY
140 void	ath_recv_mgmt(struct ieee80211com *, struct mbuf *,
141 	    struct ieee80211_node *, struct ieee80211_rxinfo *, int);
142 #endif
143 void	ath_disable(struct ath_softc *);
144 void	ath_power(int, void *);
145 
146 int	ath_gpio_attach(struct ath_softc *, u_int16_t);
147 int	ath_gpio_pin_read(void *, int);
148 void	ath_gpio_pin_write(void *, int, int);
149 void	ath_gpio_pin_ctl(void *, int, int);
150 
151 #ifdef AR_DEBUG
152 void	ath_printrxbuf(struct ath_buf *, int);
153 void	ath_printtxbuf(struct ath_buf *, int);
154 int ath_debug = 0;
155 #endif
156 
157 int ath_dwelltime = 200;		/* 5 channels/second */
158 int ath_calinterval = 30;		/* calibrate every 30 secs */
159 int ath_outdoor = AH_TRUE;		/* outdoor operation */
160 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
161 int ath_softcrypto = 1;			/* 1=enable software crypto */
162 
163 struct cfdriver ath_cd = {
164 	NULL, "ath", DV_IFNET
165 };
166 
167 #if 0
168 int
169 ath_activate(struct device *self, enum devact act)
170 {
171 	struct ath_softc *sc = (struct ath_softc *)self;
172 	int rv = 0, s;
173 
174 	s = splnet();
175 	switch (act) {
176 	case DVACT_ACTIVATE:
177 		break;
178 	case DVACT_DEACTIVATE:
179 		if_deactivate(&sc->sc_ic.ic_if);
180 		break;
181 	}
182 	splx(s);
183 	return rv;
184 }
185 #endif
186 
187 int
188 ath_enable(struct ath_softc *sc)
189 {
190 	if (ATH_IS_ENABLED(sc) == 0) {
191 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
192 			printf("%s: device enable failed\n",
193 				sc->sc_dev.dv_xname);
194 			return (EIO);
195 		}
196 		sc->sc_flags |= ATH_ENABLED;
197 	}
198 	return (0);
199 }
200 
201 void
202 ath_disable(struct ath_softc *sc)
203 {
204 	if (!ATH_IS_ENABLED(sc))
205 		return;
206 	if (sc->sc_disable != NULL)
207 		(*sc->sc_disable)(sc);
208 	sc->sc_flags &= ~ATH_ENABLED;
209 }
210 
211 int
212 ath_attach(u_int16_t devid, struct ath_softc *sc)
213 {
214 	struct ieee80211com *ic = &sc->sc_ic;
215 	struct ifnet *ifp = &ic->ic_if;
216 	struct ath_hal *ah;
217 	HAL_STATUS status;
218 	HAL_TXQ_INFO qinfo;
219 	int error = 0, i;
220 
221 	DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
222 
223 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
224 	sc->sc_flags &= ~ATH_ATTACHED;	/* make sure that it's not attached */
225 
226 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
227 	    sc->sc_pcie, &status);
228 	if (ah == NULL) {
229 		printf("%s: unable to attach hardware; HAL status %d\n",
230 			ifp->if_xname, status);
231 		error = ENXIO;
232 		goto bad;
233 	}
234 	if (ah->ah_abi != HAL_ABI_VERSION) {
235 		printf("%s: HAL ABI mismatch detected (0x%x != 0x%x)\n",
236 			ifp->if_xname, ah->ah_abi, HAL_ABI_VERSION);
237 		error = ENXIO;
238 		goto bad;
239 	}
240 
241 	if (ah->ah_single_chip == AH_TRUE) {
242 		printf("%s: AR%s %u.%u phy %u.%u rf %u.%u", ifp->if_xname,
243 		    ar5k_printver(AR5K_VERSION_DEV, devid),
244 		    ah->ah_mac_version, ah->ah_mac_revision,
245 		    ah->ah_phy_revision >> 4, ah->ah_phy_revision & 0xf,
246 		    ah->ah_radio_5ghz_revision >> 4,
247 		    ah->ah_radio_5ghz_revision & 0xf);
248 	} else {
249 		printf("%s: AR%s %u.%u phy %u.%u", ifp->if_xname,
250 		    ar5k_printver(AR5K_VERSION_VER, ah->ah_mac_srev),
251 		    ah->ah_mac_version, ah->ah_mac_revision,
252 		    ah->ah_phy_revision >> 4, ah->ah_phy_revision & 0xf);
253 		printf(" rf%s %u.%u",
254 		    ar5k_printver(AR5K_VERSION_RAD, ah->ah_radio_5ghz_revision),
255 		    ah->ah_radio_5ghz_revision >> 4,
256 		    ah->ah_radio_5ghz_revision & 0xf);
257 		if (ah->ah_radio_2ghz_revision != 0) {
258 			printf(" rf%s %u.%u",
259 			    ar5k_printver(AR5K_VERSION_RAD,
260 			    ah->ah_radio_2ghz_revision),
261 			    ah->ah_radio_2ghz_revision >> 4,
262 			    ah->ah_radio_2ghz_revision & 0xf);
263 		}
264 	}
265 
266 #if 0
267 	if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_UNSUPP ||
268 	    ah->ah_radio_2ghz_revision >= AR5K_SREV_RAD_UNSUPP) {
269 		printf(": RF radio not supported\n");
270 		error = EOPNOTSUPP;
271 		goto bad;
272 	}
273 #endif
274 
275 	sc->sc_ah = ah;
276 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
277 
278 	/*
279 	 * Get regulation domain either stored in the EEPROM or defined
280 	 * as the default value. Some devices are known to have broken
281 	 * regulation domain values in their EEPROM.
282 	 */
283 	ath_hal_get_regdomain(ah, &ah->ah_regdomain);
284 
285 	/*
286 	 * Construct channel list based on the current regulation domain.
287 	 */
288 	error = ath_getchannels(sc, ath_outdoor, ath_xchanmode);
289 	if (error != 0)
290 		goto bad;
291 
292 	/*
293 	 * Setup rate tables for all potential media types.
294 	 */
295 	ath_rate_setup(sc, IEEE80211_MODE_11A);
296 	ath_rate_setup(sc, IEEE80211_MODE_11B);
297 	ath_rate_setup(sc, IEEE80211_MODE_11G);
298 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
299 
300 	error = ath_desc_alloc(sc);
301 	if (error != 0) {
302 		printf(": failed to allocate descriptors: %d\n", error);
303 		goto bad;
304 	}
305 	timeout_set(&sc->sc_scan_to, ath_next_scan, sc);
306 	timeout_set(&sc->sc_cal_to, ath_calibrate, sc);
307 	timeout_set(&sc->sc_rssadapt_to, ath_rssadapt_updatestats, sc);
308 
309 #ifdef __FreeBSD__
310 	ATH_TXBUF_LOCK_INIT(sc);
311 	ATH_TXQ_LOCK_INIT(sc);
312 #endif
313 
314 	ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
315 	ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
316 	ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
317 	ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
318 	ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
319 #ifndef IEEE80211_STA_ONLY
320 	ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
321 #endif
322 
323 	/*
324 	 * For now just pre-allocate one data queue and one
325 	 * beacon queue.  Note that the HAL handles resetting
326 	 * them at the needed time.  Eventually we'll want to
327 	 * allocate more tx queues for splitting management
328 	 * frames and for QOS support.
329 	 */
330 	sc->sc_bhalq = ath_hal_setup_tx_queue(ah, HAL_TX_QUEUE_BEACON, NULL);
331 	if (sc->sc_bhalq == (u_int) -1) {
332 		printf(": unable to setup a beacon xmit queue!\n");
333 		goto bad2;
334 	}
335 
336 	for (i = 0; i <= HAL_TX_QUEUE_ID_DATA_MAX; i++) {
337 		bzero(&qinfo, sizeof(qinfo));
338 		qinfo.tqi_type = HAL_TX_QUEUE_DATA;
339 		qinfo.tqi_subtype = i; /* should be mapped to WME types */
340 		sc->sc_txhalq[i] = ath_hal_setup_tx_queue(ah,
341 		    HAL_TX_QUEUE_DATA, &qinfo);
342 		if (sc->sc_txhalq[i] == (u_int) -1) {
343 			printf(": unable to setup a data xmit queue %u!\n", i);
344 			goto bad2;
345 		}
346 	}
347 
348 	ifp->if_softc = sc;
349 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST
350 	    | IFF_NOTRAILERS;
351 	ifp->if_start = ath_start;
352 	ifp->if_watchdog = ath_watchdog;
353 	ifp->if_ioctl = ath_ioctl;
354 #ifndef __OpenBSD__
355 	ifp->if_init = ath_init;
356 	ifp->if_stop = ath_stop;		/* XXX */
357 #endif
358 	IFQ_SET_MAXLEN(&ifp->if_snd, ATH_TXBUF * ATH_TXDESC);
359 	IFQ_SET_READY(&ifp->if_snd);
360 
361 	ic->ic_softc = sc;
362 	ic->ic_newassoc = ath_newassoc;
363 	/* XXX not right but it's not used anywhere important */
364 	ic->ic_phytype = IEEE80211_T_OFDM;
365 	ic->ic_opmode = IEEE80211_M_STA;
366 	ic->ic_caps = IEEE80211_C_WEP	/* wep supported */
367 	    | IEEE80211_C_PMGT		/* power management */
368 #ifndef IEEE80211_STA_ONLY
369 	    | IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
370 	    | IEEE80211_C_HOSTAP	/* hostap mode */
371 #endif
372 	    | IEEE80211_C_MONITOR	/* monitor mode */
373 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
374 	    | IEEE80211_C_SHPREAMBLE;	/* short preamble supported */
375 	if (ath_softcrypto)
376 		ic->ic_caps |= IEEE80211_C_RSN;	/* wpa/rsn supported */
377 
378 	/*
379 	 * Not all chips have the VEOL support we want to use with
380 	 * IBSS beacon; check here for it.
381 	 */
382 	sc->sc_veol = ath_hal_has_veol(ah);
383 
384 	/* get mac address from hardware */
385 	ath_hal_get_lladdr(ah, ic->ic_myaddr);
386 
387 	if_attach(ifp);
388 
389 	/* call MI attach routine. */
390 	ieee80211_ifattach(ifp);
391 
392 	/* override default methods */
393 	ic->ic_node_alloc = ath_node_alloc;
394 	sc->sc_node_free = ic->ic_node_free;
395 	ic->ic_node_free = ath_node_free;
396 	sc->sc_node_copy = ic->ic_node_copy;
397 	ic->ic_node_copy = ath_node_copy;
398 	ic->ic_node_getrssi = ath_node_getrssi;
399 	sc->sc_newstate = ic->ic_newstate;
400 	ic->ic_newstate = ath_newstate;
401 #ifndef IEEE80211_STA_ONLY
402 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
403 	ic->ic_recv_mgmt = ath_recv_mgmt;
404 #endif
405 	ic->ic_max_rssi = AR5K_MAX_RSSI;
406 	bcopy(etherbroadcastaddr, sc->sc_broadcast_addr, IEEE80211_ADDR_LEN);
407 
408 	/* complete initialization */
409 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
410 
411 #if NBPFILTER > 0
412 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
413 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
414 
415 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
416 	bzero(&sc->sc_rxtapu, sc->sc_rxtap_len);
417 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
418 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
419 
420 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
421 	bzero(&sc->sc_txtapu, sc->sc_txtap_len);
422 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
423 	sc->sc_txtap.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
424 #endif
425 
426 	sc->sc_flags |= ATH_ATTACHED;
427 	/*
428 	 * Make sure the interface is shutdown during reboot.
429 	 */
430 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
431 	if (sc->sc_sdhook == NULL)
432 		printf(": WARNING: unable to establish shutdown hook\n");
433 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
434 	if (sc->sc_powerhook == NULL)
435 		printf(": WARNING: unable to establish power hook\n");
436 
437 	/*
438 	 * Print regulation domain and the mac address. The regulation domain
439 	 * will be marked with a * if the EEPROM value has been overwritten.
440 	 */
441 	printf(", %s%s, address %s\n",
442 	    ieee80211_regdomain2name(ah->ah_regdomain),
443 	    ah->ah_regdomain != ah->ah_regdomain_hw ? "*" : "",
444 	    ether_sprintf(ic->ic_myaddr));
445 
446 	if (ath_gpio_attach(sc, devid) == 0)
447 		sc->sc_flags |= ATH_GPIO;
448 
449 	return 0;
450 bad2:
451 	ath_desc_free(sc);
452 bad:
453 	if (ah)
454 		ath_hal_detach(ah);
455 	sc->sc_invalid = 1;
456 	return error;
457 }
458 
459 int
460 ath_detach(struct ath_softc *sc, int flags)
461 {
462 	struct ifnet *ifp = &sc->sc_ic.ic_if;
463 	int s;
464 
465 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
466 		return (0);
467 
468 	config_detach_children(&sc->sc_dev, flags);
469 
470 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
471 
472 	timeout_del(&sc->sc_scan_to);
473 	timeout_del(&sc->sc_cal_to);
474 	timeout_del(&sc->sc_rssadapt_to);
475 
476 	s = splnet();
477 	ath_stop(ifp);
478 	ath_desc_free(sc);
479 	ath_hal_detach(sc->sc_ah);
480 
481 	ieee80211_ifdetach(ifp);
482 	if_detach(ifp);
483 
484 	splx(s);
485 	if (sc->sc_powerhook != NULL)
486 		powerhook_disestablish(sc->sc_powerhook);
487 	if (sc->sc_sdhook != NULL)
488 		shutdownhook_disestablish(sc->sc_sdhook);
489 #ifdef __FreeBSD__
490 	ATH_TXBUF_LOCK_DESTROY(sc);
491 	ATH_TXQ_LOCK_DESTROY(sc);
492 #endif
493 
494 	return 0;
495 }
496 
497 void
498 ath_power(int why, void *arg)
499 {
500 	struct ath_softc *sc = arg;
501 	int s;
502 
503 	DPRINTF(ATH_DEBUG_ANY, ("ath_power(%d)\n", why));
504 
505 	s = splnet();
506 	switch (why) {
507 	case PWR_SUSPEND:
508 	case PWR_STANDBY:
509 		ath_suspend(sc, why);
510 		break;
511 	case PWR_RESUME:
512 		ath_resume(sc, why);
513 		break;
514 #if !defined(__OpenBSD__)
515 	case PWR_SOFTSUSPEND:
516 	case PWR_SOFTSTANDBY:
517 	case PWR_SOFTRESUME:
518 		break;
519 #endif
520 	}
521 	splx(s);
522 }
523 
524 void
525 ath_suspend(struct ath_softc *sc, int why)
526 {
527 	struct ifnet *ifp = &sc->sc_ic.ic_if;
528 
529 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
530 
531 	ath_stop(ifp);
532 	if (sc->sc_power != NULL)
533 		(*sc->sc_power)(sc, why);
534 }
535 
536 void
537 ath_resume(struct ath_softc *sc, int why)
538 {
539 	struct ifnet *ifp = &sc->sc_ic.ic_if;
540 
541 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
542 
543 	if (ifp->if_flags & IFF_UP) {
544 		ath_init(ifp);
545 #if 0
546 		(void)ath_intr(sc);
547 #endif
548 		if (sc->sc_power != NULL)
549 			(*sc->sc_power)(sc, why);
550 		if (ifp->if_flags & IFF_RUNNING)
551 			ath_start(ifp);
552 	}
553 }
554 
555 void
556 ath_shutdown(void *arg)
557 {
558 	struct ath_softc *sc = arg;
559 
560 	ath_stop(&sc->sc_ic.ic_if);
561 }
562 
563 int
564 ath_intr(void *arg)
565 {
566 	return ath_intr1((struct ath_softc *)arg);
567 }
568 
569 int
570 ath_intr1(struct ath_softc *sc)
571 {
572 	struct ieee80211com *ic = &sc->sc_ic;
573 	struct ifnet *ifp = &ic->ic_if;
574 	struct ath_hal *ah = sc->sc_ah;
575 	HAL_INT status;
576 
577 	if (sc->sc_invalid) {
578 		/*
579 		 * The hardware is not ready/present, don't touch anything.
580 		 * Note this can happen early on if the IRQ is shared.
581 		 */
582 		DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
583 		return 0;
584 	}
585 	if (!ath_hal_is_intr_pending(ah))		/* shared irq, not for us */
586 		return 0;
587 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
588 		DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
589 		    __func__, ifp->if_flags));
590 		ath_hal_get_isr(ah, &status);	/* clear ISR */
591 		ath_hal_set_intr(ah, 0);		/* disable further intr's */
592 		return 1; /* XXX */
593 	}
594 	ath_hal_get_isr(ah, &status);		/* NB: clears ISR too */
595 	DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
596 	status &= sc->sc_imask;			/* discard unasked for bits */
597 	if (status & HAL_INT_FATAL) {
598 		sc->sc_stats.ast_hardware++;
599 		ath_hal_set_intr(ah, 0);		/* disable intr's until reset */
600 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
601 	} else if (status & HAL_INT_RXORN) {
602 		sc->sc_stats.ast_rxorn++;
603 		ath_hal_set_intr(ah, 0);		/* disable intr's until reset */
604 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
605 	} else if (status & HAL_INT_MIB) {
606 		DPRINTF(ATH_DEBUG_INTR,
607 		    ("%s: resetting MIB counters\n", __func__));
608 		sc->sc_stats.ast_mib++;
609 		ath_hal_update_mib_counters(ah, &sc->sc_mib_stats);
610 	} else {
611 		if (status & HAL_INT_RXEOL) {
612 			/*
613 			 * NB: the hardware should re-read the link when
614 			 *     RXE bit is written, but it doesn't work at
615 			 *     least on older hardware revs.
616 			 */
617 			sc->sc_stats.ast_rxeol++;
618 			sc->sc_rxlink = NULL;
619 		}
620 		if (status & HAL_INT_TXURN) {
621 			sc->sc_stats.ast_txurn++;
622 			/* bump tx trigger level */
623 			ath_hal_update_tx_triglevel(ah, AH_TRUE);
624 		}
625 		if (status & HAL_INT_RX)
626 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
627 		if (status & HAL_INT_TX)
628 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
629 		if (status & HAL_INT_SWBA)
630 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
631 		if (status & HAL_INT_BMISS) {
632 			sc->sc_stats.ast_bmiss++;
633 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
634 		}
635 	}
636 	return 1;
637 }
638 
639 void
640 ath_fatal_proc(void *arg, int pending)
641 {
642 	struct ath_softc *sc = arg;
643 	struct ieee80211com *ic = &sc->sc_ic;
644 	struct ifnet *ifp = &ic->ic_if;
645 
646 	if (ifp->if_flags & IFF_DEBUG)
647 		printf("%s: hardware error; resetting\n", ifp->if_xname);
648 	ath_reset(sc, 1);
649 }
650 
651 void
652 ath_rxorn_proc(void *arg, int pending)
653 {
654 	struct ath_softc *sc = arg;
655 	struct ieee80211com *ic = &sc->sc_ic;
656 	struct ifnet *ifp = &ic->ic_if;
657 
658 	if (ifp->if_flags & IFF_DEBUG)
659 		printf("%s: rx FIFO overrun; resetting\n", ifp->if_xname);
660 	ath_reset(sc, 1);
661 }
662 
663 void
664 ath_bmiss_proc(void *arg, int pending)
665 {
666 	struct ath_softc *sc = arg;
667 	struct ieee80211com *ic = &sc->sc_ic;
668 
669 	DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
670 	if (ic->ic_opmode != IEEE80211_M_STA)
671 		return;
672 	if (ic->ic_state == IEEE80211_S_RUN) {
673 		/*
674 		 * Rather than go directly to scan state, try to
675 		 * reassociate first.  If that fails then the state
676 		 * machine will drop us into scanning after timing
677 		 * out waiting for a probe response.
678 		 */
679 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
680 	}
681 }
682 
683 u_int
684 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
685 {
686 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
687 
688 	switch (mode) {
689 	case IEEE80211_MODE_AUTO:
690 		return 0;
691 	case IEEE80211_MODE_11A:
692 		return CHANNEL_A;
693 	case IEEE80211_MODE_11B:
694 		return CHANNEL_B;
695 	case IEEE80211_MODE_11G:
696 		return CHANNEL_G;
697 	case IEEE80211_MODE_TURBO:
698 		return CHANNEL_T;
699 	default:
700 		panic("%s: unsupported mode %d", __func__, mode);
701 		return 0;
702 	}
703 }
704 
705 int
706 ath_init(struct ifnet *ifp)
707 {
708 	return ath_init1((struct ath_softc *)ifp->if_softc);
709 }
710 
711 int
712 ath_init1(struct ath_softc *sc)
713 {
714 	struct ieee80211com *ic = &sc->sc_ic;
715 	struct ifnet *ifp = &ic->ic_if;
716 	struct ieee80211_node *ni;
717 	enum ieee80211_phymode mode;
718 	struct ath_hal *ah = sc->sc_ah;
719 	HAL_STATUS status;
720 	HAL_CHANNEL hchan;
721 	int error = 0, s;
722 
723 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
724 	    __func__, ifp->if_flags));
725 
726 	if ((error = ath_enable(sc)) != 0)
727 		return error;
728 
729 	s = splnet();
730 	/*
731 	 * Stop anything previously setup.  This is safe
732 	 * whether this is the first time through or not.
733 	 */
734 	ath_stop(ifp);
735 
736 	/*
737 	 * Reset the link layer address to the latest value.
738 	 */
739 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
740 	ath_hal_set_lladdr(ah, ic->ic_myaddr);
741 
742 	/*
743 	 * The basic interface to setting the hardware in a good
744 	 * state is ``reset''.  On return the hardware is known to
745 	 * be powered up and with interrupts disabled.  This must
746 	 * be followed by initialization of the appropriate bits
747 	 * and then setup of the interrupt mask.
748 	 */
749 	hchan.channel = ic->ic_ibss_chan->ic_freq;
750 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
751 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
752 		printf("%s: unable to reset hardware; hal status %u\n",
753 			ifp->if_xname, status);
754 		error = EIO;
755 		goto done;
756 	}
757 	ath_set_slot_time(sc);
758 
759 	if ((error = ath_initkeytable(sc)) != 0) {
760 		printf("%s: unable to reset the key cache\n",
761 		    ifp->if_xname);
762 		goto done;
763 	}
764 
765 	if ((error = ath_startrecv(sc)) != 0) {
766 		printf("%s: unable to start recv logic\n", ifp->if_xname);
767 		goto done;
768 	}
769 
770 	/*
771 	 * Enable interrupts.
772 	 */
773 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
774 	    | HAL_INT_RXEOL | HAL_INT_RXORN
775 	    | HAL_INT_FATAL | HAL_INT_GLOBAL;
776 #ifndef IEEE80211_STA_ONLY
777 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
778 		sc->sc_imask |= HAL_INT_MIB;
779 #endif
780 	ath_hal_set_intr(ah, sc->sc_imask);
781 
782 	ifp->if_flags |= IFF_RUNNING;
783 	ic->ic_state = IEEE80211_S_INIT;
784 
785 	/*
786 	 * The hardware should be ready to go now so it's safe
787 	 * to kick the 802.11 state machine as it's likely to
788 	 * immediately call back to us to send mgmt frames.
789 	 */
790 	ni = ic->ic_bss;
791 	ni->ni_chan = ic->ic_ibss_chan;
792 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
793 	if (mode != sc->sc_curmode)
794 		ath_setcurmode(sc, mode);
795 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
796 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
797 	} else {
798 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
799 	}
800 done:
801 	splx(s);
802 	return error;
803 }
804 
805 void
806 ath_stop(struct ifnet *ifp)
807 {
808 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
809 	struct ath_softc *sc = ifp->if_softc;
810 	struct ath_hal *ah = sc->sc_ah;
811 	int s;
812 
813 	DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
814 	    __func__, sc->sc_invalid, ifp->if_flags));
815 
816 	s = splnet();
817 	if (ifp->if_flags & IFF_RUNNING) {
818 		/*
819 		 * Shutdown the hardware and driver:
820 		 *    disable interrupts
821 		 *    turn off timers
822 		 *    clear transmit machinery
823 		 *    clear receive machinery
824 		 *    drain and release tx queues
825 		 *    reclaim beacon resources
826 		 *    reset 802.11 state machine
827 		 *    power down hardware
828 		 *
829 		 * Note that some of this work is not possible if the
830 		 * hardware is gone (invalid).
831 		 */
832 		ifp->if_flags &= ~IFF_RUNNING;
833 		ifp->if_timer = 0;
834 		if (!sc->sc_invalid)
835 			ath_hal_set_intr(ah, 0);
836 		ath_draintxq(sc);
837 		if (!sc->sc_invalid) {
838 			ath_stoprecv(sc);
839 		} else {
840 			sc->sc_rxlink = NULL;
841 		}
842 		IFQ_PURGE(&ifp->if_snd);
843 #ifndef IEEE80211_STA_ONLY
844 		ath_beacon_free(sc);
845 #endif
846 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
847 		if (!sc->sc_invalid) {
848 			ath_hal_set_power(ah, HAL_PM_FULL_SLEEP, 0);
849 		}
850 		ath_disable(sc);
851 	}
852 	splx(s);
853 }
854 
855 /*
856  * Reset the hardware w/o losing operational state.  This is
857  * basically a more efficient way of doing ath_stop, ath_init,
858  * followed by state transitions to the current 802.11
859  * operational state.  Used to recover from errors rx overrun
860  * and to reset the hardware when rf gain settings must be reset.
861  */
862 void
863 ath_reset(struct ath_softc *sc, int full)
864 {
865 	struct ieee80211com *ic = &sc->sc_ic;
866 	struct ifnet *ifp = &ic->ic_if;
867 	struct ath_hal *ah = sc->sc_ah;
868 	struct ieee80211_channel *c;
869 	HAL_STATUS status;
870 	HAL_CHANNEL hchan;
871 
872 	/*
873 	 * Convert to a HAL channel description with the flags
874 	 * constrained to reflect the current operating mode.
875 	 */
876 	c = ic->ic_ibss_chan;
877 	hchan.channel = c->ic_freq;
878 	hchan.channelFlags = ath_chan2flags(ic, c);
879 
880 	ath_hal_set_intr(ah, 0);		/* disable interrupts */
881 	ath_draintxq(sc);		/* stop xmit side */
882 	ath_stoprecv(sc);		/* stop recv side */
883 	/* NB: indicate channel change so we do a full reset */
884 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan,
885 	    full ? AH_TRUE : AH_FALSE, &status)) {
886 		printf("%s: %s: unable to reset hardware; hal status %u\n",
887 			ifp->if_xname, __func__, status);
888 	}
889 	ath_set_slot_time(sc);
890 	/* In case channel changed, save as a node channel */
891 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
892 	ath_hal_set_intr(ah, sc->sc_imask);
893 	if (ath_startrecv(sc) != 0)	/* restart recv */
894 		printf("%s: %s: unable to start recv logic\n", ifp->if_xname,
895 		    __func__);
896 	ath_start(ifp);			/* restart xmit */
897 	if (ic->ic_state == IEEE80211_S_RUN)
898 		ath_beacon_config(sc);	/* restart beacons */
899 }
900 
901 void
902 ath_start(struct ifnet *ifp)
903 {
904 	struct ath_softc *sc = ifp->if_softc;
905 	struct ath_hal *ah = sc->sc_ah;
906 	struct ieee80211com *ic = &sc->sc_ic;
907 	struct ieee80211_node *ni;
908 	struct ath_buf *bf;
909 	struct mbuf *m;
910 	struct ieee80211_frame *wh;
911 	int s;
912 
913 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING ||
914 	    sc->sc_invalid)
915 		return;
916 	for (;;) {
917 		/*
918 		 * Grab a TX buffer and associated resources.
919 		 */
920 		s = splnet();
921 		bf = TAILQ_FIRST(&sc->sc_txbuf);
922 		if (bf != NULL)
923 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
924 		splx(s);
925 		if (bf == NULL) {
926 			DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
927 			    __func__));
928 			sc->sc_stats.ast_tx_qstop++;
929 			ifp->if_flags |= IFF_OACTIVE;
930 			break;
931 		}
932 		/*
933 		 * Poll the management queue for frames; they
934 		 * have priority over normal data frames.
935 		 */
936 		IF_DEQUEUE(&ic->ic_mgtq, m);
937 		if (m == NULL) {
938 			/*
939 			 * No data frames go out unless we're associated.
940 			 */
941 			if (ic->ic_state != IEEE80211_S_RUN) {
942 				DPRINTF(ATH_DEBUG_ANY,
943 				    ("%s: ignore data packet, state %u\n",
944 				    __func__, ic->ic_state));
945 				sc->sc_stats.ast_tx_discard++;
946 				s = splnet();
947 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
948 				splx(s);
949 				break;
950 			}
951 			IFQ_DEQUEUE(&ifp->if_snd, m);
952 			if (m == NULL) {
953 				s = splnet();
954 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
955 				splx(s);
956 				break;
957 			}
958 			ifp->if_opackets++;
959 
960 #if NBPFILTER > 0
961 			if (ifp->if_bpf)
962 				bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
963 #endif
964 
965 			/*
966 			 * Encapsulate the packet in prep for transmission.
967 			 */
968 			m = ieee80211_encap(ifp, m, &ni);
969 			if (m == NULL) {
970 				DPRINTF(ATH_DEBUG_ANY,
971 				    ("%s: encapsulation failure\n",
972 				    __func__));
973 				sc->sc_stats.ast_tx_encap++;
974 				goto bad;
975 			}
976 			wh = mtod(m, struct ieee80211_frame *);
977 		} else {
978 			/*
979 			 * Hack!  The referenced node pointer is in the
980 			 * rcvif field of the packet header.  This is
981 			 * placed there by ieee80211_mgmt_output because
982 			 * we need to hold the reference with the frame
983 			 * and there's no other way (other than packet
984 			 * tags which we consider too expensive to use)
985 			 * to pass it along.
986 			 */
987 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
988 			m->m_pkthdr.rcvif = NULL;
989 
990 			wh = mtod(m, struct ieee80211_frame *);
991 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
992 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
993 				/* fill time stamp */
994 				u_int64_t tsf;
995 				u_int32_t *tstamp;
996 
997 				tsf = ath_hal_get_tsf64(ah);
998 				/* XXX: adjust 100us delay to xmit */
999 				tsf += 100;
1000 				tstamp = (u_int32_t *)&wh[1];
1001 				tstamp[0] = htole32(tsf & 0xffffffff);
1002 				tstamp[1] = htole32(tsf >> 32);
1003 			}
1004 			sc->sc_stats.ast_tx_mgmt++;
1005 		}
1006 
1007 		if (ath_tx_start(sc, ni, bf, m)) {
1008 	bad:
1009 			s = splnet();
1010 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1011 			splx(s);
1012 			ifp->if_oerrors++;
1013 			if (ni != NULL)
1014 				ieee80211_release_node(ic, ni);
1015 			continue;
1016 		}
1017 
1018 		sc->sc_tx_timer = 5;
1019 		ifp->if_timer = 1;
1020 	}
1021 }
1022 
1023 int
1024 ath_media_change(struct ifnet *ifp)
1025 {
1026 	int error;
1027 
1028 	error = ieee80211_media_change(ifp);
1029 	if (error == ENETRESET) {
1030 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1031 		    (IFF_RUNNING|IFF_UP))
1032 			ath_init(ifp);		/* XXX lose error */
1033 		error = 0;
1034 	}
1035 	return error;
1036 }
1037 
1038 void
1039 ath_watchdog(struct ifnet *ifp)
1040 {
1041 	struct ath_softc *sc = ifp->if_softc;
1042 
1043 	ifp->if_timer = 0;
1044 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1045 		return;
1046 	if (sc->sc_tx_timer) {
1047 		if (--sc->sc_tx_timer == 0) {
1048 			printf("%s: device timeout\n", ifp->if_xname);
1049 			ath_reset(sc, 1);
1050 			ifp->if_oerrors++;
1051 			sc->sc_stats.ast_watchdog++;
1052 			return;
1053 		}
1054 		ifp->if_timer = 1;
1055 	}
1056 
1057 	ieee80211_watchdog(ifp);
1058 }
1059 
1060 int
1061 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1062 {
1063 	struct ath_softc *sc = ifp->if_softc;
1064 	struct ieee80211com *ic = &sc->sc_ic;
1065 	struct ifreq *ifr = (struct ifreq *)data;
1066 	struct ifaddr *ifa = (struct ifaddr *)data;
1067 	int error = 0, s;
1068 
1069 	s = splnet();
1070 	switch (cmd) {
1071 	case SIOCSIFADDR:
1072 		ifp->if_flags |= IFF_UP;
1073 #ifdef INET
1074 		if (ifa->ifa_addr->sa_family == AF_INET) {
1075 			arp_ifinit(&ic->ic_ac, ifa);
1076 		}
1077 #endif  /* INET */
1078 		/* FALLTHROUGH */
1079 	case SIOCSIFFLAGS:
1080 		if (ifp->if_flags & IFF_UP) {
1081 			if (ifp->if_flags & IFF_RUNNING) {
1082 				/*
1083 				 * To avoid rescanning another access point,
1084 				 * do not call ath_init() here.  Instead,
1085 				 * only reflect promisc mode settings.
1086 				 */
1087 				ath_mode_init(sc);
1088 			} else {
1089 				/*
1090 				 * Beware of being called during detach to
1091 				 * reset promiscuous mode.  In that case we
1092 				 * will still be marked UP but not RUNNING.
1093 				 * However trying to re-init the interface
1094 				 * is the wrong thing to do as we've already
1095 				 * torn down much of our state.  There's
1096 				 * probably a better way to deal with this.
1097 				 */
1098 				if (!sc->sc_invalid)
1099 					ath_init(ifp);	/* XXX lose error */
1100 			}
1101 		} else
1102 			ath_stop(ifp);
1103 		break;
1104 	case SIOCADDMULTI:
1105 	case SIOCDELMULTI:
1106 #ifdef __FreeBSD__
1107 		/*
1108 		 * The upper layer has already installed/removed
1109 		 * the multicast address(es), just recalculate the
1110 		 * multicast filter for the card.
1111 		 */
1112 		if (ifp->if_flags & IFF_RUNNING)
1113 			ath_mode_init(sc);
1114 #endif
1115 		error = (cmd == SIOCADDMULTI) ?
1116 		    ether_addmulti(ifr, &sc->sc_ic.ic_ac) :
1117 		    ether_delmulti(ifr, &sc->sc_ic.ic_ac);
1118 		if (error == ENETRESET) {
1119 			if (ifp->if_flags & IFF_RUNNING)
1120 				ath_mode_init(sc);
1121 			error = 0;
1122 		}
1123 		break;
1124 	case SIOCGATHSTATS:
1125 		error = copyout(&sc->sc_stats,
1126 		    ifr->ifr_data, sizeof (sc->sc_stats));
1127 		break;
1128 	default:
1129 		error = ieee80211_ioctl(ifp, cmd, data);
1130 		if (error == ENETRESET) {
1131 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1132 			    (IFF_RUNNING|IFF_UP)) {
1133 				if (ic->ic_opmode != IEEE80211_M_MONITOR)
1134 					ath_init(ifp);	/* XXX lose error */
1135 				else
1136 					ath_reset(sc, 1);
1137 			}
1138 			error = 0;
1139 		}
1140 		break;
1141 	}
1142 	splx(s);
1143 	return error;
1144 }
1145 
1146 /*
1147  * Fill the hardware key cache with key entries.
1148  */
1149 int
1150 ath_initkeytable(struct ath_softc *sc)
1151 {
1152 	struct ieee80211com *ic = &sc->sc_ic;
1153 	struct ath_hal *ah = sc->sc_ah;
1154 	int i;
1155 
1156 	if (ath_softcrypto) {
1157 		/*
1158 		 * Disable the hardware crypto engine and reset the key cache
1159 		 * to allow software crypto operation for WEP/RSN/WPA2
1160 		 */
1161 		if (ic->ic_flags & (IEEE80211_F_WEPON|IEEE80211_F_RSNON))
1162 			(void)ath_hal_softcrypto(ah, AH_TRUE);
1163 		else
1164 			(void)ath_hal_softcrypto(ah, AH_FALSE);
1165 		return (0);
1166 	}
1167 
1168 	/* WEP is disabled, we only support WEP in hardware yet */
1169 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
1170 		return (0);
1171 
1172 	/*
1173 	 * Setup the hardware after reset: the key cache is filled as
1174 	 * needed and the receive engine is set going.  Frame transmit
1175 	 * is handled entirely in the frame output path; there's nothing
1176 	 * to do here except setup the interrupt mask.
1177 	 */
1178 
1179 	/* XXX maybe should reset all keys when !WEPON */
1180 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1181 		struct ieee80211_key *k = &ic->ic_nw_keys[i];
1182 		if (k->k_len == 0)
1183 			ath_hal_reset_key(ah, i);
1184 		else {
1185 			HAL_KEYVAL hk;
1186 
1187 			bzero(&hk, sizeof(hk));
1188 			/*
1189 			 * Pad the key to a supported key length. It
1190 			 * is always a good idea to use full-length
1191 			 * keys without padded zeros but this seems
1192 			 * to be the default behaviour used by many
1193 			 * implementations.
1194 			 */
1195 			if (k->k_cipher == IEEE80211_CIPHER_WEP40)
1196 				hk.wk_len = AR5K_KEYVAL_LENGTH_40;
1197 			else if (k->k_cipher == IEEE80211_CIPHER_WEP104)
1198 				hk.wk_len = AR5K_KEYVAL_LENGTH_104;
1199 			else
1200 				return (EINVAL);
1201 			bcopy(k->k_key, hk.wk_key, hk.wk_len);
1202 
1203 			if (ath_hal_set_key(ah, i, &hk) != AH_TRUE)
1204 				return (EINVAL);
1205 		}
1206 	}
1207 
1208 	return (0);
1209 }
1210 
1211 void
1212 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1213 {
1214 	u_int32_t val;
1215 	u_int8_t pos;
1216 
1217 	val = LE_READ_4(dl + 0);
1218 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1219 	val = LE_READ_4(dl + 3);
1220 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1221 	pos &= 0x3f;
1222 	(*mfilt)[pos / 32] |= (1 << (pos % 32));
1223 }
1224 
1225 void
1226 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1227 {
1228 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1229 	struct ether_multi *enm;
1230 	struct ether_multistep estep;
1231 
1232 	ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ac, enm);
1233 	while (enm != NULL) {
1234 		/* XXX Punt on ranges. */
1235 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1236 			(*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1237 			ifp->if_flags |= IFF_ALLMULTI;
1238 			return;
1239 		}
1240 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1241 		ETHER_NEXT_MULTI(estep, enm);
1242 	}
1243 	ifp->if_flags &= ~IFF_ALLMULTI;
1244 }
1245 
1246 /*
1247  * Calculate the receive filter according to the
1248  * operating mode and state:
1249  *
1250  * o always accept unicast, broadcast, and multicast traffic
1251  * o maintain current state of phy error reception
1252  * o probe request frames are accepted only when operating in
1253  *   hostap, adhoc, or monitor modes
1254  * o enable promiscuous mode according to the interface state
1255  * o accept beacons:
1256  *   - when operating in adhoc mode so the 802.11 layer creates
1257  *     node table entries for peers,
1258  *   - when operating in station mode for collecting rssi data when
1259  *     the station is otherwise quiet, or
1260  *   - when scanning
1261  */
1262 u_int32_t
1263 ath_calcrxfilter(struct ath_softc *sc)
1264 {
1265 	struct ieee80211com *ic = &sc->sc_ic;
1266 	struct ath_hal *ah = sc->sc_ah;
1267 	struct ifnet *ifp = &ic->ic_if;
1268 	u_int32_t rfilt;
1269 
1270 	rfilt = (ath_hal_get_rx_filter(ah) & HAL_RX_FILTER_PHYERR)
1271 	    | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1272 	if (ic->ic_opmode != IEEE80211_M_STA)
1273 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1274 #ifndef IEEE80211_STA_ONLY
1275 	if (ic->ic_opmode != IEEE80211_M_AHDEMO)
1276 #endif
1277 		rfilt |= HAL_RX_FILTER_BEACON;
1278 	if (ifp->if_flags & IFF_PROMISC)
1279 		rfilt |= HAL_RX_FILTER_PROM;
1280 	return rfilt;
1281 }
1282 
1283 void
1284 ath_mode_init(struct ath_softc *sc)
1285 {
1286 	struct ath_hal *ah = sc->sc_ah;
1287 	u_int32_t rfilt, mfilt[2];
1288 
1289 	/* configure rx filter */
1290 	rfilt = ath_calcrxfilter(sc);
1291 	ath_hal_set_rx_filter(ah, rfilt);
1292 
1293 	/* configure operational mode */
1294 	ath_hal_set_opmode(ah);
1295 
1296 	/* calculate and install multicast filter */
1297 	mfilt[0] = mfilt[1] = 0;
1298 	ath_mcastfilter_compute(sc, &mfilt);
1299 	ath_hal_set_mcast_filter(ah, mfilt[0], mfilt[1]);
1300 	DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
1301 	    __func__, rfilt, mfilt[0], mfilt[1]));
1302 }
1303 
1304 struct mbuf *
1305 ath_getmbuf(int flags, int type, u_int pktlen)
1306 {
1307 	struct mbuf *m;
1308 
1309 	KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1310 #ifdef __FreeBSD__
1311 	if (pktlen <= MHLEN) {
1312 		MGETHDR(m, flags, type);
1313 	} else {
1314 		m = m_getcl(flags, type, M_PKTHDR);
1315 	}
1316 #else
1317 	MGETHDR(m, flags, type);
1318 	if (m != NULL && pktlen > MHLEN) {
1319 		MCLGET(m, flags);
1320 		if ((m->m_flags & M_EXT) == 0) {
1321 			m_free(m);
1322 			m = NULL;
1323 		}
1324 	}
1325 #endif
1326 	return m;
1327 }
1328 
1329 #ifndef IEEE80211_STA_ONLY
1330 int
1331 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1332 {
1333 	struct ieee80211com *ic = &sc->sc_ic;
1334 	struct ath_hal *ah = sc->sc_ah;
1335 	struct ath_buf *bf;
1336 	struct ath_desc *ds;
1337 	struct mbuf *m;
1338 	int error;
1339 	u_int8_t rate;
1340 	const HAL_RATE_TABLE *rt;
1341 	u_int flags = 0;
1342 
1343 	bf = sc->sc_bcbuf;
1344 	if (bf->bf_m != NULL) {
1345 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1346 		m_freem(bf->bf_m);
1347 		bf->bf_m = NULL;
1348 		bf->bf_node = NULL;
1349 	}
1350 	/*
1351 	 * NB: the beacon data buffer must be 32-bit aligned;
1352 	 * we assume the mbuf routines will return us something
1353 	 * with this alignment (perhaps should assert).
1354 	 */
1355 	m = ieee80211_beacon_alloc(ic, ni);
1356 	if (m == NULL) {
1357 		DPRINTF(ATH_DEBUG_BEACON, ("%s: cannot get mbuf/cluster\n",
1358 		    __func__));
1359 		sc->sc_stats.ast_be_nombuf++;
1360 		return ENOMEM;
1361 	}
1362 
1363 	DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
1364 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1365 	    BUS_DMA_NOWAIT);
1366 	if (error != 0) {
1367 		m_freem(m);
1368 		return error;
1369 	}
1370 	KASSERT(bf->bf_nseg == 1,
1371 		("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
1372 	bf->bf_m = m;
1373 
1374 	/* setup descriptors */
1375 	ds = bf->bf_desc;
1376 	bzero(ds, sizeof(struct ath_desc));
1377 
1378 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_veol) {
1379 		ds->ds_link = bf->bf_daddr;	/* link to self */
1380 		flags |= HAL_TXDESC_VEOL;
1381 	} else {
1382 		ds->ds_link = 0;
1383 	}
1384 	ds->ds_data = bf->bf_segs[0].ds_addr;
1385 
1386 	DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__,
1387 	    (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1388 
1389 	/*
1390 	 * Calculate rate code.
1391 	 * XXX everything at min xmit rate
1392 	 */
1393 	rt = sc->sc_currates;
1394 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1395 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
1396 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1397 	} else {
1398 		rate = rt->info[0].rateCode;
1399 	}
1400 
1401 	flags = HAL_TXDESC_NOACK;
1402 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1403 		flags |= HAL_TXDESC_VEOL;
1404 
1405 	if (!ath_hal_setup_tx_desc(ah, ds
1406 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
1407 		, sizeof(struct ieee80211_frame)	/* header length */
1408 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1409 		, 60				/* txpower XXX */
1410 		, rate, 1			/* series 0 rate/tries */
1411 		, HAL_TXKEYIX_INVALID		/* no encryption */
1412 		, 0				/* antenna mode */
1413 		, flags				/* no ack for beacons */
1414 		, 0				/* rts/cts rate */
1415 		, 0				/* rts/cts duration */
1416 	)) {
1417 		printf("%s: ath_hal_setup_tx_desc failed\n", __func__);
1418 		return -1;
1419 	}
1420 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1421 	/* XXX verify mbuf data area covers this roundup */
1422 	if (!ath_hal_fill_tx_desc(ah, ds
1423 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
1424 		, AH_TRUE				/* first segment */
1425 		, AH_TRUE				/* last segment */
1426 	)) {
1427 		printf("%s: ath_hal_fill_tx_desc failed\n", __func__);
1428 		return -1;
1429 	}
1430 
1431 	/* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1432 
1433 	return 0;
1434 }
1435 
1436 void
1437 ath_beacon_proc(void *arg, int pending)
1438 {
1439 	struct ath_softc *sc = arg;
1440 	struct ieee80211com *ic = &sc->sc_ic;
1441 	struct ath_buf *bf = sc->sc_bcbuf;
1442 	struct ath_hal *ah = sc->sc_ah;
1443 
1444 	DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
1445 	if (ic->ic_opmode == IEEE80211_M_STA ||
1446 	    bf == NULL || bf->bf_m == NULL) {
1447 		DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
1448 		    __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1449 		return;
1450 	}
1451 	/* TODO: update beacon to reflect PS poll state */
1452 	if (!ath_hal_stop_tx_dma(ah, sc->sc_bhalq)) {
1453 		DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
1454 		    __func__, sc->sc_bhalq));
1455 	}
1456 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
1457 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1458 
1459 	ath_hal_put_tx_buf(ah, sc->sc_bhalq, bf->bf_daddr);
1460 	ath_hal_tx_start(ah, sc->sc_bhalq);
1461 	DPRINTF(ATH_DEBUG_BEACON_PROC,
1462 	    ("%s: TXDP%u = %p (%p)\n", __func__,
1463 	    sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1464 }
1465 
1466 void
1467 ath_beacon_free(struct ath_softc *sc)
1468 {
1469 	struct ath_buf *bf = sc->sc_bcbuf;
1470 
1471 	if (bf->bf_m != NULL) {
1472 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1473 		m_freem(bf->bf_m);
1474 		bf->bf_m = NULL;
1475 		bf->bf_node = NULL;
1476 	}
1477 }
1478 #endif	/* IEEE80211_STA_ONLY */
1479 
1480 /*
1481  * Configure the beacon and sleep timers.
1482  *
1483  * When operating as an AP this resets the TSF and sets
1484  * up the hardware to notify us when we need to issue beacons.
1485  *
1486  * When operating in station mode this sets up the beacon
1487  * timers according to the timestamp of the last received
1488  * beacon and the current TSF, configures PCF and DTIM
1489  * handling, programs the sleep registers so the hardware
1490  * will wakeup in time to receive beacons, and configures
1491  * the beacon miss handling so we'll receive a BMISS
1492  * interrupt when we stop seeing beacons from the AP
1493  * we've associated with.
1494  */
1495 void
1496 ath_beacon_config(struct ath_softc *sc)
1497 {
1498 #define MS_TO_TU(x)	(((x) * 1000) / 1024)
1499 	struct ath_hal *ah = sc->sc_ah;
1500 	struct ieee80211com *ic = &sc->sc_ic;
1501 	struct ieee80211_node *ni = ic->ic_bss;
1502 	u_int32_t nexttbtt, intval;
1503 
1504 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1505 	    (LE_READ_4(ni->ni_tstamp) >> 10);
1506 	intval = MAX(1, ni->ni_intval) & HAL_BEACON_PERIOD;
1507 	if (nexttbtt == 0) {	/* e.g. for ap mode */
1508 		nexttbtt = intval;
1509 	} else if (intval) {
1510 		nexttbtt = roundup(nexttbtt, intval);
1511 	}
1512 	DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
1513 	    __func__, ni->ni_intval, nexttbtt));
1514 	if (ic->ic_opmode == IEEE80211_M_STA) {
1515 		HAL_BEACON_STATE bs;
1516 		u_int32_t bmisstime;
1517 
1518 		/* NB: no PCF support right now */
1519 		bzero(&bs, sizeof(bs));
1520 		bs.bs_intval = intval;
1521 		bs.bs_nexttbtt = nexttbtt;
1522 		bs.bs_dtimperiod = bs.bs_intval;
1523 		bs.bs_nextdtim = nexttbtt;
1524 		/*
1525 		 * Calculate the number of consecutive beacons to miss
1526 		 * before taking a BMISS interrupt.  The configuration
1527 		 * is specified in ms, so we need to convert that to
1528 		 * TU's and then calculate based on the beacon interval.
1529 		 * Note that we clamp the result to at most 10 beacons.
1530 		 */
1531 		bmisstime = MAX(7, ic->ic_bmisstimeout);
1532 		bs.bs_bmissthreshold = howmany(bmisstime, intval);
1533 		if (bs.bs_bmissthreshold > 7) {
1534 			bs.bs_bmissthreshold = 7;
1535 		} else if (bs.bs_bmissthreshold <= 0) {
1536 			bs.bs_bmissthreshold = 1;
1537 		}
1538 
1539 		/*
1540 		 * Calculate sleep duration.  The configuration is
1541 		 * given in ms.  We insure a multiple of the beacon
1542 		 * period is used.  Also, if the sleep duration is
1543 		 * greater than the DTIM period then it makes senses
1544 		 * to make it a multiple of that.
1545 		 *
1546 		 * XXX fixed at 100ms
1547 		 */
1548 		bs.bs_sleepduration =
1549 			roundup(MS_TO_TU(100), bs.bs_intval);
1550 		if (bs.bs_sleepduration > bs.bs_dtimperiod) {
1551 			bs.bs_sleepduration =
1552 			    roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1553 		}
1554 
1555 		DPRINTF(ATH_DEBUG_BEACON,
1556 		    ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u"
1557 		    " sleep %u\n"
1558 		    , __func__
1559 		    , bs.bs_intval
1560 		    , bs.bs_nexttbtt
1561 		    , bs.bs_dtimperiod
1562 		    , bs.bs_nextdtim
1563 		    , bs.bs_bmissthreshold
1564 		    , bs.bs_sleepduration
1565 		));
1566 		ath_hal_set_intr(ah, 0);
1567 		ath_hal_set_beacon_timers(ah, &bs, 0/*XXX*/, 0, 0);
1568 		sc->sc_imask |= HAL_INT_BMISS;
1569 		ath_hal_set_intr(ah, sc->sc_imask);
1570 	}
1571 #ifndef IEEE80211_STA_ONLY
1572 	else {
1573 		ath_hal_set_intr(ah, 0);
1574 		if (nexttbtt == intval)
1575 			intval |= HAL_BEACON_RESET_TSF;
1576 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
1577 			/*
1578 			 * In IBSS mode enable the beacon timers but only
1579 			 * enable SWBA interrupts if we need to manually
1580 			 * prepare beacon frames. Otherwise we use a
1581 			 * self-linked tx descriptor and let the hardware
1582 			 * deal with things.
1583 			 */
1584 			intval |= HAL_BEACON_ENA;
1585 			if (!sc->sc_veol)
1586 				sc->sc_imask |= HAL_INT_SWBA;
1587 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1588 			/*
1589 			 * In AP mode we enable the beacon timers and
1590 			 * SWBA interrupts to prepare beacon frames.
1591 			 */
1592 			intval |= HAL_BEACON_ENA;
1593 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
1594 		}
1595 		ath_hal_init_beacon(ah, nexttbtt, intval);
1596 		ath_hal_set_intr(ah, sc->sc_imask);
1597 		/*
1598 		 * When using a self-linked beacon descriptor in IBBS
1599 		 * mode load it once here.
1600 		 */
1601 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_veol)
1602 			ath_beacon_proc(sc, 0);
1603 	}
1604 #endif
1605 }
1606 
1607 int
1608 ath_desc_alloc(struct ath_softc *sc)
1609 {
1610 	int i, bsize, error = -1;
1611 	struct ath_desc *ds;
1612 	struct ath_buf *bf;
1613 
1614 	/* allocate descriptors */
1615 	sc->sc_desc_len = sizeof(struct ath_desc) *
1616 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1617 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1618 	    0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1619 		printf("%s: unable to allocate control data, error = %d\n",
1620 		    sc->sc_dev.dv_xname, error);
1621 		goto fail0;
1622 	}
1623 
1624 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1625 	    sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1626 		printf("%s: unable to map control data, error = %d\n",
1627 		    sc->sc_dev.dv_xname, error);
1628 		goto fail1;
1629 	}
1630 
1631 	if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1632 	    sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1633 		printf("%s: unable to create control data DMA map, "
1634 		    "error = %d\n", sc->sc_dev.dv_xname, error);
1635 		goto fail2;
1636 	}
1637 
1638 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1639 	    sc->sc_desc_len, NULL, 0)) != 0) {
1640 		printf("%s: unable to load control data DMA map, error = %d\n",
1641 		    sc->sc_dev.dv_xname, error);
1642 		goto fail3;
1643 	}
1644 
1645 	ds = sc->sc_desc;
1646 	sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1647 
1648 	DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC,
1649 	    ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1650 	    ds, (u_long)sc->sc_desc_len,
1651 	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1652 
1653 	/* allocate buffers */
1654 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1655 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1656 	if (bf == NULL) {
1657 		printf("%s: unable to allocate Tx/Rx buffers\n",
1658 		    sc->sc_dev.dv_xname);
1659 		error = ENOMEM;
1660 		goto fail3;
1661 	}
1662 	sc->sc_bufptr = bf;
1663 
1664 	TAILQ_INIT(&sc->sc_rxbuf);
1665 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1666 		bf->bf_desc = ds;
1667 		bf->bf_daddr = sc->sc_desc_paddr +
1668 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1669 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1670 		    MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1671 			printf("%s: unable to create Rx dmamap, error = %d\n",
1672 			    sc->sc_dev.dv_xname, error);
1673 			goto fail4;
1674 		}
1675 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1676 	}
1677 
1678 	TAILQ_INIT(&sc->sc_txbuf);
1679 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1680 		bf->bf_desc = ds;
1681 		bf->bf_daddr = sc->sc_desc_paddr +
1682 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1683 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1684 		    ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1685 			printf("%s: unable to create Tx dmamap, error = %d\n",
1686 			    sc->sc_dev.dv_xname, error);
1687 			goto fail5;
1688 		}
1689 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1690 	}
1691 	TAILQ_INIT(&sc->sc_txq);
1692 
1693 	/* beacon buffer */
1694 	bf->bf_desc = ds;
1695 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1696 	if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
1697 	    &bf->bf_dmamap)) != 0) {
1698 		printf("%s: unable to create beacon dmamap, error = %d\n",
1699 		    sc->sc_dev.dv_xname, error);
1700 		goto fail5;
1701 	}
1702 	sc->sc_bcbuf = bf;
1703 	return 0;
1704 
1705 fail5:
1706 	for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
1707 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
1708 			continue;
1709 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1710 	}
1711 fail4:
1712 	for (i = 0; i < ATH_RXBUF; i++) {
1713 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
1714 			continue;
1715 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1716 	}
1717 fail3:
1718 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1719 fail2:
1720 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1721 	sc->sc_ddmamap = NULL;
1722 fail1:
1723 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
1724 fail0:
1725 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1726 	return error;
1727 }
1728 
1729 void
1730 ath_desc_free(struct ath_softc *sc)
1731 {
1732 	struct ath_buf *bf;
1733 
1734 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1735 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1736 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1737 
1738 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1739 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1740 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1741 		m_freem(bf->bf_m);
1742 	}
1743 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1744 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1745 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1746 		if (bf->bf_m) {
1747 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1748 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1749 			m_freem(bf->bf_m);
1750 			bf->bf_m = NULL;
1751 		}
1752 	}
1753 	if (sc->sc_bcbuf != NULL) {
1754 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1755 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1756 		sc->sc_bcbuf = NULL;
1757 	}
1758 
1759 	TAILQ_INIT(&sc->sc_rxbuf);
1760 	TAILQ_INIT(&sc->sc_txbuf);
1761 	TAILQ_INIT(&sc->sc_txq);
1762 	free(sc->sc_bufptr, M_DEVBUF);
1763 	sc->sc_bufptr = NULL;
1764 }
1765 
1766 struct ieee80211_node *
1767 ath_node_alloc(struct ieee80211com *ic)
1768 {
1769 	struct ath_node *an;
1770 
1771 	an = malloc(sizeof(*an), M_DEVBUF, M_NOWAIT | M_ZERO);
1772 	if (an) {
1773 		int i;
1774 		for (i = 0; i < ATH_RHIST_SIZE; i++)
1775 			an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1776 		an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1777 		return &an->an_node;
1778 	} else
1779 		return NULL;
1780 }
1781 
1782 void
1783 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1784 {
1785 	struct ath_softc *sc = ic->ic_if.if_softc;
1786 	struct ath_buf *bf;
1787 
1788 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1789 		if (bf->bf_node == ni)
1790 			bf->bf_node = NULL;
1791 	}
1792 	(*sc->sc_node_free)(ic, ni);
1793 }
1794 
1795 void
1796 ath_node_copy(struct ieee80211com *ic,
1797 	struct ieee80211_node *dst, const struct ieee80211_node *src)
1798 {
1799 	struct ath_softc *sc = ic->ic_if.if_softc;
1800 
1801 	bcopy(&src[1], &dst[1],
1802 		sizeof(struct ath_node) - sizeof(struct ieee80211_node));
1803 	(*sc->sc_node_copy)(ic, dst, src);
1804 }
1805 
1806 u_int8_t
1807 ath_node_getrssi(struct ieee80211com *ic, const struct ieee80211_node *ni)
1808 {
1809 	const struct ath_node *an = ATH_NODE(ni);
1810 	int i, now, nsamples, rssi;
1811 
1812 	/*
1813 	 * Calculate the average over the last second of sampled data.
1814 	 */
1815 	now = ATH_TICKS();
1816 	nsamples = 0;
1817 	rssi = 0;
1818 	i = an->an_rx_hist_next;
1819 	do {
1820 		const struct ath_recv_hist *rh = &an->an_rx_hist[i];
1821 		if (rh->arh_ticks == ATH_RHIST_NOTIME)
1822 			goto done;
1823 		if (now - rh->arh_ticks > hz)
1824 			goto done;
1825 		rssi += rh->arh_rssi;
1826 		nsamples++;
1827 		if (i == 0) {
1828 			i = ATH_RHIST_SIZE-1;
1829 		} else {
1830 			i--;
1831 		}
1832 	} while (i != an->an_rx_hist_next);
1833 done:
1834 	/*
1835 	 * Return either the average or the last known
1836 	 * value if there is no recent data.
1837 	 */
1838 	return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
1839 }
1840 
1841 int
1842 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1843 {
1844 	struct ath_hal *ah = sc->sc_ah;
1845 	int error;
1846 	struct mbuf *m;
1847 	struct ath_desc *ds;
1848 
1849 	m = bf->bf_m;
1850 	if (m == NULL) {
1851 		/*
1852 		 * NB: by assigning a page to the rx dma buffer we
1853 		 * implicitly satisfy the Atheros requirement that
1854 		 * this buffer be cache-line-aligned and sized to be
1855 		 * multiple of the cache line size.  Not doing this
1856 		 * causes weird stuff to happen (for the 5210 at least).
1857 		 */
1858 		m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
1859 		if (m == NULL) {
1860 			DPRINTF(ATH_DEBUG_ANY,
1861 			    ("%s: no mbuf/cluster\n", __func__));
1862 			sc->sc_stats.ast_rx_nombuf++;
1863 			return ENOMEM;
1864 		}
1865 		bf->bf_m = m;
1866 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1867 
1868 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1869 		    BUS_DMA_NOWAIT);
1870 		if (error != 0) {
1871 			DPRINTF(ATH_DEBUG_ANY,
1872 			    ("%s: ath_bus_dmamap_load_mbuf failed;"
1873 			    " error %d\n", __func__, error));
1874 			sc->sc_stats.ast_rx_busdma++;
1875 			return error;
1876 		}
1877 		KASSERT(bf->bf_nseg == 1,
1878 			("ath_rxbuf_init: multi-segment packet; nseg %u",
1879 			bf->bf_nseg));
1880 	}
1881 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
1882 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1883 
1884 	/*
1885 	 * Setup descriptors.  For receive we always terminate
1886 	 * the descriptor list with a self-linked entry so we'll
1887 	 * not get overrun under high load (as can happen with a
1888 	 * 5212 when ANI processing enables PHY errors).
1889 	 *
1890 	 * To insure the last descriptor is self-linked we create
1891 	 * each descriptor as self-linked and add it to the end.  As
1892 	 * each additional descriptor is added the previous self-linked
1893 	 * entry is ``fixed'' naturally.  This should be safe even
1894 	 * if DMA is happening.  When processing RX interrupts we
1895 	 * never remove/process the last, self-linked, entry on the
1896 	 * descriptor list.  This insures the hardware always has
1897 	 * someplace to write a new frame.
1898 	 */
1899 	ds = bf->bf_desc;
1900 	bzero(ds, sizeof(struct ath_desc));
1901 #ifndef IEEE80211_STA_ONLY
1902 	if (sc->sc_ic.ic_opmode != IEEE80211_M_HOSTAP)
1903 		ds->ds_link = bf->bf_daddr;	/* link to self */
1904 #endif
1905 	ds->ds_data = bf->bf_segs[0].ds_addr;
1906 	ath_hal_setup_rx_desc(ah, ds
1907 		, m->m_len		/* buffer size */
1908 		, 0
1909 	);
1910 
1911 	if (sc->sc_rxlink != NULL)
1912 		*sc->sc_rxlink = bf->bf_daddr;
1913 	sc->sc_rxlink = &ds->ds_link;
1914 	return 0;
1915 }
1916 
1917 void
1918 ath_rx_proc(void *arg, int npending)
1919 {
1920 #define	PA2DESC(_sc, _pa) \
1921 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
1922 		((_pa) - (_sc)->sc_desc_paddr)))
1923 	struct ath_softc *sc = arg;
1924 	struct ath_buf *bf;
1925 	struct ieee80211com *ic = &sc->sc_ic;
1926 	struct ifnet *ifp = &ic->ic_if;
1927 	struct ath_hal *ah = sc->sc_ah;
1928 	struct ath_desc *ds;
1929 	struct mbuf *m;
1930 	struct ieee80211_frame *wh;
1931 	struct ieee80211_frame whbuf;
1932 	struct ieee80211_rxinfo rxi;
1933 	struct ieee80211_node *ni;
1934 	struct ath_node *an;
1935 	struct ath_recv_hist *rh;
1936 	int len;
1937 	u_int phyerr;
1938 	HAL_STATUS status;
1939 
1940 	DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
1941 	do {
1942 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1943 		if (bf == NULL) {		/* NB: shouldn't happen */
1944 			printf("%s: ath_rx_proc: no buffer!\n", ifp->if_xname);
1945 			break;
1946 		}
1947 		ds = bf->bf_desc;
1948 		if (ds->ds_link == bf->bf_daddr) {
1949 			/* NB: never process the self-linked entry at the end */
1950 			break;
1951 		}
1952 		m = bf->bf_m;
1953 		if (m == NULL) {		/* NB: shouldn't happen */
1954 			printf("%s: ath_rx_proc: no mbuf!\n", ifp->if_xname);
1955 			continue;
1956 		}
1957 		/* XXX sync descriptor memory */
1958 		/*
1959 		 * Must provide the virtual address of the current
1960 		 * descriptor, the physical address, and the virtual
1961 		 * address of the next descriptor in the h/w chain.
1962 		 * This allows the HAL to look ahead to see if the
1963 		 * hardware is done with a descriptor by checking the
1964 		 * done bit in the following descriptor and the address
1965 		 * of the current descriptor the DMA engine is working
1966 		 * on.  All this is necessary because of our use of
1967 		 * a self-linked list to avoid rx overruns.
1968 		 */
1969 		status = ath_hal_proc_rx_desc(ah, ds,
1970 		    bf->bf_daddr, PA2DESC(sc, ds->ds_link));
1971 #ifdef AR_DEBUG
1972 		if (ath_debug & ATH_DEBUG_RECV_DESC)
1973 		    ath_printrxbuf(bf, status == HAL_OK);
1974 #endif
1975 		if (status == HAL_EINPROGRESS)
1976 			break;
1977 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1978 
1979 		if (ds->ds_rxstat.rs_more) {
1980 			/*
1981 			 * Frame spans multiple descriptors; this
1982 			 * cannot happen yet as we don't support
1983 			 * jumbograms.  If not in monitor mode,
1984 			 * discard the frame.
1985 			 */
1986 
1987 			/*
1988 			 * Enable this if you want to see error
1989 			 * frames in Monitor mode.
1990 			 */
1991 #ifdef ERROR_FRAMES
1992 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1993 				/* XXX statistic */
1994 				goto rx_next;
1995 			}
1996 #endif
1997 			/* fall thru for monitor mode handling... */
1998 
1999 		} else if (ds->ds_rxstat.rs_status != 0) {
2000 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2001 				sc->sc_stats.ast_rx_crcerr++;
2002 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2003 				sc->sc_stats.ast_rx_fifoerr++;
2004 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2005 				sc->sc_stats.ast_rx_badcrypt++;
2006 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2007 				sc->sc_stats.ast_rx_phyerr++;
2008 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2009 				sc->sc_stats.ast_rx_phy[phyerr]++;
2010 			}
2011 
2012 			/*
2013 			 * reject error frames, we normally don't want
2014 			 * to see them in monitor mode.
2015 			 */
2016 			if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) ||
2017 			    (ds->ds_rxstat.rs_status & HAL_RXERR_PHY))
2018 			    goto rx_next;
2019 
2020 			/*
2021 			 * In monitor mode, allow through packets that
2022 			 * cannot be decrypted
2023 			 */
2024 			if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) ||
2025 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2026 				goto rx_next;
2027 		}
2028 
2029 		len = ds->ds_rxstat.rs_datalen;
2030 		if (len < IEEE80211_MIN_LEN) {
2031 			DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
2032 			    __func__, len));
2033 			sc->sc_stats.ast_rx_tooshort++;
2034 			goto rx_next;
2035 		}
2036 
2037 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2038 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2039 
2040 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2041 		bf->bf_m = NULL;
2042 		m->m_pkthdr.rcvif = ifp;
2043 		m->m_pkthdr.len = m->m_len = len;
2044 
2045 #if NBPFILTER > 0
2046 		if (sc->sc_drvbpf) {
2047 			struct mbuf mb;
2048 
2049 			sc->sc_rxtap.wr_flags = IEEE80211_RADIOTAP_F_FCS;
2050 			sc->sc_rxtap.wr_rate =
2051 			    sc->sc_hwmap[ds->ds_rxstat.rs_rate] &
2052 			    IEEE80211_RATE_VAL;
2053 			sc->sc_rxtap.wr_antenna = ds->ds_rxstat.rs_antenna;
2054 			sc->sc_rxtap.wr_rssi = ds->ds_rxstat.rs_rssi;
2055 			sc->sc_rxtap.wr_max_rssi = ic->ic_max_rssi;
2056 
2057 			mb.m_data = (caddr_t)&sc->sc_rxtap;
2058 			mb.m_len = sc->sc_rxtap_len;
2059 			mb.m_next = m;
2060 			mb.m_nextpkt = NULL;
2061 			mb.m_type = 0;
2062 			mb.m_flags = 0;
2063 			bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
2064 		}
2065 #endif
2066 		m_adj(m, -IEEE80211_CRC_LEN);
2067 		wh = mtod(m, struct ieee80211_frame *);
2068 		rxi.rxi_flags = 0;
2069 		if (!ath_softcrypto && (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
2070 			/*
2071 			 * WEP is decrypted by hardware. Clear WEP bit
2072 			 * and trim WEP header for ieee80211_input().
2073 			 */
2074 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2075 			bcopy(wh, &whbuf, sizeof(whbuf));
2076 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2077 			wh = mtod(m, struct ieee80211_frame *);
2078 			bcopy(&whbuf, wh, sizeof(whbuf));
2079 			/*
2080 			 * Also trim WEP ICV from the tail.
2081 			 */
2082 			m_adj(m, -IEEE80211_WEP_CRCLEN);
2083 			/*
2084 			 * The header has probably moved.
2085 			 */
2086 			wh = mtod(m, struct ieee80211_frame *);
2087 
2088 			rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
2089 		}
2090 
2091 		/*
2092 		 * Locate the node for sender, track state, and
2093 		 * then pass this node (referenced) up to the 802.11
2094 		 * layer for its use.
2095 		 */
2096 		ni = ieee80211_find_rxnode(ic, wh);
2097 
2098 		/*
2099 		 * Record driver-specific state.
2100 		 */
2101 		an = ATH_NODE(ni);
2102 		if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2103 			an->an_rx_hist_next = 0;
2104 		rh = &an->an_rx_hist[an->an_rx_hist_next];
2105 		rh->arh_ticks = ATH_TICKS();
2106 		rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2107 		rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2108 
2109 		/*
2110 		 * Send frame up for processing.
2111 		 */
2112 		rxi.rxi_rssi = ds->ds_rxstat.rs_rssi;
2113 		rxi.rxi_tstamp = ds->ds_rxstat.rs_tstamp;
2114 		ieee80211_input(ifp, m, ni, &rxi);
2115 
2116 		/* Handle the rate adaption */
2117 		ieee80211_rssadapt_input(ic, ni, &an->an_rssadapt,
2118 		    ds->ds_rxstat.rs_rssi);
2119 
2120 		/*
2121 		 * The frame may have caused the node to be marked for
2122 		 * reclamation (e.g. in response to a DEAUTH message)
2123 		 * so use release_node here instead of unref_node.
2124 		 */
2125 		ieee80211_release_node(ic, ni);
2126 
2127 	rx_next:
2128 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2129 	} while (ath_rxbuf_init(sc, bf) == 0);
2130 
2131 	ath_hal_set_rx_signal(ah);		/* rx signal state monitoring */
2132 	ath_hal_start_rx(ah);			/* in case of RXEOL */
2133 #undef PA2DESC
2134 }
2135 
2136 /*
2137  * XXX Size of an ACK control frame in bytes.
2138  */
2139 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
2140 
2141 int
2142 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
2143     struct ath_buf *bf, struct mbuf *m0)
2144 {
2145 	struct ieee80211com *ic = &sc->sc_ic;
2146 	struct ath_hal *ah = sc->sc_ah;
2147 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2148 	int i, error, iswep, hdrlen, pktlen, len, s;
2149 	u_int8_t rix, cix, txrate, ctsrate;
2150 	struct ath_desc *ds;
2151 	struct mbuf *m;
2152 	struct ieee80211_frame *wh;
2153 	struct ieee80211_key *k;
2154 	u_int32_t iv;
2155 	u_int8_t *ivp;
2156 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2157 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2158 	u_int subtype, flags, ctsduration, antenna;
2159 	HAL_PKT_TYPE atype;
2160 	const HAL_RATE_TABLE *rt;
2161 	HAL_BOOL shortPreamble;
2162 	struct ath_node *an;
2163 	u_int8_t hwqueue = HAL_TX_QUEUE_ID_DATA_MIN;
2164 
2165 	wh = mtod(m0, struct ieee80211_frame *);
2166 	iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
2167 	hdrlen = sizeof(struct ieee80211_frame);
2168 	pktlen = m0->m_pkthdr.len;
2169 
2170 	if (ath_softcrypto && iswep) {
2171 		k = ieee80211_get_txkey(ic, wh, ni);
2172 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
2173 			return ENOMEM;
2174 		wh = mtod(m0, struct ieee80211_frame *);
2175 
2176 		/* reset len in case we got a new mbuf */
2177 		pktlen = m0->m_pkthdr.len;
2178 	} else if (!ath_softcrypto && iswep) {
2179 		bcopy(mtod(m0, caddr_t), hdrbuf, hdrlen);
2180 		m_adj(m0, hdrlen);
2181 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2182 		if (m0 == NULL) {
2183 			sc->sc_stats.ast_tx_nombuf++;
2184 			return ENOMEM;
2185 		}
2186 		ivp = hdrbuf + hdrlen;
2187 		wh = mtod(m0, struct ieee80211_frame *);
2188 		/*
2189 		 * XXX
2190 		 * IV must not duplicate during the lifetime of the key.
2191 		 * But no mechanism to renew keys is defined in IEEE 802.11
2192 		 * for WEP.  And the IV may be duplicated at other stations
2193 		 * because the session key itself is shared.  So we use a
2194 		 * pseudo random IV for now, though it is not the right way.
2195 		 *
2196 		 * NB: Rather than use a strictly random IV we select a
2197 		 * random one to start and then increment the value for
2198 		 * each frame.  This is an explicit tradeoff between
2199 		 * overhead and security.  Given the basic insecurity of
2200 		 * WEP this seems worthwhile.
2201 		 */
2202 
2203 		/*
2204 		 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2205 		 * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
2206 		 */
2207 		iv = ic->ic_iv;
2208 		if ((iv & 0xff00) == 0xff00) {
2209 			int B = (iv & 0xff0000) >> 16;
2210 			if (3 <= B && B < 16)
2211 				iv = (B+1) << 16;
2212 		}
2213 		ic->ic_iv = iv + 1;
2214 
2215 		/*
2216 		 * NB: Preserve byte order of IV for packet
2217 		 *     sniffers; it doesn't matter otherwise.
2218 		 */
2219 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
2220 		ivp[0] = iv >> 0;
2221 		ivp[1] = iv >> 8;
2222 		ivp[2] = iv >> 16;
2223 #else
2224 		ivp[2] = iv >> 0;
2225 		ivp[1] = iv >> 8;
2226 		ivp[0] = iv >> 16;
2227 #endif
2228 		ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */
2229 		bcopy(hdrbuf, mtod(m0, caddr_t), sizeof(hdrbuf));
2230 		/*
2231 		 * The length of hdrlen and pktlen must be increased for WEP
2232 		 */
2233 		len = IEEE80211_WEP_IVLEN +
2234 		    IEEE80211_WEP_KIDLEN +
2235 		    IEEE80211_WEP_CRCLEN;
2236 		hdrlen += len;
2237 		pktlen += len;
2238 	}
2239 	pktlen += IEEE80211_CRC_LEN;
2240 
2241 	/*
2242 	 * Load the DMA map so any coalescing is done.  This
2243 	 * also calculates the number of descriptors we need.
2244 	 */
2245 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
2246 	    BUS_DMA_NOWAIT);
2247 	/*
2248 	 * Discard null packets and check for packets that
2249 	 * require too many TX descriptors.  We try to convert
2250 	 * the latter to a cluster.
2251 	 */
2252 	if (error == EFBIG) {		/* too many desc's, linearize */
2253 		sc->sc_stats.ast_tx_linear++;
2254 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2255 		if (m == NULL) {
2256 			sc->sc_stats.ast_tx_nombuf++;
2257 			m_freem(m0);
2258 			return ENOMEM;
2259 		}
2260 
2261 		M_DUP_PKTHDR(m, m0);
2262 		MCLGET(m, M_DONTWAIT);
2263 		if ((m->m_flags & M_EXT) == 0) {
2264 			sc->sc_stats.ast_tx_nomcl++;
2265 			m_freem(m0);
2266 			m_free(m);
2267 			return ENOMEM;
2268 		}
2269 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2270 		m_freem(m0);
2271 		m->m_len = m->m_pkthdr.len;
2272 		m0 = m;
2273 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
2274 		    BUS_DMA_NOWAIT);
2275 		if (error != 0) {
2276 			sc->sc_stats.ast_tx_busdma++;
2277 			m_freem(m0);
2278 			return error;
2279 		}
2280 		KASSERT(bf->bf_nseg == 1,
2281 			("ath_tx_start: packet not one segment; nseg %u",
2282 			bf->bf_nseg));
2283 	} else if (error != 0) {
2284 		sc->sc_stats.ast_tx_busdma++;
2285 		m_freem(m0);
2286 		return error;
2287 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
2288 		sc->sc_stats.ast_tx_nodata++;
2289 		m_freem(m0);
2290 		return EIO;
2291 	}
2292 	DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
2293 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2294 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2295 	bf->bf_m = m0;
2296 	bf->bf_node = ni;			/* NB: held reference */
2297 	an = ATH_NODE(ni);
2298 
2299 	/* setup descriptors */
2300 	ds = bf->bf_desc;
2301 	rt = sc->sc_currates;
2302 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2303 
2304 	/*
2305 	 * Calculate Atheros packet type from IEEE80211 packet header
2306 	 * and setup for rate calculations.
2307 	 */
2308 	bf->bf_id.id_node = NULL;
2309 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
2310 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2311 	case IEEE80211_FC0_TYPE_MGT:
2312 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2313 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2314 			atype = HAL_PKT_TYPE_BEACON;
2315 		} else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
2316 			atype = HAL_PKT_TYPE_PROBE_RESP;
2317 		} else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) {
2318 			atype = HAL_PKT_TYPE_ATIM;
2319 		}
2320 		rix = 0;			/* XXX lowest rate */
2321 		break;
2322 	case IEEE80211_FC0_TYPE_CTL:
2323 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2324 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2325 			atype = HAL_PKT_TYPE_PSPOLL;
2326 		rix = 0;			/* XXX lowest rate */
2327 		break;
2328 	default:
2329 		/* remember link conditions for rate adaptation algorithm */
2330 		if (ic->ic_fixed_rate == -1) {
2331 			bf->bf_id.id_len = m0->m_pkthdr.len;
2332 			bf->bf_id.id_rateidx = ni->ni_txrate;
2333 			bf->bf_id.id_node = ni;
2334 			bf->bf_id.id_rssi = ath_node_getrssi(ic, ni);
2335 		}
2336 		ni->ni_txrate = ieee80211_rssadapt_choose(&an->an_rssadapt,
2337 		    &ni->ni_rates, wh, m0->m_pkthdr.len, ic->ic_fixed_rate,
2338 		    ifp->if_xname, 0);
2339 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2340 		    IEEE80211_RATE_VAL];
2341 		if (rix == 0xff) {
2342 			printf("%s: bogus xmit rate 0x%x (idx 0x%x)\n",
2343 			    ifp->if_xname, ni->ni_rates.rs_rates[ni->ni_txrate],
2344 			    ni->ni_txrate);
2345 			sc->sc_stats.ast_tx_badrate++;
2346 			m_freem(m0);
2347 			return EIO;
2348 		}
2349 		break;
2350 	}
2351 
2352 	/*
2353 	 * NB: the 802.11 layer marks whether or not we should
2354 	 * use short preamble based on the current mode and
2355 	 * negotiated parameters.
2356 	 */
2357 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2358 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2359 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2360 		shortPreamble = AH_TRUE;
2361 		sc->sc_stats.ast_tx_shortpre++;
2362 	} else {
2363 		txrate = rt->info[rix].rateCode;
2364 		shortPreamble = AH_FALSE;
2365 	}
2366 
2367 	/*
2368 	 * Calculate miscellaneous flags.
2369 	 */
2370 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
2371 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2372 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
2373 		sc->sc_stats.ast_tx_noack++;
2374 	} else if (pktlen > ic->ic_rtsthreshold) {
2375 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
2376 		sc->sc_stats.ast_tx_rts++;
2377 	}
2378 
2379 	/*
2380 	 * Calculate duration.  This logically belongs in the 802.11
2381 	 * layer but it lacks sufficient information to calculate it.
2382 	 */
2383 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
2384 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2385 		u_int16_t dur;
2386 		/*
2387 		 * XXX not right with fragmentation.
2388 		 */
2389 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2390 				rix, shortPreamble);
2391 		*((u_int16_t*) wh->i_dur) = htole16(dur);
2392 	}
2393 
2394 	/*
2395 	 * Calculate RTS/CTS rate and duration if needed.
2396 	 */
2397 	ctsduration = 0;
2398 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2399 		/*
2400 		 * CTS transmit rate is derived from the transmit rate
2401 		 * by looking in the h/w rate table.  We must also factor
2402 		 * in whether or not a short preamble is to be used.
2403 		 */
2404 		cix = rt->info[rix].controlRate;
2405 		ctsrate = rt->info[cix].rateCode;
2406 		if (shortPreamble)
2407 			ctsrate |= rt->info[cix].shortPreamble;
2408 		/*
2409 		 * Compute the transmit duration based on the size
2410 		 * of an ACK frame.  We call into the HAL to do the
2411 		 * computation since it depends on the characteristics
2412 		 * of the actual PHY being used.
2413 		 */
2414 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
2415 			ctsduration += ath_hal_computetxtime(ah,
2416 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2417 		}
2418 		/* SIFS + data */
2419 		ctsduration += ath_hal_computetxtime(ah,
2420 			rt, pktlen, rix, shortPreamble);
2421 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
2422 			ctsduration += ath_hal_computetxtime(ah,
2423 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2424 		}
2425 	} else
2426 		ctsrate = 0;
2427 
2428 	/*
2429 	 * For now use the antenna on which the last good
2430 	 * frame was received on.  We assume this field is
2431 	 * initialized to 0 which gives us ``auto'' or the
2432 	 * ``default'' antenna.
2433 	 */
2434 	if (an->an_tx_antenna) {
2435 		antenna = an->an_tx_antenna;
2436 	} else {
2437 		antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2438 	}
2439 
2440 #if NBPFILTER > 0
2441 	if (ic->ic_rawbpf)
2442 		bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
2443 
2444 	if (sc->sc_drvbpf) {
2445 		struct mbuf mb;
2446 
2447 		sc->sc_txtap.wt_flags = 0;
2448 		if (shortPreamble)
2449 			sc->sc_txtap.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2450 		if (!ath_softcrypto && iswep)
2451 			sc->sc_txtap.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2452 		sc->sc_txtap.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate] &
2453 		    IEEE80211_RATE_VAL;
2454 		sc->sc_txtap.wt_txpower = 30;
2455 		sc->sc_txtap.wt_antenna = antenna;
2456 		sc->sc_txtap.wt_hwqueue = hwqueue;
2457 
2458 		mb.m_data = (caddr_t)&sc->sc_txtap;
2459 		mb.m_len = sc->sc_txtap_len;
2460 		mb.m_next = m0;
2461 		mb.m_nextpkt = NULL;
2462 		mb.m_type = 0;
2463 		mb.m_flags = 0;
2464 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
2465 	}
2466 #endif
2467 
2468 	/*
2469 	 * Formulate first tx descriptor with tx controls.
2470 	 */
2471 	/* XXX check return value? */
2472 	ath_hal_setup_tx_desc(ah, ds
2473 		, pktlen		/* packet length */
2474 		, hdrlen		/* header length */
2475 		, atype			/* Atheros packet type */
2476 		, 60			/* txpower XXX */
2477 		, txrate, 1+10		/* series 0 rate/tries */
2478 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2479 		, antenna		/* antenna mode */
2480 		, flags			/* flags */
2481 		, ctsrate		/* rts/cts rate */
2482 		, ctsduration		/* rts/cts duration */
2483 	);
2484 #ifdef notyet
2485 	ath_hal_setup_xtx_desc(ah, ds
2486 		, AH_FALSE		/* short preamble */
2487 		, 0, 0			/* series 1 rate/tries */
2488 		, 0, 0			/* series 2 rate/tries */
2489 		, 0, 0			/* series 3 rate/tries */
2490 	);
2491 #endif
2492 	/*
2493 	 * Fillin the remainder of the descriptor info.
2494 	 */
2495 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
2496 		ds->ds_data = bf->bf_segs[i].ds_addr;
2497 		if (i == bf->bf_nseg - 1) {
2498 			ds->ds_link = 0;
2499 		} else {
2500 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2501 		}
2502 		ath_hal_fill_tx_desc(ah, ds
2503 			, bf->bf_segs[i].ds_len	/* segment length */
2504 			, i == 0		/* first segment */
2505 			, i == bf->bf_nseg - 1	/* last segment */
2506 		);
2507 		DPRINTF(ATH_DEBUG_XMIT,
2508 		    ("%s: %d: %08x %08x %08x %08x %08x %08x\n",
2509 		    __func__, i, ds->ds_link, ds->ds_data,
2510 		    ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
2511 	}
2512 
2513 	/*
2514 	 * Insert the frame on the outbound list and
2515 	 * pass it on to the hardware.
2516 	 */
2517 	s = splnet();
2518 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2519 	if (sc->sc_txlink == NULL) {
2520 		ath_hal_put_tx_buf(ah, sc->sc_txhalq[hwqueue], bf->bf_daddr);
2521 		DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
2522 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
2523 	} else {
2524 		*sc->sc_txlink = bf->bf_daddr;
2525 		DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
2526 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2527 	}
2528 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2529 	splx(s);
2530 
2531 	ath_hal_tx_start(ah, sc->sc_txhalq[hwqueue]);
2532 	return 0;
2533 }
2534 
2535 void
2536 ath_tx_proc(void *arg, int npending)
2537 {
2538 	struct ath_softc *sc = arg;
2539 	struct ath_hal *ah = sc->sc_ah;
2540 	struct ath_buf *bf;
2541 	struct ieee80211com *ic = &sc->sc_ic;
2542 	struct ifnet *ifp = &ic->ic_if;
2543 	struct ath_desc *ds;
2544 	struct ieee80211_node *ni;
2545 	struct ath_node *an;
2546 	int sr, lr, s;
2547 	HAL_STATUS status;
2548 
2549 	for (;;) {
2550 		s = splnet();
2551 		bf = TAILQ_FIRST(&sc->sc_txq);
2552 		if (bf == NULL) {
2553 			sc->sc_txlink = NULL;
2554 			splx(s);
2555 			break;
2556 		}
2557 		/* only the last descriptor is needed */
2558 		ds = &bf->bf_desc[bf->bf_nseg - 1];
2559 		status = ath_hal_proc_tx_desc(ah, ds);
2560 #ifdef AR_DEBUG
2561 		if (ath_debug & ATH_DEBUG_XMIT_DESC)
2562 			ath_printtxbuf(bf, status == HAL_OK);
2563 #endif
2564 		if (status == HAL_EINPROGRESS) {
2565 			splx(s);
2566 			break;
2567 		}
2568 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2569 		splx(s);
2570 
2571 		ni = bf->bf_node;
2572 		if (ni != NULL) {
2573 			an = (struct ath_node *) ni;
2574 			if (ds->ds_txstat.ts_status == 0) {
2575 				if (bf->bf_id.id_node != NULL)
2576 					ieee80211_rssadapt_raise_rate(ic,
2577 					    &an->an_rssadapt, &bf->bf_id);
2578 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2579 			} else {
2580 				if (bf->bf_id.id_node != NULL)
2581 					ieee80211_rssadapt_lower_rate(ic, ni,
2582 					    &an->an_rssadapt, &bf->bf_id);
2583 				ifp->if_oerrors++;
2584 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2585 					sc->sc_stats.ast_tx_xretries++;
2586 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2587 					sc->sc_stats.ast_tx_fifoerr++;
2588 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2589 					sc->sc_stats.ast_tx_filtered++;
2590 				an->an_tx_antenna = 0;	/* invalidate */
2591 			}
2592 			sr = ds->ds_txstat.ts_shortretry;
2593 			lr = ds->ds_txstat.ts_longretry;
2594 			sc->sc_stats.ast_tx_shortretry += sr;
2595 			sc->sc_stats.ast_tx_longretry += lr;
2596 			/*
2597 			 * Reclaim reference to node.
2598 			 *
2599 			 * NB: the node may be reclaimed here if, for example
2600 			 *     this is a DEAUTH message that was sent and the
2601 			 *     node was timed out due to inactivity.
2602 			 */
2603 			ieee80211_release_node(ic, ni);
2604 		}
2605 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2606 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2607 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2608 		m_freem(bf->bf_m);
2609 		bf->bf_m = NULL;
2610 		bf->bf_node = NULL;
2611 
2612 		s = splnet();
2613 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2614 		splx(s);
2615 	}
2616 	ifp->if_flags &= ~IFF_OACTIVE;
2617 	sc->sc_tx_timer = 0;
2618 
2619 	ath_start(ifp);
2620 }
2621 
2622 /*
2623  * Drain the transmit queue and reclaim resources.
2624  */
2625 void
2626 ath_draintxq(struct ath_softc *sc)
2627 {
2628 	struct ath_hal *ah = sc->sc_ah;
2629 	struct ieee80211com *ic = &sc->sc_ic;
2630 	struct ifnet *ifp = &ic->ic_if;
2631 	struct ieee80211_node *ni;
2632 	struct ath_buf *bf;
2633 	int s, i;
2634 
2635 	/* XXX return value */
2636 	if (!sc->sc_invalid) {
2637 		for (i = 0; i <= HAL_TX_QUEUE_ID_DATA_MAX; i++) {
2638 			/* don't touch the hardware if marked invalid */
2639 			(void) ath_hal_stop_tx_dma(ah, sc->sc_txhalq[i]);
2640 			DPRINTF(ATH_DEBUG_RESET,
2641 			    ("%s: tx queue %d (%p), link %p\n", __func__, i,
2642 			    (caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah,
2643 			    sc->sc_txhalq[i]), sc->sc_txlink));
2644 		}
2645 		(void) ath_hal_stop_tx_dma(ah, sc->sc_bhalq);
2646 		DPRINTF(ATH_DEBUG_RESET,
2647 		    ("%s: beacon queue (%p)\n", __func__,
2648 		    (caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah, sc->sc_bhalq)));
2649 	}
2650 	for (;;) {
2651 		s = splnet();
2652 		bf = TAILQ_FIRST(&sc->sc_txq);
2653 		if (bf == NULL) {
2654 			sc->sc_txlink = NULL;
2655 			splx(s);
2656 			break;
2657 		}
2658 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2659 		splx(s);
2660 #ifdef AR_DEBUG
2661 		if (ath_debug & ATH_DEBUG_RESET) {
2662 			ath_printtxbuf(bf,
2663 			    ath_hal_proc_tx_desc(ah, bf->bf_desc) == HAL_OK);
2664 		}
2665 #endif /* AR_DEBUG */
2666 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2667 		m_freem(bf->bf_m);
2668 		bf->bf_m = NULL;
2669 		ni = bf->bf_node;
2670 		bf->bf_node = NULL;
2671 		s = splnet();
2672 		if (ni != NULL) {
2673 			/*
2674 			 * Reclaim node reference.
2675 			 */
2676 			ieee80211_release_node(ic, ni);
2677 		}
2678 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2679 		splx(s);
2680 	}
2681 	ifp->if_flags &= ~IFF_OACTIVE;
2682 	sc->sc_tx_timer = 0;
2683 }
2684 
2685 /*
2686  * Disable the receive h/w in preparation for a reset.
2687  */
2688 void
2689 ath_stoprecv(struct ath_softc *sc)
2690 {
2691 #define	PA2DESC(_sc, _pa) \
2692 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2693 		((_pa) - (_sc)->sc_desc_paddr)))
2694 	struct ath_hal *ah = sc->sc_ah;
2695 
2696 	ath_hal_stop_pcu_recv(ah);	/* disable PCU */
2697 	ath_hal_set_rx_filter(ah, 0);	/* clear recv filter */
2698 	ath_hal_stop_rx_dma(ah);	/* disable DMA engine */
2699 #ifdef AR_DEBUG
2700 	if (ath_debug & ATH_DEBUG_RESET) {
2701 		struct ath_buf *bf;
2702 
2703 		printf("%s: rx queue %p, link %p\n", __func__,
2704 		    (caddr_t)(u_intptr_t)ath_hal_get_rx_buf(ah), sc->sc_rxlink);
2705 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2706 			struct ath_desc *ds = bf->bf_desc;
2707 			if (ath_hal_proc_rx_desc(ah, ds, bf->bf_daddr,
2708 			    PA2DESC(sc, ds->ds_link)) == HAL_OK)
2709 				ath_printrxbuf(bf, 1);
2710 		}
2711 	}
2712 #endif
2713 	sc->sc_rxlink = NULL;		/* just in case */
2714 #undef PA2DESC
2715 }
2716 
2717 /*
2718  * Enable the receive h/w following a reset.
2719  */
2720 int
2721 ath_startrecv(struct ath_softc *sc)
2722 {
2723 	struct ath_hal *ah = sc->sc_ah;
2724 	struct ath_buf *bf;
2725 
2726 	sc->sc_rxlink = NULL;
2727 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2728 		int error = ath_rxbuf_init(sc, bf);
2729 		if (error != 0) {
2730 			DPRINTF(ATH_DEBUG_RECV,
2731 			    ("%s: ath_rxbuf_init failed %d\n",
2732 			    __func__, error));
2733 			return error;
2734 		}
2735 	}
2736 
2737 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
2738 	ath_hal_put_rx_buf(ah, bf->bf_daddr);
2739 	ath_hal_start_rx(ah);		/* enable recv descriptors */
2740 	ath_mode_init(sc);		/* set filters, etc. */
2741 	ath_hal_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
2742 	return 0;
2743 }
2744 
2745 /*
2746  * Set/change channels.  If the channel is really being changed,
2747  * it's done by resetting the chip.  To accomplish this we must
2748  * first cleanup any pending DMA, then restart stuff after a la
2749  * ath_init.
2750  */
2751 int
2752 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2753 {
2754 	struct ath_hal *ah = sc->sc_ah;
2755 	struct ieee80211com *ic = &sc->sc_ic;
2756 	struct ifnet *ifp = &ic->ic_if;
2757 
2758 	DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
2759 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2760 	    ic->ic_ibss_chan->ic_freq,
2761 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2762 	if (chan != ic->ic_ibss_chan) {
2763 		HAL_STATUS status;
2764 		HAL_CHANNEL hchan;
2765 		enum ieee80211_phymode mode;
2766 
2767 		/*
2768 		 * To switch channels clear any pending DMA operations;
2769 		 * wait long enough for the RX fifo to drain, reset the
2770 		 * hardware at the new frequency, and then re-enable
2771 		 * the relevant bits of the h/w.
2772 		 */
2773 		ath_hal_set_intr(ah, 0);		/* disable interrupts */
2774 		ath_draintxq(sc);		/* clear pending tx frames */
2775 		ath_stoprecv(sc);		/* turn off frame recv */
2776 		/*
2777 		 * Convert to a HAL channel description with
2778 		 * the flags constrained to reflect the current
2779 		 * operating mode.
2780 		 */
2781 		hchan.channel = chan->ic_freq;
2782 		hchan.channelFlags = ath_chan2flags(ic, chan);
2783 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE,
2784 		    &status)) {
2785 			printf("%s: ath_chan_set: unable to reset "
2786 				"channel %u (%u MHz)\n", ifp->if_xname,
2787 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2788 			return EIO;
2789 		}
2790 		ath_set_slot_time(sc);
2791 		/*
2792 		 * Re-enable rx framework.
2793 		 */
2794 		if (ath_startrecv(sc) != 0) {
2795 			printf("%s: ath_chan_set: unable to restart recv "
2796 			    "logic\n", ifp->if_xname);
2797 			return EIO;
2798 		}
2799 
2800 #if NBPFILTER > 0
2801 		/*
2802 		 * Update BPF state.
2803 		 */
2804 		sc->sc_txtap.wt_chan_freq = sc->sc_rxtap.wr_chan_freq =
2805 		    htole16(chan->ic_freq);
2806 		sc->sc_txtap.wt_chan_flags = sc->sc_rxtap.wr_chan_flags =
2807 		    htole16(chan->ic_flags);
2808 #endif
2809 
2810 		/*
2811 		 * Change channels and update the h/w rate map
2812 		 * if we're switching; e.g. 11a to 11b/g.
2813 		 */
2814 		ic->ic_ibss_chan = chan;
2815 		mode = ieee80211_chan2mode(ic, chan);
2816 		if (mode != sc->sc_curmode)
2817 			ath_setcurmode(sc, mode);
2818 
2819 		/*
2820 		 * Re-enable interrupts.
2821 		 */
2822 		ath_hal_set_intr(ah, sc->sc_imask);
2823 	}
2824 	return 0;
2825 }
2826 
2827 void
2828 ath_next_scan(void *arg)
2829 {
2830 	struct ath_softc *sc = arg;
2831 	struct ieee80211com *ic = &sc->sc_ic;
2832 	struct ifnet *ifp = &ic->ic_if;
2833 	int s;
2834 
2835 	/* don't call ath_start w/o network interrupts blocked */
2836 	s = splnet();
2837 
2838 	if (ic->ic_state == IEEE80211_S_SCAN)
2839 		ieee80211_next_scan(ifp);
2840 	splx(s);
2841 }
2842 
2843 int
2844 ath_set_slot_time(struct ath_softc *sc)
2845 {
2846 	struct ath_hal *ah = sc->sc_ah;
2847 	struct ieee80211com *ic = &sc->sc_ic;
2848 
2849 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2850 		return (ath_hal_set_slot_time(ah, HAL_SLOT_TIME_9));
2851 
2852 	return (0);
2853 }
2854 
2855 /*
2856  * Periodically recalibrate the PHY to account
2857  * for temperature/environment changes.
2858  */
2859 void
2860 ath_calibrate(void *arg)
2861 {
2862 	struct ath_softc *sc = arg;
2863 	struct ath_hal *ah = sc->sc_ah;
2864 	struct ieee80211com *ic = &sc->sc_ic;
2865 	struct ieee80211_channel *c;
2866 	HAL_CHANNEL hchan;
2867 	int s;
2868 
2869 	sc->sc_stats.ast_per_cal++;
2870 
2871 	/*
2872 	 * Convert to a HAL channel description with the flags
2873 	 * constrained to reflect the current operating mode.
2874 	 */
2875 	c = ic->ic_ibss_chan;
2876 	hchan.channel = c->ic_freq;
2877 	hchan.channelFlags = ath_chan2flags(ic, c);
2878 
2879 	s = splnet();
2880 	DPRINTF(ATH_DEBUG_CALIBRATE,
2881 	    ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2882 
2883 	if (ath_hal_get_rf_gain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2884 		/*
2885 		 * Rfgain is out of bounds, reset the chip
2886 		 * to load new gain values.
2887 		 */
2888 		sc->sc_stats.ast_per_rfgain++;
2889 		ath_reset(sc, 1);
2890 	}
2891 	if (!ath_hal_calibrate(ah, &hchan)) {
2892 		DPRINTF(ATH_DEBUG_ANY,
2893 		    ("%s: calibration of channel %u failed\n",
2894 		    __func__, c->ic_freq));
2895 		sc->sc_stats.ast_per_calfail++;
2896 	}
2897 	timeout_add_sec(&sc->sc_cal_to, ath_calinterval);
2898 	splx(s);
2899 }
2900 
2901 void
2902 ath_ledstate(struct ath_softc *sc, enum ieee80211_state state)
2903 {
2904 	HAL_LED_STATE led = HAL_LED_INIT;
2905 	u_int32_t softled = AR5K_SOFTLED_OFF;
2906 
2907 	switch (state) {
2908 	case IEEE80211_S_INIT:
2909 		break;
2910 	case IEEE80211_S_SCAN:
2911 		led = HAL_LED_SCAN;
2912 		break;
2913 	case IEEE80211_S_AUTH:
2914 		led = HAL_LED_AUTH;
2915 		break;
2916 	case IEEE80211_S_ASSOC:
2917 		led = HAL_LED_ASSOC;
2918 		softled = AR5K_SOFTLED_ON;
2919 		break;
2920 	case IEEE80211_S_RUN:
2921 		led = HAL_LED_RUN;
2922 		softled = AR5K_SOFTLED_ON;
2923 		break;
2924 	}
2925 
2926 	ath_hal_set_ledstate(sc->sc_ah, led);
2927 	if (sc->sc_softled) {
2928 		ath_hal_set_gpio_output(sc->sc_ah, AR5K_SOFTLED_PIN);
2929 		ath_hal_set_gpio(sc->sc_ah, AR5K_SOFTLED_PIN, softled);
2930 	}
2931 }
2932 
2933 int
2934 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2935 {
2936 	struct ifnet *ifp = &ic->ic_if;
2937 	struct ath_softc *sc = ifp->if_softc;
2938 	struct ath_hal *ah = sc->sc_ah;
2939 	struct ieee80211_node *ni;
2940 	const u_int8_t *bssid;
2941 	int error, i;
2942 
2943 	u_int32_t rfilt;
2944 
2945 	DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
2946 	    ieee80211_state_name[ic->ic_state],
2947 	    ieee80211_state_name[nstate]));
2948 
2949 	timeout_del(&sc->sc_scan_to);
2950 	timeout_del(&sc->sc_cal_to);
2951 	ath_ledstate(sc, nstate);
2952 
2953 	if (nstate == IEEE80211_S_INIT) {
2954 		timeout_del(&sc->sc_rssadapt_to);
2955 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2956 		ath_hal_set_intr(ah, sc->sc_imask);
2957 		return (*sc->sc_newstate)(ic, nstate, arg);
2958 	}
2959 	ni = ic->ic_bss;
2960 	error = ath_chan_set(sc, ni->ni_chan);
2961 	if (error != 0)
2962 		goto bad;
2963 	rfilt = ath_calcrxfilter(sc);
2964 	if (nstate == IEEE80211_S_SCAN ||
2965 	    ic->ic_opmode == IEEE80211_M_MONITOR) {
2966 		bssid = sc->sc_broadcast_addr;
2967 	} else {
2968 		bssid = ni->ni_bssid;
2969 	}
2970 	ath_hal_set_rx_filter(ah, rfilt);
2971 	DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
2972 	    __func__, rfilt, ether_sprintf((u_char*)bssid)));
2973 
2974 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) {
2975 		ath_hal_set_associd(ah, bssid, ni->ni_associd);
2976 	} else {
2977 		ath_hal_set_associd(ah, bssid, 0);
2978 	}
2979 
2980 	if (!ath_softcrypto && (ic->ic_flags & IEEE80211_F_WEPON)) {
2981 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2982 			if (ath_hal_is_key_valid(ah, i))
2983 				ath_hal_set_key_lladdr(ah, i, bssid);
2984 		}
2985 	}
2986 
2987 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2988 		/* nothing to do */
2989 	} else if (nstate == IEEE80211_S_RUN) {
2990 		DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): "
2991 		    "ic_flags=0x%08x iv=%d bssid=%s "
2992 		    "capinfo=0x%04x chan=%d\n",
2993 		    __func__,
2994 		    ic->ic_flags,
2995 		    ni->ni_intval,
2996 		    ether_sprintf(ni->ni_bssid),
2997 		    ni->ni_capinfo,
2998 		    ieee80211_chan2ieee(ic, ni->ni_chan)));
2999 
3000 		/*
3001 		 * Allocate and setup the beacon frame for AP or adhoc mode.
3002 		 */
3003 #ifndef IEEE80211_STA_ONLY
3004 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3005 		    ic->ic_opmode == IEEE80211_M_IBSS) {
3006 			error = ath_beacon_alloc(sc, ni);
3007 			if (error != 0)
3008 				goto bad;
3009 		}
3010 #endif
3011 		/*
3012 		 * Configure the beacon and sleep timers.
3013 		 */
3014 		ath_beacon_config(sc);
3015 	} else {
3016 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3017 		ath_hal_set_intr(ah, sc->sc_imask);
3018 	}
3019 
3020 	/*
3021 	 * Invoke the parent method to complete the work.
3022 	 */
3023 	error = (*sc->sc_newstate)(ic, nstate, arg);
3024 
3025 	if (nstate == IEEE80211_S_RUN) {
3026 		/* start periodic recalibration timer */
3027 		timeout_add_sec(&sc->sc_cal_to, ath_calinterval);
3028 
3029 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
3030 			timeout_add(&sc->sc_rssadapt_to, hz / 10);
3031 	} else if (nstate == IEEE80211_S_SCAN) {
3032 		/* start ap/neighbor scan timer */
3033 		timeout_add_msec(&sc->sc_scan_to, ath_dwelltime);
3034 	}
3035 bad:
3036 	return error;
3037 }
3038 
3039 #ifndef IEEE80211_STA_ONLY
3040 void
3041 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3042     struct ieee80211_node *ni, struct ieee80211_rxinfo *rxi, int subtype)
3043 {
3044 	struct ath_softc *sc = (struct ath_softc*)ic->ic_softc;
3045 	struct ath_hal *ah = sc->sc_ah;
3046 
3047 	(*sc->sc_recv_mgmt)(ic, m, ni, rxi, subtype);
3048 
3049 	switch (subtype) {
3050 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3051 	case IEEE80211_FC0_SUBTYPE_BEACON:
3052 		if (ic->ic_opmode != IEEE80211_M_IBSS ||
3053 		    ic->ic_state != IEEE80211_S_RUN)
3054 			break;
3055 		if (ieee80211_ibss_merge(ic, ni, ath_hal_get_tsf64(ah)) ==
3056 		    ENETRESET)
3057 			ath_hal_set_associd(ah, ic->ic_bss->ni_bssid, 0);
3058 		break;
3059 	default:
3060 		break;
3061 	}
3062 	return;
3063 }
3064 #endif
3065 
3066 /*
3067  * Setup driver-specific state for a newly associated node.
3068  * Note that we're called also on a re-associate, the isnew
3069  * param tells us if this is the first time or not.
3070  */
3071 void
3072 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3073 {
3074 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3075 		return;
3076 }
3077 
3078 int
3079 ath_getchannels(struct ath_softc *sc, HAL_BOOL outdoor, HAL_BOOL xchanmode)
3080 {
3081 	struct ieee80211com *ic = &sc->sc_ic;
3082 	struct ifnet *ifp = &ic->ic_if;
3083 	struct ath_hal *ah = sc->sc_ah;
3084 	HAL_CHANNEL *chans;
3085 	int i, ix, nchan;
3086 
3087 	sc->sc_nchan = 0;
3088 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3089 			M_TEMP, M_NOWAIT);
3090 	if (chans == NULL) {
3091 		printf("%s: unable to allocate channel table\n", ifp->if_xname);
3092 		return ENOMEM;
3093 	}
3094 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3095 	    HAL_MODE_ALL, outdoor, xchanmode)) {
3096 		printf("%s: unable to collect channel list from hal\n",
3097 		    ifp->if_xname);
3098 		free(chans, M_TEMP);
3099 		return EINVAL;
3100 	}
3101 
3102 	/*
3103 	 * Convert HAL channels to ieee80211 ones and insert
3104 	 * them in the table according to their channel number.
3105 	 */
3106 	for (i = 0; i < nchan; i++) {
3107 		HAL_CHANNEL *c = &chans[i];
3108 		ix = ieee80211_mhz2ieee(c->channel, c->channelFlags);
3109 		if (ix > IEEE80211_CHAN_MAX) {
3110 			printf("%s: bad hal channel %u (%u/%x) ignored\n",
3111 				ifp->if_xname, ix, c->channel, c->channelFlags);
3112 			continue;
3113 		}
3114 		DPRINTF(ATH_DEBUG_ANY,
3115 		    ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
3116 		    sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
3117 		    ix));
3118 		/* NB: flags are known to be compatible */
3119 		if (ic->ic_channels[ix].ic_freq == 0) {
3120 			ic->ic_channels[ix].ic_freq = c->channel;
3121 			ic->ic_channels[ix].ic_flags = c->channelFlags;
3122 		} else {
3123 			/* channels overlap; e.g. 11g and 11b */
3124 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
3125 		}
3126 		/* count valid channels */
3127 		sc->sc_nchan++;
3128 	}
3129 	free(chans, M_TEMP);
3130 
3131 	if (sc->sc_nchan < 1) {
3132 		printf("%s: no valid channels for regdomain %s(%u)\n",
3133 		    ifp->if_xname, ieee80211_regdomain2name(ah->ah_regdomain),
3134 		    ah->ah_regdomain);
3135 		return ENOENT;
3136 	}
3137 
3138 	/* set an initial channel */
3139 	ic->ic_ibss_chan = &ic->ic_channels[0];
3140 
3141 	return 0;
3142 }
3143 
3144 int
3145 ath_rate_setup(struct ath_softc *sc, u_int mode)
3146 {
3147 	struct ath_hal *ah = sc->sc_ah;
3148 	struct ieee80211com *ic = &sc->sc_ic;
3149 	const HAL_RATE_TABLE *rt;
3150 	struct ieee80211_rateset *rs;
3151 	int i, maxrates;
3152 
3153 	switch (mode) {
3154 	case IEEE80211_MODE_11A:
3155 		sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11A);
3156 		break;
3157 	case IEEE80211_MODE_11B:
3158 		sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11B);
3159 		break;
3160 	case IEEE80211_MODE_11G:
3161 		sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11G);
3162 		break;
3163 	case IEEE80211_MODE_TURBO:
3164 		sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_TURBO);
3165 		break;
3166 	default:
3167 		DPRINTF(ATH_DEBUG_ANY,
3168 		    ("%s: invalid mode %u\n", __func__, mode));
3169 		return 0;
3170 	}
3171 	rt = sc->sc_rates[mode];
3172 	if (rt == NULL)
3173 		return 0;
3174 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3175 		DPRINTF(ATH_DEBUG_ANY,
3176 		    ("%s: rate table too small (%u > %u)\n",
3177 		    __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3178 		maxrates = IEEE80211_RATE_MAXSIZE;
3179 	} else {
3180 		maxrates = rt->rateCount;
3181 	}
3182 	rs = &ic->ic_sup_rates[mode];
3183 	for (i = 0; i < maxrates; i++)
3184 		rs->rs_rates[i] = rt->info[i].dot11Rate;
3185 	rs->rs_nrates = maxrates;
3186 	return 1;
3187 }
3188 
3189 void
3190 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3191 {
3192 	const HAL_RATE_TABLE *rt;
3193 	int i;
3194 
3195 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3196 	rt = sc->sc_rates[mode];
3197 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3198 	for (i = 0; i < rt->rateCount; i++)
3199 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3200 	bzero(sc->sc_hwmap, sizeof(sc->sc_hwmap));
3201 	for (i = 0; i < 32; i++)
3202 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3203 	sc->sc_currates = rt;
3204 	sc->sc_curmode = mode;
3205 }
3206 
3207 void
3208 ath_rssadapt_updatenode(void *arg, struct ieee80211_node *ni)
3209 {
3210 	struct ath_node *an = ATH_NODE(ni);
3211 
3212 	ieee80211_rssadapt_updatestats(&an->an_rssadapt);
3213 }
3214 
3215 void
3216 ath_rssadapt_updatestats(void *arg)
3217 {
3218 	struct ath_softc *sc = (struct ath_softc *)arg;
3219 	struct ieee80211com *ic = &sc->sc_ic;
3220 
3221 	if (ic->ic_opmode == IEEE80211_M_STA) {
3222 		ath_rssadapt_updatenode(arg, ic->ic_bss);
3223 	} else {
3224 		ieee80211_iterate_nodes(ic, ath_rssadapt_updatenode, arg);
3225 	}
3226 
3227 	timeout_add(&sc->sc_rssadapt_to, hz / 10);
3228 }
3229 
3230 #ifdef AR_DEBUG
3231 void
3232 ath_printrxbuf(struct ath_buf *bf, int done)
3233 {
3234 	struct ath_desc *ds;
3235 	int i;
3236 
3237 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3238 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3239 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
3240 		    ds->ds_link, ds->ds_data,
3241 		    ds->ds_ctl0, ds->ds_ctl1,
3242 		    ds->ds_hw[0], ds->ds_hw[1],
3243 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3244 	}
3245 }
3246 
3247 void
3248 ath_printtxbuf(struct ath_buf *bf, int done)
3249 {
3250 	struct ath_desc *ds;
3251 	int i;
3252 
3253 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3254 		printf("T%d (%p %p) "
3255 		    "%08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3256 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
3257 		    ds->ds_link, ds->ds_data,
3258 		    ds->ds_ctl0, ds->ds_ctl1,
3259 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3260 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3261 	}
3262 }
3263 #endif /* AR_DEBUG */
3264 
3265 int
3266 ath_gpio_attach(struct ath_softc *sc, u_int16_t devid)
3267 {
3268 	struct ath_hal *ah = sc->sc_ah;
3269 	struct gpiobus_attach_args gba;
3270 	int i;
3271 
3272 	if (ah->ah_gpio_npins < 1)
3273 		return 0;
3274 
3275 	/* Initialize gpio pins array */
3276 	for (i = 0; i < ah->ah_gpio_npins && i < AR5K_MAX_GPIO; i++) {
3277 		sc->sc_gpio_pins[i].pin_num = i;
3278 		sc->sc_gpio_pins[i].pin_caps = GPIO_PIN_INPUT |
3279 		    GPIO_PIN_OUTPUT;
3280 
3281 		/* Set pin mode to input */
3282 		ath_hal_set_gpio_input(ah, i);
3283 		sc->sc_gpio_pins[i].pin_flags = GPIO_PIN_INPUT;
3284 
3285 		/* Get pin input */
3286 		sc->sc_gpio_pins[i].pin_state = ath_hal_get_gpio(ah, i) ?
3287 		    GPIO_PIN_HIGH : GPIO_PIN_LOW;
3288 	}
3289 
3290 	/* Enable GPIO-controlled software LED if available */
3291 	if ((ah->ah_version == AR5K_AR5211) ||
3292 	    (devid == PCI_PRODUCT_ATHEROS_AR5212_IBM)) {
3293 		sc->sc_softled = 1;
3294 		ath_hal_set_gpio_output(ah, AR5K_SOFTLED_PIN);
3295 		ath_hal_set_gpio(ah, AR5K_SOFTLED_PIN, AR5K_SOFTLED_OFF);
3296 	}
3297 
3298 	/* Create gpio controller tag */
3299 	sc->sc_gpio_gc.gp_cookie = sc;
3300 	sc->sc_gpio_gc.gp_pin_read = ath_gpio_pin_read;
3301 	sc->sc_gpio_gc.gp_pin_write = ath_gpio_pin_write;
3302 	sc->sc_gpio_gc.gp_pin_ctl = ath_gpio_pin_ctl;
3303 
3304 	gba.gba_name = "gpio";
3305 	gba.gba_gc = &sc->sc_gpio_gc;
3306 	gba.gba_pins = sc->sc_gpio_pins;
3307 	gba.gba_npins = ah->ah_gpio_npins;
3308 
3309 #ifdef notyet
3310 #if NGPIO > 0
3311 	if (config_found(&sc->sc_dev, &gba, gpiobus_print) == NULL)
3312 		return (ENODEV);
3313 #endif
3314 #endif
3315 
3316 	return (0);
3317 }
3318 
3319 int
3320 ath_gpio_pin_read(void *arg, int pin)
3321 {
3322 	struct ath_softc *sc = arg;
3323 	struct ath_hal *ah = sc->sc_ah;
3324 	return (ath_hal_get_gpio(ah, pin) ? GPIO_PIN_HIGH : GPIO_PIN_LOW);
3325 }
3326 
3327 void
3328 ath_gpio_pin_write(void *arg, int pin, int value)
3329 {
3330 	struct ath_softc *sc = arg;
3331 	struct ath_hal *ah = sc->sc_ah;
3332 	ath_hal_set_gpio(ah, pin, value ? GPIO_PIN_HIGH : GPIO_PIN_LOW);
3333 }
3334 
3335 void
3336 ath_gpio_pin_ctl(void *arg, int pin, int flags)
3337 {
3338 	struct ath_softc *sc = arg;
3339 	struct ath_hal *ah = sc->sc_ah;
3340 
3341 	if (flags & GPIO_PIN_INPUT) {
3342 		ath_hal_set_gpio_input(ah, pin);
3343 	} else if (flags & GPIO_PIN_OUTPUT) {
3344 		ath_hal_set_gpio_output(ah, pin);
3345 	}
3346 }
3347