xref: /openbsd-src/sys/dev/ic/ar5211.c (revision 2b0358df1d88d06ef4139321dd05bd5e05d91eaf)
1 /*	$OpenBSD: ar5211.c,v 1.42 2009/02/06 17:06:45 grange Exp $	*/
2 
3 /*
4  * Copyright (c) 2004, 2005, 2006, 2007 Reyk Floeter <reyk@openbsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * HAL interface for the Atheros AR5001 Wireless LAN chipset
21  * (AR5211 + AR5111).
22  */
23 
24 #include <dev/ic/ar5xxx.h>
25 #include <dev/ic/ar5211reg.h>
26 #include <dev/ic/ar5211var.h>
27 
28 HAL_BOOL	 ar5k_ar5211_nic_reset(struct ath_hal *, u_int32_t);
29 HAL_BOOL	 ar5k_ar5211_nic_wakeup(struct ath_hal *, u_int16_t);
30 u_int16_t	 ar5k_ar5211_radio_revision(struct ath_hal *, HAL_CHIP);
31 void		 ar5k_ar5211_fill(struct ath_hal *);
32 void		 ar5k_ar5211_rfregs(struct ath_hal *, HAL_CHANNEL *, u_int,
33     u_int);
34 
35 /*
36  * Initial register setting for the AR5211
37  */
38 static const struct ar5k_ini ar5211_ini[] =
39     AR5K_AR5211_INI;
40 static const struct ar5k_ar5211_ini_mode ar5211_mode[] =
41     AR5K_AR5211_INI_MODE;
42 static const struct ar5k_ar5211_ini_rf ar5211_rf[] =
43     AR5K_AR5211_INI_RF;
44 
45 AR5K_HAL_FUNCTIONS(extern, ar5k_ar5211,);
46 
47 void
48 ar5k_ar5211_fill(struct ath_hal *hal)
49 {
50 	hal->ah_magic = AR5K_AR5211_MAGIC;
51 
52 	/*
53 	 * Init/Exit functions
54 	 */
55 	AR5K_HAL_FUNCTION(hal, ar5211, get_rate_table);
56 	AR5K_HAL_FUNCTION(hal, ar5211, detach);
57 
58 	/*
59 	 * Reset functions
60 	 */
61 	AR5K_HAL_FUNCTION(hal, ar5211, reset);
62 	AR5K_HAL_FUNCTION(hal, ar5211, set_opmode);
63 	AR5K_HAL_FUNCTION(hal, ar5211, calibrate);
64 
65 	/*
66 	 * TX functions
67 	 */
68 	AR5K_HAL_FUNCTION(hal, ar5211, update_tx_triglevel);
69 	AR5K_HAL_FUNCTION(hal, ar5211, setup_tx_queue);
70 	AR5K_HAL_FUNCTION(hal, ar5211, setup_tx_queueprops);
71 	AR5K_HAL_FUNCTION(hal, ar5211, release_tx_queue);
72 	AR5K_HAL_FUNCTION(hal, ar5211, reset_tx_queue);
73 	AR5K_HAL_FUNCTION(hal, ar5211, get_tx_buf);
74 	AR5K_HAL_FUNCTION(hal, ar5211, put_tx_buf);
75 	AR5K_HAL_FUNCTION(hal, ar5211, tx_start);
76 	AR5K_HAL_FUNCTION(hal, ar5211, stop_tx_dma);
77 	AR5K_HAL_FUNCTION(hal, ar5211, setup_tx_desc);
78 	AR5K_HAL_FUNCTION(hal, ar5211, setup_xtx_desc);
79 	AR5K_HAL_FUNCTION(hal, ar5211, fill_tx_desc);
80 	AR5K_HAL_FUNCTION(hal, ar5211, proc_tx_desc);
81 	AR5K_HAL_FUNCTION(hal, ar5211, has_veol);
82 
83 	/*
84 	 * RX functions
85 	 */
86 	AR5K_HAL_FUNCTION(hal, ar5211, get_rx_buf);
87 	AR5K_HAL_FUNCTION(hal, ar5211, put_rx_buf);
88 	AR5K_HAL_FUNCTION(hal, ar5211, start_rx);
89 	AR5K_HAL_FUNCTION(hal, ar5211, stop_rx_dma);
90 	AR5K_HAL_FUNCTION(hal, ar5211, start_rx_pcu);
91 	AR5K_HAL_FUNCTION(hal, ar5211, stop_pcu_recv);
92 	AR5K_HAL_FUNCTION(hal, ar5211, set_mcast_filter);
93 	AR5K_HAL_FUNCTION(hal, ar5211, set_mcast_filterindex);
94 	AR5K_HAL_FUNCTION(hal, ar5211, clear_mcast_filter_idx);
95 	AR5K_HAL_FUNCTION(hal, ar5211, get_rx_filter);
96 	AR5K_HAL_FUNCTION(hal, ar5211, set_rx_filter);
97 	AR5K_HAL_FUNCTION(hal, ar5211, setup_rx_desc);
98 	AR5K_HAL_FUNCTION(hal, ar5211, proc_rx_desc);
99 	AR5K_HAL_FUNCTION(hal, ar5211, set_rx_signal);
100 
101 	/*
102 	 * Misc functions
103 	 */
104 	AR5K_HAL_FUNCTION(hal, ar5211, dump_state);
105 	AR5K_HAL_FUNCTION(hal, ar5211, get_diag_state);
106 	AR5K_HAL_FUNCTION(hal, ar5211, get_lladdr);
107 	AR5K_HAL_FUNCTION(hal, ar5211, set_lladdr);
108 	AR5K_HAL_FUNCTION(hal, ar5211, set_regdomain);
109 	AR5K_HAL_FUNCTION(hal, ar5211, set_ledstate);
110 	AR5K_HAL_FUNCTION(hal, ar5211, set_associd);
111 	AR5K_HAL_FUNCTION(hal, ar5211, set_gpio_input);
112 	AR5K_HAL_FUNCTION(hal, ar5211, set_gpio_output);
113 	AR5K_HAL_FUNCTION(hal, ar5211, get_gpio);
114 	AR5K_HAL_FUNCTION(hal, ar5211, set_gpio);
115 	AR5K_HAL_FUNCTION(hal, ar5211, set_gpio_intr);
116 	AR5K_HAL_FUNCTION(hal, ar5211, get_tsf32);
117 	AR5K_HAL_FUNCTION(hal, ar5211, get_tsf64);
118 	AR5K_HAL_FUNCTION(hal, ar5211, reset_tsf);
119 	AR5K_HAL_FUNCTION(hal, ar5211, get_regdomain);
120 	AR5K_HAL_FUNCTION(hal, ar5211, detect_card_present);
121 	AR5K_HAL_FUNCTION(hal, ar5211, update_mib_counters);
122 	AR5K_HAL_FUNCTION(hal, ar5211, get_rf_gain);
123 	AR5K_HAL_FUNCTION(hal, ar5211, set_slot_time);
124 	AR5K_HAL_FUNCTION(hal, ar5211, get_slot_time);
125 	AR5K_HAL_FUNCTION(hal, ar5211, set_ack_timeout);
126 	AR5K_HAL_FUNCTION(hal, ar5211, get_ack_timeout);
127 	AR5K_HAL_FUNCTION(hal, ar5211, set_cts_timeout);
128 	AR5K_HAL_FUNCTION(hal, ar5211, get_cts_timeout);
129 
130 	/*
131 	 * Key table (WEP) functions
132 	 */
133 	AR5K_HAL_FUNCTION(hal, ar5211, is_cipher_supported);
134 	AR5K_HAL_FUNCTION(hal, ar5211, get_keycache_size);
135 	AR5K_HAL_FUNCTION(hal, ar5211, reset_key);
136 	AR5K_HAL_FUNCTION(hal, ar5211, is_key_valid);
137 	AR5K_HAL_FUNCTION(hal, ar5211, set_key);
138 	AR5K_HAL_FUNCTION(hal, ar5211, set_key_lladdr);
139 	AR5K_HAL_FUNCTION(hal, ar5211, softcrypto);
140 
141 	/*
142 	 * Power management functions
143 	 */
144 	AR5K_HAL_FUNCTION(hal, ar5211, set_power);
145 	AR5K_HAL_FUNCTION(hal, ar5211, get_power_mode);
146 	AR5K_HAL_FUNCTION(hal, ar5211, query_pspoll_support);
147 	AR5K_HAL_FUNCTION(hal, ar5211, init_pspoll);
148 	AR5K_HAL_FUNCTION(hal, ar5211, enable_pspoll);
149 	AR5K_HAL_FUNCTION(hal, ar5211, disable_pspoll);
150 
151 	/*
152 	 * Beacon functions
153 	 */
154 	AR5K_HAL_FUNCTION(hal, ar5211, init_beacon);
155 	AR5K_HAL_FUNCTION(hal, ar5211, set_beacon_timers);
156 	AR5K_HAL_FUNCTION(hal, ar5211, reset_beacon);
157 	AR5K_HAL_FUNCTION(hal, ar5211, wait_for_beacon);
158 
159 	/*
160 	 * Interrupt functions
161 	 */
162 	AR5K_HAL_FUNCTION(hal, ar5211, is_intr_pending);
163 	AR5K_HAL_FUNCTION(hal, ar5211, get_isr);
164 	AR5K_HAL_FUNCTION(hal, ar5211, get_intr);
165 	AR5K_HAL_FUNCTION(hal, ar5211, set_intr);
166 
167 	/*
168 	 * Chipset functions (ar5k-specific, non-HAL)
169 	 */
170 	AR5K_HAL_FUNCTION(hal, ar5211, get_capabilities);
171 	AR5K_HAL_FUNCTION(hal, ar5211, radar_alert);
172 
173 	/*
174 	 * EEPROM access
175 	 */
176 	AR5K_HAL_FUNCTION(hal, ar5211, eeprom_is_busy);
177 	AR5K_HAL_FUNCTION(hal, ar5211, eeprom_read);
178 	AR5K_HAL_FUNCTION(hal, ar5211, eeprom_write);
179 
180 	/*
181 	 * Unused functions or functions not implemented
182 	 */
183 	AR5K_HAL_FUNCTION(hal, ar5211, get_tx_queueprops);
184 	AR5K_HAL_FUNCTION(hal, ar5211, num_tx_pending);
185 	AR5K_HAL_FUNCTION(hal, ar5211, phy_disable);
186 	AR5K_HAL_FUNCTION(hal, ar5211, set_txpower_limit);
187 	AR5K_HAL_FUNCTION(hal, ar5211, set_def_antenna);
188 	AR5K_HAL_FUNCTION(hal, ar5211, get_def_antenna);
189 	AR5K_HAL_FUNCTION(hal, ar5211, set_bssid_mask);
190 #ifdef notyet
191 	AR5K_HAL_FUNCTION(hal, ar5211, set_capability);
192 	AR5K_HAL_FUNCTION(hal, ar5211, proc_mib_event);
193 	AR5K_HAL_FUNCTION(hal, ar5211, get_tx_inter_queue);
194 #endif
195 }
196 
197 struct ath_hal *
198 ar5k_ar5211_attach(u_int16_t device, void *sc, bus_space_tag_t st,
199     bus_space_handle_t sh, int *status)
200 {
201 	struct ath_hal *hal = (struct ath_hal*) sc;
202 	u_int8_t mac[IEEE80211_ADDR_LEN];
203 	u_int32_t srev;
204 
205 	ar5k_ar5211_fill(hal);
206 
207 	/* Bring device out of sleep and reset its units */
208 	if (ar5k_ar5211_nic_wakeup(hal, AR5K_INIT_MODE) != AH_TRUE)
209 		return (NULL);
210 
211 	/* Get MAC, PHY and RADIO revisions */
212 	srev = AR5K_REG_READ(AR5K_AR5211_SREV);
213 	hal->ah_mac_srev = srev;
214 	hal->ah_mac_version = AR5K_REG_MS(srev, AR5K_AR5211_SREV_VER);
215 	hal->ah_mac_revision = AR5K_REG_MS(srev, AR5K_AR5211_SREV_REV);
216 	hal->ah_phy_revision = AR5K_REG_READ(AR5K_AR5211_PHY_CHIP_ID) &
217 	    0x00ffffffff;
218 	hal->ah_radio_5ghz_revision =
219 	    ar5k_ar5211_radio_revision(hal, HAL_CHIP_5GHZ);
220 	hal->ah_radio_2ghz_revision = 0;
221 
222 	/* Identify the chipset (this has to be done in an early step) */
223 	hal->ah_version = AR5K_AR5211;
224 	hal->ah_radio = AR5K_AR5111;
225 	hal->ah_phy = AR5K_AR5211_PHY(0);
226 
227 	bcopy(etherbroadcastaddr, mac, IEEE80211_ADDR_LEN);
228 	ar5k_ar5211_set_associd(hal, mac, 0, 0);
229 	ar5k_ar5211_get_lladdr(hal, mac);
230 	ar5k_ar5211_set_opmode(hal);
231 
232 	return (hal);
233 }
234 
235 HAL_BOOL
236 ar5k_ar5211_nic_reset(struct ath_hal *hal, u_int32_t val)
237 {
238 	HAL_BOOL ret = AH_FALSE;
239 	u_int32_t mask = val ? val : ~0;
240 
241 	/* Read-and-clear */
242 	AR5K_REG_READ(AR5K_AR5211_RXDP);
243 
244 	/*
245 	 * Reset the device and wait until success
246 	 */
247 	AR5K_REG_WRITE(AR5K_AR5211_RC, val);
248 
249 	/* Wait at least 128 PCI clocks */
250 	AR5K_DELAY(15);
251 
252 	val &=
253 	    AR5K_AR5211_RC_PCU | AR5K_AR5211_RC_BB;
254 
255 	mask &=
256 	    AR5K_AR5211_RC_PCU | AR5K_AR5211_RC_BB;
257 
258 	ret = ar5k_register_timeout(hal, AR5K_AR5211_RC, mask, val, AH_FALSE);
259 
260 	/*
261 	 * Reset configuration register
262 	 */
263 	if ((val & AR5K_AR5211_RC_PCU) == 0)
264 		AR5K_REG_WRITE(AR5K_AR5211_CFG, AR5K_AR5211_INIT_CFG);
265 
266 	return (ret);
267 }
268 
269 HAL_BOOL
270 ar5k_ar5211_nic_wakeup(struct ath_hal *hal, u_int16_t flags)
271 {
272 	u_int32_t turbo, mode, clock;
273 
274 	turbo = 0;
275 	mode = 0;
276 	clock = 0;
277 
278 	/*
279 	 * Get channel mode flags
280 	 */
281 
282 	if (flags & IEEE80211_CHAN_2GHZ) {
283 		mode |= AR5K_AR5211_PHY_MODE_FREQ_2GHZ;
284 		clock |= AR5K_AR5211_PHY_PLL_44MHZ;
285 	} else if (flags & IEEE80211_CHAN_5GHZ) {
286 		mode |= AR5K_AR5211_PHY_MODE_FREQ_5GHZ;
287 		clock |= AR5K_AR5211_PHY_PLL_40MHZ;
288 	} else {
289 		AR5K_PRINT("invalid radio frequency mode\n");
290 		return (AH_FALSE);
291 	}
292 
293 	if ((flags & IEEE80211_CHAN_CCK) ||
294 	    (flags & IEEE80211_CHAN_DYN)) {
295 		/* Dynamic OFDM/CCK is not supported by the AR5211 */
296 		mode |= AR5K_AR5211_PHY_MODE_MOD_CCK;
297 	} else if (flags & IEEE80211_CHAN_OFDM) {
298 		mode |= AR5K_AR5211_PHY_MODE_MOD_OFDM;
299 	} else {
300 		AR5K_PRINT("invalid radio frequency mode\n");
301 		return (AH_FALSE);
302 	}
303 
304 	if (flags & IEEE80211_CHAN_TURBO) {
305 		turbo = AR5K_AR5211_PHY_TURBO_MODE |
306 		    AR5K_AR5211_PHY_TURBO_SHORT;
307 	}
308 
309 	/*
310 	 * Reset and wakeup the device
311 	 */
312 
313 	/* ...reset chipset and PCI device */
314 	if (ar5k_ar5211_nic_reset(hal,
315 		AR5K_AR5211_RC_CHIP | AR5K_AR5211_RC_PCI) == AH_FALSE) {
316 		AR5K_PRINT("failed to reset the AR5211 + PCI chipset\n");
317 		return (AH_FALSE);
318 	}
319 
320 	/* ...wakeup */
321 	if (ar5k_ar5211_set_power(hal,
322 		HAL_PM_AWAKE, AH_TRUE, 0) == AH_FALSE) {
323 		AR5K_PRINT("failed to resume the AR5211 (again)\n");
324 		return (AH_FALSE);
325 	}
326 
327 	/* ...final warm reset */
328 	if (ar5k_ar5211_nic_reset(hal, 0) == AH_FALSE) {
329 		AR5K_PRINT("failed to warm reset the AR5211\n");
330 		return (AH_FALSE);
331 	}
332 
333 	/* ...set the PHY operating mode */
334 	AR5K_REG_WRITE(AR5K_AR5211_PHY_PLL, clock);
335 	AR5K_DELAY(300);
336 
337 	AR5K_REG_WRITE(AR5K_AR5211_PHY_MODE, mode);
338 	AR5K_REG_WRITE(AR5K_AR5211_PHY_TURBO, turbo);
339 
340 	return (AH_TRUE);
341 }
342 
343 u_int16_t
344 ar5k_ar5211_radio_revision(struct ath_hal *hal, HAL_CHIP chip)
345 {
346 	int i;
347 	u_int32_t srev;
348 	u_int16_t ret;
349 
350 	/*
351 	 * Set the radio chip access register
352 	 */
353 	switch (chip) {
354 	case HAL_CHIP_2GHZ:
355 		AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_2GHZ);
356 		break;
357 	case HAL_CHIP_5GHZ:
358 		AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_5GHZ);
359 		break;
360 	default:
361 		return (0);
362 	}
363 
364 	AR5K_DELAY(2000);
365 
366 	/* ...wait until PHY is ready and read the selected radio revision */
367 	AR5K_REG_WRITE(AR5K_AR5211_PHY(0x34), 0x00001c16);
368 
369 	for (i = 0; i < 8; i++)
370 		AR5K_REG_WRITE(AR5K_AR5211_PHY(0x20), 0x00010000);
371 	srev = (AR5K_REG_READ(AR5K_AR5211_PHY(0x100)) >> 24) & 0xff;
372 
373 	ret = ar5k_bitswap(((srev & 0xf0) >> 4) | ((srev & 0x0f) << 4), 8);
374 
375 	/* Reset to the 5GHz mode */
376 	AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_5GHZ);
377 
378 	return (ret);
379 }
380 
381 const HAL_RATE_TABLE *
382 ar5k_ar5211_get_rate_table(struct ath_hal *hal, u_int mode)
383 {
384 	switch (mode) {
385 	case HAL_MODE_11A:
386 		return (&hal->ah_rt_11a);
387 	case HAL_MODE_TURBO:
388 		return (&hal->ah_rt_turbo);
389 	case HAL_MODE_11B:
390 		return (&hal->ah_rt_11b);
391 	case HAL_MODE_11G:
392 	case HAL_MODE_PUREG:
393 		return (&hal->ah_rt_11g);
394 	default:
395 		return (NULL);
396 	}
397 
398 	return (NULL);
399 }
400 
401 void
402 ar5k_ar5211_detach(struct ath_hal *hal)
403 {
404 	/*
405 	 * Free HAL structure, assume interrupts are down
406 	 */
407 	free(hal, M_DEVBUF);
408 }
409 
410 HAL_BOOL
411 ar5k_ar5211_phy_disable(struct ath_hal *hal)
412 {
413 	AR5K_REG_WRITE(AR5K_AR5211_PHY_ACTIVE, AR5K_AR5211_PHY_DISABLE);
414 	return (AH_TRUE);
415 }
416 
417 HAL_BOOL
418 ar5k_ar5211_reset(struct ath_hal *hal, HAL_OPMODE op_mode, HAL_CHANNEL *channel,
419     HAL_BOOL change_channel, HAL_STATUS *status)
420 {
421 	struct ar5k_eeprom_info *ee = &hal->ah_capabilities.cap_eeprom;
422 	u_int8_t mac[IEEE80211_ADDR_LEN];
423 	u_int32_t data, s_seq, s_ant, s_led[3];
424 	u_int i, mode, freq, ee_mode, ant[2];
425 
426 	/*
427 	 * Save some registers before a reset
428 	 */
429 	if (change_channel == AH_TRUE) {
430 		s_seq = AR5K_REG_READ(AR5K_AR5211_DCU_SEQNUM(0));
431 		s_ant = AR5K_REG_READ(AR5K_AR5211_DEFAULT_ANTENNA);
432 	} else {
433 		s_seq = 0;
434 		s_ant = 1;
435 	}
436 
437 	s_led[0] = AR5K_REG_READ(AR5K_AR5211_PCICFG) &
438 	    AR5K_AR5211_PCICFG_LEDSTATE;
439 	s_led[1] = AR5K_REG_READ(AR5K_AR5211_GPIOCR);
440 	s_led[2] = AR5K_REG_READ(AR5K_AR5211_GPIODO);
441 
442 	if (ar5k_ar5211_nic_wakeup(hal, channel->c_channel_flags) == AH_FALSE)
443 		return (AH_FALSE);
444 
445 	/*
446 	 * Initialize operating mode
447 	 */
448 	hal->ah_op_mode = op_mode;
449 
450 	switch (channel->c_channel_flags & CHANNEL_MODES) {
451 	case CHANNEL_A:
452 		mode = AR5K_INI_VAL_11A;
453 		freq = AR5K_INI_RFGAIN_5GHZ;
454 		ee_mode = AR5K_EEPROM_MODE_11A;
455 		break;
456 	case CHANNEL_T:
457 		mode = AR5K_INI_VAL_11A_TURBO;
458 		freq = AR5K_INI_RFGAIN_5GHZ;
459 		ee_mode = AR5K_EEPROM_MODE_11A;
460 		break;
461 	case CHANNEL_B:
462 		mode = AR5K_INI_VAL_11B;
463 		freq = AR5K_INI_RFGAIN_2GHZ;
464 		ee_mode = AR5K_EEPROM_MODE_11B;
465 		break;
466 	case CHANNEL_G:
467 	case CHANNEL_PUREG:
468 		mode = AR5K_INI_VAL_11G;
469 		freq = AR5K_INI_RFGAIN_2GHZ;
470 		ee_mode = AR5K_EEPROM_MODE_11G;
471 		break;
472 	default:
473 		AR5K_PRINTF("invalid channel: %d\n", channel->c_channel);
474 		return (AH_FALSE);
475 	}
476 
477 	/* PHY access enable */
478 	AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_5GHZ);
479 
480 	/*
481 	 * Write initial RF registers
482 	 */
483 	ar5k_ar5211_rfregs(hal, channel, freq, ee_mode);
484 
485 	/*
486 	 * Write initial mode settings
487 	 */
488 	for (i = 0; i < AR5K_ELEMENTS(ar5211_mode); i++) {
489 		AR5K_REG_WAIT(i);
490 		AR5K_REG_WRITE((u_int32_t)ar5211_mode[i].mode_register,
491 		    ar5211_mode[i].mode_value[mode]);
492 	}
493 
494 	/*
495 	 * Write initial register settings
496 	 */
497 	for (i = 0; i < AR5K_ELEMENTS(ar5211_ini); i++) {
498 		if (change_channel == AH_TRUE &&
499 		    ar5211_ini[i].ini_register >= AR5K_AR5211_PCU_MIN &&
500 		    ar5211_ini[i].ini_register <= AR5K_AR5211_PCU_MAX)
501 			continue;
502 
503 		AR5K_REG_WAIT(i);
504 		AR5K_REG_WRITE((u_int32_t)ar5211_ini[i].ini_register,
505 		    ar5211_ini[i].ini_value);
506 	}
507 
508 	/*
509 	 * Write initial RF gain settings
510 	 */
511 	if (ar5k_rfgain(hal, freq) == AH_FALSE)
512 		return (AH_FALSE);
513 
514 	AR5K_DELAY(1000);
515 
516 	/*
517 	 * Configure additional registers
518 	 */
519 
520 	if (hal->ah_radio == AR5K_AR5111) {
521 		if (channel->c_channel_flags & IEEE80211_CHAN_B)
522 			AR5K_REG_ENABLE_BITS(AR5K_AR5211_TXCFG,
523 			    AR5K_AR5211_TXCFG_B_MODE);
524 		else
525 			AR5K_REG_DISABLE_BITS(AR5K_AR5211_TXCFG,
526 			    AR5K_AR5211_TXCFG_B_MODE);
527 	}
528 
529 	/* Set antenna mode */
530 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x44),
531 	    hal->ah_antenna[ee_mode][0], 0xfffffc06);
532 
533 	if (freq == AR5K_INI_RFGAIN_2GHZ)
534 		ant[0] = ant[1] = HAL_ANT_FIXED_B;
535 	else
536 		ant[0] = ant[1] = HAL_ANT_FIXED_A;
537 
538 	AR5K_REG_WRITE(AR5K_AR5211_PHY_ANT_SWITCH_TABLE_0,
539 	    hal->ah_antenna[ee_mode][ant[0]]);
540 	AR5K_REG_WRITE(AR5K_AR5211_PHY_ANT_SWITCH_TABLE_1,
541 	    hal->ah_antenna[ee_mode][ant[1]]);
542 
543 	/* Commit values from EEPROM */
544 	AR5K_REG_WRITE_BITS(AR5K_AR5211_PHY_FC,
545 	    AR5K_AR5211_PHY_FC_TX_CLIP, ee->ee_tx_clip);
546 
547 	AR5K_REG_WRITE(AR5K_AR5211_PHY(0x5a),
548 	    AR5K_AR5211_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]));
549 
550 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x11),
551 	    (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80, 0xffffc07f);
552 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x12),
553 	    (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000, 0xfffc0fff);
554 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x14),
555 	    (ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
556 	    ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00), 0xffff0000);
557 
558 	AR5K_REG_WRITE(AR5K_AR5211_PHY(0x0d),
559 	    (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
560 	    (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
561 	    (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
562 	    (ee->ee_tx_frm2xpa_enable[ee_mode]));
563 
564 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x0a),
565 	    ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
566 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x19),
567 	    (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
568 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x49), 4, 0xffffff01);
569 
570 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_IQ,
571 	    AR5K_AR5211_PHY_IQ_CORR_ENABLE |
572 	    (ee->ee_i_cal[ee_mode] << AR5K_AR5211_PHY_IQ_CORR_Q_I_COFF_S) |
573 	    ee->ee_q_cal[ee_mode]);
574 
575 	/*
576 	 * Restore saved values
577 	 */
578 	AR5K_REG_WRITE(AR5K_AR5211_DCU_SEQNUM(0), s_seq);
579 	AR5K_REG_WRITE(AR5K_AR5211_DEFAULT_ANTENNA, s_ant);
580 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PCICFG, s_led[0]);
581 	AR5K_REG_WRITE(AR5K_AR5211_GPIOCR, s_led[1]);
582 	AR5K_REG_WRITE(AR5K_AR5211_GPIODO, s_led[2]);
583 
584 	/*
585 	 * Misc
586 	 */
587 	bcopy(etherbroadcastaddr, mac, IEEE80211_ADDR_LEN);
588 	ar5k_ar5211_set_associd(hal, mac, 0, 0);
589 	ar5k_ar5211_set_opmode(hal);
590 	AR5K_REG_WRITE(AR5K_AR5211_PISR, 0xffffffff);
591 	AR5K_REG_WRITE(AR5K_AR5211_RSSI_THR, AR5K_TUNE_RSSI_THRES);
592 
593 	/*
594 	 * Set Rx/Tx DMA Configuration
595 	 */
596 	AR5K_REG_WRITE_BITS(AR5K_AR5211_TXCFG, AR5K_AR5211_TXCFG_SDMAMR,
597 	    AR5K_AR5211_DMASIZE_512B | AR5K_AR5211_TXCFG_DMASIZE);
598 	AR5K_REG_WRITE_BITS(AR5K_AR5211_RXCFG, AR5K_AR5211_RXCFG_SDMAMW,
599 	    AR5K_AR5211_DMASIZE_512B);
600 
601 	/*
602 	 * Set channel and calibrate the PHY
603 	 */
604 	if (ar5k_channel(hal, channel) == AH_FALSE)
605 		return (AH_FALSE);
606 
607 	/*
608 	 * Enable the PHY and wait until completion
609 	 */
610 	AR5K_REG_WRITE(AR5K_AR5211_PHY_ACTIVE, AR5K_AR5211_PHY_ENABLE);
611 
612 	data = AR5K_REG_READ(AR5K_AR5211_PHY_RX_DELAY) &
613 	    AR5K_AR5211_PHY_RX_DELAY_M;
614 	data = (channel->c_channel_flags & IEEE80211_CHAN_CCK) ?
615 	    ((data << 2) / 22) : (data / 10);
616 
617 	AR5K_DELAY(100 + data);
618 
619 	/*
620 	 * Start calibration
621 	 */
622 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_AGCCTL,
623 	    AR5K_AR5211_PHY_AGCCTL_NF |
624 	    AR5K_AR5211_PHY_AGCCTL_CAL);
625 
626 	if (channel->c_channel_flags & IEEE80211_CHAN_B) {
627 		hal->ah_calibration = AH_FALSE;
628 	} else {
629 		hal->ah_calibration = AH_TRUE;
630 		AR5K_REG_WRITE_BITS(AR5K_AR5211_PHY_IQ,
631 		    AR5K_AR5211_PHY_IQ_CAL_NUM_LOG_MAX, 15);
632 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_IQ,
633 		    AR5K_AR5211_PHY_IQ_RUN);
634 	}
635 
636 	/*
637 	 * Reset queues and start beacon timers at the end of the reset routine
638 	 */
639 	for (i = 0; i < hal->ah_capabilities.cap_queues.q_tx_num; i++) {
640 		AR5K_REG_WRITE_Q(AR5K_AR5211_DCU_QCUMASK(i), i);
641 		if (ar5k_ar5211_reset_tx_queue(hal, i) == AH_FALSE) {
642 			AR5K_PRINTF("failed to reset TX queue #%d\n", i);
643 			return (AH_FALSE);
644 		}
645 	}
646 
647 	/* Pre-enable interrupts */
648 	ar5k_ar5211_set_intr(hal, HAL_INT_RX | HAL_INT_TX | HAL_INT_FATAL);
649 
650 	/*
651 	 * Set RF kill flags if supported by the device (read from the EEPROM)
652 	 */
653 	if (AR5K_EEPROM_HDR_RFKILL(hal->ah_capabilities.cap_eeprom.ee_header)) {
654 		ar5k_ar5211_set_gpio_input(hal, 0);
655 		if ((hal->ah_gpio[0] = ar5k_ar5211_get_gpio(hal, 0)) == 0)
656 			ar5k_ar5211_set_gpio_intr(hal, 0, 1);
657 		else
658 			ar5k_ar5211_set_gpio_intr(hal, 0, 0);
659 	}
660 
661 	/*
662 	 * Disable beacons and reset the register
663 	 */
664 	AR5K_REG_DISABLE_BITS(AR5K_AR5211_BEACON,
665 	    AR5K_AR5211_BEACON_ENABLE | AR5K_AR5211_BEACON_RESET_TSF);
666 
667 	return (AH_TRUE);
668 }
669 
670 void
671 ar5k_ar5211_set_def_antenna(struct ath_hal *hal, u_int ant)
672 {
673 	AR5K_REG_WRITE(AR5K_AR5211_DEFAULT_ANTENNA, ant);
674 }
675 
676 u_int
677 ar5k_ar5211_get_def_antenna(struct ath_hal *hal)
678 {
679 	return AR5K_REG_READ(AR5K_AR5211_DEFAULT_ANTENNA);
680 }
681 
682 void
683 ar5k_ar5211_set_opmode(struct ath_hal *hal)
684 {
685 	u_int32_t pcu_reg, low_id, high_id;
686 
687 	pcu_reg = 0;
688 
689 	switch (hal->ah_op_mode) {
690 #ifndef IEEE80211_STA_ONLY
691 	case IEEE80211_M_IBSS:
692 		pcu_reg |= AR5K_AR5211_STA_ID1_ADHOC |
693 		    AR5K_AR5211_STA_ID1_DESC_ANTENNA;
694 		break;
695 
696 	case IEEE80211_M_HOSTAP:
697 		pcu_reg |= AR5K_AR5211_STA_ID1_AP |
698 		    AR5K_AR5211_STA_ID1_RTS_DEFAULT_ANTENNA;
699 		break;
700 #endif
701 
702 	case IEEE80211_M_STA:
703 	case IEEE80211_M_MONITOR:
704 		pcu_reg |= AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA;
705 		break;
706 
707 	default:
708 		return;
709 	}
710 
711 	/*
712 	 * Set PCU registers
713 	 */
714 	low_id = AR5K_LOW_ID(hal->ah_sta_id);
715 	high_id = AR5K_HIGH_ID(hal->ah_sta_id);
716 	AR5K_REG_WRITE(AR5K_AR5211_STA_ID0, low_id);
717 	AR5K_REG_WRITE(AR5K_AR5211_STA_ID1, pcu_reg | high_id);
718 
719 	return;
720 }
721 
722 HAL_BOOL
723 ar5k_ar5211_calibrate(struct ath_hal *hal, HAL_CHANNEL *channel)
724 {
725 	u_int32_t i_pwr, q_pwr;
726 	int32_t iq_corr, i_coff, i_coffd, q_coff, q_coffd;
727 
728 	if (hal->ah_calibration == AH_FALSE ||
729 	    AR5K_REG_READ(AR5K_AR5211_PHY_IQ) & AR5K_AR5211_PHY_IQ_RUN)
730 		goto done;
731 
732 	hal->ah_calibration = AH_FALSE;
733 
734 	iq_corr = AR5K_REG_READ(AR5K_AR5211_PHY_IQRES_CAL_CORR);
735 	i_pwr = AR5K_REG_READ(AR5K_AR5211_PHY_IQRES_CAL_PWR_I);
736 	q_pwr = AR5K_REG_READ(AR5K_AR5211_PHY_IQRES_CAL_PWR_Q);
737 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
738 	q_coffd = q_pwr >> 6;
739 
740 	if (i_coffd == 0 || q_coffd == 0)
741 		goto done;
742 
743 	i_coff = ((-iq_corr) / i_coffd) & 0x3f;
744 	q_coff = (((int32_t)i_pwr / q_coffd) - 64) & 0x1f;
745 
746 	/* Commit new IQ value */
747 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_IQ,
748 	    AR5K_AR5211_PHY_IQ_CORR_ENABLE |
749 	    ((u_int32_t)q_coff) |
750 	    ((u_int32_t)i_coff << AR5K_AR5211_PHY_IQ_CORR_Q_I_COFF_S));
751 
752  done:
753 	/* Start noise floor calibration */
754 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_AGCCTL,
755 	    AR5K_AR5211_PHY_AGCCTL_NF);
756 
757 	return (AH_TRUE);
758 }
759 
760 /*
761  * Transmit functions
762  */
763 
764 HAL_BOOL
765 ar5k_ar5211_update_tx_triglevel(struct ath_hal *hal, HAL_BOOL increase)
766 {
767 	u_int32_t trigger_level, imr;
768 	HAL_BOOL status = AH_FALSE;
769 
770 	/*
771 	 * Disable interrupts by setting the mask
772 	 */
773 	imr = ar5k_ar5211_set_intr(hal, hal->ah_imr & ~HAL_INT_GLOBAL);
774 
775 	trigger_level = AR5K_REG_MS(AR5K_REG_READ(AR5K_AR5211_TXCFG),
776 	    AR5K_AR5211_TXCFG_TXFULL);
777 
778 	if (increase == AH_FALSE) {
779 		if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
780 			goto done;
781 	} else
782 		trigger_level +=
783 		    ((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
784 
785 	/*
786 	 * Update trigger level on success
787 	 */
788 	AR5K_REG_WRITE_BITS(AR5K_AR5211_TXCFG,
789 	    AR5K_AR5211_TXCFG_TXFULL, trigger_level);
790 	status = AH_TRUE;
791 
792  done:
793 	/*
794 	 * Restore interrupt mask
795 	 */
796 	ar5k_ar5211_set_intr(hal, imr);
797 
798 	return (status);
799 }
800 
801 int
802 ar5k_ar5211_setup_tx_queue(struct ath_hal *hal, HAL_TX_QUEUE queue_type,
803     const HAL_TXQ_INFO *queue_info)
804 {
805 	u_int queue;
806 
807 	/*
808 	 * Get queue by type
809 	 */
810 	if (queue_type == HAL_TX_QUEUE_DATA) {
811 		for (queue = HAL_TX_QUEUE_ID_DATA_MIN;
812 		     hal->ah_txq[queue].tqi_type != HAL_TX_QUEUE_INACTIVE;
813 		     queue++)
814 			if (queue > HAL_TX_QUEUE_ID_DATA_MAX)
815 				return (-1);
816 	} else if (queue_type == HAL_TX_QUEUE_PSPOLL) {
817 		queue = HAL_TX_QUEUE_ID_PSPOLL;
818 	} else if (queue_type == HAL_TX_QUEUE_BEACON) {
819 		queue = HAL_TX_QUEUE_ID_BEACON;
820 	} else if (queue_type == HAL_TX_QUEUE_CAB) {
821 		queue = HAL_TX_QUEUE_ID_CAB;
822 	} else
823 		return (-1);
824 
825 	/*
826 	 * Setup internal queue structure
827 	 */
828 	bzero(&hal->ah_txq[queue], sizeof(HAL_TXQ_INFO));
829 	hal->ah_txq[queue].tqi_type = queue_type;
830 
831 	if (queue_info != NULL) {
832 		if (ar5k_ar5211_setup_tx_queueprops(hal, queue, queue_info)
833 		    != AH_TRUE)
834 			return (-1);
835 	}
836 
837 	AR5K_Q_ENABLE_BITS(hal->ah_txq_interrupts, queue);
838 
839 	return (queue);
840 }
841 
842 HAL_BOOL
843 ar5k_ar5211_setup_tx_queueprops(struct ath_hal *hal, int queue,
844     const HAL_TXQ_INFO *queue_info)
845 {
846 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
847 
848 	if (hal->ah_txq[queue].tqi_type == HAL_TX_QUEUE_INACTIVE)
849 		return (AH_FALSE);
850 
851 	bcopy(queue_info, &hal->ah_txq[queue], sizeof(HAL_TXQ_INFO));
852 
853 	if (queue_info->tqi_type == HAL_TX_QUEUE_DATA &&
854 	    (queue_info->tqi_subtype >= HAL_WME_AC_VI) &&
855 	    (queue_info->tqi_subtype <= HAL_WME_UPSD))
856 		hal->ah_txq[queue].tqi_flags |=
857 		    AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
858 
859 	return (AH_TRUE);
860 }
861 
862 HAL_BOOL
863 ar5k_ar5211_get_tx_queueprops(struct ath_hal *hal, int queue,
864     HAL_TXQ_INFO *queue_info)
865 {
866 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
867 	bcopy(&hal->ah_txq[queue], queue_info, sizeof(HAL_TXQ_INFO));
868 	return (AH_TRUE);
869 }
870 
871 HAL_BOOL
872 ar5k_ar5211_release_tx_queue(struct ath_hal *hal, u_int queue)
873 {
874 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
875 
876 	/* This queue will be skipped in further operations */
877 	hal->ah_txq[queue].tqi_type = HAL_TX_QUEUE_INACTIVE;
878 	AR5K_Q_DISABLE_BITS(hal->ah_txq_interrupts, queue);
879 
880 	return (AH_FALSE);
881 }
882 
883 HAL_BOOL
884 ar5k_ar5211_reset_tx_queue(struct ath_hal *hal, u_int queue)
885 {
886 	u_int32_t cw_min, cw_max, retry_lg, retry_sh;
887 	struct ieee80211_channel *channel = (struct ieee80211_channel*)
888 	    &hal->ah_current_channel;
889 	HAL_TXQ_INFO *tq;
890 
891 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
892 
893 	tq = &hal->ah_txq[queue];
894 
895 	if (tq->tqi_type == HAL_TX_QUEUE_INACTIVE)
896 		return (AH_TRUE);
897 
898 	/*
899 	 * Set registers by channel mode
900 	 */
901 	if (IEEE80211_IS_CHAN_B(channel)) {
902 		hal->ah_cw_min = AR5K_TUNE_CWMIN_11B;
903 		cw_max = hal->ah_cw_max = AR5K_TUNE_CWMAX_11B;
904 		hal->ah_aifs = AR5K_TUNE_AIFS_11B;
905 	} else {
906 		hal->ah_cw_min = AR5K_TUNE_CWMIN;
907 		cw_max = hal->ah_cw_max = AR5K_TUNE_CWMAX;
908 		hal->ah_aifs = AR5K_TUNE_AIFS;
909 	}
910 
911 	/*
912 	 * Set retry limits
913 	 */
914 	if (hal->ah_software_retry == AH_TRUE) {
915 		/* XXX Need to test this */
916 		retry_lg = hal->ah_limit_tx_retries;
917 		retry_sh = retry_lg =
918 		    retry_lg > AR5K_AR5211_DCU_RETRY_LMT_SH_RETRY ?
919 		    AR5K_AR5211_DCU_RETRY_LMT_SH_RETRY : retry_lg;
920 	} else {
921 		retry_lg = AR5K_INIT_LG_RETRY;
922 		retry_sh = AR5K_INIT_SH_RETRY;
923 	}
924 
925 	AR5K_REG_WRITE(AR5K_AR5211_DCU_RETRY_LMT(queue),
926 	    AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
927 	    AR5K_AR5211_DCU_RETRY_LMT_SLG_RETRY) |
928 	    AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
929 	    AR5K_AR5211_DCU_RETRY_LMT_SSH_RETRY) |
930 	    AR5K_REG_SM(retry_lg, AR5K_AR5211_DCU_RETRY_LMT_LG_RETRY) |
931 	    AR5K_REG_SM(retry_sh, AR5K_AR5211_DCU_RETRY_LMT_SH_RETRY));
932 
933 	/*
934 	 * Set initial content window (cw_min/cw_max)
935 	 */
936 	cw_min = 1;
937 	while (cw_min < hal->ah_cw_min)
938 		cw_min = (cw_min << 1) | 1;
939 
940 	cw_min = tq->tqi_cw_min < 0 ?
941 	    (cw_min >> (-tq->tqi_cw_min)) :
942 	    ((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1);
943 	cw_max = tq->tqi_cw_max < 0 ?
944 	    (cw_max >> (-tq->tqi_cw_max)) :
945 	    ((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1);
946 
947 	AR5K_REG_WRITE(AR5K_AR5211_DCU_LCL_IFS(queue),
948 	    AR5K_REG_SM(cw_min, AR5K_AR5211_DCU_LCL_IFS_CW_MIN) |
949 	    AR5K_REG_SM(cw_max, AR5K_AR5211_DCU_LCL_IFS_CW_MAX) |
950 	    AR5K_REG_SM(hal->ah_aifs + tq->tqi_aifs,
951 	    AR5K_AR5211_DCU_LCL_IFS_AIFS));
952 
953 	/*
954 	 * Set misc registers
955 	 */
956 	AR5K_REG_WRITE(AR5K_AR5211_QCU_MISC(queue),
957 	    AR5K_AR5211_QCU_MISC_DCU_EARLY);
958 
959 	if (tq->tqi_cbr_period) {
960 		AR5K_REG_WRITE(AR5K_AR5211_QCU_CBRCFG(queue),
961 		    AR5K_REG_SM(tq->tqi_cbr_period,
962 		    AR5K_AR5211_QCU_CBRCFG_INTVAL) |
963 		    AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
964 		    AR5K_AR5211_QCU_CBRCFG_ORN_THRES));
965 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
966 		    AR5K_AR5211_QCU_MISC_FRSHED_CBR);
967 		if (tq->tqi_cbr_overflow_limit)
968 			AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
969 			    AR5K_AR5211_QCU_MISC_CBR_THRES_ENABLE);
970 	}
971 
972 	if (tq->tqi_ready_time) {
973 		AR5K_REG_WRITE(AR5K_AR5211_QCU_RDYTIMECFG(queue),
974 		    AR5K_REG_SM(tq->tqi_ready_time,
975 		    AR5K_AR5211_QCU_RDYTIMECFG_INTVAL) |
976 		    AR5K_AR5211_QCU_RDYTIMECFG_ENABLE);
977 	}
978 
979 	if (tq->tqi_burst_time) {
980 		AR5K_REG_WRITE(AR5K_AR5211_DCU_CHAN_TIME(queue),
981 		    AR5K_REG_SM(tq->tqi_burst_time,
982 		    AR5K_AR5211_DCU_CHAN_TIME_DUR) |
983 		    AR5K_AR5211_DCU_CHAN_TIME_ENABLE);
984 
985 		if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE) {
986 			AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
987 			    AR5K_AR5211_QCU_MISC_TXE);
988 		}
989 	}
990 
991 	if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE) {
992 		AR5K_REG_WRITE(AR5K_AR5211_DCU_MISC(queue),
993 		    AR5K_AR5211_DCU_MISC_POST_FR_BKOFF_DIS);
994 	}
995 
996 	if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) {
997 		AR5K_REG_WRITE(AR5K_AR5211_DCU_MISC(queue),
998 		    AR5K_AR5211_DCU_MISC_BACKOFF_FRAG);
999 	}
1000 
1001 	/*
1002 	 * Set registers by queue type
1003 	 */
1004 	switch (tq->tqi_type) {
1005 	case HAL_TX_QUEUE_BEACON:
1006 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
1007 		    AR5K_AR5211_QCU_MISC_FRSHED_DBA_GT |
1008 		    AR5K_AR5211_QCU_MISC_CBREXP_BCN |
1009 		    AR5K_AR5211_QCU_MISC_BCN_ENABLE);
1010 
1011 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_DCU_MISC(queue),
1012 		    (AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
1013 		    AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL) |
1014 		    AR5K_AR5211_DCU_MISC_POST_FR_BKOFF_DIS |
1015 		    AR5K_AR5211_DCU_MISC_BCN_ENABLE);
1016 
1017 		AR5K_REG_WRITE(AR5K_AR5211_QCU_RDYTIMECFG(queue),
1018 		    ((AR5K_TUNE_BEACON_INTERVAL -
1019 		    (AR5K_TUNE_SW_BEACON_RESP - AR5K_TUNE_DMA_BEACON_RESP) -
1020 		    AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
1021 		    AR5K_AR5211_QCU_RDYTIMECFG_ENABLE);
1022 		break;
1023 
1024 	case HAL_TX_QUEUE_CAB:
1025 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
1026 		    AR5K_AR5211_QCU_MISC_FRSHED_DBA_GT |
1027 		    AR5K_AR5211_QCU_MISC_CBREXP |
1028 		    AR5K_AR5211_QCU_MISC_CBREXP_BCN);
1029 
1030 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_DCU_MISC(queue),
1031 		    (AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
1032 		    AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL));
1033 		break;
1034 
1035 	case HAL_TX_QUEUE_PSPOLL:
1036 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
1037 		    AR5K_AR5211_QCU_MISC_CBREXP);
1038 		break;
1039 
1040 	case HAL_TX_QUEUE_DATA:
1041 	default:
1042 		break;
1043 	}
1044 
1045 	/*
1046 	 * Enable tx queue in the secondary interrupt mask registers
1047 	 */
1048 	AR5K_REG_WRITE(AR5K_AR5211_SIMR0,
1049 	    AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR0_QCU_TXOK) |
1050 	    AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR0_QCU_TXDESC));
1051 	AR5K_REG_WRITE(AR5K_AR5211_SIMR1,
1052 	    AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR1_QCU_TXERR));
1053 	AR5K_REG_WRITE(AR5K_AR5211_SIMR2,
1054 	    AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR2_QCU_TXURN));
1055 
1056 	return (AH_TRUE);
1057 }
1058 
1059 u_int32_t
1060 ar5k_ar5211_get_tx_buf(struct ath_hal *hal, u_int queue)
1061 {
1062 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
1063 
1064 	/*
1065 	 * Get the transmit queue descriptor pointer from the selected queue
1066 	 */
1067 	return (AR5K_REG_READ(AR5K_AR5211_QCU_TXDP(queue)));
1068 }
1069 
1070 HAL_BOOL
1071 ar5k_ar5211_put_tx_buf(struct ath_hal *hal, u_int queue, u_int32_t phys_addr)
1072 {
1073 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
1074 
1075 	/*
1076 	 * Set the transmit queue descriptor pointer for the selected queue
1077 	 * (this won't work if the queue is still active)
1078 	 */
1079 	if (AR5K_REG_READ_Q(AR5K_AR5211_QCU_TXE, queue))
1080 		return (AH_FALSE);
1081 
1082 	AR5K_REG_WRITE(AR5K_AR5211_QCU_TXDP(queue), phys_addr);
1083 
1084 	return (AH_TRUE);
1085 }
1086 
1087 u_int32_t
1088 ar5k_ar5211_num_tx_pending(struct ath_hal *hal, u_int queue)
1089 {
1090 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
1091 	return (AR5K_AR5211_QCU_STS(queue) & AR5K_AR5211_QCU_STS_FRMPENDCNT);
1092 }
1093 
1094 HAL_BOOL
1095 ar5k_ar5211_tx_start(struct ath_hal *hal, u_int queue)
1096 {
1097 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
1098 
1099 	/* Return if queue is disabled */
1100 	if (AR5K_REG_READ_Q(AR5K_AR5211_QCU_TXD, queue))
1101 		return (AH_FALSE);
1102 
1103 	/* Start queue */
1104 	AR5K_REG_WRITE_Q(AR5K_AR5211_QCU_TXE, queue);
1105 
1106 	return (AH_TRUE);
1107 }
1108 
1109 HAL_BOOL
1110 ar5k_ar5211_stop_tx_dma(struct ath_hal *hal, u_int queue)
1111 {
1112 	int i = 100, pending;
1113 
1114 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
1115 
1116 	/*
1117 	 * Schedule TX disable and wait until queue is empty
1118 	 */
1119 	AR5K_REG_WRITE_Q(AR5K_AR5211_QCU_TXD, queue);
1120 
1121 	do {
1122 		pending = AR5K_REG_READ(AR5K_AR5211_QCU_STS(queue)) &
1123 		     AR5K_AR5211_QCU_STS_FRMPENDCNT;
1124 		delay(100);
1125 	} while (--i && pending);
1126 
1127 	/* Clear register */
1128 	AR5K_REG_WRITE(AR5K_AR5211_QCU_TXD, 0);
1129 
1130 	return (AH_TRUE);
1131 }
1132 
1133 HAL_BOOL
1134 ar5k_ar5211_setup_tx_desc(struct ath_hal *hal, struct ath_desc *desc,
1135     u_int packet_length, u_int header_length, HAL_PKT_TYPE type, u_int tx_power,
1136     u_int tx_rate0, u_int tx_tries0, u_int key_index, u_int antenna_mode,
1137     u_int flags, u_int rtscts_rate, u_int rtscts_duration)
1138 {
1139 	struct ar5k_ar5211_tx_desc *tx_desc;
1140 
1141 	tx_desc = (struct ar5k_ar5211_tx_desc*)&desc->ds_ctl0;
1142 
1143 	/*
1144 	 * Validate input
1145 	 */
1146 	if (tx_tries0 == 0)
1147 		return (AH_FALSE);
1148 
1149 	if ((tx_desc->tx_control_0 = (packet_length &
1150 	    AR5K_AR5211_DESC_TX_CTL0_FRAME_LEN)) != packet_length)
1151 		return (AH_FALSE);
1152 
1153 	tx_desc->tx_control_0 |=
1154 	    AR5K_REG_SM(tx_rate0, AR5K_AR5211_DESC_TX_CTL0_XMIT_RATE) |
1155 	    AR5K_REG_SM(antenna_mode, AR5K_AR5211_DESC_TX_CTL0_ANT_MODE_XMIT);
1156 	tx_desc->tx_control_1 =
1157 	    AR5K_REG_SM(type, AR5K_AR5211_DESC_TX_CTL1_FRAME_TYPE);
1158 
1159 #define _TX_FLAGS(_c, _flag)						\
1160 	if (flags & HAL_TXDESC_##_flag)					\
1161 		tx_desc->tx_control_##_c |=				\
1162 			AR5K_AR5211_DESC_TX_CTL##_c##_##_flag
1163 
1164 	_TX_FLAGS(0, CLRDMASK);
1165 	_TX_FLAGS(0, VEOL);
1166 	_TX_FLAGS(0, INTREQ);
1167 	_TX_FLAGS(0, RTSENA);
1168 	_TX_FLAGS(1, NOACK);
1169 
1170 #undef _TX_FLAGS
1171 
1172 	/*
1173 	 * WEP crap
1174 	 */
1175 	if (key_index != HAL_TXKEYIX_INVALID) {
1176 		tx_desc->tx_control_0 |=
1177 		    AR5K_AR5211_DESC_TX_CTL0_ENCRYPT_KEY_VALID;
1178 		tx_desc->tx_control_1 |=
1179 		    AR5K_REG_SM(key_index,
1180 		    AR5K_AR5211_DESC_TX_CTL1_ENCRYPT_KEY_INDEX);
1181 	}
1182 
1183 	return (AH_TRUE);
1184 }
1185 
1186 HAL_BOOL
1187 ar5k_ar5211_fill_tx_desc(struct ath_hal *hal, struct ath_desc *desc,
1188     u_int segment_length, HAL_BOOL first_segment, HAL_BOOL last_segment)
1189 {
1190 	struct ar5k_ar5211_tx_desc *tx_desc;
1191 
1192 	tx_desc = (struct ar5k_ar5211_tx_desc*)&desc->ds_ctl0;
1193 
1194 	/* Clear status descriptor */
1195 	bzero(desc->ds_hw, sizeof(desc->ds_hw));
1196 
1197 	/* Validate segment length and initialize the descriptor */
1198 	if (segment_length & ~AR5K_AR5211_DESC_TX_CTL1_BUF_LEN)
1199 		return (AH_FALSE);
1200 	tx_desc->tx_control_1 =
1201 #if 0
1202 	    (tx_desc->tx_control_1 & ~AR5K_AR5211_DESC_TX_CTL1_BUF_LEN) |
1203 #endif
1204 	    segment_length;
1205 
1206 	if (first_segment != AH_TRUE)
1207 		tx_desc->tx_control_0 &= ~AR5K_AR5211_DESC_TX_CTL0_FRAME_LEN;
1208 
1209 	if (last_segment != AH_TRUE)
1210 		tx_desc->tx_control_1 |= AR5K_AR5211_DESC_TX_CTL1_MORE;
1211 
1212 	return (AH_TRUE);
1213 }
1214 
1215 HAL_BOOL
1216 ar5k_ar5211_setup_xtx_desc(struct ath_hal *hal, struct ath_desc *desc,
1217     u_int tx_rate1, u_int tx_tries1, u_int tx_rate2, u_int tx_tries2,
1218     u_int tx_rate3, u_int tx_tries3)
1219 {
1220 	return (AH_FALSE);
1221 }
1222 
1223 HAL_STATUS
1224 ar5k_ar5211_proc_tx_desc(struct ath_hal *hal, struct ath_desc *desc)
1225 {
1226 	struct ar5k_ar5211_tx_status *tx_status;
1227 	struct ar5k_ar5211_tx_desc *tx_desc;
1228 
1229 	tx_desc = (struct ar5k_ar5211_tx_desc*)&desc->ds_ctl0;
1230 	tx_status = (struct ar5k_ar5211_tx_status*)&desc->ds_hw[0];
1231 
1232 	/* No frame has been send or error */
1233 	if ((tx_status->tx_status_1 & AR5K_AR5211_DESC_TX_STATUS1_DONE) == 0)
1234 		return (HAL_EINPROGRESS);
1235 
1236 	/*
1237 	 * Get descriptor status
1238 	 */
1239 	desc->ds_us.tx.ts_tstamp =
1240 	    AR5K_REG_MS(tx_status->tx_status_0,
1241 	    AR5K_AR5211_DESC_TX_STATUS0_SEND_TIMESTAMP);
1242 	desc->ds_us.tx.ts_shortretry =
1243 	    AR5K_REG_MS(tx_status->tx_status_0,
1244 	    AR5K_AR5211_DESC_TX_STATUS0_RTS_FAIL_COUNT);
1245 	desc->ds_us.tx.ts_longretry =
1246 	    AR5K_REG_MS(tx_status->tx_status_0,
1247 	    AR5K_AR5211_DESC_TX_STATUS0_DATA_FAIL_COUNT);
1248 	desc->ds_us.tx.ts_seqnum =
1249 	    AR5K_REG_MS(tx_status->tx_status_1,
1250 	    AR5K_AR5211_DESC_TX_STATUS1_SEQ_NUM);
1251 	desc->ds_us.tx.ts_rssi =
1252 	    AR5K_REG_MS(tx_status->tx_status_1,
1253 	    AR5K_AR5211_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
1254 	desc->ds_us.tx.ts_antenna = 1;
1255 	desc->ds_us.tx.ts_status = 0;
1256 	desc->ds_us.tx.ts_rate =
1257 	    AR5K_REG_MS(tx_desc->tx_control_0,
1258 	    AR5K_AR5211_DESC_TX_CTL0_XMIT_RATE);
1259 
1260 	if ((tx_status->tx_status_0 &
1261 	    AR5K_AR5211_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0) {
1262 		if (tx_status->tx_status_0 &
1263 		    AR5K_AR5211_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
1264 			desc->ds_us.tx.ts_status |= HAL_TXERR_XRETRY;
1265 
1266 		if (tx_status->tx_status_0 &
1267 		    AR5K_AR5211_DESC_TX_STATUS0_FIFO_UNDERRUN)
1268 			desc->ds_us.tx.ts_status |= HAL_TXERR_FIFO;
1269 
1270 		if (tx_status->tx_status_0 &
1271 		    AR5K_AR5211_DESC_TX_STATUS0_FILTERED)
1272 			desc->ds_us.tx.ts_status |= HAL_TXERR_FILT;
1273 	}
1274 
1275 	return (HAL_OK);
1276 }
1277 
1278 HAL_BOOL
1279 ar5k_ar5211_has_veol(struct ath_hal *hal)
1280 {
1281 	return (AH_TRUE);
1282 }
1283 
1284 /*
1285  * Receive functions
1286  */
1287 
1288 u_int32_t
1289 ar5k_ar5211_get_rx_buf(struct ath_hal *hal)
1290 {
1291 	return (AR5K_REG_READ(AR5K_AR5211_RXDP));
1292 }
1293 
1294 void
1295 ar5k_ar5211_put_rx_buf(struct ath_hal *hal, u_int32_t phys_addr)
1296 {
1297 	AR5K_REG_WRITE(AR5K_AR5211_RXDP, phys_addr);
1298 }
1299 
1300 void
1301 ar5k_ar5211_start_rx(struct ath_hal *hal)
1302 {
1303 	AR5K_REG_WRITE(AR5K_AR5211_CR, AR5K_AR5211_CR_RXE);
1304 }
1305 
1306 HAL_BOOL
1307 ar5k_ar5211_stop_rx_dma(struct ath_hal *hal)
1308 {
1309 	int i;
1310 
1311 	AR5K_REG_WRITE(AR5K_AR5211_CR, AR5K_AR5211_CR_RXD);
1312 
1313 	/*
1314 	 * It may take some time to disable the DMA receive unit
1315 	 */
1316 	for (i = 2000;
1317 	     i > 0 && (AR5K_REG_READ(AR5K_AR5211_CR) & AR5K_AR5211_CR_RXE) != 0;
1318 	     i--)
1319 		AR5K_DELAY(10);
1320 
1321 	return (i > 0 ? AH_TRUE : AH_FALSE);
1322 }
1323 
1324 void
1325 ar5k_ar5211_start_rx_pcu(struct ath_hal *hal)
1326 {
1327 	AR5K_REG_DISABLE_BITS(AR5K_AR5211_DIAG_SW, AR5K_AR5211_DIAG_SW_DIS_RX);
1328 }
1329 
1330 void
1331 ar5k_ar5211_stop_pcu_recv(struct ath_hal *hal)
1332 {
1333 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_DIAG_SW, AR5K_AR5211_DIAG_SW_DIS_RX);
1334 }
1335 
1336 void
1337 ar5k_ar5211_set_mcast_filter(struct ath_hal *hal, u_int32_t filter0,
1338     u_int32_t filter1)
1339 {
1340 	/* Set the multicat filter */
1341 	AR5K_REG_WRITE(AR5K_AR5211_MCAST_FIL0, filter0);
1342 	AR5K_REG_WRITE(AR5K_AR5211_MCAST_FIL1, filter1);
1343 }
1344 
1345 HAL_BOOL
1346 ar5k_ar5211_set_mcast_filterindex(struct ath_hal *hal, u_int32_t index)
1347 {
1348 	if (index >= 64) {
1349 	    return (AH_FALSE);
1350 	} else if (index >= 32) {
1351 	    AR5K_REG_ENABLE_BITS(AR5K_AR5211_MCAST_FIL1,
1352 		(1 << (index - 32)));
1353 	} else {
1354 	    AR5K_REG_ENABLE_BITS(AR5K_AR5211_MCAST_FIL0,
1355 		(1 << index));
1356 	}
1357 
1358 	return (AH_TRUE);
1359 }
1360 
1361 HAL_BOOL
1362 ar5k_ar5211_clear_mcast_filter_idx(struct ath_hal *hal, u_int32_t index)
1363 {
1364 
1365 	if (index >= 64) {
1366 	    return (AH_FALSE);
1367 	} else if (index >= 32) {
1368 	    AR5K_REG_DISABLE_BITS(AR5K_AR5211_MCAST_FIL1,
1369 		(1 << (index - 32)));
1370 	} else {
1371 	    AR5K_REG_DISABLE_BITS(AR5K_AR5211_MCAST_FIL0,
1372 		(1 << index));
1373 	}
1374 
1375 	return (AH_TRUE);
1376 }
1377 
1378 u_int32_t
1379 ar5k_ar5211_get_rx_filter(struct ath_hal *hal)
1380 {
1381 	return (AR5K_REG_READ(AR5K_AR5211_RX_FILTER));
1382 }
1383 
1384 void
1385 ar5k_ar5211_set_rx_filter(struct ath_hal *hal, u_int32_t filter)
1386 {
1387 	AR5K_REG_WRITE(AR5K_AR5211_RX_FILTER, filter);
1388 }
1389 
1390 HAL_BOOL
1391 ar5k_ar5211_setup_rx_desc(struct ath_hal *hal, struct ath_desc *desc,
1392     u_int32_t size, u_int flags)
1393 {
1394 	struct ar5k_ar5211_rx_desc *rx_desc;
1395 
1396 	rx_desc = (struct ar5k_ar5211_rx_desc*)&desc->ds_ctl0;
1397 
1398 	if ((rx_desc->rx_control_1 = (size &
1399 	    AR5K_AR5211_DESC_RX_CTL1_BUF_LEN)) != size)
1400 		return (AH_FALSE);
1401 
1402 	if (flags & HAL_RXDESC_INTREQ)
1403 		rx_desc->rx_control_1 |= AR5K_AR5211_DESC_RX_CTL1_INTREQ;
1404 
1405 	return (AH_TRUE);
1406 }
1407 
1408 HAL_STATUS
1409 ar5k_ar5211_proc_rx_desc(struct ath_hal *hal, struct ath_desc *desc,
1410     u_int32_t phys_addr, struct ath_desc *next)
1411 {
1412 	struct ar5k_ar5211_rx_status *rx_status;
1413 
1414 	rx_status = (struct ar5k_ar5211_rx_status*)&desc->ds_hw[0];
1415 
1416 	/* No frame received / not ready */
1417 	if ((rx_status->rx_status_1 & AR5K_AR5211_DESC_RX_STATUS1_DONE) == 0)
1418 		return (HAL_EINPROGRESS);
1419 
1420 	/*
1421 	 * Frame receive status
1422 	 */
1423 	desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
1424 	    AR5K_AR5211_DESC_RX_STATUS0_DATA_LEN;
1425 	desc->ds_us.rx.rs_rssi =
1426 	    AR5K_REG_MS(rx_status->rx_status_0,
1427 	    AR5K_AR5211_DESC_RX_STATUS0_RECEIVE_SIGNAL);
1428 	desc->ds_us.rx.rs_rate =
1429 	    AR5K_REG_MS(rx_status->rx_status_0,
1430 	    AR5K_AR5211_DESC_RX_STATUS0_RECEIVE_RATE);
1431 	desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
1432 	    AR5K_AR5211_DESC_RX_STATUS0_RECEIVE_ANTENNA;
1433 	desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
1434 	    AR5K_AR5211_DESC_RX_STATUS0_MORE;
1435 	desc->ds_us.rx.rs_tstamp =
1436 	    AR5K_REG_MS(rx_status->rx_status_1,
1437 	    AR5K_AR5211_DESC_RX_STATUS1_RECEIVE_TIMESTAMP);
1438 	desc->ds_us.rx.rs_status = 0;
1439 
1440 	/*
1441 	 * Key table status
1442 	 */
1443 	if (rx_status->rx_status_1 &
1444 	    AR5K_AR5211_DESC_RX_STATUS1_KEY_INDEX_VALID) {
1445 		desc->ds_us.rx.rs_keyix =
1446 		    AR5K_REG_MS(rx_status->rx_status_1,
1447 		    AR5K_AR5211_DESC_RX_STATUS1_KEY_INDEX);
1448 	} else {
1449 		desc->ds_us.rx.rs_keyix = HAL_RXKEYIX_INVALID;
1450 	}
1451 
1452 	/*
1453 	 * Receive/descriptor errors
1454 	 */
1455 	if ((rx_status->rx_status_1 &
1456 	    AR5K_AR5211_DESC_RX_STATUS1_FRAME_RECEIVE_OK) == 0) {
1457 		if (rx_status->rx_status_1 &
1458 		    AR5K_AR5211_DESC_RX_STATUS1_CRC_ERROR)
1459 			desc->ds_us.rx.rs_status |= HAL_RXERR_CRC;
1460 
1461 		if (rx_status->rx_status_1 &
1462 		    AR5K_AR5211_DESC_RX_STATUS1_PHY_ERROR) {
1463 			desc->ds_us.rx.rs_status |= HAL_RXERR_PHY;
1464 			desc->ds_us.rx.rs_phyerr =
1465 			    AR5K_REG_MS(rx_status->rx_status_1,
1466 			    AR5K_AR5211_DESC_RX_STATUS1_PHY_ERROR);
1467 		}
1468 
1469 		if (rx_status->rx_status_1 &
1470 		    AR5K_AR5211_DESC_RX_STATUS1_DECRYPT_CRC_ERROR)
1471 			desc->ds_us.rx.rs_status |= HAL_RXERR_DECRYPT;
1472 	}
1473 
1474 	return (HAL_OK);
1475 }
1476 
1477 void
1478 ar5k_ar5211_set_rx_signal(struct ath_hal *hal)
1479 {
1480 	/* Signal state monitoring is not yet supported */
1481 }
1482 
1483 /*
1484  * Misc functions
1485  */
1486 
1487 void
1488 ar5k_ar5211_dump_state(struct ath_hal *hal)
1489 {
1490 #ifdef AR5K_DEBUG
1491 #define AR5K_PRINT_REGISTER(_x)						\
1492 	printf("(%s: %08x) ", #_x, AR5K_REG_READ(AR5K_AR5211_##_x));
1493 
1494 	printf("MAC registers:\n");
1495 	AR5K_PRINT_REGISTER(CR);
1496 	AR5K_PRINT_REGISTER(CFG);
1497 	AR5K_PRINT_REGISTER(IER);
1498 	AR5K_PRINT_REGISTER(RTSD0);
1499 	AR5K_PRINT_REGISTER(TXCFG);
1500 	AR5K_PRINT_REGISTER(RXCFG);
1501 	AR5K_PRINT_REGISTER(RXJLA);
1502 	AR5K_PRINT_REGISTER(MIBC);
1503 	AR5K_PRINT_REGISTER(TOPS);
1504 	AR5K_PRINT_REGISTER(RXNOFRM);
1505 	AR5K_PRINT_REGISTER(RPGTO);
1506 	AR5K_PRINT_REGISTER(RFCNT);
1507 	AR5K_PRINT_REGISTER(MISC);
1508 	AR5K_PRINT_REGISTER(PISR);
1509 	AR5K_PRINT_REGISTER(SISR0);
1510 	AR5K_PRINT_REGISTER(SISR1);
1511 	AR5K_PRINT_REGISTER(SISR3);
1512 	AR5K_PRINT_REGISTER(SISR4);
1513 	AR5K_PRINT_REGISTER(QCU_TXE);
1514 	AR5K_PRINT_REGISTER(QCU_TXD);
1515 	AR5K_PRINT_REGISTER(DCU_GBL_IFS_SIFS);
1516 	AR5K_PRINT_REGISTER(DCU_GBL_IFS_SLOT);
1517 	AR5K_PRINT_REGISTER(DCU_FP);
1518 	AR5K_PRINT_REGISTER(DCU_TXP);
1519 	AR5K_PRINT_REGISTER(DCU_TX_FILTER);
1520 	AR5K_PRINT_REGISTER(RC);
1521 	AR5K_PRINT_REGISTER(SCR);
1522 	AR5K_PRINT_REGISTER(INTPEND);
1523 	AR5K_PRINT_REGISTER(PCICFG);
1524 	AR5K_PRINT_REGISTER(GPIOCR);
1525 	AR5K_PRINT_REGISTER(GPIODO);
1526 	AR5K_PRINT_REGISTER(SREV);
1527 	AR5K_PRINT_REGISTER(EEPROM_BASE);
1528 	AR5K_PRINT_REGISTER(EEPROM_DATA);
1529 	AR5K_PRINT_REGISTER(EEPROM_CMD);
1530 	AR5K_PRINT_REGISTER(EEPROM_CFG);
1531 	AR5K_PRINT_REGISTER(PCU_MIN);
1532 	AR5K_PRINT_REGISTER(STA_ID0);
1533 	AR5K_PRINT_REGISTER(STA_ID1);
1534 	AR5K_PRINT_REGISTER(BSS_ID0);
1535 	AR5K_PRINT_REGISTER(SLOT_TIME);
1536 	AR5K_PRINT_REGISTER(TIME_OUT);
1537 	AR5K_PRINT_REGISTER(RSSI_THR);
1538 	AR5K_PRINT_REGISTER(BEACON);
1539 	AR5K_PRINT_REGISTER(CFP_PERIOD);
1540 	AR5K_PRINT_REGISTER(TIMER0);
1541 	AR5K_PRINT_REGISTER(TIMER2);
1542 	AR5K_PRINT_REGISTER(TIMER3);
1543 	AR5K_PRINT_REGISTER(CFP_DUR);
1544 	AR5K_PRINT_REGISTER(MCAST_FIL0);
1545 	AR5K_PRINT_REGISTER(MCAST_FIL1);
1546 	AR5K_PRINT_REGISTER(DIAG_SW);
1547 	AR5K_PRINT_REGISTER(TSF_U32);
1548 	AR5K_PRINT_REGISTER(ADDAC_TEST);
1549 	AR5K_PRINT_REGISTER(DEFAULT_ANTENNA);
1550 	AR5K_PRINT_REGISTER(LAST_TSTP);
1551 	AR5K_PRINT_REGISTER(NAV);
1552 	AR5K_PRINT_REGISTER(RTS_OK);
1553 	AR5K_PRINT_REGISTER(ACK_FAIL);
1554 	AR5K_PRINT_REGISTER(FCS_FAIL);
1555 	AR5K_PRINT_REGISTER(BEACON_CNT);
1556 	AR5K_PRINT_REGISTER(KEYTABLE_0);
1557 	printf("\n");
1558 
1559 	printf("PHY registers:\n");
1560 	AR5K_PRINT_REGISTER(PHY_TURBO);
1561 	AR5K_PRINT_REGISTER(PHY_AGC);
1562 	AR5K_PRINT_REGISTER(PHY_CHIP_ID);
1563 	AR5K_PRINT_REGISTER(PHY_AGCCTL);
1564 	AR5K_PRINT_REGISTER(PHY_NF);
1565 	AR5K_PRINT_REGISTER(PHY_RX_DELAY);
1566 	AR5K_PRINT_REGISTER(PHY_IQ);
1567 	AR5K_PRINT_REGISTER(PHY_PAPD_PROBE);
1568 	AR5K_PRINT_REGISTER(PHY_FC);
1569 	AR5K_PRINT_REGISTER(PHY_RADAR);
1570 	AR5K_PRINT_REGISTER(PHY_ANT_SWITCH_TABLE_0);
1571 	AR5K_PRINT_REGISTER(PHY_ANT_SWITCH_TABLE_1);
1572 	printf("\n");
1573 #endif
1574 }
1575 
1576 HAL_BOOL
1577 ar5k_ar5211_get_diag_state(struct ath_hal *hal, int id, void **device,
1578     u_int *size)
1579 {
1580 	/*
1581 	 * We'll ignore this right now. This seems to be some kind of an obscure
1582 	 * debugging interface for the binary-only HAL.
1583 	 */
1584 	return (AH_FALSE);
1585 }
1586 
1587 void
1588 ar5k_ar5211_get_lladdr(struct ath_hal *hal, u_int8_t *mac)
1589 {
1590 	bcopy(hal->ah_sta_id, mac, IEEE80211_ADDR_LEN);
1591 }
1592 
1593 HAL_BOOL
1594 ar5k_ar5211_set_lladdr(struct ath_hal *hal, const u_int8_t *mac)
1595 {
1596 	u_int32_t low_id, high_id;
1597 
1598 	/* Set new station ID */
1599 	bcopy(mac, hal->ah_sta_id, IEEE80211_ADDR_LEN);
1600 
1601 	low_id = AR5K_LOW_ID(mac);
1602 	high_id = 0x0000ffff & AR5K_HIGH_ID(mac);
1603 
1604 	AR5K_REG_WRITE(AR5K_AR5211_STA_ID0, low_id);
1605 	AR5K_REG_WRITE(AR5K_AR5211_STA_ID1, high_id);
1606 
1607 	return (AH_TRUE);
1608 }
1609 
1610 HAL_BOOL
1611 ar5k_ar5211_set_regdomain(struct ath_hal *hal, u_int16_t regdomain,
1612     HAL_STATUS *status)
1613 {
1614 	ieee80211_regdomain_t ieee_regdomain;
1615 
1616 	ieee_regdomain = ar5k_regdomain_to_ieee(regdomain);
1617 
1618 	if (ar5k_eeprom_regulation_domain(hal, AH_TRUE,
1619 		&ieee_regdomain) == AH_TRUE) {
1620 		*status = HAL_OK;
1621 		return (AH_TRUE);
1622 	}
1623 
1624 	*status = EIO;
1625 
1626 	return (AH_FALSE);
1627 }
1628 
1629 void
1630 ar5k_ar5211_set_ledstate(struct ath_hal *hal, HAL_LED_STATE state)
1631 {
1632 	u_int32_t led;
1633 
1634 	AR5K_REG_DISABLE_BITS(AR5K_AR5211_PCICFG,
1635 	    AR5K_AR5211_PCICFG_LEDMODE |  AR5K_AR5211_PCICFG_LED);
1636 
1637 	/*
1638 	 * Some blinking values, define at your wish
1639 	 */
1640 	switch (state) {
1641 	case IEEE80211_S_SCAN:
1642 	case IEEE80211_S_AUTH:
1643 		led = AR5K_AR5211_PCICFG_LEDMODE_PROP |
1644 		    AR5K_AR5211_PCICFG_LED_PEND;
1645 		break;
1646 
1647 	case IEEE80211_S_INIT:
1648 		led = AR5K_AR5211_PCICFG_LEDMODE_PROP |
1649 		    AR5K_AR5211_PCICFG_LED_NONE;
1650 		break;
1651 
1652 	case IEEE80211_S_ASSOC:
1653 	case IEEE80211_S_RUN:
1654 		led = AR5K_AR5211_PCICFG_LEDMODE_PROP |
1655 		    AR5K_AR5211_PCICFG_LED_ASSOC;
1656 		break;
1657 
1658 	default:
1659 		led = AR5K_AR5211_PCICFG_LEDMODE_PROM |
1660 		    AR5K_AR5211_PCICFG_LED_NONE;
1661 		break;
1662 	}
1663 
1664 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PCICFG, led);
1665 }
1666 
1667 void
1668 ar5k_ar5211_set_associd(struct ath_hal *hal, const u_int8_t *bssid,
1669     u_int16_t assoc_id, u_int16_t tim_offset)
1670 {
1671 	u_int32_t low_id, high_id;
1672 
1673 	/*
1674 	 * Set BSSID which triggers the "SME Join" operation
1675 	 */
1676 	low_id = AR5K_LOW_ID(bssid);
1677 	high_id = AR5K_HIGH_ID(bssid);
1678 	AR5K_REG_WRITE(AR5K_AR5211_BSS_ID0, low_id);
1679 	AR5K_REG_WRITE(AR5K_AR5211_BSS_ID1, high_id |
1680 	    ((assoc_id & 0x3fff) << AR5K_AR5211_BSS_ID1_AID_S));
1681 	bcopy(bssid, hal->ah_bssid, IEEE80211_ADDR_LEN);
1682 
1683 	if (assoc_id == 0) {
1684 		ar5k_ar5211_disable_pspoll(hal);
1685 		return;
1686 	}
1687 
1688 	AR5K_REG_WRITE(AR5K_AR5211_BEACON,
1689 	    (AR5K_REG_READ(AR5K_AR5211_BEACON) &
1690 	    ~AR5K_AR5211_BEACON_TIM) |
1691 	    (((tim_offset ? tim_offset + 4 : 0) <<
1692 	    AR5K_AR5211_BEACON_TIM_S) &
1693 	    AR5K_AR5211_BEACON_TIM));
1694 
1695 	ar5k_ar5211_enable_pspoll(hal, NULL, 0);
1696 }
1697 
1698 HAL_BOOL
1699 ar5k_ar5211_set_bssid_mask(struct ath_hal *hal, const u_int8_t* mask)
1700 {
1701 	/* Not supported in 5211 */
1702 	return (AH_FALSE);
1703 }
1704 
1705 HAL_BOOL
1706 ar5k_ar5211_set_gpio_output(struct ath_hal *hal, u_int32_t gpio)
1707 {
1708 	if (gpio > AR5K_AR5211_NUM_GPIO)
1709 		return (AH_FALSE);
1710 
1711 	AR5K_REG_WRITE(AR5K_AR5211_GPIOCR,
1712 	    (AR5K_REG_READ(AR5K_AR5211_GPIOCR) &~ AR5K_AR5211_GPIOCR_ALL(gpio))
1713 	    | AR5K_AR5211_GPIOCR_ALL(gpio));
1714 
1715 	return (AH_TRUE);
1716 }
1717 
1718 HAL_BOOL
1719 ar5k_ar5211_set_gpio_input(struct ath_hal *hal, u_int32_t gpio)
1720 {
1721 	if (gpio > AR5K_AR5211_NUM_GPIO)
1722 		return (AH_FALSE);
1723 
1724 	AR5K_REG_WRITE(AR5K_AR5211_GPIOCR,
1725 	    (AR5K_REG_READ(AR5K_AR5211_GPIOCR) &~ AR5K_AR5211_GPIOCR_ALL(gpio))
1726 	    | AR5K_AR5211_GPIOCR_NONE(gpio));
1727 
1728 	return (AH_TRUE);
1729 }
1730 
1731 u_int32_t
1732 ar5k_ar5211_get_gpio(struct ath_hal *hal, u_int32_t gpio)
1733 {
1734 	if (gpio > AR5K_AR5211_NUM_GPIO)
1735 		return (0xffffffff);
1736 
1737 	/* GPIO input magic */
1738 	return (((AR5K_REG_READ(AR5K_AR5211_GPIODI) &
1739 	    AR5K_AR5211_GPIODI_M) >> gpio) & 0x1);
1740 }
1741 
1742 HAL_BOOL
1743 ar5k_ar5211_set_gpio(struct ath_hal *hal, u_int32_t gpio, u_int32_t val)
1744 {
1745 	u_int32_t data;
1746 
1747 	if (gpio > AR5K_AR5211_NUM_GPIO)
1748 		return (0xffffffff);
1749 
1750 	/* GPIO output magic */
1751 	data =  AR5K_REG_READ(AR5K_AR5211_GPIODO);
1752 
1753 	data &= ~(1 << gpio);
1754 	data |= (val&1) << gpio;
1755 
1756 	AR5K_REG_WRITE(AR5K_AR5211_GPIODO, data);
1757 
1758 	return (AH_TRUE);
1759 }
1760 
1761 void
1762 ar5k_ar5211_set_gpio_intr(struct ath_hal *hal, u_int gpio,
1763     u_int32_t interrupt_level)
1764 {
1765 	u_int32_t data;
1766 
1767 	if (gpio > AR5K_AR5211_NUM_GPIO)
1768 		return;
1769 
1770 	/*
1771 	 * Set the GPIO interrupt
1772 	 */
1773 	data = (AR5K_REG_READ(AR5K_AR5211_GPIOCR) &
1774 	    ~(AR5K_AR5211_GPIOCR_INT_SEL(gpio) | AR5K_AR5211_GPIOCR_INT_SELH |
1775 	    AR5K_AR5211_GPIOCR_INT_ENA | AR5K_AR5211_GPIOCR_ALL(gpio))) |
1776 	    (AR5K_AR5211_GPIOCR_INT_SEL(gpio) | AR5K_AR5211_GPIOCR_INT_ENA);
1777 
1778 	AR5K_REG_WRITE(AR5K_AR5211_GPIOCR,
1779 	    interrupt_level ? data : (data | AR5K_AR5211_GPIOCR_INT_SELH));
1780 
1781 	hal->ah_imr |= AR5K_AR5211_PIMR_GPIO;
1782 
1783 	/* Enable GPIO interrupts */
1784 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PIMR, AR5K_AR5211_PIMR_GPIO);
1785 }
1786 
1787 u_int32_t
1788 ar5k_ar5211_get_tsf32(struct ath_hal *hal)
1789 {
1790 	return (AR5K_REG_READ(AR5K_AR5211_TSF_L32));
1791 }
1792 
1793 u_int64_t
1794 ar5k_ar5211_get_tsf64(struct ath_hal *hal)
1795 {
1796 	u_int64_t tsf = AR5K_REG_READ(AR5K_AR5211_TSF_U32);
1797 
1798 	return (AR5K_REG_READ(AR5K_AR5211_TSF_L32) | (tsf << 32));
1799 }
1800 
1801 void
1802 ar5k_ar5211_reset_tsf(struct ath_hal *hal)
1803 {
1804 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_BEACON,
1805 	    AR5K_AR5211_BEACON_RESET_TSF);
1806 }
1807 
1808 u_int16_t
1809 ar5k_ar5211_get_regdomain(struct ath_hal *hal)
1810 {
1811 	return (ar5k_get_regdomain(hal));
1812 }
1813 
1814 HAL_BOOL
1815 ar5k_ar5211_detect_card_present(struct ath_hal *hal)
1816 {
1817 	u_int16_t magic;
1818 
1819 	/*
1820 	 * Checking the EEPROM's magic value could be an indication
1821 	 * if the card is still present. I didn't find another suitable
1822 	 * way to do this.
1823 	 */
1824 	if (ar5k_ar5211_eeprom_read(hal, AR5K_EEPROM_MAGIC, &magic) != 0)
1825 		return (AH_FALSE);
1826 
1827 	return (magic == AR5K_EEPROM_MAGIC_VALUE ? AH_TRUE : AH_FALSE);
1828 }
1829 
1830 void
1831 ar5k_ar5211_update_mib_counters(struct ath_hal *hal, HAL_MIB_STATS *statistics)
1832 {
1833 	statistics->ackrcv_bad += AR5K_REG_READ(AR5K_AR5211_ACK_FAIL);
1834 	statistics->rts_bad += AR5K_REG_READ(AR5K_AR5211_RTS_FAIL);
1835 	statistics->rts_good += AR5K_REG_READ(AR5K_AR5211_RTS_OK);
1836 	statistics->fcs_bad += AR5K_REG_READ(AR5K_AR5211_FCS_FAIL);
1837 	statistics->beacons += AR5K_REG_READ(AR5K_AR5211_BEACON_CNT);
1838 }
1839 
1840 HAL_RFGAIN
1841 ar5k_ar5211_get_rf_gain(struct ath_hal *hal)
1842 {
1843 	return (HAL_RFGAIN_INACTIVE);
1844 }
1845 
1846 HAL_BOOL
1847 ar5k_ar5211_set_slot_time(struct ath_hal *hal, u_int slot_time)
1848 {
1849 	if (slot_time < HAL_SLOT_TIME_9 || slot_time > HAL_SLOT_TIME_MAX)
1850 		return (AH_FALSE);
1851 
1852 	AR5K_REG_WRITE(AR5K_AR5211_DCU_GBL_IFS_SLOT, slot_time);
1853 
1854 	return (AH_TRUE);
1855 }
1856 
1857 u_int
1858 ar5k_ar5211_get_slot_time(struct ath_hal *hal)
1859 {
1860 	return (AR5K_REG_READ(AR5K_AR5211_DCU_GBL_IFS_SLOT) & 0xffff);
1861 }
1862 
1863 HAL_BOOL
1864 ar5k_ar5211_set_ack_timeout(struct ath_hal *hal, u_int timeout)
1865 {
1866 	if (ar5k_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_AR5211_TIME_OUT_ACK),
1867 	    hal->ah_turbo) <= timeout)
1868 		return (AH_FALSE);
1869 
1870 	AR5K_REG_WRITE_BITS(AR5K_AR5211_TIME_OUT, AR5K_AR5211_TIME_OUT_ACK,
1871 	    ar5k_htoclock(timeout, hal->ah_turbo));
1872 
1873 	return (AH_TRUE);
1874 }
1875 
1876 u_int
1877 ar5k_ar5211_get_ack_timeout(struct ath_hal *hal)
1878 {
1879 	return (ar5k_clocktoh(AR5K_REG_MS(AR5K_REG_READ(AR5K_AR5211_TIME_OUT),
1880 	    AR5K_AR5211_TIME_OUT_ACK), hal->ah_turbo));
1881 }
1882 
1883 HAL_BOOL
1884 ar5k_ar5211_set_cts_timeout(struct ath_hal *hal, u_int timeout)
1885 {
1886 	if (ar5k_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_AR5211_TIME_OUT_CTS),
1887 	    hal->ah_turbo) <= timeout)
1888 		return (AH_FALSE);
1889 
1890 	AR5K_REG_WRITE_BITS(AR5K_AR5211_TIME_OUT, AR5K_AR5211_TIME_OUT_CTS,
1891 	    ar5k_htoclock(timeout, hal->ah_turbo));
1892 
1893 	return (AH_TRUE);
1894 }
1895 
1896 u_int
1897 ar5k_ar5211_get_cts_timeout(struct ath_hal *hal)
1898 {
1899 	return (ar5k_clocktoh(AR5K_REG_MS(AR5K_REG_READ(AR5K_AR5211_TIME_OUT),
1900 	    AR5K_AR5211_TIME_OUT_CTS), hal->ah_turbo));
1901 }
1902 
1903 /*
1904  * Key table (WEP) functions
1905  */
1906 
1907 HAL_BOOL
1908 ar5k_ar5211_is_cipher_supported(struct ath_hal *hal, HAL_CIPHER cipher)
1909 {
1910 	/*
1911 	 * The AR5211 only supports WEP
1912 	 */
1913 	if (cipher == HAL_CIPHER_WEP)
1914 		return (AH_TRUE);
1915 
1916 	return (AH_FALSE);
1917 }
1918 
1919 u_int32_t
1920 ar5k_ar5211_get_keycache_size(struct ath_hal *hal)
1921 {
1922 	return (AR5K_AR5211_KEYCACHE_SIZE);
1923 }
1924 
1925 HAL_BOOL
1926 ar5k_ar5211_reset_key(struct ath_hal *hal, u_int16_t entry)
1927 {
1928 	int i;
1929 
1930 	AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE);
1931 
1932 	for (i = 0; i < AR5K_AR5211_KEYCACHE_SIZE; i++)
1933 		AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_OFF(entry, i), 0);
1934 
1935 	return (AH_FALSE);
1936 }
1937 
1938 HAL_BOOL
1939 ar5k_ar5211_is_key_valid(struct ath_hal *hal, u_int16_t entry)
1940 {
1941 	AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE);
1942 
1943 	/*
1944 	 * Check the validation flag at the end of the entry
1945 	 */
1946 	if (AR5K_REG_READ(AR5K_AR5211_KEYTABLE_MAC1(entry)) &
1947 	    AR5K_AR5211_KEYTABLE_VALID)
1948 		return (AH_TRUE);
1949 
1950 	return (AH_FALSE);
1951 }
1952 
1953 HAL_BOOL
1954 ar5k_ar5211_set_key(struct ath_hal *hal, u_int16_t entry,
1955     const HAL_KEYVAL *keyval, const u_int8_t *mac, int xor_notused)
1956 {
1957 	int i;
1958 	u_int32_t key_v[AR5K_AR5211_KEYCACHE_SIZE - 2];
1959 
1960 	AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE);
1961 
1962 	bzero(&key_v, sizeof(key_v));
1963 
1964 	switch (keyval->wk_len) {
1965 	case AR5K_KEYVAL_LENGTH_40:
1966 		bcopy(keyval->wk_key, &key_v[0], 4);
1967 		bcopy(keyval->wk_key + 4, &key_v[1], 1);
1968 		key_v[5] = AR5K_AR5211_KEYTABLE_TYPE_40;
1969 		break;
1970 
1971 	case AR5K_KEYVAL_LENGTH_104:
1972 		bcopy(keyval->wk_key, &key_v[0], 4);
1973 		bcopy(keyval->wk_key + 4, &key_v[1], 2);
1974 		bcopy(keyval->wk_key + 6, &key_v[2], 4);
1975 		bcopy(keyval->wk_key + 10, &key_v[3], 2);
1976 		bcopy(keyval->wk_key + 12, &key_v[4], 1);
1977 		key_v[5] = AR5K_AR5211_KEYTABLE_TYPE_104;
1978 		break;
1979 
1980 	case AR5K_KEYVAL_LENGTH_128:
1981 		bcopy(keyval->wk_key, &key_v[0], 4);
1982 		bcopy(keyval->wk_key + 4, &key_v[1], 2);
1983 		bcopy(keyval->wk_key + 6, &key_v[2], 4);
1984 		bcopy(keyval->wk_key + 10, &key_v[3], 2);
1985 		bcopy(keyval->wk_key + 12, &key_v[4], 4);
1986 		key_v[5] = AR5K_AR5211_KEYTABLE_TYPE_128;
1987 		break;
1988 
1989 	default:
1990 		/* Unsupported key length (not WEP40/104/128) */
1991 		return (AH_FALSE);
1992 	}
1993 
1994 	for (i = 0; i < AR5K_ELEMENTS(key_v); i++)
1995 		AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_OFF(entry, i), key_v[i]);
1996 
1997 	return (ar5k_ar5211_set_key_lladdr(hal, entry, mac));
1998 }
1999 
2000 HAL_BOOL
2001 ar5k_ar5211_set_key_lladdr(struct ath_hal *hal, u_int16_t entry,
2002     const u_int8_t *mac)
2003 {
2004 	u_int32_t low_id, high_id;
2005 	const u_int8_t *mac_v;
2006 
2007 	/*
2008 	 * Invalid entry (key table overflow)
2009 	 */
2010 	AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE);
2011 
2012 	/* MAC may be NULL if it's a broadcast key */
2013 	mac_v = mac == NULL ? etherbroadcastaddr : mac;
2014 
2015 	low_id = AR5K_LOW_ID(mac_v);
2016 	high_id = AR5K_HIGH_ID(mac_v) | AR5K_AR5211_KEYTABLE_VALID;
2017 
2018 	AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_MAC0(entry), low_id);
2019 	AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_MAC1(entry), high_id);
2020 
2021 	return (AH_TRUE);
2022 }
2023 
2024 HAL_BOOL
2025 ar5k_ar5211_softcrypto(struct ath_hal *hal, HAL_BOOL enable)
2026 {
2027 	u_int32_t bits;
2028 	int i;
2029 
2030 	bits = AR5K_AR5211_DIAG_SW_DIS_ENC | AR5K_AR5211_DIAG_SW_DIS_DEC;
2031 	if (enable == AH_TRUE) {
2032 		/* Disable the hardware crypto engine */
2033 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_DIAG_SW, bits);
2034 	} else {
2035 		/* Enable the hardware crypto engine */
2036 		AR5K_REG_DISABLE_BITS(AR5K_AR5211_DIAG_SW, bits);
2037 	}
2038 
2039 	/* Reset the key cache */
2040 	for (i = 0; i < AR5K_AR5211_KEYTABLE_SIZE; i++)
2041 		ar5k_ar5211_reset_key(hal, i);
2042 
2043 	return (AH_TRUE);
2044 }
2045 
2046 /*
2047  * Power management functions
2048  */
2049 
2050 HAL_BOOL
2051 ar5k_ar5211_set_power(struct ath_hal *hal, HAL_POWER_MODE mode,
2052     HAL_BOOL set_chip, u_int16_t sleep_duration)
2053 {
2054 	u_int32_t staid;
2055 	int i;
2056 
2057 	staid = AR5K_REG_READ(AR5K_AR5211_STA_ID1);
2058 
2059 	switch (mode) {
2060 	case HAL_PM_AUTO:
2061 		staid &= ~AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA;
2062 		/* FALLTHROUGH */
2063 	case HAL_PM_NETWORK_SLEEP:
2064 		if (set_chip == AH_TRUE) {
2065 			AR5K_REG_WRITE(AR5K_AR5211_SCR,
2066 			    AR5K_AR5211_SCR_SLE | sleep_duration);
2067 		}
2068 		staid |= AR5K_AR5211_STA_ID1_PWR_SV;
2069 		break;
2070 
2071 	case HAL_PM_FULL_SLEEP:
2072 		if (set_chip == AH_TRUE) {
2073 			AR5K_REG_WRITE(AR5K_AR5211_SCR,
2074 			    AR5K_AR5211_SCR_SLE_SLP);
2075 		}
2076 		staid |= AR5K_AR5211_STA_ID1_PWR_SV;
2077 		break;
2078 
2079 	case HAL_PM_AWAKE:
2080 		if (set_chip == AH_FALSE)
2081 			goto commit;
2082 
2083 		AR5K_REG_WRITE(AR5K_AR5211_SCR, AR5K_AR5211_SCR_SLE_WAKE);
2084 
2085 		for (i = 5000; i > 0; i--) {
2086 			/* Check if the AR5211 did wake up */
2087 			if ((AR5K_REG_READ(AR5K_AR5211_PCICFG) &
2088 			    AR5K_AR5211_PCICFG_SPWR_DN) == 0)
2089 				break;
2090 
2091 			/* Wait a bit and retry */
2092 			AR5K_DELAY(200);
2093 			AR5K_REG_WRITE(AR5K_AR5211_SCR,
2094 			    AR5K_AR5211_SCR_SLE_WAKE);
2095 		}
2096 
2097 		/* Fail if the AR5211 didn't wake up */
2098 		if (i <= 0)
2099 			return (AH_FALSE);
2100 
2101 		staid &= ~AR5K_AR5211_STA_ID1_PWR_SV;
2102 		break;
2103 
2104 	default:
2105 		return (AH_FALSE);
2106 	}
2107 
2108  commit:
2109 	hal->ah_power_mode = mode;
2110 
2111 	AR5K_REG_WRITE(AR5K_AR5211_STA_ID1, staid);
2112 
2113 	return (AH_TRUE);
2114 }
2115 
2116 HAL_POWER_MODE
2117 ar5k_ar5211_get_power_mode(struct ath_hal *hal)
2118 {
2119 	return (hal->ah_power_mode);
2120 }
2121 
2122 HAL_BOOL
2123 ar5k_ar5211_query_pspoll_support(struct ath_hal *hal)
2124 {
2125 	/* nope */
2126 	return (AH_FALSE);
2127 }
2128 
2129 HAL_BOOL
2130 ar5k_ar5211_init_pspoll(struct ath_hal *hal)
2131 {
2132 	/*
2133 	 * Not used on the AR5211
2134 	 */
2135 	return (AH_FALSE);
2136 }
2137 
2138 HAL_BOOL
2139 ar5k_ar5211_enable_pspoll(struct ath_hal *hal, u_int8_t *bssid,
2140     u_int16_t assoc_id)
2141 {
2142 	return (AH_FALSE);
2143 }
2144 
2145 HAL_BOOL
2146 ar5k_ar5211_disable_pspoll(struct ath_hal *hal)
2147 {
2148 	return (AH_FALSE);
2149 }
2150 
2151 /*
2152  * Beacon functions
2153  */
2154 
2155 void
2156 ar5k_ar5211_init_beacon(struct ath_hal *hal, u_int32_t next_beacon,
2157     u_int32_t interval)
2158 {
2159 	u_int32_t timer1, timer2, timer3;
2160 
2161 	/*
2162 	 * Set the additional timers by mode
2163 	 */
2164 	switch (hal->ah_op_mode) {
2165 	case HAL_M_STA:
2166 		timer1 = 0x0000ffff;
2167 		timer2 = 0x0007ffff;
2168 		break;
2169 
2170 	default:
2171 		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) <<
2172 		    0x00000003;
2173 		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) <<
2174 		    0x00000003;
2175 	}
2176 
2177 	timer3 = next_beacon +
2178 	    (hal->ah_atim_window ? hal->ah_atim_window : 1);
2179 
2180 	/*
2181 	 * Enable all timers and set the beacon register
2182 	 * (next beacon, DMA beacon, software beacon, ATIM window time)
2183 	 */
2184 	AR5K_REG_WRITE(AR5K_AR5211_TIMER0, next_beacon);
2185 	AR5K_REG_WRITE(AR5K_AR5211_TIMER1, timer1);
2186 	AR5K_REG_WRITE(AR5K_AR5211_TIMER2, timer2);
2187 	AR5K_REG_WRITE(AR5K_AR5211_TIMER3, timer3);
2188 
2189 	AR5K_REG_WRITE(AR5K_AR5211_BEACON, interval &
2190 	    (AR5K_AR5211_BEACON_PERIOD | AR5K_AR5211_BEACON_RESET_TSF |
2191 	    AR5K_AR5211_BEACON_ENABLE));
2192 }
2193 
2194 void
2195 ar5k_ar5211_set_beacon_timers(struct ath_hal *hal,
2196     const HAL_BEACON_STATE *state, u_int32_t tsf, u_int32_t dtim_count,
2197     u_int32_t cfp_count)
2198 {
2199 	u_int32_t cfp_period, next_cfp;
2200 
2201 	/* Return on an invalid beacon state */
2202 	if (state->bs_interval < 1)
2203 		return;
2204 
2205 	/*
2206 	 * PCF support?
2207 	 */
2208 	if (state->bs_cfp_period > 0) {
2209 		/* Enable CFP mode and set the CFP and timer registers */
2210 		cfp_period = state->bs_cfp_period * state->bs_dtim_period *
2211 		    state->bs_interval;
2212 		next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
2213 		    state->bs_interval;
2214 
2215 		AR5K_REG_DISABLE_BITS(AR5K_AR5211_STA_ID1,
2216 		    AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA |
2217 		    AR5K_AR5211_STA_ID1_PCF);
2218 		AR5K_REG_WRITE(AR5K_AR5211_CFP_PERIOD, cfp_period);
2219 		AR5K_REG_WRITE(AR5K_AR5211_CFP_DUR, state->bs_cfp_max_duration);
2220 		AR5K_REG_WRITE(AR5K_AR5211_TIMER2,
2221 		    (tsf + (next_cfp == 0 ? cfp_period : next_cfp)) << 3);
2222 	} else {
2223 		/* Disable PCF mode */
2224 		AR5K_REG_DISABLE_BITS(AR5K_AR5211_STA_ID1,
2225 		    AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA |
2226 		    AR5K_AR5211_STA_ID1_PCF);
2227 	}
2228 
2229 	/*
2230 	 * Enable the beacon timer register
2231 	 */
2232 	AR5K_REG_WRITE(AR5K_AR5211_TIMER0, state->bs_next_beacon);
2233 
2234 	/*
2235 	 * Start the beacon timers
2236 	 */
2237 	AR5K_REG_WRITE(AR5K_AR5211_BEACON,
2238 	    (AR5K_REG_READ(AR5K_AR5211_BEACON) &~
2239 	    (AR5K_AR5211_BEACON_PERIOD | AR5K_AR5211_BEACON_TIM)) |
2240 	    AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
2241 	    AR5K_AR5211_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
2242 	    AR5K_AR5211_BEACON_PERIOD));
2243 
2244 	/*
2245 	 * Write new beacon miss threshold, if it appears to be valid
2246 	 */
2247 	if ((AR5K_AR5211_RSSI_THR_BMISS >> AR5K_AR5211_RSSI_THR_BMISS_S) <
2248 	    state->bs_bmiss_threshold)
2249 		return;
2250 
2251 	AR5K_REG_WRITE_BITS(AR5K_AR5211_RSSI_THR_M,
2252 	    AR5K_AR5211_RSSI_THR_BMISS, state->bs_bmiss_threshold);
2253 	AR5K_REG_WRITE_BITS(AR5K_AR5211_SCR, AR5K_AR5211_SCR_SLDUR,
2254 	    (state->bs_sleepduration - 3) << 3);
2255 }
2256 
2257 void
2258 ar5k_ar5211_reset_beacon(struct ath_hal *hal)
2259 {
2260 	/*
2261 	 * Disable beacon timer
2262 	 */
2263 	AR5K_REG_WRITE(AR5K_AR5211_TIMER0, 0);
2264 
2265 	/*
2266 	 * Disable some beacon register values
2267 	 */
2268 	AR5K_REG_DISABLE_BITS(AR5K_AR5211_STA_ID1,
2269 	    AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA | AR5K_AR5211_STA_ID1_PCF);
2270 	AR5K_REG_WRITE(AR5K_AR5211_BEACON, AR5K_AR5211_BEACON_PERIOD);
2271 }
2272 
2273 HAL_BOOL
2274 ar5k_ar5211_wait_for_beacon(struct ath_hal *hal, bus_addr_t phys_addr)
2275 {
2276 	HAL_BOOL ret;
2277 
2278 	/*
2279 	 * Wait for beaconn queue to be done
2280 	 */
2281 	ret = ar5k_register_timeout(hal,
2282 	    AR5K_AR5211_QCU_STS(HAL_TX_QUEUE_ID_BEACON),
2283 	    AR5K_AR5211_QCU_STS_FRMPENDCNT, 0, AH_FALSE);
2284 
2285 	if (AR5K_REG_READ_Q(AR5K_AR5211_QCU_TXE, HAL_TX_QUEUE_ID_BEACON))
2286 		return (AH_FALSE);
2287 
2288 	return (ret);
2289 }
2290 
2291 /*
2292  * Interrupt handling
2293  */
2294 
2295 HAL_BOOL
2296 ar5k_ar5211_is_intr_pending(struct ath_hal *hal)
2297 {
2298 	return (AR5K_REG_READ(AR5K_AR5211_INTPEND) == 0 ? AH_FALSE : AH_TRUE);
2299 }
2300 
2301 HAL_BOOL
2302 ar5k_ar5211_get_isr(struct ath_hal *hal, u_int32_t *interrupt_mask)
2303 {
2304 	u_int32_t data;
2305 
2306 	/*
2307 	 * Read interrupt status from the Read-And-Clear shadow register
2308 	 */
2309 	data = AR5K_REG_READ(AR5K_AR5211_RAC_PISR);
2310 
2311 	/*
2312 	 * Get abstract interrupt mask (HAL-compatible)
2313 	 */
2314 	*interrupt_mask = (data & HAL_INT_COMMON) & hal->ah_imr;
2315 
2316 	if (data == HAL_INT_NOCARD)
2317 		return (AH_FALSE);
2318 
2319 	if (data & (AR5K_AR5211_PISR_RXOK | AR5K_AR5211_PISR_RXERR))
2320 		*interrupt_mask |= HAL_INT_RX;
2321 
2322 	if (data & (AR5K_AR5211_PISR_TXOK | AR5K_AR5211_PISR_TXERR))
2323 		*interrupt_mask |= HAL_INT_TX;
2324 
2325 	if (data & (AR5K_AR5211_PISR_HIUERR))
2326 		*interrupt_mask |= HAL_INT_FATAL;
2327 
2328 	/*
2329 	 * Special interrupt handling (not caught by the driver)
2330 	 */
2331 	if (((*interrupt_mask) & AR5K_AR5211_PISR_RXPHY) &&
2332 	    hal->ah_radar.r_enabled == AH_TRUE)
2333 		ar5k_radar_alert(hal);
2334 
2335 	return (AH_TRUE);
2336 }
2337 
2338 u_int32_t
2339 ar5k_ar5211_get_intr(struct ath_hal *hal)
2340 {
2341 	/* Return the interrupt mask stored previously */
2342 	return (hal->ah_imr);
2343 }
2344 
2345 HAL_INT
2346 ar5k_ar5211_set_intr(struct ath_hal *hal, HAL_INT new_mask)
2347 {
2348 	HAL_INT old_mask, int_mask;
2349 
2350 	/*
2351 	 * Disable card interrupts to prevent any race conditions
2352 	 * (they will be re-enabled afterwards).
2353 	 */
2354 	AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_DISABLE);
2355 
2356 	old_mask = hal->ah_imr;
2357 
2358 	/*
2359 	 * Add additional, chipset-dependent interrupt mask flags
2360 	 * and write them to the IMR (interrupt mask register).
2361 	 */
2362 	int_mask = new_mask & HAL_INT_COMMON;
2363 
2364 	if (new_mask & HAL_INT_RX)
2365 		int_mask |=
2366 		    AR5K_AR5211_PIMR_RXOK |
2367 		    AR5K_AR5211_PIMR_RXERR |
2368 		    AR5K_AR5211_PIMR_RXORN |
2369 		    AR5K_AR5211_PIMR_RXDESC;
2370 
2371 	if (new_mask & HAL_INT_TX)
2372 		int_mask |=
2373 		    AR5K_AR5211_PIMR_TXOK |
2374 		    AR5K_AR5211_PIMR_TXERR |
2375 		    AR5K_AR5211_PIMR_TXDESC |
2376 		    AR5K_AR5211_PIMR_TXURN;
2377 
2378 	if (new_mask & HAL_INT_FATAL) {
2379 		int_mask |= AR5K_AR5211_PIMR_HIUERR;
2380 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_SIMR2,
2381 		    AR5K_AR5211_SIMR2_MCABT |
2382 		    AR5K_AR5211_SIMR2_SSERR |
2383 		    AR5K_AR5211_SIMR2_DPERR);
2384 	}
2385 
2386 	AR5K_REG_WRITE(AR5K_AR5211_PIMR, int_mask);
2387 
2388 	/* Store new interrupt mask */
2389 	hal->ah_imr = new_mask;
2390 
2391 	/* ..re-enable interrupts */
2392 	AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_ENABLE);
2393 
2394 	return (old_mask);
2395 }
2396 
2397 /*
2398  * Misc internal functions
2399  */
2400 
2401 HAL_BOOL
2402 ar5k_ar5211_get_capabilities(struct ath_hal *hal)
2403 {
2404 	u_int16_t ee_header;
2405 	u_int a, b, g;
2406 
2407 	/* Capabilities stored in the EEPROM */
2408 	ee_header = hal->ah_capabilities.cap_eeprom.ee_header;
2409 
2410 	a = AR5K_EEPROM_HDR_11A(ee_header);
2411 	b = AR5K_EEPROM_HDR_11B(ee_header);
2412 	g = AR5K_EEPROM_HDR_11G(ee_header);
2413 
2414 	/*
2415 	 * If the EEPROM is not reporting any mode, we try 11b.
2416 	 * This might fix a few broken devices with invalid EEPROM.
2417 	 */
2418 	if (!a && !b && !g)
2419 		b = 1;
2420 
2421 	/*
2422 	 * XXX The AR5211 tranceiver supports frequencies from 4920 to 6100GHz
2423 	 * XXX and from 2312 to 2732GHz. There are problems with the current
2424 	 * XXX ieee80211 implementation because the IEEE channel mapping
2425 	 * XXX does not support negative channel numbers (2312MHz is channel
2426 	 * XXX -19). Of course, this doesn't matter because these channels
2427 	 * XXX are out of range but some regulation domains like MKK (Japan)
2428 	 * XXX will support frequencies somewhere around 4.8GHz.
2429 	 */
2430 
2431 	/*
2432 	 * Set radio capabilities
2433 	 */
2434 
2435 	if (a) {
2436 		hal->ah_capabilities.cap_range.range_5ghz_min = 5005; /* 4920 */
2437 		hal->ah_capabilities.cap_range.range_5ghz_max = 6100;
2438 
2439 		/* Set supported modes */
2440 		hal->ah_capabilities.cap_mode = HAL_MODE_11A | HAL_MODE_TURBO;
2441 	}
2442 
2443 	/* This chip will support 802.11b if the 2GHz radio is connected */
2444 	if (b || g) {
2445 		hal->ah_capabilities.cap_range.range_2ghz_min = 2412; /* 2312 */
2446 		hal->ah_capabilities.cap_range.range_2ghz_max = 2732;
2447 
2448 		if (b)
2449 			hal->ah_capabilities.cap_mode |= HAL_MODE_11B;
2450 #if 0
2451 		if (g)
2452 			hal->ah_capabilities.cap_mode |= HAL_MODE_11G;
2453 #endif
2454 	}
2455 
2456 	/* GPIO */
2457 	hal->ah_gpio_npins = AR5K_AR5211_NUM_GPIO;
2458 
2459 	/* Set number of supported TX queues */
2460 	hal->ah_capabilities.cap_queues.q_tx_num = AR5K_AR5211_TX_NUM_QUEUES;
2461 
2462 	return (AH_TRUE);
2463 }
2464 
2465 void
2466 ar5k_ar5211_radar_alert(struct ath_hal *hal, HAL_BOOL enable)
2467 {
2468 	/*
2469 	 * Enable radar detection
2470 	 */
2471 	AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_DISABLE);
2472 
2473 	if (enable == AH_TRUE) {
2474 		AR5K_REG_WRITE(AR5K_AR5211_PHY_RADAR,
2475 		    AR5K_AR5211_PHY_RADAR_ENABLE);
2476 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_PIMR,
2477 		    AR5K_AR5211_PIMR_RXPHY);
2478 	} else {
2479 		AR5K_REG_WRITE(AR5K_AR5211_PHY_RADAR,
2480 		    AR5K_AR5211_PHY_RADAR_DISABLE);
2481 		AR5K_REG_DISABLE_BITS(AR5K_AR5211_PIMR,
2482 		    AR5K_AR5211_PIMR_RXPHY);
2483 	}
2484 
2485 	AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_ENABLE);
2486 }
2487 
2488 /*
2489  * EEPROM access functions
2490  */
2491 
2492 HAL_BOOL
2493 ar5k_ar5211_eeprom_is_busy(struct ath_hal *hal)
2494 {
2495 	return (AR5K_REG_READ(AR5K_AR5211_CFG) & AR5K_AR5211_CFG_EEBS ?
2496 	    AH_TRUE : AH_FALSE);
2497 }
2498 
2499 int
2500 ar5k_ar5211_eeprom_read(struct ath_hal *hal, u_int32_t offset, u_int16_t *data)
2501 {
2502 	u_int32_t status, i;
2503 
2504 	/*
2505 	 * Initialize EEPROM access
2506 	 */
2507 	AR5K_REG_WRITE(AR5K_AR5211_EEPROM_BASE, (u_int8_t)offset);
2508 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_EEPROM_CMD,
2509 	    AR5K_AR5211_EEPROM_CMD_READ);
2510 
2511 	for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
2512 		status = AR5K_REG_READ(AR5K_AR5211_EEPROM_STATUS);
2513 		if (status & AR5K_AR5211_EEPROM_STAT_RDDONE) {
2514 			if (status & AR5K_AR5211_EEPROM_STAT_RDERR)
2515 				return (EIO);
2516 			*data = (u_int16_t)
2517 			    (AR5K_REG_READ(AR5K_AR5211_EEPROM_DATA) & 0xffff);
2518 			return (0);
2519 		}
2520 		AR5K_DELAY(15);
2521 	}
2522 
2523 	return (ETIMEDOUT);
2524 }
2525 
2526 int
2527 ar5k_ar5211_eeprom_write(struct ath_hal *hal, u_int32_t offset, u_int16_t data)
2528 {
2529 	u_int32_t status, timeout;
2530 
2531 	/* Enable eeprom access */
2532 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_EEPROM_CMD,
2533 	    AR5K_AR5211_EEPROM_CMD_RESET);
2534 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_EEPROM_CMD,
2535 	    AR5K_AR5211_EEPROM_CMD_WRITE);
2536 
2537 	/*
2538 	 * Prime write pump
2539 	 */
2540 	AR5K_REG_WRITE(AR5K_AR5211_EEPROM_BASE, (u_int8_t)offset - 1);
2541 
2542 	for (timeout = 10000; timeout > 0; timeout--) {
2543 		AR5K_DELAY(1);
2544 		status = AR5K_REG_READ(AR5K_AR5211_EEPROM_STATUS);
2545 		if (status & AR5K_AR5211_EEPROM_STAT_WRDONE) {
2546 			if (status & AR5K_AR5211_EEPROM_STAT_WRERR)
2547 				return (EIO);
2548 			return (0);
2549 		}
2550 	}
2551 
2552 	return (ETIMEDOUT);
2553 }
2554 
2555 /*
2556  * RF register settings
2557  */
2558 
2559 void
2560 ar5k_ar5211_rfregs(struct ath_hal *hal, HAL_CHANNEL *channel, u_int freq,
2561     u_int ee_mode)
2562 {
2563 	struct ar5k_eeprom_info *ee = &hal->ah_capabilities.cap_eeprom;
2564 	struct ar5k_ar5211_ini_rf rf[AR5K_ELEMENTS(ar5211_rf)];
2565 	u_int32_t ob, db, obdb, xpds, xpdp, x_gain;
2566 	u_int i;
2567 
2568 	bcopy(ar5211_rf, rf, sizeof(rf));
2569 	obdb = 0;
2570 
2571 	if (freq == AR5K_INI_RFGAIN_2GHZ &&
2572 	    hal->ah_ee_version >= AR5K_EEPROM_VERSION_3_1) {
2573 		ob = ar5k_bitswap(ee->ee_ob[ee_mode][0], 3);
2574 		db = ar5k_bitswap(ee->ee_db[ee_mode][0], 3);
2575 		rf[25].rf_value[freq] =
2576 		    ((ob << 6) & 0xc0) | (rf[25].rf_value[freq] & ~0xc0);
2577 		rf[26].rf_value[freq] =
2578 		    (((ob >> 2) & 0x1) | ((db << 1) & 0xe)) |
2579 		    (rf[26].rf_value[freq] & ~0xf);
2580 	}
2581 
2582 	if (freq == AR5K_INI_RFGAIN_5GHZ) {
2583 		/* For 11a and Turbo */
2584 		obdb = channel->c_channel >= 5725 ? 3 :
2585 		    (channel->c_channel >= 5500 ? 2 :
2586 			(channel->c_channel >= 5260 ? 1 :
2587 			    (channel->c_channel > 4000 ? 0 : -1)));
2588 	}
2589 
2590 	ob = ee->ee_ob[ee_mode][obdb];
2591 	db = ee->ee_db[ee_mode][obdb];
2592 	x_gain = ee->ee_x_gain[ee_mode];
2593 	xpds = ee->ee_xpd[ee_mode];
2594 	xpdp = !xpds;
2595 
2596 	rf[11].rf_value[freq] = (rf[11].rf_value[freq] & ~0xc0) |
2597 		(((ar5k_bitswap(x_gain, 4) << 7) | (xpdp << 6)) & 0xc0);
2598 	rf[12].rf_value[freq] = (rf[12].rf_value[freq] & ~0x7) |
2599 		((ar5k_bitswap(x_gain, 4) >> 1) & 0x7);
2600 	rf[12].rf_value[freq] = (rf[12].rf_value[freq] & ~0x80) |
2601 		((ar5k_bitswap(ob, 3) << 7) & 0x80);
2602 	rf[13].rf_value[freq] = (rf[13].rf_value[freq] & ~0x3) |
2603 		((ar5k_bitswap(ob, 3) >> 1) & 0x3);
2604 	rf[13].rf_value[freq] = (rf[13].rf_value[freq] & ~0x1c) |
2605 		((ar5k_bitswap(db, 3) << 2) & 0x1c);
2606 	rf[17].rf_value[freq] = (rf[17].rf_value[freq] & ~0x8) |
2607 		((xpds << 3) & 0x8);
2608 
2609 	for (i = 0; i < AR5K_ELEMENTS(rf); i++) {
2610 		AR5K_REG_WAIT(i);
2611 		AR5K_REG_WRITE((u_int32_t)rf[i].rf_register,
2612 		    rf[i].rf_value[freq]);
2613 	}
2614 
2615 	hal->ah_rf_gain = HAL_RFGAIN_INACTIVE;
2616 }
2617 
2618 HAL_BOOL
2619 ar5k_ar5211_set_txpower_limit(struct ath_hal *hal, u_int power)
2620 {
2621 	/* Not implemented */
2622 	return (AH_FALSE);
2623 }
2624