xref: /openbsd-src/sys/dev/ic/an.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: an.c,v 1.58 2010/08/27 17:08:00 jsg Exp $	*/
2 /*	$NetBSD: an.c,v 1.34 2005/06/20 02:49:18 atatat Exp $	*/
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $
35  */
36 /*
37  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
38  * Copyright (c) 2004, 2005 OJC Technologies.  All rights reserved.
39  * Copyright (c) 2004, 2005 Dayton Data Center Services, LLC.  All
40  *     rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the author nor the names of any co-contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL David Young AND CONTRIBUTORS
58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
64  * THE POSSIBILITY OF SUCH DAMAGE.
65  */
66 
67 /*
68  * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
69  *
70  * Written by Bill Paul <wpaul@ctr.columbia.edu>
71  * Electrical Engineering Department
72  * Columbia University, New York City
73  */
74 
75 /*
76  * Ported to NetBSD from FreeBSD by Atsushi Onoe at the San Diego
77  * IETF meeting.
78  */
79 
80 #include <sys/cdefs.h>
81 
82 #include "bpfilter.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/kernel.h>
89 #include <sys/ucred.h>
90 #include <sys/socket.h>
91 #include <sys/timeout.h>
92 #include <sys/device.h>
93 #include <sys/proc.h>
94 #include <sys/endian.h>
95 #include <sys/tree.h>
96 
97 #include <machine/bus.h>
98 
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_llc.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 
105 #ifdef INET
106 #include <netinet/in.h>
107 #include <netinet/in_systm.h>
108 #include <netinet/in_var.h>
109 #include <netinet/ip.h>
110 #include <netinet/if_ether.h>
111 #endif
112 
113 #include <net80211/ieee80211_radiotap.h>
114 #include <net80211/ieee80211_var.h>
115 
116 #if NBPFILTER > 0
117 #include <net/bpf.h>
118 #endif
119 
120 #include <dev/ic/anreg.h>
121 #include <dev/ic/anvar.h>
122 
123 struct cfdriver an_cd = {
124 	NULL, "an", DV_IFNET
125 };
126 
127 int	an_reset(struct an_softc *);
128 void	an_wait(struct an_softc *);
129 int	an_init(struct ifnet *);
130 void	an_stop(struct ifnet *, int);
131 void	an_start(struct ifnet *);
132 void	an_watchdog(struct ifnet *);
133 int	an_ioctl(struct ifnet *, u_long, caddr_t);
134 int	an_media_change(struct ifnet *);
135 void	an_media_status(struct ifnet *, struct ifmediareq *);
136 
137 int	an_set_nwkey(struct an_softc *, struct ieee80211_nwkey *);
138 int	an_set_nwkey_wep(struct an_softc *, struct ieee80211_nwkey *);
139 int	an_get_nwkey(struct an_softc *, struct ieee80211_nwkey *);
140 int	an_write_wepkey(struct an_softc *, int, struct an_wepkey *,
141 				int);
142 
143 void	an_rxeof(struct an_softc *);
144 void	an_txeof(struct an_softc *, u_int16_t);
145 void	an_linkstat_intr(struct an_softc *);
146 
147 int	an_cmd(struct an_softc *, int, int);
148 int	an_seek_bap(struct an_softc *, int, int);
149 int	an_read_bap(struct an_softc *, int, int, void *, int, int);
150 int	an_write_bap(struct an_softc *, int, int, void *, int);
151 int	an_mwrite_bap(struct an_softc *, int, int, struct mbuf *, int);
152 int	an_read_rid(struct an_softc *, int, void *, int *);
153 int	an_write_rid(struct an_softc *, int, void *, int);
154 
155 int	an_alloc_nicmem(struct an_softc *, int, int *);
156 
157 int	an_newstate(struct ieee80211com *, enum ieee80211_state, int);
158 
159 #ifdef AN_DEBUG
160 int an_debug = 0;
161 
162 #define	DPRINTF(X)	if (an_debug) printf X
163 #define	DPRINTF2(X)	if (an_debug > 1) printf X
164 #else
165 #define	DPRINTF(X)
166 #define	DPRINTF2(X)
167 #endif
168 
169 #if BYTE_ORDER == BIG_ENDIAN
170 static __inline void
171 an_swap16(u_int16_t *p, int cnt)
172 {
173         for (; cnt--; p++)
174                 *p = swap16(*p);
175 }
176 #define an_switch32(val)	(val >> 16 | (val & 0xFFFF) << 16)
177 #else
178 #define an_swap16(p, cnt)
179 #define an_switch32(val)	val
180 #endif
181 
182 int
183 an_attach(struct an_softc *sc)
184 {
185 	struct ieee80211com *ic = &sc->sc_ic;
186 	struct ifnet *ifp = &ic->ic_if;
187 	int i;
188 	struct an_rid_wepkey *akey;
189 	int buflen, kid, rid;
190 	int chan, chan_min, chan_max;
191 
192 	sc->sc_invalid = 0;
193 
194 	/* disable interrupts */
195 	CSR_WRITE_2(sc, AN_INT_EN, 0);
196 	CSR_WRITE_2(sc, AN_EVENT_ACK, 0xffff);
197 
198 //	an_wait(sc);
199 	if (an_reset(sc) != 0) {
200 		sc->sc_invalid = 1;
201 		return 1;
202 	}
203 
204 	/* Load factory config */
205 	if (an_cmd(sc, AN_CMD_READCFG, 0) != 0) {
206 		printf("%s: failed to load config data\n",
207 		    sc->sc_dev.dv_xname);
208 		return (EIO);
209 	}
210 
211 	/* Read the current configuration */
212 	buflen = sizeof(sc->sc_config);
213 	if (an_read_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, &buflen) != 0) {
214 		printf("%s: read config failed\n", sc->sc_dev.dv_xname);
215 		return(EIO);
216 	}
217 
218 	an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3);
219 
220 	/* Read the card capabilities */
221 	buflen = sizeof(sc->sc_caps);
222 	if (an_read_rid(sc, AN_RID_CAPABILITIES, &sc->sc_caps, &buflen) != 0) {
223 		printf("%s: read caps failed\n", sc->sc_dev.dv_xname);
224 		return(EIO);
225 	}
226 
227 	an_swap16((u_int16_t *)&sc->sc_caps.an_oemaddr, 3);
228 	an_swap16((u_int16_t *)&sc->sc_caps.an_rates, 4);
229 
230 	/* Read WEP settings from persistent memory */
231 	akey = &sc->sc_buf.sc_wepkey;
232 	buflen = sizeof(struct an_rid_wepkey);
233 	rid = AN_RID_WEP_VOLATILE;	/* first persistent key */
234 	while (an_read_rid(sc, rid, akey, &buflen) == 0) {
235 		an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
236 		an_swap16((u_int16_t *)&akey->an_key, 8);
237 		kid = akey->an_key_index;
238 		DPRINTF(("an_attach: wep rid=0x%x len=%d(%d) index=0x%04x "
239 		    "mac[0]=%02x keylen=%d\n",
240 		    rid, buflen, sizeof(*akey), kid,
241 		    akey->an_mac_addr[0], akey->an_key_len));
242 		if (kid == 0xffff) {
243 			sc->sc_tx_perskey = akey->an_mac_addr[0];
244 			sc->sc_tx_key = -1;
245 			break;
246 		}
247 		if (kid >= IEEE80211_WEP_NKID)
248 			break;
249 		sc->sc_perskeylen[kid] = akey->an_key_len;
250 		sc->sc_wepkeys[kid].an_wep_keylen = -1;
251 		rid = AN_RID_WEP_PERSISTENT;	/* for next key */
252 		buflen = sizeof(struct an_rid_wepkey);
253 	}
254 
255 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
256 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
257 
258 	printf("%s: Firmware %x.%02x.%02x, Radio: ", ifp->if_xname,
259 	    sc->sc_caps.an_fwrev >> 8,
260 	    sc->sc_caps.an_fwrev & 0xff,
261 	    sc->sc_caps.an_fwsubrev);
262 
263 	if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_FH)
264 		printf("802.11 FH");
265 	else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_DS)
266 		printf("802.11 DS");
267 	else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_LM2000_DS)
268 		printf("LM2000 DS");
269 	else
270 		printf("unknown (%x)", sc->sc_config.an_radiotype);
271 
272 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
273 
274 	ifp->if_softc = sc;
275 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
276 	ifp->if_ioctl = an_ioctl;
277 	ifp->if_start = an_start;
278 	ifp->if_watchdog = an_watchdog;
279 	IFQ_SET_READY(&ifp->if_snd);
280 
281 	ic->ic_phytype = IEEE80211_T_DS;
282 	ic->ic_opmode = IEEE80211_M_STA;
283 	ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_PMGT | IEEE80211_C_MONITOR;
284 #ifndef IEEE80211_STA_ONLY
285 	ic->ic_caps |= IEEE80211_C_IBSS;
286 #endif
287 	ic->ic_state = IEEE80211_S_INIT;
288 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
289 
290 	switch (sc->sc_caps.an_regdomain) {
291 	default:
292 	case AN_REGDOMAIN_USA:
293 	case AN_REGDOMAIN_CANADA:
294 		chan_min = 1; chan_max = 11; break;
295 	case AN_REGDOMAIN_EUROPE:
296 	case AN_REGDOMAIN_AUSTRALIA:
297 		chan_min = 1; chan_max = 13; break;
298 	case AN_REGDOMAIN_JAPAN:
299 		chan_min = 14; chan_max = 14; break;
300 	case AN_REGDOMAIN_SPAIN:
301 		chan_min = 10; chan_max = 11; break;
302 	case AN_REGDOMAIN_FRANCE:
303 		chan_min = 10; chan_max = 13; break;
304 	case AN_REGDOMAIN_JAPANWIDE:
305 		chan_min = 1; chan_max = 14; break;
306 	}
307 
308 	for (chan = chan_min; chan <= chan_max; chan++) {
309 		ic->ic_channels[chan].ic_freq =
310 		    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
311 		ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
312 	}
313 	ic->ic_ibss_chan = &ic->ic_channels[chan_min];
314 
315 	/* Find supported rate */
316 	for (i = 0; i < sizeof(sc->sc_caps.an_rates); i++) {
317 		if (sc->sc_caps.an_rates[i] == 0)
318 			continue;
319 		ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
320 		    ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates++] =
321 		    sc->sc_caps.an_rates[i];
322 	}
323 
324 	/*
325 	 * Call MI attach routine.
326 	 */
327 	if_attach(ifp);
328 	ieee80211_ifattach(ifp);
329 
330 	sc->sc_newstate = ic->ic_newstate;
331 	ic->ic_newstate = an_newstate;
332 
333 	ieee80211_media_init(ifp, an_media_change, an_media_status);
334 
335 #if NBPFILTER > 0
336 	bzero(&sc->sc_rxtapu, sizeof(sc->sc_rxtapu));
337 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
338 	sc->sc_rxtap.ar_ihdr.it_present = AN_RX_RADIOTAP_PRESENT;
339 
340 	bzero(&sc->sc_txtapu, sizeof(sc->sc_txtapu));
341 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
342 	sc->sc_txtap.at_ihdr.it_present = AN_TX_RADIOTAP_PRESENT;
343 
344 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
345 	    sizeof(struct ieee80211_frame) + 64);
346 #endif
347 
348 	sc->sc_attached = 1;
349 
350 	return(0);
351 }
352 
353 void
354 an_rxeof(struct an_softc *sc)
355 {
356 	struct ieee80211com *ic = &sc->sc_ic;
357 	struct ifnet *ifp = &ic->ic_if;
358 	struct ieee80211_frame *wh;
359 	struct ieee80211_rxinfo rxi;
360 	struct ieee80211_node *ni;
361 	struct an_rxframe frmhdr;
362 	struct mbuf *m;
363 	u_int16_t status;
364 	int fid, gaplen, len, off;
365 	uint8_t *gap;
366 
367 	fid = CSR_READ_2(sc, AN_RX_FID);
368 
369 	/* First read in the frame header */
370 	if (an_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr), sizeof(frmhdr)) != 0) {
371 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
372 		ifp->if_ierrors++;
373 		DPRINTF(("an_rxeof: read fid %x failed\n", fid));
374 		return;
375 	}
376 	an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);
377 
378 	status = frmhdr.an_rx_status;
379 	if ((status & AN_STAT_ERRSTAT) != 0 &&
380 	    ic->ic_opmode != IEEE80211_M_MONITOR) {
381 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
382 		ifp->if_ierrors++;
383 		DPRINTF(("an_rxeof: fid %x status %x\n", fid, status));
384 		return;
385 	}
386 
387 	/* the payload length field includes a 16-bit "mystery field" */
388 	len = frmhdr.an_rx_payload_len - sizeof(uint16_t);
389 	off = ALIGN(sizeof(struct ieee80211_frame));
390 
391 	if (off + len > MCLBYTES) {
392 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
393 			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
394 			ifp->if_ierrors++;
395 			DPRINTF(("an_rxeof: oversized packet %d\n", len));
396 			return;
397 		}
398 		len = 0;
399 	}
400 
401 	MGETHDR(m, M_DONTWAIT, MT_DATA);
402 	if (m == NULL) {
403 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
404 		ifp->if_ierrors++;
405 		DPRINTF(("an_rxeof: MGET failed\n"));
406 		return;
407 	}
408 	if (off + len + AN_GAPLEN_MAX > MHLEN) {
409 		MCLGET(m, M_DONTWAIT);
410 		if ((m->m_flags & M_EXT) == 0) {
411 			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
412 			m_freem(m);
413 			ifp->if_ierrors++;
414 			DPRINTF(("an_rxeof: MCLGET failed\n"));
415 			return;
416 		}
417 	}
418 	m->m_data += off - sizeof(struct ieee80211_frame);
419 
420 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
421 		gaplen = frmhdr.an_gaplen;
422 		if (gaplen > AN_GAPLEN_MAX) {
423 			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
424 			m_freem(m);
425 			ifp->if_ierrors++;
426 			DPRINTF(("%s: gap too long\n", __func__));
427 			return;
428 		}
429 		/*
430 		 * We don't need the 16-bit mystery field (payload length?),
431 		 * so read it into the region reserved for the 802.11 header.
432 		 *
433 		 * When Cisco Aironet 350 cards w/ firmware version 5 or
434 		 * greater operate with certain Cisco 350 APs,
435 		 * the "gap" is filled with the SNAP header.  Read
436 		 * it in after the 802.11 header.
437 		 */
438 		gap = m->m_data + sizeof(struct ieee80211_frame) -
439 		    sizeof(uint16_t);
440 		an_read_bap(sc, fid, -1, gap, gaplen + sizeof(u_int16_t),
441 		    gaplen + sizeof(u_int16_t));
442 	} else
443 		gaplen = 0;
444 
445 	an_read_bap(sc, fid, -1,
446 	    m->m_data + sizeof(struct ieee80211_frame) + gaplen, len, len);
447 	an_swap16((u_int16_t *)(m->m_data + sizeof(struct ieee80211_frame) + gaplen), (len+1)/2);
448 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + gaplen +
449 	    len;
450 
451 	memcpy(m->m_data, &frmhdr.an_whdr, sizeof(struct ieee80211_frame));
452 	m->m_pkthdr.rcvif = ifp;
453 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
454 
455 #if NBPFILTER > 0
456 	if (sc->sc_drvbpf) {
457 		struct mbuf mb;
458 		struct an_rx_radiotap_header *tap = &sc->sc_rxtap;
459 
460 		tap->ar_rate = frmhdr.an_rx_rate;
461 		tap->ar_antsignal = frmhdr.an_rx_signal_strength;
462 		tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
463 		tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
464 
465 
466 		mb.m_data = (caddr_t)tap;
467 		mb.m_len = sizeof(sc->sc_rxtapu);
468 		mb.m_next = m;
469 		mb.m_nextpkt = NULL;
470 		mb.m_type = 0;
471 		mb.m_flags = 0;
472 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
473 	}
474 #endif /* NBPFILTER > 0 */
475 
476 	wh = mtod(m, struct ieee80211_frame *);
477 	rxi.rxi_flags = 0;
478 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
479 		/*
480 		 * WEP is decrypted by hardware. Clear WEP bit
481 		 * header for ieee80211_input().
482 		 */
483 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
484 
485 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
486 	}
487 
488 	ni = ieee80211_find_rxnode(ic, wh);
489 	rxi.rxi_rssi = frmhdr.an_rx_signal_strength;
490 	rxi.rxi_tstamp = an_switch32(frmhdr.an_rx_time);
491 	ieee80211_input(ifp, m, ni, &rxi);
492 	ieee80211_release_node(ic, ni);
493 }
494 
495 void
496 an_txeof(struct an_softc *sc, u_int16_t status)
497 {
498 	struct ifnet *ifp = &sc->sc_ic.ic_if;
499 	int cur, id;
500 
501 	sc->sc_tx_timer = 0;
502 	ifp->if_flags &= ~IFF_OACTIVE;
503 
504 	id = CSR_READ_2(sc, AN_TX_CMP_FID);
505 	CSR_WRITE_2(sc, AN_EVENT_ACK, status & (AN_EV_TX | AN_EV_TX_EXC));
506 
507 	if (status & AN_EV_TX_EXC)
508 		ifp->if_oerrors++;
509 	else
510 		ifp->if_opackets++;
511 
512 	cur = sc->sc_txcur;
513 	if (sc->sc_txd[cur].d_fid == id) {
514 		sc->sc_txd[cur].d_inuse = 0;
515 		DPRINTF2(("an_txeof: sent %x/%d\n", id, cur));
516 		AN_INC(cur, AN_TX_RING_CNT);
517 		sc->sc_txcur = cur;
518 	} else {
519 		for (cur = 0; cur < AN_TX_RING_CNT; cur++) {
520 			if (id == sc->sc_txd[cur].d_fid) {
521 				sc->sc_txd[cur].d_inuse = 0;
522 				break;
523 			}
524 		}
525 		if (ifp->if_flags & IFF_DEBUG)
526 			printf("%s: tx mismatch: "
527 			    "expected %x(%d), actual %x(%d)\n",
528 			    sc->sc_dev.dv_xname,
529 			    sc->sc_txd[sc->sc_txcur].d_fid, sc->sc_txcur,
530 			    id, cur);
531 	}
532 }
533 
534 int
535 an_intr(void *arg)
536 {
537 	struct an_softc *sc = arg;
538 	struct ifnet *ifp = &sc->sc_ic.ic_if;
539 	int i;
540 	u_int16_t status;
541 
542 	if (!sc->sc_enabled || sc->sc_invalid ||
543 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
544 	    (ifp->if_flags & IFF_RUNNING) == 0)
545 		return 0;
546 
547 	if ((ifp->if_flags & IFF_UP) == 0) {
548 		CSR_WRITE_2(sc, AN_INT_EN, 0);
549 		CSR_WRITE_2(sc, AN_EVENT_ACK, ~0);
550 		return 1;
551 	}
552 
553 	/* maximum 10 loops per interrupt */
554 	for (i = 0; i < 10; i++) {
555 		if (!sc->sc_enabled || sc->sc_invalid)
556 			return 1;
557 		if (CSR_READ_2(sc, AN_SW0) != AN_MAGIC) {
558 			DPRINTF(("an_intr: magic number changed: %x\n",
559 			    CSR_READ_2(sc, AN_SW0)));
560 			sc->sc_invalid = 1;
561 			return 1;
562 		}
563 		status = CSR_READ_2(sc, AN_EVENT_STAT);
564 		CSR_WRITE_2(sc, AN_EVENT_ACK, status & ~(AN_INTRS));
565 		if ((status & AN_INTRS) == 0)
566 			break;
567 
568 		if (status & AN_EV_RX)
569 			an_rxeof(sc);
570 
571 		if (status & (AN_EV_TX | AN_EV_TX_EXC))
572 			an_txeof(sc, status);
573 
574 		if (status & AN_EV_LINKSTAT)
575 			an_linkstat_intr(sc);
576 
577 		if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
578 		    sc->sc_ic.ic_state == IEEE80211_S_RUN &&
579 		    !IFQ_IS_EMPTY(&ifp->if_snd))
580 			an_start(ifp);
581 	}
582 
583 	return 1;
584 }
585 
586 /* Must be called at proper protection level! */
587 int
588 an_cmd(struct an_softc *sc, int cmd, int val)
589 {
590 	int i, stat;
591 
592 	/* make sure previous command completed */
593 	if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) {
594 		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
595 			printf("%s: command 0x%x busy\n", sc->sc_dev.dv_xname,
596 			    CSR_READ_2(sc, AN_COMMAND));
597 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
598 	}
599 
600 	CSR_WRITE_2(sc, AN_PARAM0, val);
601 	CSR_WRITE_2(sc, AN_PARAM1, 0);
602 	CSR_WRITE_2(sc, AN_PARAM2, 0);
603 	CSR_WRITE_2(sc, AN_COMMAND, cmd);
604 
605 	if (cmd == AN_CMD_FW_RESTART) {
606 		/* XXX: should sleep here */
607 		DELAY(100*1000);
608 	}
609 
610 	for (i = 0; i < AN_TIMEOUT; i++) {
611 		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
612 			break;
613 		DELAY(10);
614 	}
615 
616 	stat = CSR_READ_2(sc, AN_STATUS);
617 
618 	/* clear stuck command busy if necessary */
619 	if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY)
620 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
621 
622 	/* Ack the command */
623 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
624 
625 	if (i == AN_TIMEOUT) {
626 		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
627 			printf("%s: command 0x%x param 0x%x timeout\n",
628 			    sc->sc_dev.dv_xname, cmd, val);
629 		return ETIMEDOUT;
630 	}
631 	if (stat & AN_STAT_CMD_RESULT) {
632 		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
633 			printf("%s: command 0x%x param 0x%x status 0x%x "
634 			    "resp 0x%x 0x%x 0x%x\n",
635 			    sc->sc_dev.dv_xname, cmd, val, stat,
636 			    CSR_READ_2(sc, AN_RESP0), CSR_READ_2(sc, AN_RESP1),
637 			    CSR_READ_2(sc, AN_RESP2));
638 		return EIO;
639 	}
640 
641 	return 0;
642 }
643 
644 int
645 an_reset(struct an_softc *sc)
646 {
647 
648 	DPRINTF(("an_reset\n"));
649 
650 	if (!sc->sc_enabled)
651 		return ENXIO;
652 
653 	an_cmd(sc, AN_CMD_ENABLE, 0);
654 	an_cmd(sc, AN_CMD_FW_RESTART, 0);
655 	an_cmd(sc, AN_CMD_NOOP2, 0);
656 
657 	if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) {
658 		printf("%s: reset failed\n", sc->sc_dev.dv_xname);
659 		return ETIMEDOUT;
660 	}
661 
662 	an_cmd(sc, AN_CMD_DISABLE, 0);
663 	return 0;
664 }
665 
666 void
667 an_linkstat_intr(struct an_softc *sc)
668 {
669 	struct ieee80211com *ic = &sc->sc_ic;
670 	u_int16_t status;
671 
672 	status = CSR_READ_2(sc, AN_LINKSTAT);
673 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT);
674 	DPRINTF(("an_linkstat_intr: status 0x%x\n", status));
675 
676 	if (status == AN_LINKSTAT_ASSOCIATED) {
677 		if (ic->ic_state != IEEE80211_S_RUN
678 #ifndef IEEE80211_STA_ONLY
679 		    || ic->ic_opmode == IEEE80211_M_IBSS
680 #endif
681 		    )
682 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
683 	} else {
684 		if (ic->ic_opmode == IEEE80211_M_STA)
685 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
686 	}
687 }
688 
689 /*
690  * Wait for firmware come up after power enabled.
691  */
692 void
693 an_wait(struct an_softc *sc)
694 {
695 	int i;
696 
697 	CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_NOOP2);
698 	for (i = 0; i < 3*hz; i++) {
699 		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
700 			break;
701 		(void)tsleep(sc, PWAIT, "anatch", 1);
702 	}
703 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
704 }
705 
706 int
707 an_read_bap(struct an_softc *sc, int id, int off, void *buf, int len, int blen)
708 {
709 	int error, cnt, cnt2;
710 
711 	if (len == 0 || blen == 0)
712 		return 0;
713 	if (off == -1)
714 		off = sc->sc_bap_off;
715 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
716 		if ((error = an_seek_bap(sc, id, off)) != 0)
717 			return EIO;
718 	}
719 
720 	cnt = (blen + 1) / 2;
721 	CSR_READ_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
722 	for (cnt2 = (len + 1) / 2; cnt < cnt2; cnt++)
723 		(void) CSR_READ_2(sc, AN_DATA0);
724 	sc->sc_bap_off += cnt * 2;
725 
726 	return 0;
727 }
728 
729 int
730 an_write_bap(struct an_softc *sc, int id, int off, void *buf, int buflen)
731 {
732 	int error, cnt;
733 
734 	if (buflen == 0)
735 		return 0;
736 	if (off == -1)
737 		off = sc->sc_bap_off;
738 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
739 		if ((error = an_seek_bap(sc, id, off)) != 0)
740 			return EIO;
741 	}
742 
743 	cnt = (buflen + 1) / 2;
744 	CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
745 	sc->sc_bap_off += cnt * 2;
746 	return 0;
747 }
748 
749 int
750 an_seek_bap(struct an_softc *sc, int id, int off)
751 {
752 	int i, status;
753 
754 	CSR_WRITE_2(sc, AN_SEL0, id);
755 	CSR_WRITE_2(sc, AN_OFF0, off);
756 
757 	for (i = 0; ; i++) {
758 		status = CSR_READ_2(sc, AN_OFF0);
759 		if ((status & AN_OFF_BUSY) == 0)
760 			break;
761 		if (i == AN_TIMEOUT) {
762 			printf("%s: timeout in an_seek_bap to 0x%x/0x%x\n",
763 			    sc->sc_dev.dv_xname, id, off);
764 			sc->sc_bap_off = AN_OFF_ERR;	/* invalidate */
765 			return ETIMEDOUT;
766 		}
767 		DELAY(10);
768 	}
769 	if (status & AN_OFF_ERR) {
770 		printf("%s: failed in an_seek_bap to 0x%x/0x%x\n",
771 		    sc->sc_dev.dv_xname, id, off);
772 		sc->sc_bap_off = AN_OFF_ERR;	/* invalidate */
773 		return EIO;
774 	}
775 	sc->sc_bap_id = id;
776 	sc->sc_bap_off = off;
777 	return 0;
778 }
779 
780 int
781 an_mwrite_bap(struct an_softc *sc, int id, int off, struct mbuf *m, int totlen)
782 {
783 	int error, len, cnt;
784 
785 	if (off == -1)
786 		off = sc->sc_bap_off;
787 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
788 		if ((error = an_seek_bap(sc, id, off)) != 0)
789 			return EIO;
790 	}
791 
792 	for (len = 0; m != NULL; m = m->m_next) {
793 		if (m->m_len == 0)
794 			continue;
795 		len = min(m->m_len, totlen);
796 
797 		if ((mtod(m, u_long) & 0x1) || (len & 0x1)) {
798 			m_copydata(m, 0, totlen, (caddr_t)&sc->sc_buf.sc_txbuf);
799 			cnt = (totlen + 1) / 2;
800 			an_swap16((u_int16_t *)&sc->sc_buf.sc_txbuf, cnt);
801 			CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0,
802 			    sc->sc_buf.sc_val, cnt);
803 			off += cnt * 2;
804 			break;
805 		}
806 		cnt = len / 2;
807 		an_swap16((u_int16_t *)mtod(m, u_int16_t *), cnt);
808 		CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, mtod(m, u_int16_t *),
809 		    cnt);
810 		off += len;
811 		totlen -= len;
812 	}
813 	sc->sc_bap_off = off;
814 	return 0;
815 }
816 
817 int
818 an_alloc_nicmem(struct an_softc *sc, int len, int *idp)
819 {
820 	int i;
821 
822 	if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
823 		printf("%s: failed to allocate %d bytes on NIC\n",
824 		    sc->sc_dev.dv_xname, len);
825 		return(ENOMEM);
826 	}
827 
828 	for (i = 0; i < AN_TIMEOUT; i++) {
829 		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC)
830 			break;
831 		if (i == AN_TIMEOUT) {
832 			printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
833 			return ETIMEDOUT;
834 		}
835 		DELAY(10);
836 	}
837 
838 	*idp = CSR_READ_2(sc, AN_ALLOC_FID);
839 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
840 	return 0;
841 }
842 
843 int
844 an_read_rid(struct an_softc *sc, int rid, void *buf, int *buflenp)
845 {
846 	int error;
847 	u_int16_t len;
848 
849 	/* Tell the NIC to enter record read mode. */
850 	error = an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_READ, rid);
851 	if (error)
852 		return error;
853 
854 	/* length in byte, including length itself */
855 	error = an_read_bap(sc, rid, 0, &len, sizeof(len), sizeof(len));
856 	if (error)
857 		return error;
858 
859 	len -= 2;
860 	return an_read_bap(sc, rid, sizeof(len), buf, len, *buflenp);
861 }
862 
863 int
864 an_write_rid(struct an_softc *sc, int rid, void *buf, int buflen)
865 {
866 	int error;
867 	u_int16_t len;
868 
869 	/* length in byte, including length itself */
870 	len = buflen + 2;
871 
872 	error = an_write_bap(sc, rid, 0, &len, sizeof(len));
873 	if (error)
874 		return error;
875 	error = an_write_bap(sc, rid, sizeof(len), buf, buflen);
876 	if (error)
877 		return error;
878 
879 	return an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_WRITE, rid);
880 }
881 
882 int
883 an_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
884 {
885 	struct an_softc *sc = ifp->if_softc;
886 	struct ifaddr *ifa = (struct ifaddr *)data;
887 	int s, error = 0;
888 
889 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
890 		return ENXIO;
891 
892 	s = splnet();
893 
894 	switch(command) {
895 	case SIOCSIFADDR:
896 		ifp->if_flags |= IFF_UP;
897 		switch (ifa->ifa_addr->sa_family) {
898 #ifdef INET
899 		case AF_INET:
900 			error = an_init(ifp);
901 			arp_ifinit(&sc->sc_ic.ic_ac, ifa);
902 			break;
903 #endif
904 		default:
905 			error = an_init(ifp);
906 			break;
907 		}
908 		break;
909 	case SIOCSIFFLAGS:
910 		if (ifp->if_flags & IFF_UP) {
911 			if (sc->sc_enabled) {
912 				/*
913 				 * To avoid rescanning another access point,
914 				 * do not call an_init() here.  Instead, only
915 				 * reflect promisc mode settings.
916 				 */
917 				error = an_cmd(sc, AN_CMD_SET_MODE,
918 				    (ifp->if_flags & IFF_PROMISC) ? 0xffff : 0);
919 			} else
920 				error = an_init(ifp);
921 		} else if (sc->sc_enabled)
922 			an_stop(ifp, 1);
923 		break;
924 	case SIOCADDMULTI:
925 	case SIOCDELMULTI:
926 		/* The Aironet has no multicast filter. */
927 		error = 0;
928 		break;
929 	case SIOCS80211NWKEY:
930 		error = an_set_nwkey(sc, (struct ieee80211_nwkey *)data);
931 			break;
932 	case SIOCG80211NWKEY:
933 		error = an_get_nwkey(sc, (struct ieee80211_nwkey *)data);
934 		break;
935 	default:
936 		error = ieee80211_ioctl(ifp, command, data);
937 		break;
938 	}
939 	if (error == ENETRESET) {
940 		if (sc->sc_enabled)
941 			error = an_init(ifp);
942 		else
943 			error = 0;
944 	}
945 	splx(s);
946 	return(error);
947 }
948 
949 int
950 an_init(struct ifnet *ifp)
951 {
952 	struct an_softc *sc = ifp->if_softc;
953 	struct ieee80211com *ic = &sc->sc_ic;
954 	int i, error, fid;
955 
956 	DPRINTF(("an_init: enabled %d\n", sc->sc_enabled));
957 	if (!sc->sc_enabled) {
958 		if (sc->sc_enable)
959 			(*sc->sc_enable)(sc);
960 		an_wait(sc);
961 		sc->sc_enabled = 1;
962 	} else {
963 		an_stop(ifp, 0);
964 		if ((error = an_reset(sc)) != 0) {
965 			printf("%s: failed to reset\n", ifp->if_xname);
966 			an_stop(ifp, 1);
967 			return error;
968 		}
969 	}
970 	CSR_WRITE_2(sc, AN_SW0, AN_MAGIC);
971 
972 	/* Allocate the TX buffers */
973 	for (i = 0; i < AN_TX_RING_CNT; i++) {
974 		if ((error = an_alloc_nicmem(sc, AN_TX_MAX_LEN, &fid)) != 0) {
975 			printf("%s: failed to allocate nic memory\n",
976 			    ifp->if_xname);
977 			an_stop(ifp, 1);
978 			return error;
979 		}
980 		DPRINTF2(("an_init: txbuf %d allocated %x\n", i, fid));
981 		sc->sc_txd[i].d_fid = fid;
982 		sc->sc_txd[i].d_inuse = 0;
983 	}
984 	sc->sc_txcur = sc->sc_txnext = 0;
985 
986 	IEEE80211_ADDR_COPY(sc->sc_config.an_macaddr, ic->ic_myaddr);
987 	an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3);
988 	sc->sc_config.an_scanmode = AN_SCANMODE_ACTIVE;
989 	sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN;	/*XXX*/
990 	if (ic->ic_flags & IEEE80211_F_WEPON) {
991 		sc->sc_config.an_authtype |=
992 		    AN_AUTHTYPE_PRIVACY_IN_USE;
993 	}
994 	sc->sc_config.an_listen_interval = ic->ic_lintval;
995 	sc->sc_config.an_beacon_period = ic->ic_lintval;
996 	if (ic->ic_flags & IEEE80211_F_PMGTON)
997 		sc->sc_config.an_psave_mode = AN_PSAVE_PSP;
998 	else
999 		sc->sc_config.an_psave_mode = AN_PSAVE_CAM;
1000 	sc->sc_config.an_ds_channel =
1001 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
1002 
1003 	switch (ic->ic_opmode) {
1004 	case IEEE80211_M_STA:
1005 		sc->sc_config.an_opmode =
1006 		    AN_OPMODE_INFRASTRUCTURE_STATION;
1007 		sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
1008 		break;
1009 #ifndef IEEE80211_STA_ONLY
1010 	case IEEE80211_M_IBSS:
1011 		sc->sc_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
1012 		sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
1013 		break;
1014 #endif
1015 	case IEEE80211_M_MONITOR:
1016 		sc->sc_config.an_opmode =
1017 		    AN_OPMODE_INFRASTRUCTURE_STATION;
1018 		sc->sc_config.an_rxmode =
1019 		    AN_RXMODE_80211_MONITOR_ANYBSS;
1020 		sc->sc_config.an_authtype = AN_AUTHTYPE_NONE;
1021 		if (ic->ic_flags & IEEE80211_F_WEPON)
1022 			sc->sc_config.an_authtype |=
1023 			    AN_AUTHTYPE_PRIVACY_IN_USE |
1024 		            AN_AUTHTYPE_ALLOW_UNENCRYPTED;
1025 		break;
1026 	default:
1027 		printf("%s: bad opmode %d\n", ifp->if_xname, ic->ic_opmode);
1028 		an_stop(ifp, 1);
1029 		return EIO;
1030 	}
1031 	sc->sc_config.an_rxmode |= AN_RXMODE_NO_8023_HEADER;
1032 
1033 	/* Set the ssid list */
1034 	memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_ssidlist));
1035 	sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid_len =
1036 	    ic->ic_des_esslen;
1037 	if (ic->ic_des_esslen)
1038 		memcpy(sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid,
1039 		    ic->ic_des_essid, ic->ic_des_esslen);
1040 	an_swap16((u_int16_t *)&sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid, 16);
1041 	if (an_write_rid(sc, AN_RID_SSIDLIST, &sc->sc_buf,
1042 	    sizeof(sc->sc_buf.sc_ssidlist)) != 0) {
1043 		printf("%s: failed to write ssid list\n", ifp->if_xname);
1044 		an_stop(ifp, 1);
1045 		return error;
1046 	}
1047 
1048 	/* Set the AP list */
1049 	memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_aplist));
1050 	(void)an_write_rid(sc, AN_RID_APLIST, &sc->sc_buf,
1051 	    sizeof(sc->sc_buf.sc_aplist));
1052 
1053 	/* Set the encapsulation */
1054 	for (i = 0; i < AN_ENCAP_NENTS; i++) {
1055 		sc->sc_buf.sc_encap.an_entry[i].an_ethertype = 0;
1056 		sc->sc_buf.sc_encap.an_entry[i].an_action =
1057 		    AN_RXENCAP_RFC1024 | AN_TXENCAP_RFC1024;
1058 	}
1059 	(void)an_write_rid(sc, AN_RID_ENCAP, &sc->sc_buf,
1060 	    sizeof(sc->sc_buf.sc_encap));
1061 
1062 	/* Set the WEP Keys */
1063 	if (ic->ic_flags & IEEE80211_F_WEPON)
1064 		an_write_wepkey(sc, AN_RID_WEP_VOLATILE, sc->sc_wepkeys,
1065 		    sc->sc_tx_key);
1066 
1067 	/* Set the configuration */
1068 	if (an_write_rid(sc, AN_RID_GENCONFIG, &sc->sc_config,
1069 	    sizeof(sc->sc_config)) != 0) {
1070 		printf("%s: failed to write config\n", ifp->if_xname);
1071 		an_stop(ifp, 1);
1072 		return error;
1073 	}
1074 
1075 	/* Enable the MAC */
1076 	if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
1077 		printf("%s: failed to enable MAC\n", sc->sc_dev.dv_xname);
1078 		an_stop(ifp, 1);
1079 		return ENXIO;
1080 	}
1081 	if (ifp->if_flags & IFF_PROMISC)
1082 		an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
1083 
1084 	ifp->if_flags |= IFF_RUNNING;
1085 	ifp->if_flags &= ~IFF_OACTIVE;
1086 	ic->ic_state = IEEE80211_S_INIT;
1087 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1088 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1089 
1090 	/* enable interrupts */
1091 	CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
1092 	return 0;
1093 }
1094 
1095 void
1096 an_start(struct ifnet *ifp)
1097 {
1098 	struct an_softc *sc = (struct an_softc *)ifp->if_softc;
1099 	struct ieee80211com *ic = &sc->sc_ic;
1100 	struct ieee80211_node *ni;
1101 	struct ieee80211_frame *wh;
1102 	struct an_txframe frmhdr;
1103 	struct mbuf *m;
1104 	u_int16_t len;
1105 	int cur, fid;
1106 
1107 	if (!sc->sc_enabled || sc->sc_invalid) {
1108 		DPRINTF(("an_start: noop: enabled %d invalid %d\n",
1109 		    sc->sc_enabled, sc->sc_invalid));
1110 		return;
1111 	}
1112 
1113 	memset(&frmhdr, 0, sizeof(frmhdr));
1114 	cur = sc->sc_txnext;
1115 	for (;;) {
1116 		if (ic->ic_state != IEEE80211_S_RUN) {
1117 			DPRINTF(("an_start: not running %d\n", ic->ic_state));
1118 			break;
1119 		}
1120 		IFQ_POLL(&ifp->if_snd, m);
1121 		if (m == NULL) {
1122 			DPRINTF2(("an_start: no pending mbuf\n"));
1123 			break;
1124 		}
1125 		if (sc->sc_txd[cur].d_inuse) {
1126 			DPRINTF2(("an_start: %x/%d busy\n",
1127 			    sc->sc_txd[cur].d_fid, cur));
1128 			ifp->if_flags |= IFF_OACTIVE;
1129 			break;
1130 		}
1131 		IFQ_DEQUEUE(&ifp->if_snd, m);
1132 		ifp->if_opackets++;
1133 #if NBPFILTER > 0
1134 		if (ifp->if_bpf)
1135 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1136 #endif
1137 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) {
1138 			ifp->if_oerrors++;
1139 			continue;
1140 		}
1141 		if (ni != NULL)
1142 			ieee80211_release_node(ic, ni);
1143 #if NBPFILTER > 0
1144 		if (ic->ic_rawbpf)
1145 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1146 #endif
1147 
1148 		wh = mtod(m, struct ieee80211_frame *);
1149 		if (ic->ic_flags & IEEE80211_F_WEPON)
1150 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1151 		m_copydata(m, 0, sizeof(struct ieee80211_frame),
1152 		    (caddr_t)&frmhdr.an_whdr);
1153 		an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);
1154 
1155 		/* insert payload length in front of llc/snap */
1156 		len = htons(m->m_pkthdr.len - sizeof(struct ieee80211_frame));
1157 		m_adj(m, sizeof(struct ieee80211_frame) - sizeof(len));
1158 		if (mtod(m, u_long) & 0x01)
1159 			memcpy(mtod(m, caddr_t), &len, sizeof(len));
1160 		else
1161 			*mtod(m, u_int16_t *) = len;
1162 
1163 		/*
1164 		 * XXX Aironet firmware apparently convert the packet
1165 		 * with longer than 1500 bytes in length into LLC/SNAP.
1166 		 * If we have 1500 bytes in ethernet payload, it is
1167 		 * 1508 bytes including LLC/SNAP and will be inserted
1168 		 * additional LLC/SNAP header with 1501-1508 in its
1169 		 * ethertype !!
1170 		 * So we skip LLC/SNAP header and force firmware to
1171 		 * convert it to LLC/SNAP again.
1172 		 */
1173 		m_adj(m, sizeof(struct llc));
1174 
1175 		frmhdr.an_tx_ctl = AN_TXCTL_80211;
1176 		frmhdr.an_tx_payload_len = m->m_pkthdr.len;
1177 		frmhdr.an_gaplen = AN_TXGAP_802_11;
1178 
1179 		if (ic->ic_fixed_rate != -1)
1180 			frmhdr.an_tx_rate =
1181 			    ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
1182 			    ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1183 		else
1184 			frmhdr.an_tx_rate = 0;
1185 
1186 		if (sizeof(frmhdr) + AN_TXGAP_802_11 + sizeof(len) +
1187 		    m->m_pkthdr.len > AN_TX_MAX_LEN) {
1188 			ifp->if_oerrors++;
1189 			m_freem(m);
1190 			continue;
1191 		}
1192 
1193 #if NBPFILTER > 0
1194 		if (sc->sc_drvbpf) {
1195 			struct mbuf mb;
1196 			struct an_tx_radiotap_header *tap = &sc->sc_txtap;
1197 
1198 			tap->at_rate =
1199 			    ic->ic_bss->ni_rates.rs_rates[ic->ic_bss->ni_txrate];
1200 			tap->at_chan_freq =
1201 			    ic->ic_bss->ni_chan->ic_freq;
1202 			tap->at_chan_flags =
1203 			    ic->ic_bss->ni_chan->ic_flags;
1204 
1205 			mb.m_data = (caddr_t)tap;
1206 			mb.m_len = sizeof(sc->sc_txtapu);
1207 			mb.m_next = m;
1208 			mb.m_nextpkt = NULL;
1209 			mb.m_type = 0;
1210 			mb.m_flags = 0;
1211 			bpf_mtap(sc->sc_drvbpf, m, BPF_DIRECTION_OUT);
1212 		}
1213 #endif
1214 
1215 		fid = sc->sc_txd[cur].d_fid;
1216 		if (an_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1217 			ifp->if_oerrors++;
1218 			m_freem(m);
1219 			continue;
1220 		}
1221 		/* dummy write to avoid seek. */
1222 		an_write_bap(sc, fid, -1, &frmhdr, AN_TXGAP_802_11);
1223 		an_mwrite_bap(sc, fid, -1, m, m->m_pkthdr.len);
1224 		m_freem(m);
1225 
1226 		DPRINTF2(("an_start: send %d byte via %x/%d\n",
1227 		    ntohs(len) + sizeof(struct ieee80211_frame),
1228 		    fid, cur));
1229 		sc->sc_txd[cur].d_inuse = 1;
1230 		if (an_cmd(sc, AN_CMD_TX, fid)) {
1231 			printf("%s: xmit failed\n", ifp->if_xname);
1232 			sc->sc_txd[cur].d_inuse = 0;
1233 			continue;
1234 		}
1235 		sc->sc_tx_timer = 5;
1236 		ifp->if_timer = 1;
1237 		AN_INC(cur, AN_TX_RING_CNT);
1238 		sc->sc_txnext = cur;
1239 	}
1240 }
1241 
1242 void
1243 an_stop(struct ifnet *ifp, int disable)
1244 {
1245 	struct an_softc *sc = ifp->if_softc;
1246 	int i, s;
1247 
1248 	if (!sc->sc_enabled)
1249 		return;
1250 
1251 	DPRINTF(("an_stop: disable %d\n", disable));
1252 
1253 	s = splnet();
1254 	ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1255 	if (!sc->sc_invalid) {
1256 		an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
1257 		CSR_WRITE_2(sc, AN_INT_EN, 0);
1258 		an_cmd(sc, AN_CMD_DISABLE, 0);
1259 
1260 		for (i = 0; i < AN_TX_RING_CNT; i++)
1261 			an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->sc_txd[i].d_fid);
1262 	}
1263 
1264 	sc->sc_tx_timer = 0;
1265 	ifp->if_timer = 0;
1266 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1267 
1268 	if (disable) {
1269 		if (sc->sc_disable)
1270 			(*sc->sc_disable)(sc);
1271 		sc->sc_enabled = 0;
1272 	}
1273 	splx(s);
1274 }
1275 
1276 void
1277 an_watchdog(struct ifnet *ifp)
1278 {
1279 	struct an_softc *sc = ifp->if_softc;
1280 
1281 	if (!sc->sc_enabled)
1282 		return;
1283 
1284 	if (sc->sc_tx_timer) {
1285 		if (--sc->sc_tx_timer == 0) {
1286 			printf("%s: device timeout\n", ifp->if_xname);
1287 			ifp->if_oerrors++;
1288 			an_init(ifp);
1289 			return;
1290 		}
1291 		ifp->if_timer = 1;
1292 	}
1293 	ieee80211_watchdog(ifp);
1294 }
1295 
1296 /* TBD factor with ieee80211_media_change */
1297 int
1298 an_media_change(struct ifnet *ifp)
1299 {
1300 	struct an_softc *sc = ifp->if_softc;
1301 	struct ieee80211com *ic = &sc->sc_ic;
1302 	struct ifmedia_entry *ime;
1303 	enum ieee80211_opmode newmode;
1304 	int i, rate, error = 0;
1305 
1306 	ime = ic->ic_media.ifm_cur;
1307 	if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1308 		i = -1;
1309 	} else {
1310 		struct ieee80211_rateset *rs =
1311 		    &ic->ic_sup_rates[IEEE80211_MODE_11B];
1312 		rate = ieee80211_media2rate(ime->ifm_media);
1313 		if (rate == 0)
1314 			return EINVAL;
1315 		for (i = 0; i < rs->rs_nrates; i++) {
1316 			if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate)
1317 				break;
1318 		}
1319 		if (i == rs->rs_nrates)
1320 			return EINVAL;
1321 	}
1322 	if (ic->ic_fixed_rate != i) {
1323 		ic->ic_fixed_rate = i;
1324 		error = ENETRESET;
1325 	}
1326 
1327 #ifndef IEEE80211_STA_ONLY
1328 	if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1329 		newmode = IEEE80211_M_IBSS;
1330 	else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1331 		newmode = IEEE80211_M_HOSTAP;
1332 	else
1333 #endif
1334 	if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1335 		newmode = IEEE80211_M_MONITOR;
1336 	else
1337 		newmode = IEEE80211_M_STA;
1338 	if (ic->ic_opmode != newmode) {
1339 		ic->ic_opmode = newmode;
1340 		error = ENETRESET;
1341 	}
1342 	if (error == ENETRESET) {
1343 		if (sc->sc_enabled)
1344 			error = an_init(ifp);
1345 		else
1346 			error = 0;
1347 	}
1348 	ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1349 
1350 	return error;
1351 }
1352 
1353 void
1354 an_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1355 {
1356 	struct an_softc *sc = ifp->if_softc;
1357 	struct ieee80211com *ic = &sc->sc_ic;
1358 	int rate, buflen;
1359 
1360 	if (sc->sc_enabled == 0) {
1361 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1362 		imr->ifm_status = 0;
1363 		return;
1364 	}
1365 
1366 	imr->ifm_status = IFM_AVALID;
1367 	imr->ifm_active = IFM_IEEE80211;
1368 	if (ic->ic_state == IEEE80211_S_RUN)
1369 		imr->ifm_status |= IFM_ACTIVE;
1370 	buflen = sizeof(sc->sc_buf);
1371 	if (ic->ic_fixed_rate != -1)
1372 		rate = ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
1373 		    ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1374 	else if (an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen) != 0)
1375 		rate = 0;
1376 	else
1377 		rate = sc->sc_buf.sc_status.an_current_tx_rate;
1378 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1379 	switch (ic->ic_opmode) {
1380 	case IEEE80211_M_STA:
1381 		break;
1382 #ifndef IEEE80211_STA_ONLY
1383 	case IEEE80211_M_IBSS:
1384 		imr->ifm_active |= IFM_IEEE80211_ADHOC;
1385 		break;
1386 	case IEEE80211_M_HOSTAP:
1387 		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1388 		break;
1389 #endif
1390 	case IEEE80211_M_MONITOR:
1391 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
1392 		break;
1393 	default:
1394 		break;
1395 	}
1396 }
1397 
1398 int
1399 an_set_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1400 {
1401 	int error;
1402 	struct ieee80211com *ic = &sc->sc_ic;
1403 	u_int16_t prevauth;
1404 
1405 	error = 0;
1406 	prevauth = sc->sc_config.an_authtype;
1407 
1408 	switch (nwkey->i_wepon) {
1409 	case IEEE80211_NWKEY_OPEN:
1410 		sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN;
1411 		ic->ic_flags &= ~IEEE80211_F_WEPON;
1412 		break;
1413 
1414 	case IEEE80211_NWKEY_WEP:
1415 	case IEEE80211_NWKEY_WEP | IEEE80211_NWKEY_PERSIST:
1416 		error = an_set_nwkey_wep(sc, nwkey);
1417 		if (error == 0 || error == ENETRESET) {
1418 			sc->sc_config.an_authtype =
1419 			    AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE;
1420 			ic->ic_flags |= IEEE80211_F_WEPON;
1421 		}
1422 		break;
1423 
1424 	default:
1425 		error = EINVAL;
1426 		break;
1427 	}
1428 	if (error == 0 && prevauth != sc->sc_config.an_authtype)
1429 		error = ENETRESET;
1430 	return error;
1431 }
1432 
1433 int
1434 an_set_nwkey_wep(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1435 {
1436 	int i, txkey, anysetkey, needreset, error;
1437 	struct an_wepkey keys[IEEE80211_WEP_NKID];
1438 
1439 	error = 0;
1440 	memset(keys, 0, sizeof(keys));
1441 	anysetkey = needreset = 0;
1442 
1443 	/* load argument and sanity check */
1444 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1445 		keys[i].an_wep_keylen = nwkey->i_key[i].i_keylen;
1446 		if (keys[i].an_wep_keylen < 0)
1447 			continue;
1448 		if (keys[i].an_wep_keylen != 0 &&
1449 		    keys[i].an_wep_keylen < IEEE80211_WEP_KEYLEN)
1450 			return EINVAL;
1451 		if (keys[i].an_wep_keylen > sizeof(keys[i].an_wep_key))
1452 			return EINVAL;
1453 		if ((error = copyin(nwkey->i_key[i].i_keydat,
1454 		    keys[i].an_wep_key, keys[i].an_wep_keylen)) != 0)
1455 			return error;
1456 		anysetkey++;
1457 	}
1458 	txkey = nwkey->i_defkid - 1;
1459 	if (txkey >= 0) {
1460 		if (txkey >= IEEE80211_WEP_NKID)
1461 			return EINVAL;
1462 		/* default key must have a valid value */
1463 		if (keys[txkey].an_wep_keylen == 0 ||
1464 		    (keys[txkey].an_wep_keylen < 0 &&
1465 		    sc->sc_perskeylen[txkey] == 0))
1466 			return EINVAL;
1467 		anysetkey++;
1468 	}
1469 	DPRINTF(("an_set_nwkey_wep: %s: %sold(%d:%d,%d,%d,%d) "
1470 	    "pers(%d:%d,%d,%d,%d) new(%d:%d,%d,%d,%d)\n",
1471 	    sc->sc_dev.dv_xname,
1472 	    ((nwkey->i_wepon & IEEE80211_NWKEY_PERSIST) ? "persist: " : ""),
1473 	    sc->sc_tx_key,
1474 	    sc->sc_wepkeys[0].an_wep_keylen, sc->sc_wepkeys[1].an_wep_keylen,
1475 	    sc->sc_wepkeys[2].an_wep_keylen, sc->sc_wepkeys[3].an_wep_keylen,
1476 	    sc->sc_tx_perskey,
1477 	    sc->sc_perskeylen[0], sc->sc_perskeylen[1],
1478 	    sc->sc_perskeylen[2], sc->sc_perskeylen[3],
1479 	    txkey,
1480 	    keys[0].an_wep_keylen, keys[1].an_wep_keylen,
1481 	    keys[2].an_wep_keylen, keys[3].an_wep_keylen));
1482 	if (!(nwkey->i_wepon & IEEE80211_NWKEY_PERSIST)) {
1483 		/* set temporary keys */
1484 		sc->sc_tx_key = txkey;
1485 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1486 			if (keys[i].an_wep_keylen < 0)
1487 				continue;
1488 			memcpy(&sc->sc_wepkeys[i], &keys[i], sizeof(keys[i]));
1489 		}
1490 	} else {
1491 		/* set persist keys */
1492 		if (anysetkey) {
1493 			/* prepare to write nvram */
1494 			if (!sc->sc_enabled) {
1495 				if (sc->sc_enable)
1496 					(*sc->sc_enable)(sc);
1497 				an_wait(sc);
1498 				sc->sc_enabled = 1;
1499 				error = an_write_wepkey(sc,
1500 				    AN_RID_WEP_PERSISTENT, keys, txkey);
1501 				if (sc->sc_disable)
1502 					(*sc->sc_disable)(sc);
1503 				sc->sc_enabled = 0;
1504 			} else {
1505 				an_cmd(sc, AN_CMD_DISABLE, 0);
1506 				error = an_write_wepkey(sc,
1507 				    AN_RID_WEP_PERSISTENT, keys, txkey);
1508 				an_cmd(sc, AN_CMD_ENABLE, 0);
1509 			}
1510 			if (error)
1511 				return error;
1512 		}
1513 		if (txkey >= 0)
1514 			sc->sc_tx_perskey = txkey;
1515 		if (sc->sc_tx_key >= 0) {
1516 			sc->sc_tx_key = -1;
1517 			needreset++;
1518 		}
1519 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1520 			if (sc->sc_wepkeys[i].an_wep_keylen >= 0) {
1521 				memset(&sc->sc_wepkeys[i].an_wep_key, 0,
1522 				    sizeof(sc->sc_wepkeys[i].an_wep_key));
1523 				sc->sc_wepkeys[i].an_wep_keylen = -1;
1524 				needreset++;
1525 			}
1526 			if (keys[i].an_wep_keylen >= 0)
1527 				sc->sc_perskeylen[i] = keys[i].an_wep_keylen;
1528 		}
1529 	}
1530 	if (needreset) {
1531 		/* firmware restart to reload persistent key */
1532 		an_reset(sc);
1533 	}
1534 	if (anysetkey || needreset)
1535 		error = ENETRESET;
1536 	return error;
1537 }
1538 
1539 int
1540 an_get_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1541 {
1542 	int i, error;
1543 
1544 	error = 0;
1545 	if (sc->sc_config.an_authtype & AN_AUTHTYPE_LEAP)
1546 		nwkey->i_wepon = IEEE80211_NWKEY_EAP;
1547 	else if (sc->sc_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE)
1548 		nwkey->i_wepon = IEEE80211_NWKEY_WEP;
1549 	else
1550 		nwkey->i_wepon = IEEE80211_NWKEY_OPEN;
1551 	if (sc->sc_tx_key == -1)
1552 		nwkey->i_defkid = sc->sc_tx_perskey + 1;
1553 	else
1554 		nwkey->i_defkid = sc->sc_tx_key + 1;
1555 	if (nwkey->i_key[0].i_keydat == NULL)
1556 		return 0;
1557 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1558 		if (nwkey->i_key[i].i_keydat == NULL)
1559 			continue;
1560 		/* do not show any keys to non-root user */
1561 		if ((error = suser(curproc, 0)) != 0)
1562 			break;
1563 		nwkey->i_key[i].i_keylen = sc->sc_wepkeys[i].an_wep_keylen;
1564 		if (nwkey->i_key[i].i_keylen < 0) {
1565 			if (sc->sc_perskeylen[i] == 0)
1566 				nwkey->i_key[i].i_keylen = 0;
1567 			continue;
1568 		}
1569 		if ((error = copyout(sc->sc_wepkeys[i].an_wep_key,
1570 		    nwkey->i_key[i].i_keydat,
1571 		    sc->sc_wepkeys[i].an_wep_keylen)) != 0)
1572 			break;
1573 	}
1574 	return error;
1575 }
1576 
1577 int
1578 an_write_wepkey(struct an_softc *sc, int type, struct an_wepkey *keys, int kid)
1579 {
1580 	int i, error;
1581 	struct an_rid_wepkey *akey;
1582 
1583 	error = 0;
1584 	akey = &sc->sc_buf.sc_wepkey;
1585 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1586 		memset(akey, 0, sizeof(struct an_rid_wepkey));
1587 		if (keys[i].an_wep_keylen < 0 ||
1588 		    keys[i].an_wep_keylen > sizeof(akey->an_key))
1589 			continue;
1590 		akey->an_key_len = keys[i].an_wep_keylen;
1591 		akey->an_key_index = i;
1592 		akey->an_mac_addr[0] = 1;	/* default mac */
1593 		an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
1594 		memcpy(akey->an_key, keys[i].an_wep_key, keys[i].an_wep_keylen);
1595 		an_swap16((u_int16_t *)&akey->an_key, 8);
1596 		if ((error = an_write_rid(sc, type, akey, sizeof(*akey))) != 0)
1597 			return error;
1598 	}
1599 	if (kid >= 0) {
1600 		memset(akey, 0, sizeof(struct an_rid_wepkey));
1601 		akey->an_key_index = 0xffff;
1602 		akey->an_mac_addr[0] = kid;
1603 		an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
1604 		akey->an_key_len = 0;
1605 		memset(akey->an_key, 0, sizeof(akey->an_key));
1606 		error = an_write_rid(sc, type, akey, sizeof(*akey));
1607 	}
1608 	return error;
1609 }
1610 
1611 int
1612 an_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1613 {
1614 	struct an_softc *sc = ic->ic_softc;
1615 	struct ieee80211_node *ni = ic->ic_bss;
1616 	enum ieee80211_state ostate;
1617 	int buflen;
1618 
1619 	ostate = ic->ic_state;
1620 	DPRINTF(("an_newstate: %s -> %s\n", ieee80211_state_name[ostate],
1621 	    ieee80211_state_name[nstate]));
1622 
1623 	switch (nstate) {
1624 	case IEEE80211_S_INIT:
1625 		ic->ic_flags &= ~IEEE80211_F_IBSSON;
1626 		return (*sc->sc_newstate)(ic, nstate, arg);
1627 
1628 	case IEEE80211_S_RUN:
1629 		buflen = sizeof(sc->sc_buf);
1630 		an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen);
1631 		an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_cur_bssid, 3);
1632 		an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_ssid, 16);
1633 		IEEE80211_ADDR_COPY(ni->ni_bssid,
1634 		    sc->sc_buf.sc_status.an_cur_bssid);
1635 		IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
1636 		ni->ni_chan = &ic->ic_channels[
1637 		    sc->sc_buf.sc_status.an_cur_channel];
1638 		ni->ni_esslen = sc->sc_buf.sc_status.an_ssidlen;
1639 		if (ni->ni_esslen > IEEE80211_NWID_LEN)
1640 			ni->ni_esslen = IEEE80211_NWID_LEN;	/*XXX*/
1641 		memcpy(ni->ni_essid, sc->sc_buf.sc_status.an_ssid,
1642 		    ni->ni_esslen);
1643 		ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B];	/*XXX*/
1644 		if (ic->ic_if.if_flags & IFF_DEBUG) {
1645 			printf("%s: ", sc->sc_dev.dv_xname);
1646 			if (ic->ic_opmode == IEEE80211_M_STA)
1647 				printf("associated ");
1648 			else
1649 				printf("synchronized ");
1650 			printf("with %s ssid ", ether_sprintf(ni->ni_bssid));
1651 			ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
1652 			printf(" channel %u start %uMb\n",
1653 			    sc->sc_buf.sc_status.an_cur_channel,
1654 			    sc->sc_buf.sc_status.an_current_tx_rate/2);
1655 		}
1656 		break;
1657 
1658 	default:
1659 		break;
1660 	}
1661 	ic->ic_state = nstate;
1662 	/* skip standard ieee80211 handling */
1663 	return 0;
1664 }
1665 
1666 int
1667 an_detach(struct an_softc *sc)
1668 {
1669 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1670 	int s;
1671 
1672 	if (!sc->sc_attached)
1673 		return 0;
1674 
1675 	s = splnet();
1676 	sc->sc_invalid = 1;
1677 	an_stop(ifp, 1);
1678 	ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
1679 	ieee80211_ifdetach(ifp);
1680 	if_detach(ifp);
1681 	splx(s);
1682 	return 0;
1683 }
1684 
1685