xref: /openbsd-src/sys/dev/ic/an.c (revision c90a81c56dcebd6a1b73fe4aff9b03385b8e63b3)
1 /*	$OpenBSD: an.c,v 1.73 2018/02/19 08:59:52 mpi Exp $	*/
2 /*	$NetBSD: an.c,v 1.34 2005/06/20 02:49:18 atatat Exp $	*/
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $
35  */
36 /*
37  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
38  * Copyright (c) 2004, 2005 OJC Technologies.  All rights reserved.
39  * Copyright (c) 2004, 2005 Dayton Data Center Services, LLC.  All
40  *     rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the author nor the names of any co-contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL David Young AND CONTRIBUTORS
58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
64  * THE POSSIBILITY OF SUCH DAMAGE.
65  */
66 
67 /*
68  * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
69  *
70  * Written by Bill Paul <wpaul@ctr.columbia.edu>
71  * Electrical Engineering Department
72  * Columbia University, New York City
73  */
74 
75 /*
76  * Ported to NetBSD from FreeBSD by Atsushi Onoe at the San Diego
77  * IETF meeting.
78  */
79 
80 #include "bpfilter.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/sockio.h>
85 #include <sys/mbuf.h>
86 #include <sys/kernel.h>
87 #include <sys/ucred.h>
88 #include <sys/socket.h>
89 #include <sys/timeout.h>
90 #include <sys/device.h>
91 #include <sys/endian.h>
92 #include <sys/tree.h>
93 
94 #include <machine/bus.h>
95 
96 #include <net/if.h>
97 #include <net/if_llc.h>
98 #include <net/if_media.h>
99 
100 #include <netinet/in.h>
101 #include <netinet/if_ether.h>
102 
103 #include <net80211/ieee80211_radiotap.h>
104 #include <net80211/ieee80211_var.h>
105 
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109 
110 #include <dev/ic/anreg.h>
111 #include <dev/ic/anvar.h>
112 
113 struct cfdriver an_cd = {
114 	NULL, "an", DV_IFNET
115 };
116 
117 int	an_reset(struct an_softc *);
118 void	an_wait(struct an_softc *);
119 int	an_init(struct ifnet *);
120 void	an_stop(struct ifnet *, int);
121 void	an_start(struct ifnet *);
122 void	an_watchdog(struct ifnet *);
123 int	an_ioctl(struct ifnet *, u_long, caddr_t);
124 int	an_media_change(struct ifnet *);
125 void	an_media_status(struct ifnet *, struct ifmediareq *);
126 
127 int	an_set_nwkey(struct an_softc *, struct ieee80211_nwkey *);
128 int	an_set_nwkey_wep(struct an_softc *, struct ieee80211_nwkey *);
129 int	an_get_nwkey(struct an_softc *, struct ieee80211_nwkey *);
130 int	an_write_wepkey(struct an_softc *, int, struct an_wepkey *,
131 				int);
132 
133 void	an_rxeof(struct an_softc *);
134 void	an_txeof(struct an_softc *, u_int16_t);
135 void	an_linkstat_intr(struct an_softc *);
136 
137 int	an_cmd(struct an_softc *, int, int);
138 int	an_seek_bap(struct an_softc *, int, int);
139 int	an_read_bap(struct an_softc *, int, int, void *, int, int);
140 int	an_write_bap(struct an_softc *, int, int, void *, int);
141 int	an_mwrite_bap(struct an_softc *, int, int, struct mbuf *, int);
142 int	an_read_rid(struct an_softc *, int, void *, int *);
143 int	an_write_rid(struct an_softc *, int, void *, int);
144 
145 int	an_alloc_nicmem(struct an_softc *, int, int *);
146 
147 int	an_newstate(struct ieee80211com *, enum ieee80211_state, int);
148 
149 #ifdef AN_DEBUG
150 int an_debug = 0;
151 
152 #define	DPRINTF(X)	if (an_debug) printf X
153 #define	DPRINTF2(X)	if (an_debug > 1) printf X
154 #else
155 #define	DPRINTF(X)
156 #define	DPRINTF2(X)
157 #endif
158 
159 #if BYTE_ORDER == BIG_ENDIAN
160 static __inline void
161 an_swap16(u_int16_t *p, int cnt)
162 {
163         for (; cnt--; p++)
164                 *p = swap16(*p);
165 }
166 #define an_switch32(val)	(val >> 16 | (val & 0xFFFF) << 16)
167 #else
168 #define an_swap16(p, cnt)
169 #define an_switch32(val)	val
170 #endif
171 
172 int
173 an_attach(struct an_softc *sc)
174 {
175 	struct ieee80211com *ic = &sc->sc_ic;
176 	struct ifnet *ifp = &ic->ic_if;
177 	int i;
178 	struct an_rid_wepkey *akey;
179 	int buflen, kid, rid;
180 	int chan, chan_min, chan_max;
181 
182 	sc->sc_invalid = 0;
183 
184 	/* disable interrupts */
185 	CSR_WRITE_2(sc, AN_INT_EN, 0);
186 	CSR_WRITE_2(sc, AN_EVENT_ACK, 0xffff);
187 
188 //	an_wait(sc);
189 	if (an_reset(sc) != 0) {
190 		sc->sc_invalid = 1;
191 		return 1;
192 	}
193 
194 	/* Load factory config */
195 	if (an_cmd(sc, AN_CMD_READCFG, 0) != 0) {
196 		printf("%s: failed to load config data\n",
197 		    sc->sc_dev.dv_xname);
198 		return (EIO);
199 	}
200 
201 	/* Read the current configuration */
202 	buflen = sizeof(sc->sc_config);
203 	if (an_read_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, &buflen) != 0) {
204 		printf("%s: read config failed\n", sc->sc_dev.dv_xname);
205 		return(EIO);
206 	}
207 
208 	an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3);
209 
210 	/* Read the card capabilities */
211 	buflen = sizeof(sc->sc_caps);
212 	if (an_read_rid(sc, AN_RID_CAPABILITIES, &sc->sc_caps, &buflen) != 0) {
213 		printf("%s: read caps failed\n", sc->sc_dev.dv_xname);
214 		return(EIO);
215 	}
216 
217 	an_swap16((u_int16_t *)&sc->sc_caps.an_oemaddr, 3);
218 	an_swap16((u_int16_t *)&sc->sc_caps.an_rates, 4);
219 
220 	/* Read WEP settings from persistent memory */
221 	akey = &sc->sc_buf.sc_wepkey;
222 	buflen = sizeof(struct an_rid_wepkey);
223 	rid = AN_RID_WEP_VOLATILE;	/* first persistent key */
224 	while (an_read_rid(sc, rid, akey, &buflen) == 0) {
225 		an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
226 		an_swap16((u_int16_t *)&akey->an_key, 8);
227 		kid = akey->an_key_index;
228 		DPRINTF(("an_attach: wep rid=0x%x len=%d(%d) index=0x%04x "
229 		    "mac[0]=%02x keylen=%d\n",
230 		    rid, buflen, sizeof(*akey), kid,
231 		    akey->an_mac_addr[0], akey->an_key_len));
232 		if (kid == 0xffff) {
233 			sc->sc_tx_perskey = akey->an_mac_addr[0];
234 			sc->sc_tx_key = -1;
235 			break;
236 		}
237 		if (kid >= IEEE80211_WEP_NKID)
238 			break;
239 		sc->sc_perskeylen[kid] = akey->an_key_len;
240 		sc->sc_wepkeys[kid].an_wep_keylen = -1;
241 		rid = AN_RID_WEP_PERSISTENT;	/* for next key */
242 		buflen = sizeof(struct an_rid_wepkey);
243 	}
244 
245 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
246 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
247 
248 	printf("%s: Firmware %x.%02x.%02x, Radio: ", ifp->if_xname,
249 	    sc->sc_caps.an_fwrev >> 8,
250 	    sc->sc_caps.an_fwrev & 0xff,
251 	    sc->sc_caps.an_fwsubrev);
252 
253 	if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_FH)
254 		printf("802.11 FH");
255 	else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_DS)
256 		printf("802.11 DS");
257 	else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_LM2000_DS)
258 		printf("LM2000 DS");
259 	else
260 		printf("unknown (%x)", sc->sc_config.an_radiotype);
261 
262 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
263 
264 	ifp->if_softc = sc;
265 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
266 	ifp->if_ioctl = an_ioctl;
267 	ifp->if_start = an_start;
268 	ifp->if_watchdog = an_watchdog;
269 
270 	ic->ic_phytype = IEEE80211_T_DS;
271 	ic->ic_opmode = IEEE80211_M_STA;
272 	ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_PMGT | IEEE80211_C_MONITOR;
273 #ifndef IEEE80211_STA_ONLY
274 	ic->ic_caps |= IEEE80211_C_IBSS;
275 #endif
276 	ic->ic_state = IEEE80211_S_INIT;
277 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
278 
279 	switch (sc->sc_caps.an_regdomain) {
280 	default:
281 	case AN_REGDOMAIN_USA:
282 	case AN_REGDOMAIN_CANADA:
283 		chan_min = 1; chan_max = 11; break;
284 	case AN_REGDOMAIN_EUROPE:
285 	case AN_REGDOMAIN_AUSTRALIA:
286 		chan_min = 1; chan_max = 13; break;
287 	case AN_REGDOMAIN_JAPAN:
288 		chan_min = 14; chan_max = 14; break;
289 	case AN_REGDOMAIN_SPAIN:
290 		chan_min = 10; chan_max = 11; break;
291 	case AN_REGDOMAIN_FRANCE:
292 		chan_min = 10; chan_max = 13; break;
293 	case AN_REGDOMAIN_JAPANWIDE:
294 		chan_min = 1; chan_max = 14; break;
295 	}
296 
297 	for (chan = chan_min; chan <= chan_max; chan++) {
298 		ic->ic_channels[chan].ic_freq =
299 		    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
300 		ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
301 	}
302 	ic->ic_ibss_chan = &ic->ic_channels[chan_min];
303 
304 	/* Find supported rate */
305 	for (i = 0; i < sizeof(sc->sc_caps.an_rates); i++) {
306 		if (sc->sc_caps.an_rates[i] == 0)
307 			continue;
308 		ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
309 		    ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates++] =
310 		    sc->sc_caps.an_rates[i];
311 	}
312 
313 	/*
314 	 * Call MI attach routine.
315 	 */
316 	if_attach(ifp);
317 	ieee80211_ifattach(ifp);
318 
319 	sc->sc_newstate = ic->ic_newstate;
320 	ic->ic_newstate = an_newstate;
321 
322 	ieee80211_media_init(ifp, an_media_change, an_media_status);
323 
324 #if NBPFILTER > 0
325 	bzero(&sc->sc_rxtapu, sizeof(sc->sc_rxtapu));
326 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
327 	sc->sc_rxtap.ar_ihdr.it_present = AN_RX_RADIOTAP_PRESENT;
328 
329 	bzero(&sc->sc_txtapu, sizeof(sc->sc_txtapu));
330 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
331 	sc->sc_txtap.at_ihdr.it_present = AN_TX_RADIOTAP_PRESENT;
332 
333 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
334 	    sizeof(struct ieee80211_frame) + 64);
335 #endif
336 
337 	sc->sc_attached = 1;
338 
339 	return(0);
340 }
341 
342 void
343 an_rxeof(struct an_softc *sc)
344 {
345 	struct ieee80211com *ic = &sc->sc_ic;
346 	struct ifnet *ifp = &ic->ic_if;
347 	struct ieee80211_frame *wh;
348 	struct ieee80211_rxinfo rxi;
349 	struct ieee80211_node *ni;
350 	struct an_rxframe frmhdr;
351 	struct mbuf *m;
352 	u_int16_t status;
353 	int fid, gaplen, len, off;
354 	uint8_t *gap;
355 
356 	fid = CSR_READ_2(sc, AN_RX_FID);
357 
358 	/* First read in the frame header */
359 	if (an_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr), sizeof(frmhdr)) != 0) {
360 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
361 		ifp->if_ierrors++;
362 		DPRINTF(("an_rxeof: read fid %x failed\n", fid));
363 		return;
364 	}
365 	an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);
366 
367 	status = frmhdr.an_rx_status;
368 	if ((status & AN_STAT_ERRSTAT) != 0 &&
369 	    ic->ic_opmode != IEEE80211_M_MONITOR) {
370 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
371 		ifp->if_ierrors++;
372 		DPRINTF(("an_rxeof: fid %x status %x\n", fid, status));
373 		return;
374 	}
375 
376 	/* the payload length field includes a 16-bit "mystery field" */
377 	len = frmhdr.an_rx_payload_len - sizeof(uint16_t);
378 	off = ALIGN(sizeof(struct ieee80211_frame));
379 
380 	if (off + len > MCLBYTES) {
381 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
382 			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
383 			ifp->if_ierrors++;
384 			DPRINTF(("an_rxeof: oversized packet %d\n", len));
385 			return;
386 		}
387 		len = 0;
388 	}
389 
390 	MGETHDR(m, M_DONTWAIT, MT_DATA);
391 	if (m == NULL) {
392 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
393 		ifp->if_ierrors++;
394 		DPRINTF(("an_rxeof: MGET failed\n"));
395 		return;
396 	}
397 	if (off + len + AN_GAPLEN_MAX > MHLEN) {
398 		MCLGET(m, M_DONTWAIT);
399 		if ((m->m_flags & M_EXT) == 0) {
400 			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
401 			m_freem(m);
402 			ifp->if_ierrors++;
403 			DPRINTF(("an_rxeof: MCLGET failed\n"));
404 			return;
405 		}
406 	}
407 	m->m_data += off - sizeof(struct ieee80211_frame);
408 
409 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
410 		gaplen = frmhdr.an_gaplen;
411 		if (gaplen > AN_GAPLEN_MAX) {
412 			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
413 			m_freem(m);
414 			ifp->if_ierrors++;
415 			DPRINTF(("%s: gap too long\n", __func__));
416 			return;
417 		}
418 		/*
419 		 * We don't need the 16-bit mystery field (payload length?),
420 		 * so read it into the region reserved for the 802.11 header.
421 		 *
422 		 * When Cisco Aironet 350 cards w/ firmware version 5 or
423 		 * greater operate with certain Cisco 350 APs,
424 		 * the "gap" is filled with the SNAP header.  Read
425 		 * it in after the 802.11 header.
426 		 */
427 		gap = m->m_data + sizeof(struct ieee80211_frame) -
428 		    sizeof(uint16_t);
429 		an_read_bap(sc, fid, -1, gap, gaplen + sizeof(u_int16_t),
430 		    gaplen + sizeof(u_int16_t));
431 	} else
432 		gaplen = 0;
433 
434 	an_read_bap(sc, fid, -1,
435 	    m->m_data + sizeof(struct ieee80211_frame) + gaplen, len, len);
436 	an_swap16((u_int16_t *)(m->m_data + sizeof(struct ieee80211_frame) + gaplen), (len+1)/2);
437 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + gaplen +
438 	    len;
439 
440 	memcpy(m->m_data, &frmhdr.an_whdr, sizeof(struct ieee80211_frame));
441 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
442 
443 #if NBPFILTER > 0
444 	if (sc->sc_drvbpf) {
445 		struct mbuf mb;
446 		struct an_rx_radiotap_header *tap = &sc->sc_rxtap;
447 
448 		tap->ar_rate = frmhdr.an_rx_rate;
449 		tap->ar_antsignal = frmhdr.an_rx_signal_strength;
450 		tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
451 		tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
452 
453 
454 		mb.m_data = (caddr_t)tap;
455 		mb.m_len = sizeof(sc->sc_rxtapu);
456 		mb.m_next = m;
457 		mb.m_nextpkt = NULL;
458 		mb.m_type = 0;
459 		mb.m_flags = 0;
460 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
461 	}
462 #endif /* NBPFILTER > 0 */
463 
464 	wh = mtod(m, struct ieee80211_frame *);
465 	rxi.rxi_flags = 0;
466 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
467 		/*
468 		 * WEP is decrypted by hardware. Clear WEP bit
469 		 * header for ieee80211_input().
470 		 */
471 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
472 
473 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
474 	}
475 
476 	ni = ieee80211_find_rxnode(ic, wh);
477 	rxi.rxi_rssi = frmhdr.an_rx_signal_strength;
478 	rxi.rxi_tstamp = an_switch32(frmhdr.an_rx_time);
479 	ieee80211_input(ifp, m, ni, &rxi);
480 	ieee80211_release_node(ic, ni);
481 }
482 
483 void
484 an_txeof(struct an_softc *sc, u_int16_t status)
485 {
486 	struct ifnet *ifp = &sc->sc_ic.ic_if;
487 	int cur, id;
488 
489 	sc->sc_tx_timer = 0;
490 	ifq_clr_oactive(&ifp->if_snd);
491 
492 	id = CSR_READ_2(sc, AN_TX_CMP_FID);
493 	CSR_WRITE_2(sc, AN_EVENT_ACK, status & (AN_EV_TX | AN_EV_TX_EXC));
494 
495 	if (status & AN_EV_TX_EXC)
496 		ifp->if_oerrors++;
497 
498 	cur = sc->sc_txcur;
499 	if (sc->sc_txd[cur].d_fid == id) {
500 		sc->sc_txd[cur].d_inuse = 0;
501 		DPRINTF2(("an_txeof: sent %x/%d\n", id, cur));
502 		AN_INC(cur, AN_TX_RING_CNT);
503 		sc->sc_txcur = cur;
504 	} else {
505 		for (cur = 0; cur < AN_TX_RING_CNT; cur++) {
506 			if (id == sc->sc_txd[cur].d_fid) {
507 				sc->sc_txd[cur].d_inuse = 0;
508 				break;
509 			}
510 		}
511 		if (ifp->if_flags & IFF_DEBUG)
512 			printf("%s: tx mismatch: "
513 			    "expected %x(%d), actual %x(%d)\n",
514 			    sc->sc_dev.dv_xname,
515 			    sc->sc_txd[sc->sc_txcur].d_fid, sc->sc_txcur,
516 			    id, cur);
517 	}
518 }
519 
520 int
521 an_intr(void *arg)
522 {
523 	struct an_softc *sc = arg;
524 	struct ifnet *ifp = &sc->sc_ic.ic_if;
525 	int i;
526 	u_int16_t status;
527 
528 	if (!sc->sc_enabled || sc->sc_invalid ||
529 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
530 	    (ifp->if_flags & IFF_RUNNING) == 0)
531 		return 0;
532 
533 	if ((ifp->if_flags & IFF_UP) == 0) {
534 		CSR_WRITE_2(sc, AN_INT_EN, 0);
535 		CSR_WRITE_2(sc, AN_EVENT_ACK, ~0);
536 		return 1;
537 	}
538 
539 	/* maximum 10 loops per interrupt */
540 	for (i = 0; i < 10; i++) {
541 		if (!sc->sc_enabled || sc->sc_invalid)
542 			return 1;
543 		if (CSR_READ_2(sc, AN_SW0) != AN_MAGIC) {
544 			DPRINTF(("an_intr: magic number changed: %x\n",
545 			    CSR_READ_2(sc, AN_SW0)));
546 			sc->sc_invalid = 1;
547 			return 1;
548 		}
549 		status = CSR_READ_2(sc, AN_EVENT_STAT);
550 		CSR_WRITE_2(sc, AN_EVENT_ACK, status & ~(AN_INTRS));
551 		if ((status & AN_INTRS) == 0)
552 			break;
553 
554 		if (status & AN_EV_RX)
555 			an_rxeof(sc);
556 
557 		if (status & (AN_EV_TX | AN_EV_TX_EXC))
558 			an_txeof(sc, status);
559 
560 		if (status & AN_EV_LINKSTAT)
561 			an_linkstat_intr(sc);
562 
563 		if (ifq_is_oactive(&ifp->if_snd) == 0 &&
564 		    sc->sc_ic.ic_state == IEEE80211_S_RUN &&
565 		    !IFQ_IS_EMPTY(&ifp->if_snd))
566 			an_start(ifp);
567 	}
568 
569 	return 1;
570 }
571 
572 /* Must be called at proper protection level! */
573 int
574 an_cmd(struct an_softc *sc, int cmd, int val)
575 {
576 	int i, stat;
577 
578 	/* make sure previous command completed */
579 	if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) {
580 		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
581 			printf("%s: command 0x%x busy\n", sc->sc_dev.dv_xname,
582 			    CSR_READ_2(sc, AN_COMMAND));
583 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
584 	}
585 
586 	CSR_WRITE_2(sc, AN_PARAM0, val);
587 	CSR_WRITE_2(sc, AN_PARAM1, 0);
588 	CSR_WRITE_2(sc, AN_PARAM2, 0);
589 	CSR_WRITE_2(sc, AN_COMMAND, cmd);
590 
591 	if (cmd == AN_CMD_FW_RESTART) {
592 		/* XXX: should sleep here */
593 		DELAY(100*1000);
594 	}
595 
596 	for (i = 0; i < AN_TIMEOUT; i++) {
597 		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
598 			break;
599 		DELAY(10);
600 	}
601 
602 	stat = CSR_READ_2(sc, AN_STATUS);
603 
604 	/* clear stuck command busy if necessary */
605 	if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY)
606 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
607 
608 	/* Ack the command */
609 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
610 
611 	if (i == AN_TIMEOUT) {
612 		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
613 			printf("%s: command 0x%x param 0x%x timeout\n",
614 			    sc->sc_dev.dv_xname, cmd, val);
615 		return ETIMEDOUT;
616 	}
617 	if (stat & AN_STAT_CMD_RESULT) {
618 		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
619 			printf("%s: command 0x%x param 0x%x status 0x%x "
620 			    "resp 0x%x 0x%x 0x%x\n",
621 			    sc->sc_dev.dv_xname, cmd, val, stat,
622 			    CSR_READ_2(sc, AN_RESP0), CSR_READ_2(sc, AN_RESP1),
623 			    CSR_READ_2(sc, AN_RESP2));
624 		return EIO;
625 	}
626 
627 	return 0;
628 }
629 
630 int
631 an_reset(struct an_softc *sc)
632 {
633 
634 	DPRINTF(("an_reset\n"));
635 
636 	if (!sc->sc_enabled)
637 		return ENXIO;
638 
639 	an_cmd(sc, AN_CMD_ENABLE, 0);
640 	an_cmd(sc, AN_CMD_FW_RESTART, 0);
641 	an_cmd(sc, AN_CMD_NOOP2, 0);
642 
643 	if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) {
644 		printf("%s: reset failed\n", sc->sc_dev.dv_xname);
645 		return ETIMEDOUT;
646 	}
647 
648 	an_cmd(sc, AN_CMD_DISABLE, 0);
649 	return 0;
650 }
651 
652 void
653 an_linkstat_intr(struct an_softc *sc)
654 {
655 	struct ieee80211com *ic = &sc->sc_ic;
656 	u_int16_t status;
657 
658 	status = CSR_READ_2(sc, AN_LINKSTAT);
659 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT);
660 	DPRINTF(("an_linkstat_intr: status 0x%x\n", status));
661 
662 	if (status == AN_LINKSTAT_ASSOCIATED) {
663 		if (ic->ic_state != IEEE80211_S_RUN
664 #ifndef IEEE80211_STA_ONLY
665 		    || ic->ic_opmode == IEEE80211_M_IBSS
666 #endif
667 		    )
668 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
669 	} else {
670 		if (ic->ic_opmode == IEEE80211_M_STA)
671 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
672 	}
673 }
674 
675 /*
676  * Wait for firmware come up after power enabled.
677  */
678 void
679 an_wait(struct an_softc *sc)
680 {
681 	int i;
682 
683 	CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_NOOP2);
684 	for (i = 0; i < 3*hz; i++) {
685 		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
686 			break;
687 		(void)tsleep(sc, PWAIT, "anatch", 1);
688 	}
689 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
690 }
691 
692 int
693 an_read_bap(struct an_softc *sc, int id, int off, void *buf, int len, int blen)
694 {
695 	int error, cnt, cnt2;
696 
697 	if (len == 0 || blen == 0)
698 		return 0;
699 	if (off == -1)
700 		off = sc->sc_bap_off;
701 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
702 		if ((error = an_seek_bap(sc, id, off)) != 0)
703 			return EIO;
704 	}
705 
706 	cnt = (blen + 1) / 2;
707 	CSR_READ_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
708 	for (cnt2 = (len + 1) / 2; cnt < cnt2; cnt++)
709 		(void) CSR_READ_2(sc, AN_DATA0);
710 	sc->sc_bap_off += cnt * 2;
711 
712 	return 0;
713 }
714 
715 int
716 an_write_bap(struct an_softc *sc, int id, int off, void *buf, int buflen)
717 {
718 	int error, cnt;
719 
720 	if (buflen == 0)
721 		return 0;
722 	if (off == -1)
723 		off = sc->sc_bap_off;
724 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
725 		if ((error = an_seek_bap(sc, id, off)) != 0)
726 			return EIO;
727 	}
728 
729 	cnt = (buflen + 1) / 2;
730 	CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
731 	sc->sc_bap_off += cnt * 2;
732 	return 0;
733 }
734 
735 int
736 an_seek_bap(struct an_softc *sc, int id, int off)
737 {
738 	int i, status;
739 
740 	CSR_WRITE_2(sc, AN_SEL0, id);
741 	CSR_WRITE_2(sc, AN_OFF0, off);
742 
743 	for (i = 0; ; i++) {
744 		status = CSR_READ_2(sc, AN_OFF0);
745 		if ((status & AN_OFF_BUSY) == 0)
746 			break;
747 		if (i == AN_TIMEOUT) {
748 			printf("%s: timeout in an_seek_bap to 0x%x/0x%x\n",
749 			    sc->sc_dev.dv_xname, id, off);
750 			sc->sc_bap_off = AN_OFF_ERR;	/* invalidate */
751 			return ETIMEDOUT;
752 		}
753 		DELAY(10);
754 	}
755 	if (status & AN_OFF_ERR) {
756 		printf("%s: failed in an_seek_bap to 0x%x/0x%x\n",
757 		    sc->sc_dev.dv_xname, id, off);
758 		sc->sc_bap_off = AN_OFF_ERR;	/* invalidate */
759 		return EIO;
760 	}
761 	sc->sc_bap_id = id;
762 	sc->sc_bap_off = off;
763 	return 0;
764 }
765 
766 int
767 an_mwrite_bap(struct an_softc *sc, int id, int off, struct mbuf *m, int totlen)
768 {
769 	int error, len, cnt;
770 
771 	if (off == -1)
772 		off = sc->sc_bap_off;
773 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
774 		if ((error = an_seek_bap(sc, id, off)) != 0)
775 			return EIO;
776 	}
777 
778 	for (len = 0; m != NULL; m = m->m_next) {
779 		if (m->m_len == 0)
780 			continue;
781 		len = min(m->m_len, totlen);
782 
783 		if ((mtod(m, u_long) & 0x1) || (len & 0x1)) {
784 			m_copydata(m, 0, totlen, (caddr_t)&sc->sc_buf.sc_txbuf);
785 			cnt = (totlen + 1) / 2;
786 			an_swap16((u_int16_t *)&sc->sc_buf.sc_txbuf, cnt);
787 			CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0,
788 			    sc->sc_buf.sc_val, cnt);
789 			off += cnt * 2;
790 			break;
791 		}
792 		cnt = len / 2;
793 		an_swap16((u_int16_t *)mtod(m, u_int16_t *), cnt);
794 		CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, mtod(m, u_int16_t *),
795 		    cnt);
796 		off += len;
797 		totlen -= len;
798 	}
799 	sc->sc_bap_off = off;
800 	return 0;
801 }
802 
803 int
804 an_alloc_nicmem(struct an_softc *sc, int len, int *idp)
805 {
806 	int i;
807 
808 	if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
809 		printf("%s: failed to allocate %d bytes on NIC\n",
810 		    sc->sc_dev.dv_xname, len);
811 		return(ENOMEM);
812 	}
813 
814 	for (i = 0; i < AN_TIMEOUT; i++) {
815 		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC)
816 			break;
817 		if (i == AN_TIMEOUT) {
818 			printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
819 			return ETIMEDOUT;
820 		}
821 		DELAY(10);
822 	}
823 
824 	*idp = CSR_READ_2(sc, AN_ALLOC_FID);
825 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
826 	return 0;
827 }
828 
829 int
830 an_read_rid(struct an_softc *sc, int rid, void *buf, int *buflenp)
831 {
832 	int error;
833 	u_int16_t len;
834 
835 	/* Tell the NIC to enter record read mode. */
836 	error = an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_READ, rid);
837 	if (error)
838 		return error;
839 
840 	/* length in byte, including length itself */
841 	error = an_read_bap(sc, rid, 0, &len, sizeof(len), sizeof(len));
842 	if (error)
843 		return error;
844 
845 	len -= 2;
846 	return an_read_bap(sc, rid, sizeof(len), buf, len, *buflenp);
847 }
848 
849 int
850 an_write_rid(struct an_softc *sc, int rid, void *buf, int buflen)
851 {
852 	int error;
853 	u_int16_t len;
854 
855 	/* length in byte, including length itself */
856 	len = buflen + 2;
857 
858 	error = an_write_bap(sc, rid, 0, &len, sizeof(len));
859 	if (error)
860 		return error;
861 	error = an_write_bap(sc, rid, sizeof(len), buf, buflen);
862 	if (error)
863 		return error;
864 
865 	return an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_WRITE, rid);
866 }
867 
868 int
869 an_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
870 {
871 	struct an_softc *sc = ifp->if_softc;
872 	int s, error = 0;
873 
874 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
875 		return ENXIO;
876 
877 	s = splnet();
878 
879 	switch(command) {
880 	case SIOCSIFADDR:
881 		ifp->if_flags |= IFF_UP;
882 		error = an_init(ifp);
883 		break;
884 	case SIOCSIFFLAGS:
885 		if (ifp->if_flags & IFF_UP) {
886 			if (sc->sc_enabled) {
887 				/*
888 				 * To avoid rescanning another access point,
889 				 * do not call an_init() here.  Instead, only
890 				 * reflect promisc mode settings.
891 				 */
892 				error = an_cmd(sc, AN_CMD_SET_MODE,
893 				    (ifp->if_flags & IFF_PROMISC) ? 0xffff : 0);
894 			} else
895 				error = an_init(ifp);
896 		} else if (sc->sc_enabled)
897 			an_stop(ifp, 1);
898 		break;
899 	case SIOCADDMULTI:
900 	case SIOCDELMULTI:
901 		/* The Aironet has no multicast filter. */
902 		error = 0;
903 		break;
904 	case SIOCS80211NWKEY:
905 		error = an_set_nwkey(sc, (struct ieee80211_nwkey *)data);
906 			break;
907 	case SIOCG80211NWKEY:
908 		error = an_get_nwkey(sc, (struct ieee80211_nwkey *)data);
909 		break;
910 	default:
911 		error = ieee80211_ioctl(ifp, command, data);
912 		break;
913 	}
914 	if (error == ENETRESET) {
915 		if (sc->sc_enabled)
916 			error = an_init(ifp);
917 		else
918 			error = 0;
919 	}
920 	splx(s);
921 	return(error);
922 }
923 
924 int
925 an_init(struct ifnet *ifp)
926 {
927 	struct an_softc *sc = ifp->if_softc;
928 	struct ieee80211com *ic = &sc->sc_ic;
929 	int i, error, fid;
930 
931 	DPRINTF(("an_init: enabled %d\n", sc->sc_enabled));
932 	if (!sc->sc_enabled) {
933 		if (sc->sc_enable)
934 			(*sc->sc_enable)(sc);
935 		an_wait(sc);
936 		sc->sc_enabled = 1;
937 	} else {
938 		an_stop(ifp, 0);
939 		if ((error = an_reset(sc)) != 0) {
940 			printf("%s: failed to reset\n", ifp->if_xname);
941 			an_stop(ifp, 1);
942 			return error;
943 		}
944 	}
945 	CSR_WRITE_2(sc, AN_SW0, AN_MAGIC);
946 
947 	/* Allocate the TX buffers */
948 	for (i = 0; i < AN_TX_RING_CNT; i++) {
949 		if ((error = an_alloc_nicmem(sc, AN_TX_MAX_LEN, &fid)) != 0) {
950 			printf("%s: failed to allocate nic memory\n",
951 			    ifp->if_xname);
952 			an_stop(ifp, 1);
953 			return error;
954 		}
955 		DPRINTF2(("an_init: txbuf %d allocated %x\n", i, fid));
956 		sc->sc_txd[i].d_fid = fid;
957 		sc->sc_txd[i].d_inuse = 0;
958 	}
959 	sc->sc_txcur = sc->sc_txnext = 0;
960 
961 	IEEE80211_ADDR_COPY(sc->sc_config.an_macaddr, ic->ic_myaddr);
962 	an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3);
963 	sc->sc_config.an_scanmode = AN_SCANMODE_ACTIVE;
964 	sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN;	/*XXX*/
965 	if (ic->ic_flags & IEEE80211_F_WEPON) {
966 		sc->sc_config.an_authtype |=
967 		    AN_AUTHTYPE_PRIVACY_IN_USE;
968 	}
969 	sc->sc_config.an_listen_interval = ic->ic_lintval;
970 	sc->sc_config.an_beacon_period = ic->ic_lintval;
971 	if (ic->ic_flags & IEEE80211_F_PMGTON)
972 		sc->sc_config.an_psave_mode = AN_PSAVE_PSP;
973 	else
974 		sc->sc_config.an_psave_mode = AN_PSAVE_CAM;
975 	sc->sc_config.an_ds_channel =
976 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
977 
978 	switch (ic->ic_opmode) {
979 	case IEEE80211_M_STA:
980 		sc->sc_config.an_opmode =
981 		    AN_OPMODE_INFRASTRUCTURE_STATION;
982 		sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
983 		break;
984 #ifndef IEEE80211_STA_ONLY
985 	case IEEE80211_M_IBSS:
986 		sc->sc_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
987 		sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
988 		break;
989 #endif
990 	case IEEE80211_M_MONITOR:
991 		sc->sc_config.an_opmode =
992 		    AN_OPMODE_INFRASTRUCTURE_STATION;
993 		sc->sc_config.an_rxmode =
994 		    AN_RXMODE_80211_MONITOR_ANYBSS;
995 		sc->sc_config.an_authtype = AN_AUTHTYPE_NONE;
996 		if (ic->ic_flags & IEEE80211_F_WEPON)
997 			sc->sc_config.an_authtype |=
998 			    AN_AUTHTYPE_PRIVACY_IN_USE |
999 		            AN_AUTHTYPE_ALLOW_UNENCRYPTED;
1000 		break;
1001 	default:
1002 		printf("%s: bad opmode %d\n", ifp->if_xname, ic->ic_opmode);
1003 		an_stop(ifp, 1);
1004 		return EIO;
1005 	}
1006 	sc->sc_config.an_rxmode |= AN_RXMODE_NO_8023_HEADER;
1007 
1008 	/* Set the ssid list */
1009 	memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_ssidlist));
1010 	sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid_len =
1011 	    ic->ic_des_esslen;
1012 	if (ic->ic_des_esslen)
1013 		memcpy(sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid,
1014 		    ic->ic_des_essid, ic->ic_des_esslen);
1015 	an_swap16((u_int16_t *)&sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid, 16);
1016 	if ((error = an_write_rid(sc, AN_RID_SSIDLIST, &sc->sc_buf,
1017 	    sizeof(sc->sc_buf.sc_ssidlist)))) {
1018 		printf("%s: failed to write ssid list\n", ifp->if_xname);
1019 		an_stop(ifp, 1);
1020 		return error;
1021 	}
1022 
1023 	/* Set the AP list */
1024 	memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_aplist));
1025 	(void)an_write_rid(sc, AN_RID_APLIST, &sc->sc_buf,
1026 	    sizeof(sc->sc_buf.sc_aplist));
1027 
1028 	/* Set the encapsulation */
1029 	for (i = 0; i < AN_ENCAP_NENTS; i++) {
1030 		sc->sc_buf.sc_encap.an_entry[i].an_ethertype = 0;
1031 		sc->sc_buf.sc_encap.an_entry[i].an_action =
1032 		    AN_RXENCAP_RFC1024 | AN_TXENCAP_RFC1024;
1033 	}
1034 	(void)an_write_rid(sc, AN_RID_ENCAP, &sc->sc_buf,
1035 	    sizeof(sc->sc_buf.sc_encap));
1036 
1037 	/* Set the WEP Keys */
1038 	if (ic->ic_flags & IEEE80211_F_WEPON)
1039 		an_write_wepkey(sc, AN_RID_WEP_VOLATILE, sc->sc_wepkeys,
1040 		    sc->sc_tx_key);
1041 
1042 	/* Set the configuration */
1043 	if ((error = an_write_rid(sc, AN_RID_GENCONFIG, &sc->sc_config,
1044 	    sizeof(sc->sc_config)))) {
1045 		printf("%s: failed to write config\n", ifp->if_xname);
1046 		an_stop(ifp, 1);
1047 		return error;
1048 	}
1049 
1050 	/* Enable the MAC */
1051 	if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
1052 		printf("%s: failed to enable MAC\n", sc->sc_dev.dv_xname);
1053 		an_stop(ifp, 1);
1054 		return ENXIO;
1055 	}
1056 	if (ifp->if_flags & IFF_PROMISC)
1057 		an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
1058 
1059 	ifp->if_flags |= IFF_RUNNING;
1060 	ifq_clr_oactive(&ifp->if_snd);
1061 	ic->ic_state = IEEE80211_S_INIT;
1062 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1063 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1064 
1065 	/* enable interrupts */
1066 	CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
1067 	return 0;
1068 }
1069 
1070 void
1071 an_start(struct ifnet *ifp)
1072 {
1073 	struct an_softc *sc = (struct an_softc *)ifp->if_softc;
1074 	struct ieee80211com *ic = &sc->sc_ic;
1075 	struct ieee80211_node *ni;
1076 	struct ieee80211_frame *wh;
1077 	struct an_txframe frmhdr;
1078 	struct mbuf *m;
1079 	u_int16_t len;
1080 	int cur, fid;
1081 
1082 	if (!sc->sc_enabled || sc->sc_invalid) {
1083 		DPRINTF(("an_start: noop: enabled %d invalid %d\n",
1084 		    sc->sc_enabled, sc->sc_invalid));
1085 		return;
1086 	}
1087 
1088 	memset(&frmhdr, 0, sizeof(frmhdr));
1089 	cur = sc->sc_txnext;
1090 	for (;;) {
1091 		if (ic->ic_state != IEEE80211_S_RUN) {
1092 			DPRINTF(("an_start: not running %d\n", ic->ic_state));
1093 			break;
1094 		}
1095 		m = ifq_deq_begin(&ifp->if_snd);
1096 		if (m == NULL) {
1097 			DPRINTF2(("an_start: no pending mbuf\n"));
1098 			break;
1099 		}
1100 		if (sc->sc_txd[cur].d_inuse) {
1101 			ifq_deq_rollback(&ifp->if_snd, m);
1102 			DPRINTF2(("an_start: %x/%d busy\n",
1103 			    sc->sc_txd[cur].d_fid, cur));
1104 			ifq_set_oactive(&ifp->if_snd);
1105 			break;
1106 		}
1107 		ifq_deq_commit(&ifp->if_snd, m);
1108 #if NBPFILTER > 0
1109 		if (ifp->if_bpf)
1110 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1111 #endif
1112 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) {
1113 			ifp->if_oerrors++;
1114 			continue;
1115 		}
1116 		if (ni != NULL)
1117 			ieee80211_release_node(ic, ni);
1118 #if NBPFILTER > 0
1119 		if (ic->ic_rawbpf)
1120 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1121 #endif
1122 
1123 		wh = mtod(m, struct ieee80211_frame *);
1124 		if (ic->ic_flags & IEEE80211_F_WEPON)
1125 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1126 		m_copydata(m, 0, sizeof(struct ieee80211_frame),
1127 		    (caddr_t)&frmhdr.an_whdr);
1128 		an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);
1129 
1130 		/* insert payload length in front of llc/snap */
1131 		len = htons(m->m_pkthdr.len - sizeof(struct ieee80211_frame));
1132 		m_adj(m, sizeof(struct ieee80211_frame) - sizeof(len));
1133 		if (mtod(m, u_long) & 0x01)
1134 			memcpy(mtod(m, caddr_t), &len, sizeof(len));
1135 		else
1136 			*mtod(m, u_int16_t *) = len;
1137 
1138 		/*
1139 		 * XXX Aironet firmware apparently convert the packet
1140 		 * with longer than 1500 bytes in length into LLC/SNAP.
1141 		 * If we have 1500 bytes in ethernet payload, it is
1142 		 * 1508 bytes including LLC/SNAP and will be inserted
1143 		 * additional LLC/SNAP header with 1501-1508 in its
1144 		 * ethertype !!
1145 		 * So we skip LLC/SNAP header and force firmware to
1146 		 * convert it to LLC/SNAP again.
1147 		 */
1148 		m_adj(m, sizeof(struct llc));
1149 
1150 		frmhdr.an_tx_ctl = AN_TXCTL_80211;
1151 		frmhdr.an_tx_payload_len = m->m_pkthdr.len;
1152 		frmhdr.an_gaplen = AN_TXGAP_802_11;
1153 
1154 		if (ic->ic_fixed_rate != -1)
1155 			frmhdr.an_tx_rate =
1156 			    ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
1157 			    ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1158 		else
1159 			frmhdr.an_tx_rate = 0;
1160 
1161 		if (sizeof(frmhdr) + AN_TXGAP_802_11 + sizeof(len) +
1162 		    m->m_pkthdr.len > AN_TX_MAX_LEN) {
1163 			ifp->if_oerrors++;
1164 			m_freem(m);
1165 			continue;
1166 		}
1167 
1168 #if NBPFILTER > 0
1169 		if (sc->sc_drvbpf) {
1170 			struct mbuf mb;
1171 			struct an_tx_radiotap_header *tap = &sc->sc_txtap;
1172 
1173 			tap->at_rate =
1174 			    ic->ic_bss->ni_rates.rs_rates[ic->ic_bss->ni_txrate];
1175 			tap->at_chan_freq =
1176 			    ic->ic_bss->ni_chan->ic_freq;
1177 			tap->at_chan_flags =
1178 			    ic->ic_bss->ni_chan->ic_flags;
1179 
1180 			mb.m_data = (caddr_t)tap;
1181 			mb.m_len = sizeof(sc->sc_txtapu);
1182 			mb.m_next = m;
1183 			mb.m_nextpkt = NULL;
1184 			mb.m_type = 0;
1185 			mb.m_flags = 0;
1186 			bpf_mtap(sc->sc_drvbpf, m, BPF_DIRECTION_OUT);
1187 		}
1188 #endif
1189 
1190 		fid = sc->sc_txd[cur].d_fid;
1191 		if (an_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1192 			ifp->if_oerrors++;
1193 			m_freem(m);
1194 			continue;
1195 		}
1196 		/* dummy write to avoid seek. */
1197 		an_write_bap(sc, fid, -1, &frmhdr, AN_TXGAP_802_11);
1198 		an_mwrite_bap(sc, fid, -1, m, m->m_pkthdr.len);
1199 		m_freem(m);
1200 
1201 		DPRINTF2(("an_start: send %d byte via %x/%d\n",
1202 		    ntohs(len) + sizeof(struct ieee80211_frame),
1203 		    fid, cur));
1204 		sc->sc_txd[cur].d_inuse = 1;
1205 		if (an_cmd(sc, AN_CMD_TX, fid)) {
1206 			printf("%s: xmit failed\n", ifp->if_xname);
1207 			sc->sc_txd[cur].d_inuse = 0;
1208 			continue;
1209 		}
1210 		sc->sc_tx_timer = 5;
1211 		ifp->if_timer = 1;
1212 		AN_INC(cur, AN_TX_RING_CNT);
1213 		sc->sc_txnext = cur;
1214 	}
1215 }
1216 
1217 void
1218 an_stop(struct ifnet *ifp, int disable)
1219 {
1220 	struct an_softc *sc = ifp->if_softc;
1221 	int i, s;
1222 
1223 	if (!sc->sc_enabled)
1224 		return;
1225 
1226 	DPRINTF(("an_stop: disable %d\n", disable));
1227 
1228 	s = splnet();
1229 	ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1230 	if (!sc->sc_invalid) {
1231 		an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
1232 		CSR_WRITE_2(sc, AN_INT_EN, 0);
1233 		an_cmd(sc, AN_CMD_DISABLE, 0);
1234 
1235 		for (i = 0; i < AN_TX_RING_CNT; i++)
1236 			an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->sc_txd[i].d_fid);
1237 	}
1238 
1239 	sc->sc_tx_timer = 0;
1240 	ifp->if_timer = 0;
1241 	ifp->if_flags &= ~IFF_RUNNING;
1242 	ifq_clr_oactive(&ifp->if_snd);
1243 
1244 	if (disable) {
1245 		if (sc->sc_disable)
1246 			(*sc->sc_disable)(sc);
1247 		sc->sc_enabled = 0;
1248 	}
1249 	splx(s);
1250 }
1251 
1252 void
1253 an_watchdog(struct ifnet *ifp)
1254 {
1255 	struct an_softc *sc = ifp->if_softc;
1256 
1257 	if (!sc->sc_enabled)
1258 		return;
1259 
1260 	if (sc->sc_tx_timer) {
1261 		if (--sc->sc_tx_timer == 0) {
1262 			printf("%s: device timeout\n", ifp->if_xname);
1263 			ifp->if_oerrors++;
1264 			an_init(ifp);
1265 			return;
1266 		}
1267 		ifp->if_timer = 1;
1268 	}
1269 	ieee80211_watchdog(ifp);
1270 }
1271 
1272 /* TBD factor with ieee80211_media_change */
1273 int
1274 an_media_change(struct ifnet *ifp)
1275 {
1276 	struct an_softc *sc = ifp->if_softc;
1277 	struct ieee80211com *ic = &sc->sc_ic;
1278 	struct ifmedia_entry *ime;
1279 	enum ieee80211_opmode newmode;
1280 	int i, rate, error = 0;
1281 
1282 	ime = ic->ic_media.ifm_cur;
1283 	if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1284 		i = -1;
1285 	} else {
1286 		struct ieee80211_rateset *rs =
1287 		    &ic->ic_sup_rates[IEEE80211_MODE_11B];
1288 		rate = ieee80211_media2rate(ime->ifm_media);
1289 		if (rate == 0)
1290 			return EINVAL;
1291 		for (i = 0; i < rs->rs_nrates; i++) {
1292 			if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate)
1293 				break;
1294 		}
1295 		if (i == rs->rs_nrates)
1296 			return EINVAL;
1297 	}
1298 	if (ic->ic_fixed_rate != i) {
1299 		ic->ic_fixed_rate = i;
1300 		error = ENETRESET;
1301 	}
1302 
1303 #ifndef IEEE80211_STA_ONLY
1304 	if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1305 		newmode = IEEE80211_M_IBSS;
1306 	else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1307 		newmode = IEEE80211_M_HOSTAP;
1308 	else
1309 #endif
1310 	if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1311 		newmode = IEEE80211_M_MONITOR;
1312 	else
1313 		newmode = IEEE80211_M_STA;
1314 	if (ic->ic_opmode != newmode) {
1315 		ic->ic_opmode = newmode;
1316 		error = ENETRESET;
1317 	}
1318 	if (error == ENETRESET) {
1319 		if (sc->sc_enabled)
1320 			error = an_init(ifp);
1321 		else
1322 			error = 0;
1323 	}
1324 	ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1325 
1326 	return error;
1327 }
1328 
1329 void
1330 an_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1331 {
1332 	struct an_softc *sc = ifp->if_softc;
1333 	struct ieee80211com *ic = &sc->sc_ic;
1334 	int rate, buflen;
1335 
1336 	if (sc->sc_enabled == 0) {
1337 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1338 		imr->ifm_status = 0;
1339 		return;
1340 	}
1341 
1342 	imr->ifm_status = IFM_AVALID;
1343 	imr->ifm_active = IFM_IEEE80211;
1344 	if (ic->ic_state == IEEE80211_S_RUN)
1345 		imr->ifm_status |= IFM_ACTIVE;
1346 	buflen = sizeof(sc->sc_buf);
1347 	if (ic->ic_fixed_rate != -1)
1348 		rate = ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
1349 		    ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1350 	else if (an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen) != 0)
1351 		rate = 0;
1352 	else
1353 		rate = sc->sc_buf.sc_status.an_current_tx_rate;
1354 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1355 	switch (ic->ic_opmode) {
1356 	case IEEE80211_M_STA:
1357 		break;
1358 #ifndef IEEE80211_STA_ONLY
1359 	case IEEE80211_M_IBSS:
1360 		imr->ifm_active |= IFM_IEEE80211_ADHOC;
1361 		break;
1362 	case IEEE80211_M_HOSTAP:
1363 		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1364 		break;
1365 #endif
1366 	case IEEE80211_M_MONITOR:
1367 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
1368 		break;
1369 	default:
1370 		break;
1371 	}
1372 }
1373 
1374 int
1375 an_set_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1376 {
1377 	int error;
1378 	struct ieee80211com *ic = &sc->sc_ic;
1379 	u_int16_t prevauth;
1380 
1381 	error = 0;
1382 	prevauth = sc->sc_config.an_authtype;
1383 
1384 	switch (nwkey->i_wepon) {
1385 	case IEEE80211_NWKEY_OPEN:
1386 		sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN;
1387 		ic->ic_flags &= ~IEEE80211_F_WEPON;
1388 		break;
1389 
1390 	case IEEE80211_NWKEY_WEP:
1391 	case IEEE80211_NWKEY_WEP | IEEE80211_NWKEY_PERSIST:
1392 		error = an_set_nwkey_wep(sc, nwkey);
1393 		if (error == 0 || error == ENETRESET) {
1394 			sc->sc_config.an_authtype =
1395 			    AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE;
1396 			ic->ic_flags |= IEEE80211_F_WEPON;
1397 		}
1398 		break;
1399 
1400 	default:
1401 		error = EINVAL;
1402 		break;
1403 	}
1404 	if (error == 0 && prevauth != sc->sc_config.an_authtype)
1405 		error = ENETRESET;
1406 	return error;
1407 }
1408 
1409 int
1410 an_set_nwkey_wep(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1411 {
1412 	int i, txkey, anysetkey, needreset, error;
1413 	struct an_wepkey keys[IEEE80211_WEP_NKID];
1414 
1415 	error = 0;
1416 	memset(keys, 0, sizeof(keys));
1417 	anysetkey = needreset = 0;
1418 
1419 	/* load argument and sanity check */
1420 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1421 		keys[i].an_wep_keylen = nwkey->i_key[i].i_keylen;
1422 		if (keys[i].an_wep_keylen < 0)
1423 			continue;
1424 		if (keys[i].an_wep_keylen != 0 &&
1425 		    keys[i].an_wep_keylen < IEEE80211_WEP_KEYLEN)
1426 			return EINVAL;
1427 		if (keys[i].an_wep_keylen > sizeof(keys[i].an_wep_key))
1428 			return EINVAL;
1429 		if ((error = copyin(nwkey->i_key[i].i_keydat,
1430 		    keys[i].an_wep_key, keys[i].an_wep_keylen)) != 0)
1431 			return error;
1432 		anysetkey++;
1433 	}
1434 	txkey = nwkey->i_defkid - 1;
1435 	if (txkey >= 0) {
1436 		if (txkey >= IEEE80211_WEP_NKID)
1437 			return EINVAL;
1438 		/* default key must have a valid value */
1439 		if (keys[txkey].an_wep_keylen == 0 ||
1440 		    (keys[txkey].an_wep_keylen < 0 &&
1441 		    sc->sc_perskeylen[txkey] == 0))
1442 			return EINVAL;
1443 		anysetkey++;
1444 	}
1445 	DPRINTF(("an_set_nwkey_wep: %s: %sold(%d:%d,%d,%d,%d) "
1446 	    "pers(%d:%d,%d,%d,%d) new(%d:%d,%d,%d,%d)\n",
1447 	    sc->sc_dev.dv_xname,
1448 	    ((nwkey->i_wepon & IEEE80211_NWKEY_PERSIST) ? "persist: " : ""),
1449 	    sc->sc_tx_key,
1450 	    sc->sc_wepkeys[0].an_wep_keylen, sc->sc_wepkeys[1].an_wep_keylen,
1451 	    sc->sc_wepkeys[2].an_wep_keylen, sc->sc_wepkeys[3].an_wep_keylen,
1452 	    sc->sc_tx_perskey,
1453 	    sc->sc_perskeylen[0], sc->sc_perskeylen[1],
1454 	    sc->sc_perskeylen[2], sc->sc_perskeylen[3],
1455 	    txkey,
1456 	    keys[0].an_wep_keylen, keys[1].an_wep_keylen,
1457 	    keys[2].an_wep_keylen, keys[3].an_wep_keylen));
1458 	if (!(nwkey->i_wepon & IEEE80211_NWKEY_PERSIST)) {
1459 		/* set temporary keys */
1460 		sc->sc_tx_key = txkey;
1461 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1462 			if (keys[i].an_wep_keylen < 0)
1463 				continue;
1464 			memcpy(&sc->sc_wepkeys[i], &keys[i], sizeof(keys[i]));
1465 		}
1466 	} else {
1467 		/* set persist keys */
1468 		if (anysetkey) {
1469 			/* prepare to write nvram */
1470 			if (!sc->sc_enabled) {
1471 				if (sc->sc_enable)
1472 					(*sc->sc_enable)(sc);
1473 				an_wait(sc);
1474 				sc->sc_enabled = 1;
1475 				error = an_write_wepkey(sc,
1476 				    AN_RID_WEP_PERSISTENT, keys, txkey);
1477 				if (sc->sc_disable)
1478 					(*sc->sc_disable)(sc);
1479 				sc->sc_enabled = 0;
1480 			} else {
1481 				an_cmd(sc, AN_CMD_DISABLE, 0);
1482 				error = an_write_wepkey(sc,
1483 				    AN_RID_WEP_PERSISTENT, keys, txkey);
1484 				an_cmd(sc, AN_CMD_ENABLE, 0);
1485 			}
1486 			if (error)
1487 				return error;
1488 		}
1489 		if (txkey >= 0)
1490 			sc->sc_tx_perskey = txkey;
1491 		if (sc->sc_tx_key >= 0) {
1492 			sc->sc_tx_key = -1;
1493 			needreset++;
1494 		}
1495 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1496 			if (sc->sc_wepkeys[i].an_wep_keylen >= 0) {
1497 				memset(&sc->sc_wepkeys[i].an_wep_key, 0,
1498 				    sizeof(sc->sc_wepkeys[i].an_wep_key));
1499 				sc->sc_wepkeys[i].an_wep_keylen = -1;
1500 				needreset++;
1501 			}
1502 			if (keys[i].an_wep_keylen >= 0)
1503 				sc->sc_perskeylen[i] = keys[i].an_wep_keylen;
1504 		}
1505 	}
1506 	if (needreset) {
1507 		/* firmware restart to reload persistent key */
1508 		an_reset(sc);
1509 	}
1510 	if (anysetkey || needreset)
1511 		error = ENETRESET;
1512 	return error;
1513 }
1514 
1515 int
1516 an_get_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1517 {
1518 	int i, error;
1519 
1520 	error = 0;
1521 	if (sc->sc_config.an_authtype & AN_AUTHTYPE_LEAP)
1522 		nwkey->i_wepon = IEEE80211_NWKEY_EAP;
1523 	else if (sc->sc_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE)
1524 		nwkey->i_wepon = IEEE80211_NWKEY_WEP;
1525 	else
1526 		nwkey->i_wepon = IEEE80211_NWKEY_OPEN;
1527 	if (sc->sc_tx_key == -1)
1528 		nwkey->i_defkid = sc->sc_tx_perskey + 1;
1529 	else
1530 		nwkey->i_defkid = sc->sc_tx_key + 1;
1531 	if (nwkey->i_key[0].i_keydat == NULL)
1532 		return 0;
1533 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1534 		if (nwkey->i_key[i].i_keydat == NULL)
1535 			continue;
1536 		/* do not show any keys to non-root user */
1537 		if ((error = suser(curproc)) != 0)
1538 			break;
1539 		nwkey->i_key[i].i_keylen = sc->sc_wepkeys[i].an_wep_keylen;
1540 		if (nwkey->i_key[i].i_keylen < 0) {
1541 			if (sc->sc_perskeylen[i] == 0)
1542 				nwkey->i_key[i].i_keylen = 0;
1543 			continue;
1544 		}
1545 		if ((error = copyout(sc->sc_wepkeys[i].an_wep_key,
1546 		    nwkey->i_key[i].i_keydat,
1547 		    sc->sc_wepkeys[i].an_wep_keylen)) != 0)
1548 			break;
1549 	}
1550 	return error;
1551 }
1552 
1553 int
1554 an_write_wepkey(struct an_softc *sc, int type, struct an_wepkey *keys, int kid)
1555 {
1556 	int i, error;
1557 	struct an_rid_wepkey *akey;
1558 
1559 	error = 0;
1560 	akey = &sc->sc_buf.sc_wepkey;
1561 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1562 		memset(akey, 0, sizeof(struct an_rid_wepkey));
1563 		if (keys[i].an_wep_keylen < 0 ||
1564 		    keys[i].an_wep_keylen > sizeof(akey->an_key))
1565 			continue;
1566 		akey->an_key_len = keys[i].an_wep_keylen;
1567 		akey->an_key_index = i;
1568 		akey->an_mac_addr[0] = 1;	/* default mac */
1569 		an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
1570 		memcpy(akey->an_key, keys[i].an_wep_key, keys[i].an_wep_keylen);
1571 		an_swap16((u_int16_t *)&akey->an_key, 8);
1572 		if ((error = an_write_rid(sc, type, akey, sizeof(*akey))) != 0)
1573 			return error;
1574 	}
1575 	if (kid >= 0) {
1576 		memset(akey, 0, sizeof(struct an_rid_wepkey));
1577 		akey->an_key_index = 0xffff;
1578 		akey->an_mac_addr[0] = kid;
1579 		an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
1580 		akey->an_key_len = 0;
1581 		memset(akey->an_key, 0, sizeof(akey->an_key));
1582 		error = an_write_rid(sc, type, akey, sizeof(*akey));
1583 	}
1584 	return error;
1585 }
1586 
1587 int
1588 an_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1589 {
1590 	struct an_softc *sc = ic->ic_softc;
1591 	struct ieee80211_node *ni = ic->ic_bss;
1592 	enum ieee80211_state ostate;
1593 	int buflen;
1594 
1595 	ostate = ic->ic_state;
1596 	DPRINTF(("an_newstate: %s -> %s\n", ieee80211_state_name[ostate],
1597 	    ieee80211_state_name[nstate]));
1598 
1599 	switch (nstate) {
1600 	case IEEE80211_S_INIT:
1601 		ic->ic_flags &= ~IEEE80211_F_IBSSON;
1602 		return (*sc->sc_newstate)(ic, nstate, arg);
1603 
1604 	case IEEE80211_S_RUN:
1605 		buflen = sizeof(sc->sc_buf);
1606 		an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen);
1607 		an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_cur_bssid, 3);
1608 		an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_ssid, 16);
1609 		IEEE80211_ADDR_COPY(ni->ni_bssid,
1610 		    sc->sc_buf.sc_status.an_cur_bssid);
1611 		IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
1612 		ni->ni_chan = &ic->ic_channels[
1613 		    sc->sc_buf.sc_status.an_cur_channel];
1614 		ni->ni_esslen = sc->sc_buf.sc_status.an_ssidlen;
1615 		if (ni->ni_esslen > IEEE80211_NWID_LEN)
1616 			ni->ni_esslen = IEEE80211_NWID_LEN;	/*XXX*/
1617 		memcpy(ni->ni_essid, sc->sc_buf.sc_status.an_ssid,
1618 		    ni->ni_esslen);
1619 		ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B];	/*XXX*/
1620 		if (ic->ic_if.if_flags & IFF_DEBUG) {
1621 			printf("%s: ", sc->sc_dev.dv_xname);
1622 			if (ic->ic_opmode == IEEE80211_M_STA)
1623 				printf("associated ");
1624 			else
1625 				printf("synchronized ");
1626 			printf("with %s ssid ", ether_sprintf(ni->ni_bssid));
1627 			ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
1628 			printf(" channel %u start %uMb\n",
1629 			    sc->sc_buf.sc_status.an_cur_channel,
1630 			    sc->sc_buf.sc_status.an_current_tx_rate/2);
1631 		}
1632 		break;
1633 
1634 	default:
1635 		break;
1636 	}
1637 	ic->ic_state = nstate;
1638 	/* skip standard ieee80211 handling */
1639 	return 0;
1640 }
1641 
1642 int
1643 an_detach(struct an_softc *sc)
1644 {
1645 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1646 	int s;
1647 
1648 	if (!sc->sc_attached)
1649 		return 0;
1650 
1651 	s = splnet();
1652 	sc->sc_invalid = 1;
1653 	an_stop(ifp, 1);
1654 	ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
1655 	ieee80211_ifdetach(ifp);
1656 	if_detach(ifp);
1657 	splx(s);
1658 	return 0;
1659 }
1660 
1661