xref: /openbsd-src/sys/dev/ic/an.c (revision 2b0358df1d88d06ef4139321dd05bd5e05d91eaf)
1 /*	$OpenBSD: an.c,v 1.56 2008/08/27 09:05:03 damien Exp $	*/
2 /*	$NetBSD: an.c,v 1.34 2005/06/20 02:49:18 atatat Exp $	*/
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $
35  */
36 /*
37  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
38  * Copyright (c) 2004, 2005 OJC Technologies.  All rights reserved.
39  * Copyright (c) 2004, 2005 Dayton Data Center Services, LLC.  All
40  *     rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the author nor the names of any co-contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL David Young AND CONTRIBUTORS
58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
64  * THE POSSIBILITY OF SUCH DAMAGE.
65  */
66 
67 /*
68  * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
69  *
70  * Written by Bill Paul <wpaul@ctr.columbia.edu>
71  * Electrical Engineering Department
72  * Columbia University, New York City
73  */
74 
75 /*
76  * Ported to NetBSD from FreeBSD by Atsushi Onoe at the San Diego
77  * IETF meeting.
78  */
79 
80 #include <sys/cdefs.h>
81 
82 #include "bpfilter.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/kernel.h>
89 #include <sys/ucred.h>
90 #include <sys/socket.h>
91 #include <sys/timeout.h>
92 #include <sys/device.h>
93 #include <sys/proc.h>
94 #include <sys/endian.h>
95 #include <sys/tree.h>
96 
97 #include <machine/bus.h>
98 
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_llc.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 
105 #ifdef INET
106 #include <netinet/in.h>
107 #include <netinet/in_systm.h>
108 #include <netinet/in_var.h>
109 #include <netinet/ip.h>
110 #include <netinet/if_ether.h>
111 #endif
112 
113 #include <net80211/ieee80211_radiotap.h>
114 #include <net80211/ieee80211_var.h>
115 
116 #if NBPFILTER > 0
117 #include <net/bpf.h>
118 #endif
119 
120 #include <dev/ic/anreg.h>
121 #include <dev/ic/anvar.h>
122 
123 struct cfdriver an_cd = {
124 	NULL, "an", DV_IFNET
125 };
126 
127 int	an_reset(struct an_softc *);
128 void	an_wait(struct an_softc *);
129 int	an_init(struct ifnet *);
130 void	an_stop(struct ifnet *, int);
131 void	an_start(struct ifnet *);
132 void	an_watchdog(struct ifnet *);
133 int	an_ioctl(struct ifnet *, u_long, caddr_t);
134 int	an_media_change(struct ifnet *);
135 void	an_media_status(struct ifnet *, struct ifmediareq *);
136 
137 int	an_set_nwkey(struct an_softc *, struct ieee80211_nwkey *);
138 int	an_set_nwkey_wep(struct an_softc *, struct ieee80211_nwkey *);
139 int	an_get_nwkey(struct an_softc *, struct ieee80211_nwkey *);
140 int	an_write_wepkey(struct an_softc *, int, struct an_wepkey *,
141 				int);
142 
143 void	an_rxeof(struct an_softc *);
144 void	an_txeof(struct an_softc *, u_int16_t);
145 void	an_linkstat_intr(struct an_softc *);
146 
147 int	an_cmd(struct an_softc *, int, int);
148 int	an_seek_bap(struct an_softc *, int, int);
149 int	an_read_bap(struct an_softc *, int, int, void *, int, int);
150 int	an_write_bap(struct an_softc *, int, int, void *, int);
151 int	an_mwrite_bap(struct an_softc *, int, int, struct mbuf *, int);
152 int	an_read_rid(struct an_softc *, int, void *, int *);
153 int	an_write_rid(struct an_softc *, int, void *, int);
154 
155 int	an_alloc_nicmem(struct an_softc *, int, int *);
156 
157 int	an_newstate(struct ieee80211com *, enum ieee80211_state, int);
158 
159 #ifdef AN_DEBUG
160 int an_debug = 0;
161 
162 #define	DPRINTF(X)	if (an_debug) printf X
163 #define	DPRINTF2(X)	if (an_debug > 1) printf X
164 #else
165 #define	DPRINTF(X)
166 #define	DPRINTF2(X)
167 #endif
168 
169 #if BYTE_ORDER == BIG_ENDIAN
170 static __inline void
171 an_swap16(u_int16_t *p, int cnt)
172 {
173         for (; cnt--; p++)
174                 *p = swap16(*p);
175 }
176 #define an_switch32(val)	(val >> 16 | (val & 0xFFFF) << 16)
177 #else
178 #define an_swap16(p, cnt)
179 #define an_switch32(val)	val
180 #endif
181 
182 int
183 an_attach(struct an_softc *sc)
184 {
185 	struct ieee80211com *ic = &sc->sc_ic;
186 	struct ifnet *ifp = &ic->ic_if;
187 	int i;
188 	struct an_rid_wepkey *akey;
189 	int buflen, kid, rid;
190 	int chan, chan_min, chan_max;
191 
192 	sc->sc_invalid = 0;
193 
194 	/* disable interrupts */
195 	CSR_WRITE_2(sc, AN_INT_EN, 0);
196 	CSR_WRITE_2(sc, AN_EVENT_ACK, 0xffff);
197 
198 //	an_wait(sc);
199 	if (an_reset(sc) != 0) {
200 		sc->sc_invalid = 1;
201 		return 1;
202 	}
203 
204 	/* Load factory config */
205 	if (an_cmd(sc, AN_CMD_READCFG, 0) != 0) {
206 		printf("%s: failed to load config data\n",
207 		    sc->sc_dev.dv_xname);
208 		return (EIO);
209 	}
210 
211 	/* Read the current configuration */
212 	buflen = sizeof(sc->sc_config);
213 	if (an_read_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, &buflen) != 0) {
214 		printf("%s: read config failed\n", sc->sc_dev.dv_xname);
215 		return(EIO);
216 	}
217 
218 	an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3);
219 
220 	/* Read the card capabilities */
221 	buflen = sizeof(sc->sc_caps);
222 	if (an_read_rid(sc, AN_RID_CAPABILITIES, &sc->sc_caps, &buflen) != 0) {
223 		printf("%s: read caps failed\n", sc->sc_dev.dv_xname);
224 		return(EIO);
225 	}
226 
227 	an_swap16((u_int16_t *)&sc->sc_caps.an_oemaddr, 3);
228 	an_swap16((u_int16_t *)&sc->sc_caps.an_rates, 4);
229 
230 	/* Read WEP settings from persistent memory */
231 	akey = &sc->sc_buf.sc_wepkey;
232 	buflen = sizeof(struct an_rid_wepkey);
233 	rid = AN_RID_WEP_VOLATILE;	/* first persistent key */
234 	while (an_read_rid(sc, rid, akey, &buflen) == 0) {
235 		an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
236 		an_swap16((u_int16_t *)&akey->an_key, 8);
237 		kid = akey->an_key_index;
238 		DPRINTF(("an_attach: wep rid=0x%x len=%d(%d) index=0x%04x "
239 		    "mac[0]=%02x keylen=%d\n",
240 		    rid, buflen, sizeof(*akey), kid,
241 		    akey->an_mac_addr[0], akey->an_key_len));
242 		if (kid == 0xffff) {
243 			sc->sc_tx_perskey = akey->an_mac_addr[0];
244 			sc->sc_tx_key = -1;
245 			break;
246 		}
247 		if (kid >= IEEE80211_WEP_NKID)
248 			break;
249 		sc->sc_perskeylen[kid] = akey->an_key_len;
250 		sc->sc_wepkeys[kid].an_wep_keylen = -1;
251 		rid = AN_RID_WEP_PERSISTENT;	/* for next key */
252 		buflen = sizeof(struct an_rid_wepkey);
253 	}
254 
255 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
256 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
257 
258 	printf("%s: Firmware %x.%02x.%02x, Radio: ", ifp->if_xname,
259 	    sc->sc_caps.an_fwrev >> 8,
260 	    sc->sc_caps.an_fwrev & 0xff,
261 	    sc->sc_caps.an_fwsubrev);
262 
263 	if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_FH)
264 		printf("802.11 FH");
265 	else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_DS)
266 		printf("802.11 DS");
267 	else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_LM2000_DS)
268 		printf("LM2000 DS");
269 	else
270 		printf("unknown (%x)", sc->sc_config.an_radiotype);
271 
272 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
273 
274 	ifp->if_softc = sc;
275 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
276 	ifp->if_ioctl = an_ioctl;
277 	ifp->if_start = an_start;
278 	ifp->if_init = an_init;
279 	ifp->if_watchdog = an_watchdog;
280 	IFQ_SET_READY(&ifp->if_snd);
281 
282 	ic->ic_phytype = IEEE80211_T_DS;
283 	ic->ic_opmode = IEEE80211_M_STA;
284 	ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_PMGT | IEEE80211_C_MONITOR;
285 #ifndef IEEE80211_STA_ONLY
286 	ic->ic_caps |= IEEE80211_C_IBSS;
287 #endif
288 	ic->ic_state = IEEE80211_S_INIT;
289 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
290 
291 	switch (sc->sc_caps.an_regdomain) {
292 	default:
293 	case AN_REGDOMAIN_USA:
294 	case AN_REGDOMAIN_CANADA:
295 		chan_min = 1; chan_max = 11; break;
296 	case AN_REGDOMAIN_EUROPE:
297 	case AN_REGDOMAIN_AUSTRALIA:
298 		chan_min = 1; chan_max = 13; break;
299 	case AN_REGDOMAIN_JAPAN:
300 		chan_min = 14; chan_max = 14; break;
301 	case AN_REGDOMAIN_SPAIN:
302 		chan_min = 10; chan_max = 11; break;
303 	case AN_REGDOMAIN_FRANCE:
304 		chan_min = 10; chan_max = 13; break;
305 	case AN_REGDOMAIN_JAPANWIDE:
306 		chan_min = 1; chan_max = 14; break;
307 	}
308 
309 	for (chan = chan_min; chan <= chan_max; chan++) {
310 		ic->ic_channels[chan].ic_freq =
311 		    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
312 		ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
313 	}
314 	ic->ic_ibss_chan = &ic->ic_channels[chan_min];
315 
316 	/* Find supported rate */
317 	for (i = 0; i < sizeof(sc->sc_caps.an_rates); i++) {
318 		if (sc->sc_caps.an_rates[i] == 0)
319 			continue;
320 		ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
321 		    ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates++] =
322 		    sc->sc_caps.an_rates[i];
323 	}
324 
325 	/*
326 	 * Call MI attach routine.
327 	 */
328 	if_attach(ifp);
329 	ieee80211_ifattach(ifp);
330 
331 	sc->sc_newstate = ic->ic_newstate;
332 	ic->ic_newstate = an_newstate;
333 
334 	ieee80211_media_init(ifp, an_media_change, an_media_status);
335 
336 #if NBPFILTER > 0
337 	bzero(&sc->sc_rxtapu, sizeof(sc->sc_rxtapu));
338 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
339 	sc->sc_rxtap.ar_ihdr.it_present = AN_RX_RADIOTAP_PRESENT;
340 
341 	bzero(&sc->sc_txtapu, sizeof(sc->sc_txtapu));
342 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
343 	sc->sc_txtap.at_ihdr.it_present = AN_TX_RADIOTAP_PRESENT;
344 
345 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
346 	    sizeof(struct ieee80211_frame) + 64);
347 #endif
348 
349 	sc->sc_sdhook = shutdownhook_establish(an_shutdown, sc);
350 
351 	sc->sc_attached = 1;
352 
353 	return(0);
354 }
355 
356 void
357 an_rxeof(struct an_softc *sc)
358 {
359 	struct ieee80211com *ic = &sc->sc_ic;
360 	struct ifnet *ifp = &ic->ic_if;
361 	struct ieee80211_frame *wh;
362 	struct ieee80211_rxinfo rxi;
363 	struct ieee80211_node *ni;
364 	struct an_rxframe frmhdr;
365 	struct mbuf *m;
366 	u_int16_t status;
367 	int fid, gaplen, len, off;
368 	uint8_t *gap;
369 
370 	fid = CSR_READ_2(sc, AN_RX_FID);
371 
372 	/* First read in the frame header */
373 	if (an_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr), sizeof(frmhdr)) != 0) {
374 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
375 		ifp->if_ierrors++;
376 		DPRINTF(("an_rxeof: read fid %x failed\n", fid));
377 		return;
378 	}
379 	an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);
380 
381 	status = frmhdr.an_rx_status;
382 	if ((status & AN_STAT_ERRSTAT) != 0 &&
383 	    ic->ic_opmode != IEEE80211_M_MONITOR) {
384 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
385 		ifp->if_ierrors++;
386 		DPRINTF(("an_rxeof: fid %x status %x\n", fid, status));
387 		return;
388 	}
389 
390 	/* the payload length field includes a 16-bit "mystery field" */
391 	len = frmhdr.an_rx_payload_len - sizeof(uint16_t);
392 	off = ALIGN(sizeof(struct ieee80211_frame));
393 
394 	if (off + len > MCLBYTES) {
395 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
396 			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
397 			ifp->if_ierrors++;
398 			DPRINTF(("an_rxeof: oversized packet %d\n", len));
399 			return;
400 		}
401 		len = 0;
402 	}
403 
404 	MGETHDR(m, M_DONTWAIT, MT_DATA);
405 	if (m == NULL) {
406 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
407 		ifp->if_ierrors++;
408 		DPRINTF(("an_rxeof: MGET failed\n"));
409 		return;
410 	}
411 	if (off + len + AN_GAPLEN_MAX > MHLEN) {
412 		MCLGET(m, M_DONTWAIT);
413 		if ((m->m_flags & M_EXT) == 0) {
414 			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
415 			m_freem(m);
416 			ifp->if_ierrors++;
417 			DPRINTF(("an_rxeof: MCLGET failed\n"));
418 			return;
419 		}
420 	}
421 	m->m_data += off - sizeof(struct ieee80211_frame);
422 
423 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
424 		gaplen = frmhdr.an_gaplen;
425 		if (gaplen > AN_GAPLEN_MAX) {
426 			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
427 			m_freem(m);
428 			ifp->if_ierrors++;
429 			DPRINTF(("%s: gap too long\n", __func__));
430 			return;
431 		}
432 		/*
433 		 * We don't need the 16-bit mystery field (payload length?),
434 		 * so read it into the region reserved for the 802.11 header.
435 		 *
436 		 * When Cisco Aironet 350 cards w/ firmware version 5 or
437 		 * greater operate with certain Cisco 350 APs,
438 		 * the "gap" is filled with the SNAP header.  Read
439 		 * it in after the 802.11 header.
440 		 */
441 		gap = m->m_data + sizeof(struct ieee80211_frame) -
442 		    sizeof(uint16_t);
443 		an_read_bap(sc, fid, -1, gap, gaplen + sizeof(u_int16_t),
444 		    gaplen + sizeof(u_int16_t));
445 	} else
446 		gaplen = 0;
447 
448 	an_read_bap(sc, fid, -1,
449 	    m->m_data + sizeof(struct ieee80211_frame) + gaplen, len, len);
450 	an_swap16((u_int16_t *)(m->m_data + sizeof(struct ieee80211_frame) + gaplen), (len+1)/2);
451 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + gaplen +
452 	    len;
453 
454 	memcpy(m->m_data, &frmhdr.an_whdr, sizeof(struct ieee80211_frame));
455 	m->m_pkthdr.rcvif = ifp;
456 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
457 
458 #if NBPFILTER > 0
459 	if (sc->sc_drvbpf) {
460 		struct mbuf mb;
461 		struct an_rx_radiotap_header *tap = &sc->sc_rxtap;
462 
463 		tap->ar_rate = frmhdr.an_rx_rate;
464 		tap->ar_antsignal = frmhdr.an_rx_signal_strength;
465 		tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
466 		tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
467 
468 
469 		mb.m_data = (caddr_t)tap;
470 		mb.m_len = sizeof(sc->sc_rxtapu);
471 		mb.m_next = m;
472 		mb.m_nextpkt = NULL;
473 		mb.m_type = 0;
474 		mb.m_flags = 0;
475 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
476 	}
477 #endif /* NBPFILTER > 0 */
478 
479 	wh = mtod(m, struct ieee80211_frame *);
480 	rxi.rxi_flags = 0;
481 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
482 		/*
483 		 * WEP is decrypted by hardware. Clear WEP bit
484 		 * header for ieee80211_input().
485 		 */
486 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
487 
488 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
489 	}
490 
491 	ni = ieee80211_find_rxnode(ic, wh);
492 	rxi.rxi_rssi = frmhdr.an_rx_signal_strength;
493 	rxi.rxi_tstamp = an_switch32(frmhdr.an_rx_time);
494 	ieee80211_input(ifp, m, ni, &rxi);
495 	ieee80211_release_node(ic, ni);
496 }
497 
498 void
499 an_txeof(struct an_softc *sc, u_int16_t status)
500 {
501 	struct ifnet *ifp = &sc->sc_ic.ic_if;
502 	int cur, id;
503 
504 	sc->sc_tx_timer = 0;
505 	ifp->if_flags &= ~IFF_OACTIVE;
506 
507 	id = CSR_READ_2(sc, AN_TX_CMP_FID);
508 	CSR_WRITE_2(sc, AN_EVENT_ACK, status & (AN_EV_TX | AN_EV_TX_EXC));
509 
510 	if (status & AN_EV_TX_EXC)
511 		ifp->if_oerrors++;
512 	else
513 		ifp->if_opackets++;
514 
515 	cur = sc->sc_txcur;
516 	if (sc->sc_txd[cur].d_fid == id) {
517 		sc->sc_txd[cur].d_inuse = 0;
518 		DPRINTF2(("an_txeof: sent %x/%d\n", id, cur));
519 		AN_INC(cur, AN_TX_RING_CNT);
520 		sc->sc_txcur = cur;
521 	} else {
522 		for (cur = 0; cur < AN_TX_RING_CNT; cur++) {
523 			if (id == sc->sc_txd[cur].d_fid) {
524 				sc->sc_txd[cur].d_inuse = 0;
525 				break;
526 			}
527 		}
528 		if (ifp->if_flags & IFF_DEBUG)
529 			printf("%s: tx mismatch: "
530 			    "expected %x(%d), actual %x(%d)\n",
531 			    sc->sc_dev.dv_xname,
532 			    sc->sc_txd[sc->sc_txcur].d_fid, sc->sc_txcur,
533 			    id, cur);
534 	}
535 }
536 
537 int
538 an_intr(void *arg)
539 {
540 	struct an_softc *sc = arg;
541 	struct ifnet *ifp = &sc->sc_ic.ic_if;
542 	int i;
543 	u_int16_t status;
544 
545 	if (!sc->sc_enabled || sc->sc_invalid ||
546 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
547 	    (ifp->if_flags & IFF_RUNNING) == 0)
548 		return 0;
549 
550 	if ((ifp->if_flags & IFF_UP) == 0) {
551 		CSR_WRITE_2(sc, AN_INT_EN, 0);
552 		CSR_WRITE_2(sc, AN_EVENT_ACK, ~0);
553 		return 1;
554 	}
555 
556 	/* maximum 10 loops per interrupt */
557 	for (i = 0; i < 10; i++) {
558 		if (!sc->sc_enabled || sc->sc_invalid)
559 			return 1;
560 		if (CSR_READ_2(sc, AN_SW0) != AN_MAGIC) {
561 			DPRINTF(("an_intr: magic number changed: %x\n",
562 			    CSR_READ_2(sc, AN_SW0)));
563 			sc->sc_invalid = 1;
564 			return 1;
565 		}
566 		status = CSR_READ_2(sc, AN_EVENT_STAT);
567 		CSR_WRITE_2(sc, AN_EVENT_ACK, status & ~(AN_INTRS));
568 		if ((status & AN_INTRS) == 0)
569 			break;
570 
571 		if (status & AN_EV_RX)
572 			an_rxeof(sc);
573 
574 		if (status & (AN_EV_TX | AN_EV_TX_EXC))
575 			an_txeof(sc, status);
576 
577 		if (status & AN_EV_LINKSTAT)
578 			an_linkstat_intr(sc);
579 
580 		if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
581 		    sc->sc_ic.ic_state == IEEE80211_S_RUN &&
582 		    !IFQ_IS_EMPTY(&ifp->if_snd))
583 			an_start(ifp);
584 	}
585 
586 	return 1;
587 }
588 
589 /* Must be called at proper protection level! */
590 int
591 an_cmd(struct an_softc *sc, int cmd, int val)
592 {
593 	int i, stat;
594 
595 	/* make sure previous command completed */
596 	if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) {
597 		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
598 			printf("%s: command 0x%x busy\n", sc->sc_dev.dv_xname,
599 			    CSR_READ_2(sc, AN_COMMAND));
600 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
601 	}
602 
603 	CSR_WRITE_2(sc, AN_PARAM0, val);
604 	CSR_WRITE_2(sc, AN_PARAM1, 0);
605 	CSR_WRITE_2(sc, AN_PARAM2, 0);
606 	CSR_WRITE_2(sc, AN_COMMAND, cmd);
607 
608 	if (cmd == AN_CMD_FW_RESTART) {
609 		/* XXX: should sleep here */
610 		DELAY(100*1000);
611 	}
612 
613 	for (i = 0; i < AN_TIMEOUT; i++) {
614 		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
615 			break;
616 		DELAY(10);
617 	}
618 
619 	stat = CSR_READ_2(sc, AN_STATUS);
620 
621 	/* clear stuck command busy if necessary */
622 	if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY)
623 		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
624 
625 	/* Ack the command */
626 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
627 
628 	if (i == AN_TIMEOUT) {
629 		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
630 			printf("%s: command 0x%x param 0x%x timeout\n",
631 			    sc->sc_dev.dv_xname, cmd, val);
632 		return ETIMEDOUT;
633 	}
634 	if (stat & AN_STAT_CMD_RESULT) {
635 		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
636 			printf("%s: command 0x%x param 0x%x status 0x%x "
637 			    "resp 0x%x 0x%x 0x%x\n",
638 			    sc->sc_dev.dv_xname, cmd, val, stat,
639 			    CSR_READ_2(sc, AN_RESP0), CSR_READ_2(sc, AN_RESP1),
640 			    CSR_READ_2(sc, AN_RESP2));
641 		return EIO;
642 	}
643 
644 	return 0;
645 }
646 
647 int
648 an_reset(struct an_softc *sc)
649 {
650 
651 	DPRINTF(("an_reset\n"));
652 
653 	if (!sc->sc_enabled)
654 		return ENXIO;
655 
656 	an_cmd(sc, AN_CMD_ENABLE, 0);
657 	an_cmd(sc, AN_CMD_FW_RESTART, 0);
658 	an_cmd(sc, AN_CMD_NOOP2, 0);
659 
660 	if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) {
661 		printf("%s: reset failed\n", sc->sc_dev.dv_xname);
662 		return ETIMEDOUT;
663 	}
664 
665 	an_cmd(sc, AN_CMD_DISABLE, 0);
666 	return 0;
667 }
668 
669 void
670 an_linkstat_intr(struct an_softc *sc)
671 {
672 	struct ieee80211com *ic = &sc->sc_ic;
673 	u_int16_t status;
674 
675 	status = CSR_READ_2(sc, AN_LINKSTAT);
676 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT);
677 	DPRINTF(("an_linkstat_intr: status 0x%x\n", status));
678 
679 	if (status == AN_LINKSTAT_ASSOCIATED) {
680 		if (ic->ic_state != IEEE80211_S_RUN
681 #ifndef IEEE80211_STA_ONLY
682 		    || ic->ic_opmode == IEEE80211_M_IBSS
683 #endif
684 		    )
685 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
686 	} else {
687 		if (ic->ic_opmode == IEEE80211_M_STA)
688 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
689 	}
690 }
691 
692 /*
693  * Wait for firmware come up after power enabled.
694  */
695 void
696 an_wait(struct an_softc *sc)
697 {
698 	int i;
699 
700 	CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_NOOP2);
701 	for (i = 0; i < 3*hz; i++) {
702 		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
703 			break;
704 		(void)tsleep(sc, PWAIT, "anatch", 1);
705 	}
706 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
707 }
708 
709 int
710 an_read_bap(struct an_softc *sc, int id, int off, void *buf, int len, int blen)
711 {
712 	int error, cnt, cnt2;
713 
714 	if (len == 0 || blen == 0)
715 		return 0;
716 	if (off == -1)
717 		off = sc->sc_bap_off;
718 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
719 		if ((error = an_seek_bap(sc, id, off)) != 0)
720 			return EIO;
721 	}
722 
723 	cnt = (blen + 1) / 2;
724 	CSR_READ_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
725 	for (cnt2 = (len + 1) / 2; cnt < cnt2; cnt++)
726 		(void) CSR_READ_2(sc, AN_DATA0);
727 	sc->sc_bap_off += cnt * 2;
728 
729 	return 0;
730 }
731 
732 int
733 an_write_bap(struct an_softc *sc, int id, int off, void *buf, int buflen)
734 {
735 	int error, cnt;
736 
737 	if (buflen == 0)
738 		return 0;
739 	if (off == -1)
740 		off = sc->sc_bap_off;
741 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
742 		if ((error = an_seek_bap(sc, id, off)) != 0)
743 			return EIO;
744 	}
745 
746 	cnt = (buflen + 1) / 2;
747 	CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
748 	sc->sc_bap_off += cnt * 2;
749 	return 0;
750 }
751 
752 int
753 an_seek_bap(struct an_softc *sc, int id, int off)
754 {
755 	int i, status;
756 
757 	CSR_WRITE_2(sc, AN_SEL0, id);
758 	CSR_WRITE_2(sc, AN_OFF0, off);
759 
760 	for (i = 0; ; i++) {
761 		status = CSR_READ_2(sc, AN_OFF0);
762 		if ((status & AN_OFF_BUSY) == 0)
763 			break;
764 		if (i == AN_TIMEOUT) {
765 			printf("%s: timeout in an_seek_bap to 0x%x/0x%x\n",
766 			    sc->sc_dev.dv_xname, id, off);
767 			sc->sc_bap_off = AN_OFF_ERR;	/* invalidate */
768 			return ETIMEDOUT;
769 		}
770 		DELAY(10);
771 	}
772 	if (status & AN_OFF_ERR) {
773 		printf("%s: failed in an_seek_bap to 0x%x/0x%x\n",
774 		    sc->sc_dev.dv_xname, id, off);
775 		sc->sc_bap_off = AN_OFF_ERR;	/* invalidate */
776 		return EIO;
777 	}
778 	sc->sc_bap_id = id;
779 	sc->sc_bap_off = off;
780 	return 0;
781 }
782 
783 int
784 an_mwrite_bap(struct an_softc *sc, int id, int off, struct mbuf *m, int totlen)
785 {
786 	int error, len, cnt;
787 
788 	if (off == -1)
789 		off = sc->sc_bap_off;
790 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
791 		if ((error = an_seek_bap(sc, id, off)) != 0)
792 			return EIO;
793 	}
794 
795 	for (len = 0; m != NULL; m = m->m_next) {
796 		if (m->m_len == 0)
797 			continue;
798 		len = min(m->m_len, totlen);
799 
800 		if ((mtod(m, u_long) & 0x1) || (len & 0x1)) {
801 			m_copydata(m, 0, totlen, (caddr_t)&sc->sc_buf.sc_txbuf);
802 			cnt = (totlen + 1) / 2;
803 			an_swap16((u_int16_t *)&sc->sc_buf.sc_txbuf, cnt);
804 			CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0,
805 			    sc->sc_buf.sc_val, cnt);
806 			off += cnt * 2;
807 			break;
808 		}
809 		cnt = len / 2;
810 		an_swap16((u_int16_t *)mtod(m, u_int16_t *), cnt);
811 		CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, mtod(m, u_int16_t *),
812 		    cnt);
813 		off += len;
814 		totlen -= len;
815 	}
816 	sc->sc_bap_off = off;
817 	return 0;
818 }
819 
820 int
821 an_alloc_nicmem(struct an_softc *sc, int len, int *idp)
822 {
823 	int i;
824 
825 	if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
826 		printf("%s: failed to allocate %d bytes on NIC\n",
827 		    sc->sc_dev.dv_xname, len);
828 		return(ENOMEM);
829 	}
830 
831 	for (i = 0; i < AN_TIMEOUT; i++) {
832 		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC)
833 			break;
834 		if (i == AN_TIMEOUT) {
835 			printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
836 			return ETIMEDOUT;
837 		}
838 		DELAY(10);
839 	}
840 
841 	*idp = CSR_READ_2(sc, AN_ALLOC_FID);
842 	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
843 	return 0;
844 }
845 
846 int
847 an_read_rid(struct an_softc *sc, int rid, void *buf, int *buflenp)
848 {
849 	int error;
850 	u_int16_t len;
851 
852 	/* Tell the NIC to enter record read mode. */
853 	error = an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_READ, rid);
854 	if (error)
855 		return error;
856 
857 	/* length in byte, including length itself */
858 	error = an_read_bap(sc, rid, 0, &len, sizeof(len), sizeof(len));
859 	if (error)
860 		return error;
861 
862 	len -= 2;
863 	return an_read_bap(sc, rid, sizeof(len), buf, len, *buflenp);
864 }
865 
866 int
867 an_write_rid(struct an_softc *sc, int rid, void *buf, int buflen)
868 {
869 	int error;
870 	u_int16_t len;
871 
872 	/* length in byte, including length itself */
873 	len = buflen + 2;
874 
875 	error = an_write_bap(sc, rid, 0, &len, sizeof(len));
876 	if (error)
877 		return error;
878 	error = an_write_bap(sc, rid, sizeof(len), buf, buflen);
879 	if (error)
880 		return error;
881 
882 	return an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_WRITE, rid);
883 }
884 
885 int
886 an_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
887 {
888 	struct an_softc *sc = ifp->if_softc;
889 	struct ifaddr *ifa = (struct ifaddr *)data;
890 	int s, error = 0;
891 
892 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
893 		return ENXIO;
894 
895 	s = splnet();
896 
897 	switch(command) {
898 	case SIOCSIFADDR:
899 		ifp->if_flags |= IFF_UP;
900 		switch (ifa->ifa_addr->sa_family) {
901 #ifdef INET
902 		case AF_INET:
903 			error = an_init(ifp);
904 			arp_ifinit(&sc->sc_ic.ic_ac, ifa);
905 			break;
906 #endif
907 		default:
908 			error = an_init(ifp);
909 			break;
910 		}
911 		break;
912 	case SIOCSIFFLAGS:
913 		if (ifp->if_flags & IFF_UP) {
914 			if (sc->sc_enabled) {
915 				/*
916 				 * To avoid rescanning another access point,
917 				 * do not call an_init() here.  Instead, only
918 				 * reflect promisc mode settings.
919 				 */
920 				error = an_cmd(sc, AN_CMD_SET_MODE,
921 				    (ifp->if_flags & IFF_PROMISC) ? 0xffff : 0);
922 			} else
923 				error = an_init(ifp);
924 		} else if (sc->sc_enabled)
925 			an_stop(ifp, 1);
926 		break;
927 	case SIOCADDMULTI:
928 	case SIOCDELMULTI:
929 		/* The Aironet has no multicast filter. */
930 		error = 0;
931 		break;
932 	case SIOCS80211NWKEY:
933 		error = an_set_nwkey(sc, (struct ieee80211_nwkey *)data);
934 			break;
935 	case SIOCG80211NWKEY:
936 		error = an_get_nwkey(sc, (struct ieee80211_nwkey *)data);
937 		break;
938 	default:
939 		error = ieee80211_ioctl(ifp, command, data);
940 		break;
941 	}
942 	if (error == ENETRESET) {
943 		if (sc->sc_enabled)
944 			error = an_init(ifp);
945 		else
946 			error = 0;
947 	}
948 	splx(s);
949 	return(error);
950 }
951 
952 int
953 an_init(struct ifnet *ifp)
954 {
955 	struct an_softc *sc = ifp->if_softc;
956 	struct ieee80211com *ic = &sc->sc_ic;
957 	int i, error, fid;
958 
959 	DPRINTF(("an_init: enabled %d\n", sc->sc_enabled));
960 	if (!sc->sc_enabled) {
961 		if (sc->sc_enable)
962 			(*sc->sc_enable)(sc);
963 		an_wait(sc);
964 		sc->sc_enabled = 1;
965 	} else {
966 		an_stop(ifp, 0);
967 		if ((error = an_reset(sc)) != 0) {
968 			printf("%s: failed to reset\n", ifp->if_xname);
969 			an_stop(ifp, 1);
970 			return error;
971 		}
972 	}
973 	CSR_WRITE_2(sc, AN_SW0, AN_MAGIC);
974 
975 	/* Allocate the TX buffers */
976 	for (i = 0; i < AN_TX_RING_CNT; i++) {
977 		if ((error = an_alloc_nicmem(sc, AN_TX_MAX_LEN, &fid)) != 0) {
978 			printf("%s: failed to allocate nic memory\n",
979 			    ifp->if_xname);
980 			an_stop(ifp, 1);
981 			return error;
982 		}
983 		DPRINTF2(("an_init: txbuf %d allocated %x\n", i, fid));
984 		sc->sc_txd[i].d_fid = fid;
985 		sc->sc_txd[i].d_inuse = 0;
986 	}
987 	sc->sc_txcur = sc->sc_txnext = 0;
988 
989 	IEEE80211_ADDR_COPY(sc->sc_config.an_macaddr, ic->ic_myaddr);
990 	an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3);
991 	sc->sc_config.an_scanmode = AN_SCANMODE_ACTIVE;
992 	sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN;	/*XXX*/
993 	if (ic->ic_flags & IEEE80211_F_WEPON) {
994 		sc->sc_config.an_authtype |=
995 		    AN_AUTHTYPE_PRIVACY_IN_USE;
996 	}
997 	sc->sc_config.an_listen_interval = ic->ic_lintval;
998 	sc->sc_config.an_beacon_period = ic->ic_lintval;
999 	if (ic->ic_flags & IEEE80211_F_PMGTON)
1000 		sc->sc_config.an_psave_mode = AN_PSAVE_PSP;
1001 	else
1002 		sc->sc_config.an_psave_mode = AN_PSAVE_CAM;
1003 	sc->sc_config.an_ds_channel =
1004 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
1005 
1006 	switch (ic->ic_opmode) {
1007 	case IEEE80211_M_STA:
1008 		sc->sc_config.an_opmode =
1009 		    AN_OPMODE_INFRASTRUCTURE_STATION;
1010 		sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
1011 		break;
1012 #ifndef IEEE80211_STA_ONLY
1013 	case IEEE80211_M_IBSS:
1014 		sc->sc_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
1015 		sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
1016 		break;
1017 #endif
1018 	case IEEE80211_M_MONITOR:
1019 		sc->sc_config.an_opmode =
1020 		    AN_OPMODE_INFRASTRUCTURE_STATION;
1021 		sc->sc_config.an_rxmode =
1022 		    AN_RXMODE_80211_MONITOR_ANYBSS;
1023 		sc->sc_config.an_authtype = AN_AUTHTYPE_NONE;
1024 		if (ic->ic_flags & IEEE80211_F_WEPON)
1025 			sc->sc_config.an_authtype |=
1026 			    AN_AUTHTYPE_PRIVACY_IN_USE |
1027 		            AN_AUTHTYPE_ALLOW_UNENCRYPTED;
1028 		break;
1029 	default:
1030 		printf("%s: bad opmode %d\n", ifp->if_xname, ic->ic_opmode);
1031 		an_stop(ifp, 1);
1032 		return EIO;
1033 	}
1034 	sc->sc_config.an_rxmode |= AN_RXMODE_NO_8023_HEADER;
1035 
1036 	/* Set the ssid list */
1037 	memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_ssidlist));
1038 	sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid_len =
1039 	    ic->ic_des_esslen;
1040 	if (ic->ic_des_esslen)
1041 		memcpy(sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid,
1042 		    ic->ic_des_essid, ic->ic_des_esslen);
1043 	an_swap16((u_int16_t *)&sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid, 16);
1044 	if (an_write_rid(sc, AN_RID_SSIDLIST, &sc->sc_buf,
1045 	    sizeof(sc->sc_buf.sc_ssidlist)) != 0) {
1046 		printf("%s: failed to write ssid list\n", ifp->if_xname);
1047 		an_stop(ifp, 1);
1048 		return error;
1049 	}
1050 
1051 	/* Set the AP list */
1052 	memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_aplist));
1053 	(void)an_write_rid(sc, AN_RID_APLIST, &sc->sc_buf,
1054 	    sizeof(sc->sc_buf.sc_aplist));
1055 
1056 	/* Set the encapsulation */
1057 	for (i = 0; i < AN_ENCAP_NENTS; i++) {
1058 		sc->sc_buf.sc_encap.an_entry[i].an_ethertype = 0;
1059 		sc->sc_buf.sc_encap.an_entry[i].an_action =
1060 		    AN_RXENCAP_RFC1024 | AN_TXENCAP_RFC1024;
1061 	}
1062 	(void)an_write_rid(sc, AN_RID_ENCAP, &sc->sc_buf,
1063 	    sizeof(sc->sc_buf.sc_encap));
1064 
1065 	/* Set the WEP Keys */
1066 	if (ic->ic_flags & IEEE80211_F_WEPON)
1067 		an_write_wepkey(sc, AN_RID_WEP_VOLATILE, sc->sc_wepkeys,
1068 		    sc->sc_tx_key);
1069 
1070 	/* Set the configuration */
1071 	if (an_write_rid(sc, AN_RID_GENCONFIG, &sc->sc_config,
1072 	    sizeof(sc->sc_config)) != 0) {
1073 		printf("%s: failed to write config\n", ifp->if_xname);
1074 		an_stop(ifp, 1);
1075 		return error;
1076 	}
1077 
1078 	/* Enable the MAC */
1079 	if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
1080 		printf("%s: failed to enable MAC\n", sc->sc_dev.dv_xname);
1081 		an_stop(ifp, 1);
1082 		return ENXIO;
1083 	}
1084 	if (ifp->if_flags & IFF_PROMISC)
1085 		an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
1086 
1087 	ifp->if_flags |= IFF_RUNNING;
1088 	ifp->if_flags &= ~IFF_OACTIVE;
1089 	ic->ic_state = IEEE80211_S_INIT;
1090 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1091 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1092 
1093 	/* enable interrupts */
1094 	CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
1095 	return 0;
1096 }
1097 
1098 void
1099 an_start(struct ifnet *ifp)
1100 {
1101 	struct an_softc *sc = (struct an_softc *)ifp->if_softc;
1102 	struct ieee80211com *ic = &sc->sc_ic;
1103 	struct ieee80211_node *ni;
1104 	struct ieee80211_frame *wh;
1105 	struct an_txframe frmhdr;
1106 	struct mbuf *m;
1107 	u_int16_t len;
1108 	int cur, fid;
1109 
1110 	if (!sc->sc_enabled || sc->sc_invalid) {
1111 		DPRINTF(("an_start: noop: enabled %d invalid %d\n",
1112 		    sc->sc_enabled, sc->sc_invalid));
1113 		return;
1114 	}
1115 
1116 	memset(&frmhdr, 0, sizeof(frmhdr));
1117 	cur = sc->sc_txnext;
1118 	for (;;) {
1119 		if (ic->ic_state != IEEE80211_S_RUN) {
1120 			DPRINTF(("an_start: not running %d\n", ic->ic_state));
1121 			break;
1122 		}
1123 		IFQ_POLL(&ifp->if_snd, m);
1124 		if (m == NULL) {
1125 			DPRINTF2(("an_start: no pending mbuf\n"));
1126 			break;
1127 		}
1128 		if (sc->sc_txd[cur].d_inuse) {
1129 			DPRINTF2(("an_start: %x/%d busy\n",
1130 			    sc->sc_txd[cur].d_fid, cur));
1131 			ifp->if_flags |= IFF_OACTIVE;
1132 			break;
1133 		}
1134 		IFQ_DEQUEUE(&ifp->if_snd, m);
1135 		ifp->if_opackets++;
1136 #if NBPFILTER > 0
1137 		if (ifp->if_bpf)
1138 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1139 #endif
1140 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) {
1141 			ifp->if_oerrors++;
1142 			continue;
1143 		}
1144 		if (ni != NULL)
1145 			ieee80211_release_node(ic, ni);
1146 #if NBPFILTER > 0
1147 		if (ic->ic_rawbpf)
1148 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1149 #endif
1150 
1151 		wh = mtod(m, struct ieee80211_frame *);
1152 		if (ic->ic_flags & IEEE80211_F_WEPON)
1153 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1154 		m_copydata(m, 0, sizeof(struct ieee80211_frame),
1155 		    (caddr_t)&frmhdr.an_whdr);
1156 		an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);
1157 
1158 		/* insert payload length in front of llc/snap */
1159 		len = htons(m->m_pkthdr.len - sizeof(struct ieee80211_frame));
1160 		m_adj(m, sizeof(struct ieee80211_frame) - sizeof(len));
1161 		if (mtod(m, u_long) & 0x01)
1162 			memcpy(mtod(m, caddr_t), &len, sizeof(len));
1163 		else
1164 			*mtod(m, u_int16_t *) = len;
1165 
1166 		/*
1167 		 * XXX Aironet firmware apparently convert the packet
1168 		 * with longer than 1500 bytes in length into LLC/SNAP.
1169 		 * If we have 1500 bytes in ethernet payload, it is
1170 		 * 1508 bytes including LLC/SNAP and will be inserted
1171 		 * additional LLC/SNAP header with 1501-1508 in its
1172 		 * ethertype !!
1173 		 * So we skip LLC/SNAP header and force firmware to
1174 		 * convert it to LLC/SNAP again.
1175 		 */
1176 		m_adj(m, sizeof(struct llc));
1177 
1178 		frmhdr.an_tx_ctl = AN_TXCTL_80211;
1179 		frmhdr.an_tx_payload_len = m->m_pkthdr.len;
1180 		frmhdr.an_gaplen = AN_TXGAP_802_11;
1181 
1182 		if (ic->ic_fixed_rate != -1)
1183 			frmhdr.an_tx_rate =
1184 			    ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
1185 			    ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1186 		else
1187 			frmhdr.an_tx_rate = 0;
1188 
1189 		if (sizeof(frmhdr) + AN_TXGAP_802_11 + sizeof(len) +
1190 		    m->m_pkthdr.len > AN_TX_MAX_LEN) {
1191 			ifp->if_oerrors++;
1192 			m_freem(m);
1193 			continue;
1194 		}
1195 
1196 #if NBPFILTER > 0
1197 		if (sc->sc_drvbpf) {
1198 			struct mbuf mb;
1199 			struct an_tx_radiotap_header *tap = &sc->sc_txtap;
1200 
1201 			tap->at_rate =
1202 			    ic->ic_bss->ni_rates.rs_rates[ic->ic_bss->ni_txrate];
1203 			tap->at_chan_freq =
1204 			    ic->ic_bss->ni_chan->ic_freq;
1205 			tap->at_chan_flags =
1206 			    ic->ic_bss->ni_chan->ic_flags;
1207 
1208 			mb.m_data = (caddr_t)tap;
1209 			mb.m_len = sizeof(sc->sc_txtapu);
1210 			mb.m_next = m;
1211 			mb.m_nextpkt = NULL;
1212 			mb.m_type = 0;
1213 			mb.m_flags = 0;
1214 			bpf_mtap(sc->sc_drvbpf, m, BPF_DIRECTION_OUT);
1215 		}
1216 #endif
1217 
1218 		fid = sc->sc_txd[cur].d_fid;
1219 		if (an_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1220 			ifp->if_oerrors++;
1221 			m_freem(m);
1222 			continue;
1223 		}
1224 		/* dummy write to avoid seek. */
1225 		an_write_bap(sc, fid, -1, &frmhdr, AN_TXGAP_802_11);
1226 		an_mwrite_bap(sc, fid, -1, m, m->m_pkthdr.len);
1227 		m_freem(m);
1228 
1229 		DPRINTF2(("an_start: send %d byte via %x/%d\n",
1230 		    ntohs(len) + sizeof(struct ieee80211_frame),
1231 		    fid, cur));
1232 		sc->sc_txd[cur].d_inuse = 1;
1233 		if (an_cmd(sc, AN_CMD_TX, fid)) {
1234 			printf("%s: xmit failed\n", ifp->if_xname);
1235 			sc->sc_txd[cur].d_inuse = 0;
1236 			continue;
1237 		}
1238 		sc->sc_tx_timer = 5;
1239 		ifp->if_timer = 1;
1240 		AN_INC(cur, AN_TX_RING_CNT);
1241 		sc->sc_txnext = cur;
1242 	}
1243 }
1244 
1245 void
1246 an_stop(struct ifnet *ifp, int disable)
1247 {
1248 	struct an_softc *sc = ifp->if_softc;
1249 	int i, s;
1250 
1251 	if (!sc->sc_enabled)
1252 		return;
1253 
1254 	DPRINTF(("an_stop: disable %d\n", disable));
1255 
1256 	s = splnet();
1257 	ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1258 	if (!sc->sc_invalid) {
1259 		an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
1260 		CSR_WRITE_2(sc, AN_INT_EN, 0);
1261 		an_cmd(sc, AN_CMD_DISABLE, 0);
1262 
1263 		for (i = 0; i < AN_TX_RING_CNT; i++)
1264 			an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->sc_txd[i].d_fid);
1265 	}
1266 
1267 	sc->sc_tx_timer = 0;
1268 	ifp->if_timer = 0;
1269 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1270 
1271 	if (disable) {
1272 		if (sc->sc_disable)
1273 			(*sc->sc_disable)(sc);
1274 		sc->sc_enabled = 0;
1275 	}
1276 	splx(s);
1277 }
1278 
1279 void
1280 an_watchdog(struct ifnet *ifp)
1281 {
1282 	struct an_softc *sc = ifp->if_softc;
1283 
1284 	if (!sc->sc_enabled)
1285 		return;
1286 
1287 	if (sc->sc_tx_timer) {
1288 		if (--sc->sc_tx_timer == 0) {
1289 			printf("%s: device timeout\n", ifp->if_xname);
1290 			ifp->if_oerrors++;
1291 			an_init(ifp);
1292 			return;
1293 		}
1294 		ifp->if_timer = 1;
1295 	}
1296 	ieee80211_watchdog(ifp);
1297 }
1298 
1299 void
1300 an_shutdown(void *self)
1301 {
1302 	struct an_softc *sc = (struct an_softc *)self;
1303 
1304 	if (sc->sc_attached)
1305 		an_stop(&sc->sc_ic.ic_if, 1);
1306 }
1307 
1308 /* TBD factor with ieee80211_media_change */
1309 int
1310 an_media_change(struct ifnet *ifp)
1311 {
1312 	struct an_softc *sc = ifp->if_softc;
1313 	struct ieee80211com *ic = &sc->sc_ic;
1314 	struct ifmedia_entry *ime;
1315 	enum ieee80211_opmode newmode;
1316 	int i, rate, error = 0;
1317 
1318 	ime = ic->ic_media.ifm_cur;
1319 	if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
1320 		i = -1;
1321 	} else {
1322 		struct ieee80211_rateset *rs =
1323 		    &ic->ic_sup_rates[IEEE80211_MODE_11B];
1324 		rate = ieee80211_media2rate(ime->ifm_media);
1325 		if (rate == 0)
1326 			return EINVAL;
1327 		for (i = 0; i < rs->rs_nrates; i++) {
1328 			if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate)
1329 				break;
1330 		}
1331 		if (i == rs->rs_nrates)
1332 			return EINVAL;
1333 	}
1334 	if (ic->ic_fixed_rate != i) {
1335 		ic->ic_fixed_rate = i;
1336 		error = ENETRESET;
1337 	}
1338 
1339 #ifndef IEEE80211_STA_ONLY
1340 	if (ime->ifm_media & IFM_IEEE80211_ADHOC)
1341 		newmode = IEEE80211_M_IBSS;
1342 	else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
1343 		newmode = IEEE80211_M_HOSTAP;
1344 	else
1345 #endif
1346 	if (ime->ifm_media & IFM_IEEE80211_MONITOR)
1347 		newmode = IEEE80211_M_MONITOR;
1348 	else
1349 		newmode = IEEE80211_M_STA;
1350 	if (ic->ic_opmode != newmode) {
1351 		ic->ic_opmode = newmode;
1352 		error = ENETRESET;
1353 	}
1354 	if (error == ENETRESET) {
1355 		if (sc->sc_enabled)
1356 			error = an_init(ifp);
1357 		else
1358 			error = 0;
1359 	}
1360 	ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1361 
1362 	return error;
1363 }
1364 
1365 void
1366 an_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1367 {
1368 	struct an_softc *sc = ifp->if_softc;
1369 	struct ieee80211com *ic = &sc->sc_ic;
1370 	int rate, buflen;
1371 
1372 	if (sc->sc_enabled == 0) {
1373 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1374 		imr->ifm_status = 0;
1375 		return;
1376 	}
1377 
1378 	imr->ifm_status = IFM_AVALID;
1379 	imr->ifm_active = IFM_IEEE80211;
1380 	if (ic->ic_state == IEEE80211_S_RUN)
1381 		imr->ifm_status |= IFM_ACTIVE;
1382 	buflen = sizeof(sc->sc_buf);
1383 	if (ic->ic_fixed_rate != -1)
1384 		rate = ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
1385 		    ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1386 	else if (an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen) != 0)
1387 		rate = 0;
1388 	else
1389 		rate = sc->sc_buf.sc_status.an_current_tx_rate;
1390 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1391 	switch (ic->ic_opmode) {
1392 	case IEEE80211_M_STA:
1393 		break;
1394 #ifndef IEEE80211_STA_ONLY
1395 	case IEEE80211_M_IBSS:
1396 		imr->ifm_active |= IFM_IEEE80211_ADHOC;
1397 		break;
1398 	case IEEE80211_M_HOSTAP:
1399 		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1400 		break;
1401 #endif
1402 	case IEEE80211_M_MONITOR:
1403 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
1404 		break;
1405 	default:
1406 		break;
1407 	}
1408 }
1409 
1410 int
1411 an_set_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1412 {
1413 	int error;
1414 	struct ieee80211com *ic = &sc->sc_ic;
1415 	u_int16_t prevauth;
1416 
1417 	error = 0;
1418 	prevauth = sc->sc_config.an_authtype;
1419 
1420 	switch (nwkey->i_wepon) {
1421 	case IEEE80211_NWKEY_OPEN:
1422 		sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN;
1423 		ic->ic_flags &= ~IEEE80211_F_WEPON;
1424 		break;
1425 
1426 	case IEEE80211_NWKEY_WEP:
1427 	case IEEE80211_NWKEY_WEP | IEEE80211_NWKEY_PERSIST:
1428 		error = an_set_nwkey_wep(sc, nwkey);
1429 		if (error == 0 || error == ENETRESET) {
1430 			sc->sc_config.an_authtype =
1431 			    AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE;
1432 			ic->ic_flags |= IEEE80211_F_WEPON;
1433 		}
1434 		break;
1435 
1436 	default:
1437 		error = EINVAL;
1438 		break;
1439 	}
1440 	if (error == 0 && prevauth != sc->sc_config.an_authtype)
1441 		error = ENETRESET;
1442 	return error;
1443 }
1444 
1445 int
1446 an_set_nwkey_wep(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1447 {
1448 	int i, txkey, anysetkey, needreset, error;
1449 	struct an_wepkey keys[IEEE80211_WEP_NKID];
1450 
1451 	error = 0;
1452 	memset(keys, 0, sizeof(keys));
1453 	anysetkey = needreset = 0;
1454 
1455 	/* load argument and sanity check */
1456 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1457 		keys[i].an_wep_keylen = nwkey->i_key[i].i_keylen;
1458 		if (keys[i].an_wep_keylen < 0)
1459 			continue;
1460 		if (keys[i].an_wep_keylen != 0 &&
1461 		    keys[i].an_wep_keylen < IEEE80211_WEP_KEYLEN)
1462 			return EINVAL;
1463 		if (keys[i].an_wep_keylen > sizeof(keys[i].an_wep_key))
1464 			return EINVAL;
1465 		if ((error = copyin(nwkey->i_key[i].i_keydat,
1466 		    keys[i].an_wep_key, keys[i].an_wep_keylen)) != 0)
1467 			return error;
1468 		anysetkey++;
1469 	}
1470 	txkey = nwkey->i_defkid - 1;
1471 	if (txkey >= 0) {
1472 		if (txkey >= IEEE80211_WEP_NKID)
1473 			return EINVAL;
1474 		/* default key must have a valid value */
1475 		if (keys[txkey].an_wep_keylen == 0 ||
1476 		    (keys[txkey].an_wep_keylen < 0 &&
1477 		    sc->sc_perskeylen[txkey] == 0))
1478 			return EINVAL;
1479 		anysetkey++;
1480 	}
1481 	DPRINTF(("an_set_nwkey_wep: %s: %sold(%d:%d,%d,%d,%d) "
1482 	    "pers(%d:%d,%d,%d,%d) new(%d:%d,%d,%d,%d)\n",
1483 	    sc->sc_dev.dv_xname,
1484 	    ((nwkey->i_wepon & IEEE80211_NWKEY_PERSIST) ? "persist: " : ""),
1485 	    sc->sc_tx_key,
1486 	    sc->sc_wepkeys[0].an_wep_keylen, sc->sc_wepkeys[1].an_wep_keylen,
1487 	    sc->sc_wepkeys[2].an_wep_keylen, sc->sc_wepkeys[3].an_wep_keylen,
1488 	    sc->sc_tx_perskey,
1489 	    sc->sc_perskeylen[0], sc->sc_perskeylen[1],
1490 	    sc->sc_perskeylen[2], sc->sc_perskeylen[3],
1491 	    txkey,
1492 	    keys[0].an_wep_keylen, keys[1].an_wep_keylen,
1493 	    keys[2].an_wep_keylen, keys[3].an_wep_keylen));
1494 	if (!(nwkey->i_wepon & IEEE80211_NWKEY_PERSIST)) {
1495 		/* set temporary keys */
1496 		sc->sc_tx_key = txkey;
1497 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1498 			if (keys[i].an_wep_keylen < 0)
1499 				continue;
1500 			memcpy(&sc->sc_wepkeys[i], &keys[i], sizeof(keys[i]));
1501 		}
1502 	} else {
1503 		/* set persist keys */
1504 		if (anysetkey) {
1505 			/* prepare to write nvram */
1506 			if (!sc->sc_enabled) {
1507 				if (sc->sc_enable)
1508 					(*sc->sc_enable)(sc);
1509 				an_wait(sc);
1510 				sc->sc_enabled = 1;
1511 				error = an_write_wepkey(sc,
1512 				    AN_RID_WEP_PERSISTENT, keys, txkey);
1513 				if (sc->sc_disable)
1514 					(*sc->sc_disable)(sc);
1515 				sc->sc_enabled = 0;
1516 			} else {
1517 				an_cmd(sc, AN_CMD_DISABLE, 0);
1518 				error = an_write_wepkey(sc,
1519 				    AN_RID_WEP_PERSISTENT, keys, txkey);
1520 				an_cmd(sc, AN_CMD_ENABLE, 0);
1521 			}
1522 			if (error)
1523 				return error;
1524 		}
1525 		if (txkey >= 0)
1526 			sc->sc_tx_perskey = txkey;
1527 		if (sc->sc_tx_key >= 0) {
1528 			sc->sc_tx_key = -1;
1529 			needreset++;
1530 		}
1531 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1532 			if (sc->sc_wepkeys[i].an_wep_keylen >= 0) {
1533 				memset(&sc->sc_wepkeys[i].an_wep_key, 0,
1534 				    sizeof(sc->sc_wepkeys[i].an_wep_key));
1535 				sc->sc_wepkeys[i].an_wep_keylen = -1;
1536 				needreset++;
1537 			}
1538 			if (keys[i].an_wep_keylen >= 0)
1539 				sc->sc_perskeylen[i] = keys[i].an_wep_keylen;
1540 		}
1541 	}
1542 	if (needreset) {
1543 		/* firmware restart to reload persistent key */
1544 		an_reset(sc);
1545 	}
1546 	if (anysetkey || needreset)
1547 		error = ENETRESET;
1548 	return error;
1549 }
1550 
1551 int
1552 an_get_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
1553 {
1554 	int i, error;
1555 
1556 	error = 0;
1557 	if (sc->sc_config.an_authtype & AN_AUTHTYPE_LEAP)
1558 		nwkey->i_wepon = IEEE80211_NWKEY_EAP;
1559 	else if (sc->sc_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE)
1560 		nwkey->i_wepon = IEEE80211_NWKEY_WEP;
1561 	else
1562 		nwkey->i_wepon = IEEE80211_NWKEY_OPEN;
1563 	if (sc->sc_tx_key == -1)
1564 		nwkey->i_defkid = sc->sc_tx_perskey + 1;
1565 	else
1566 		nwkey->i_defkid = sc->sc_tx_key + 1;
1567 	if (nwkey->i_key[0].i_keydat == NULL)
1568 		return 0;
1569 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1570 		if (nwkey->i_key[i].i_keydat == NULL)
1571 			continue;
1572 		/* do not show any keys to non-root user */
1573 		if ((error = suser(curproc, 0)) != 0)
1574 			break;
1575 		nwkey->i_key[i].i_keylen = sc->sc_wepkeys[i].an_wep_keylen;
1576 		if (nwkey->i_key[i].i_keylen < 0) {
1577 			if (sc->sc_perskeylen[i] == 0)
1578 				nwkey->i_key[i].i_keylen = 0;
1579 			continue;
1580 		}
1581 		if ((error = copyout(sc->sc_wepkeys[i].an_wep_key,
1582 		    nwkey->i_key[i].i_keydat,
1583 		    sc->sc_wepkeys[i].an_wep_keylen)) != 0)
1584 			break;
1585 	}
1586 	return error;
1587 }
1588 
1589 int
1590 an_write_wepkey(struct an_softc *sc, int type, struct an_wepkey *keys, int kid)
1591 {
1592 	int i, error;
1593 	struct an_rid_wepkey *akey;
1594 
1595 	error = 0;
1596 	akey = &sc->sc_buf.sc_wepkey;
1597 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1598 		memset(akey, 0, sizeof(struct an_rid_wepkey));
1599 		if (keys[i].an_wep_keylen < 0 ||
1600 		    keys[i].an_wep_keylen > sizeof(akey->an_key))
1601 			continue;
1602 		akey->an_key_len = keys[i].an_wep_keylen;
1603 		akey->an_key_index = i;
1604 		akey->an_mac_addr[0] = 1;	/* default mac */
1605 		an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
1606 		memcpy(akey->an_key, keys[i].an_wep_key, keys[i].an_wep_keylen);
1607 		an_swap16((u_int16_t *)&akey->an_key, 8);
1608 		if ((error = an_write_rid(sc, type, akey, sizeof(*akey))) != 0)
1609 			return error;
1610 	}
1611 	if (kid >= 0) {
1612 		memset(akey, 0, sizeof(struct an_rid_wepkey));
1613 		akey->an_key_index = 0xffff;
1614 		akey->an_mac_addr[0] = kid;
1615 		an_swap16((u_int16_t *)&akey->an_mac_addr, 3);
1616 		akey->an_key_len = 0;
1617 		memset(akey->an_key, 0, sizeof(akey->an_key));
1618 		error = an_write_rid(sc, type, akey, sizeof(*akey));
1619 	}
1620 	return error;
1621 }
1622 
1623 int
1624 an_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1625 {
1626 	struct an_softc *sc = ic->ic_softc;
1627 	struct ieee80211_node *ni = ic->ic_bss;
1628 	enum ieee80211_state ostate;
1629 	int buflen;
1630 
1631 	ostate = ic->ic_state;
1632 	DPRINTF(("an_newstate: %s -> %s\n", ieee80211_state_name[ostate],
1633 	    ieee80211_state_name[nstate]));
1634 
1635 	switch (nstate) {
1636 	case IEEE80211_S_INIT:
1637 		ic->ic_flags &= ~IEEE80211_F_IBSSON;
1638 		return (*sc->sc_newstate)(ic, nstate, arg);
1639 
1640 	case IEEE80211_S_RUN:
1641 		buflen = sizeof(sc->sc_buf);
1642 		an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen);
1643 		an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_cur_bssid, 3);
1644 		an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_ssid, 16);
1645 		IEEE80211_ADDR_COPY(ni->ni_bssid,
1646 		    sc->sc_buf.sc_status.an_cur_bssid);
1647 		IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
1648 		ni->ni_chan = &ic->ic_channels[
1649 		    sc->sc_buf.sc_status.an_cur_channel];
1650 		ni->ni_esslen = sc->sc_buf.sc_status.an_ssidlen;
1651 		if (ni->ni_esslen > IEEE80211_NWID_LEN)
1652 			ni->ni_esslen = IEEE80211_NWID_LEN;	/*XXX*/
1653 		memcpy(ni->ni_essid, sc->sc_buf.sc_status.an_ssid,
1654 		    ni->ni_esslen);
1655 		ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B];	/*XXX*/
1656 		if (ic->ic_if.if_flags & IFF_DEBUG) {
1657 			printf("%s: ", sc->sc_dev.dv_xname);
1658 			if (ic->ic_opmode == IEEE80211_M_STA)
1659 				printf("associated ");
1660 			else
1661 				printf("synchronized ");
1662 			printf("with %s ssid ", ether_sprintf(ni->ni_bssid));
1663 			ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
1664 			printf(" channel %u start %uMb\n",
1665 			    sc->sc_buf.sc_status.an_cur_channel,
1666 			    sc->sc_buf.sc_status.an_current_tx_rate/2);
1667 		}
1668 		break;
1669 
1670 	default:
1671 		break;
1672 	}
1673 	ic->ic_state = nstate;
1674 	/* skip standard ieee80211 handling */
1675 	return 0;
1676 }
1677 
1678 int
1679 an_detach(struct an_softc *sc)
1680 {
1681 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1682 	int s;
1683 
1684 	if (!sc->sc_attached)
1685 		return 0;
1686 
1687 	s = splnet();
1688 	sc->sc_invalid = 1;
1689 	an_stop(ifp, 1);
1690 	ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
1691 	ieee80211_ifdetach(ifp);
1692 	if_detach(ifp);
1693 	if (sc->sc_sdhook != NULL)
1694 		shutdownhook_disestablish(sc->sc_sdhook);
1695 	splx(s);
1696 	return 0;
1697 }
1698 
1699