1 /* $OpenBSD: an.c,v 1.56 2008/08/27 09:05:03 damien Exp $ */ 2 /* $NetBSD: an.c,v 1.34 2005/06/20 02:49:18 atatat Exp $ */ 3 /* 4 * Copyright (c) 1997, 1998, 1999 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $ 35 */ 36 /* 37 * Copyright (c) 2004, 2005 David Young. All rights reserved. 38 * Copyright (c) 2004, 2005 OJC Technologies. All rights reserved. 39 * Copyright (c) 2004, 2005 Dayton Data Center Services, LLC. All 40 * rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the author nor the names of any co-contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL David Young AND CONTRIBUTORS 58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 64 * THE POSSIBILITY OF SUCH DAMAGE. 65 */ 66 67 /* 68 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD. 69 * 70 * Written by Bill Paul <wpaul@ctr.columbia.edu> 71 * Electrical Engineering Department 72 * Columbia University, New York City 73 */ 74 75 /* 76 * Ported to NetBSD from FreeBSD by Atsushi Onoe at the San Diego 77 * IETF meeting. 78 */ 79 80 #include <sys/cdefs.h> 81 82 #include "bpfilter.h" 83 84 #include <sys/param.h> 85 #include <sys/systm.h> 86 #include <sys/sockio.h> 87 #include <sys/mbuf.h> 88 #include <sys/kernel.h> 89 #include <sys/ucred.h> 90 #include <sys/socket.h> 91 #include <sys/timeout.h> 92 #include <sys/device.h> 93 #include <sys/proc.h> 94 #include <sys/endian.h> 95 #include <sys/tree.h> 96 97 #include <machine/bus.h> 98 99 #include <net/if.h> 100 #include <net/if_dl.h> 101 #include <net/if_llc.h> 102 #include <net/if_media.h> 103 #include <net/if_types.h> 104 105 #ifdef INET 106 #include <netinet/in.h> 107 #include <netinet/in_systm.h> 108 #include <netinet/in_var.h> 109 #include <netinet/ip.h> 110 #include <netinet/if_ether.h> 111 #endif 112 113 #include <net80211/ieee80211_radiotap.h> 114 #include <net80211/ieee80211_var.h> 115 116 #if NBPFILTER > 0 117 #include <net/bpf.h> 118 #endif 119 120 #include <dev/ic/anreg.h> 121 #include <dev/ic/anvar.h> 122 123 struct cfdriver an_cd = { 124 NULL, "an", DV_IFNET 125 }; 126 127 int an_reset(struct an_softc *); 128 void an_wait(struct an_softc *); 129 int an_init(struct ifnet *); 130 void an_stop(struct ifnet *, int); 131 void an_start(struct ifnet *); 132 void an_watchdog(struct ifnet *); 133 int an_ioctl(struct ifnet *, u_long, caddr_t); 134 int an_media_change(struct ifnet *); 135 void an_media_status(struct ifnet *, struct ifmediareq *); 136 137 int an_set_nwkey(struct an_softc *, struct ieee80211_nwkey *); 138 int an_set_nwkey_wep(struct an_softc *, struct ieee80211_nwkey *); 139 int an_get_nwkey(struct an_softc *, struct ieee80211_nwkey *); 140 int an_write_wepkey(struct an_softc *, int, struct an_wepkey *, 141 int); 142 143 void an_rxeof(struct an_softc *); 144 void an_txeof(struct an_softc *, u_int16_t); 145 void an_linkstat_intr(struct an_softc *); 146 147 int an_cmd(struct an_softc *, int, int); 148 int an_seek_bap(struct an_softc *, int, int); 149 int an_read_bap(struct an_softc *, int, int, void *, int, int); 150 int an_write_bap(struct an_softc *, int, int, void *, int); 151 int an_mwrite_bap(struct an_softc *, int, int, struct mbuf *, int); 152 int an_read_rid(struct an_softc *, int, void *, int *); 153 int an_write_rid(struct an_softc *, int, void *, int); 154 155 int an_alloc_nicmem(struct an_softc *, int, int *); 156 157 int an_newstate(struct ieee80211com *, enum ieee80211_state, int); 158 159 #ifdef AN_DEBUG 160 int an_debug = 0; 161 162 #define DPRINTF(X) if (an_debug) printf X 163 #define DPRINTF2(X) if (an_debug > 1) printf X 164 #else 165 #define DPRINTF(X) 166 #define DPRINTF2(X) 167 #endif 168 169 #if BYTE_ORDER == BIG_ENDIAN 170 static __inline void 171 an_swap16(u_int16_t *p, int cnt) 172 { 173 for (; cnt--; p++) 174 *p = swap16(*p); 175 } 176 #define an_switch32(val) (val >> 16 | (val & 0xFFFF) << 16) 177 #else 178 #define an_swap16(p, cnt) 179 #define an_switch32(val) val 180 #endif 181 182 int 183 an_attach(struct an_softc *sc) 184 { 185 struct ieee80211com *ic = &sc->sc_ic; 186 struct ifnet *ifp = &ic->ic_if; 187 int i; 188 struct an_rid_wepkey *akey; 189 int buflen, kid, rid; 190 int chan, chan_min, chan_max; 191 192 sc->sc_invalid = 0; 193 194 /* disable interrupts */ 195 CSR_WRITE_2(sc, AN_INT_EN, 0); 196 CSR_WRITE_2(sc, AN_EVENT_ACK, 0xffff); 197 198 // an_wait(sc); 199 if (an_reset(sc) != 0) { 200 sc->sc_invalid = 1; 201 return 1; 202 } 203 204 /* Load factory config */ 205 if (an_cmd(sc, AN_CMD_READCFG, 0) != 0) { 206 printf("%s: failed to load config data\n", 207 sc->sc_dev.dv_xname); 208 return (EIO); 209 } 210 211 /* Read the current configuration */ 212 buflen = sizeof(sc->sc_config); 213 if (an_read_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, &buflen) != 0) { 214 printf("%s: read config failed\n", sc->sc_dev.dv_xname); 215 return(EIO); 216 } 217 218 an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3); 219 220 /* Read the card capabilities */ 221 buflen = sizeof(sc->sc_caps); 222 if (an_read_rid(sc, AN_RID_CAPABILITIES, &sc->sc_caps, &buflen) != 0) { 223 printf("%s: read caps failed\n", sc->sc_dev.dv_xname); 224 return(EIO); 225 } 226 227 an_swap16((u_int16_t *)&sc->sc_caps.an_oemaddr, 3); 228 an_swap16((u_int16_t *)&sc->sc_caps.an_rates, 4); 229 230 /* Read WEP settings from persistent memory */ 231 akey = &sc->sc_buf.sc_wepkey; 232 buflen = sizeof(struct an_rid_wepkey); 233 rid = AN_RID_WEP_VOLATILE; /* first persistent key */ 234 while (an_read_rid(sc, rid, akey, &buflen) == 0) { 235 an_swap16((u_int16_t *)&akey->an_mac_addr, 3); 236 an_swap16((u_int16_t *)&akey->an_key, 8); 237 kid = akey->an_key_index; 238 DPRINTF(("an_attach: wep rid=0x%x len=%d(%d) index=0x%04x " 239 "mac[0]=%02x keylen=%d\n", 240 rid, buflen, sizeof(*akey), kid, 241 akey->an_mac_addr[0], akey->an_key_len)); 242 if (kid == 0xffff) { 243 sc->sc_tx_perskey = akey->an_mac_addr[0]; 244 sc->sc_tx_key = -1; 245 break; 246 } 247 if (kid >= IEEE80211_WEP_NKID) 248 break; 249 sc->sc_perskeylen[kid] = akey->an_key_len; 250 sc->sc_wepkeys[kid].an_wep_keylen = -1; 251 rid = AN_RID_WEP_PERSISTENT; /* for next key */ 252 buflen = sizeof(struct an_rid_wepkey); 253 } 254 255 IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr); 256 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); 257 258 printf("%s: Firmware %x.%02x.%02x, Radio: ", ifp->if_xname, 259 sc->sc_caps.an_fwrev >> 8, 260 sc->sc_caps.an_fwrev & 0xff, 261 sc->sc_caps.an_fwsubrev); 262 263 if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_FH) 264 printf("802.11 FH"); 265 else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_DS) 266 printf("802.11 DS"); 267 else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_LM2000_DS) 268 printf("LM2000 DS"); 269 else 270 printf("unknown (%x)", sc->sc_config.an_radiotype); 271 272 printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); 273 274 ifp->if_softc = sc; 275 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 276 ifp->if_ioctl = an_ioctl; 277 ifp->if_start = an_start; 278 ifp->if_init = an_init; 279 ifp->if_watchdog = an_watchdog; 280 IFQ_SET_READY(&ifp->if_snd); 281 282 ic->ic_phytype = IEEE80211_T_DS; 283 ic->ic_opmode = IEEE80211_M_STA; 284 ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_PMGT | IEEE80211_C_MONITOR; 285 #ifndef IEEE80211_STA_ONLY 286 ic->ic_caps |= IEEE80211_C_IBSS; 287 #endif 288 ic->ic_state = IEEE80211_S_INIT; 289 IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr); 290 291 switch (sc->sc_caps.an_regdomain) { 292 default: 293 case AN_REGDOMAIN_USA: 294 case AN_REGDOMAIN_CANADA: 295 chan_min = 1; chan_max = 11; break; 296 case AN_REGDOMAIN_EUROPE: 297 case AN_REGDOMAIN_AUSTRALIA: 298 chan_min = 1; chan_max = 13; break; 299 case AN_REGDOMAIN_JAPAN: 300 chan_min = 14; chan_max = 14; break; 301 case AN_REGDOMAIN_SPAIN: 302 chan_min = 10; chan_max = 11; break; 303 case AN_REGDOMAIN_FRANCE: 304 chan_min = 10; chan_max = 13; break; 305 case AN_REGDOMAIN_JAPANWIDE: 306 chan_min = 1; chan_max = 14; break; 307 } 308 309 for (chan = chan_min; chan <= chan_max; chan++) { 310 ic->ic_channels[chan].ic_freq = 311 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 312 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; 313 } 314 ic->ic_ibss_chan = &ic->ic_channels[chan_min]; 315 316 /* Find supported rate */ 317 for (i = 0; i < sizeof(sc->sc_caps.an_rates); i++) { 318 if (sc->sc_caps.an_rates[i] == 0) 319 continue; 320 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ 321 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates++] = 322 sc->sc_caps.an_rates[i]; 323 } 324 325 /* 326 * Call MI attach routine. 327 */ 328 if_attach(ifp); 329 ieee80211_ifattach(ifp); 330 331 sc->sc_newstate = ic->ic_newstate; 332 ic->ic_newstate = an_newstate; 333 334 ieee80211_media_init(ifp, an_media_change, an_media_status); 335 336 #if NBPFILTER > 0 337 bzero(&sc->sc_rxtapu, sizeof(sc->sc_rxtapu)); 338 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu); 339 sc->sc_rxtap.ar_ihdr.it_present = AN_RX_RADIOTAP_PRESENT; 340 341 bzero(&sc->sc_txtapu, sizeof(sc->sc_txtapu)); 342 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu); 343 sc->sc_txtap.at_ihdr.it_present = AN_TX_RADIOTAP_PRESENT; 344 345 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 346 sizeof(struct ieee80211_frame) + 64); 347 #endif 348 349 sc->sc_sdhook = shutdownhook_establish(an_shutdown, sc); 350 351 sc->sc_attached = 1; 352 353 return(0); 354 } 355 356 void 357 an_rxeof(struct an_softc *sc) 358 { 359 struct ieee80211com *ic = &sc->sc_ic; 360 struct ifnet *ifp = &ic->ic_if; 361 struct ieee80211_frame *wh; 362 struct ieee80211_rxinfo rxi; 363 struct ieee80211_node *ni; 364 struct an_rxframe frmhdr; 365 struct mbuf *m; 366 u_int16_t status; 367 int fid, gaplen, len, off; 368 uint8_t *gap; 369 370 fid = CSR_READ_2(sc, AN_RX_FID); 371 372 /* First read in the frame header */ 373 if (an_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr), sizeof(frmhdr)) != 0) { 374 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 375 ifp->if_ierrors++; 376 DPRINTF(("an_rxeof: read fid %x failed\n", fid)); 377 return; 378 } 379 an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2); 380 381 status = frmhdr.an_rx_status; 382 if ((status & AN_STAT_ERRSTAT) != 0 && 383 ic->ic_opmode != IEEE80211_M_MONITOR) { 384 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 385 ifp->if_ierrors++; 386 DPRINTF(("an_rxeof: fid %x status %x\n", fid, status)); 387 return; 388 } 389 390 /* the payload length field includes a 16-bit "mystery field" */ 391 len = frmhdr.an_rx_payload_len - sizeof(uint16_t); 392 off = ALIGN(sizeof(struct ieee80211_frame)); 393 394 if (off + len > MCLBYTES) { 395 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 396 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 397 ifp->if_ierrors++; 398 DPRINTF(("an_rxeof: oversized packet %d\n", len)); 399 return; 400 } 401 len = 0; 402 } 403 404 MGETHDR(m, M_DONTWAIT, MT_DATA); 405 if (m == NULL) { 406 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 407 ifp->if_ierrors++; 408 DPRINTF(("an_rxeof: MGET failed\n")); 409 return; 410 } 411 if (off + len + AN_GAPLEN_MAX > MHLEN) { 412 MCLGET(m, M_DONTWAIT); 413 if ((m->m_flags & M_EXT) == 0) { 414 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 415 m_freem(m); 416 ifp->if_ierrors++; 417 DPRINTF(("an_rxeof: MCLGET failed\n")); 418 return; 419 } 420 } 421 m->m_data += off - sizeof(struct ieee80211_frame); 422 423 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 424 gaplen = frmhdr.an_gaplen; 425 if (gaplen > AN_GAPLEN_MAX) { 426 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 427 m_freem(m); 428 ifp->if_ierrors++; 429 DPRINTF(("%s: gap too long\n", __func__)); 430 return; 431 } 432 /* 433 * We don't need the 16-bit mystery field (payload length?), 434 * so read it into the region reserved for the 802.11 header. 435 * 436 * When Cisco Aironet 350 cards w/ firmware version 5 or 437 * greater operate with certain Cisco 350 APs, 438 * the "gap" is filled with the SNAP header. Read 439 * it in after the 802.11 header. 440 */ 441 gap = m->m_data + sizeof(struct ieee80211_frame) - 442 sizeof(uint16_t); 443 an_read_bap(sc, fid, -1, gap, gaplen + sizeof(u_int16_t), 444 gaplen + sizeof(u_int16_t)); 445 } else 446 gaplen = 0; 447 448 an_read_bap(sc, fid, -1, 449 m->m_data + sizeof(struct ieee80211_frame) + gaplen, len, len); 450 an_swap16((u_int16_t *)(m->m_data + sizeof(struct ieee80211_frame) + gaplen), (len+1)/2); 451 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + gaplen + 452 len; 453 454 memcpy(m->m_data, &frmhdr.an_whdr, sizeof(struct ieee80211_frame)); 455 m->m_pkthdr.rcvif = ifp; 456 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 457 458 #if NBPFILTER > 0 459 if (sc->sc_drvbpf) { 460 struct mbuf mb; 461 struct an_rx_radiotap_header *tap = &sc->sc_rxtap; 462 463 tap->ar_rate = frmhdr.an_rx_rate; 464 tap->ar_antsignal = frmhdr.an_rx_signal_strength; 465 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq; 466 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags; 467 468 469 mb.m_data = (caddr_t)tap; 470 mb.m_len = sizeof(sc->sc_rxtapu); 471 mb.m_next = m; 472 mb.m_nextpkt = NULL; 473 mb.m_type = 0; 474 mb.m_flags = 0; 475 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 476 } 477 #endif /* NBPFILTER > 0 */ 478 479 wh = mtod(m, struct ieee80211_frame *); 480 rxi.rxi_flags = 0; 481 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 482 /* 483 * WEP is decrypted by hardware. Clear WEP bit 484 * header for ieee80211_input(). 485 */ 486 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 487 488 rxi.rxi_flags |= IEEE80211_RXI_HWDEC; 489 } 490 491 ni = ieee80211_find_rxnode(ic, wh); 492 rxi.rxi_rssi = frmhdr.an_rx_signal_strength; 493 rxi.rxi_tstamp = an_switch32(frmhdr.an_rx_time); 494 ieee80211_input(ifp, m, ni, &rxi); 495 ieee80211_release_node(ic, ni); 496 } 497 498 void 499 an_txeof(struct an_softc *sc, u_int16_t status) 500 { 501 struct ifnet *ifp = &sc->sc_ic.ic_if; 502 int cur, id; 503 504 sc->sc_tx_timer = 0; 505 ifp->if_flags &= ~IFF_OACTIVE; 506 507 id = CSR_READ_2(sc, AN_TX_CMP_FID); 508 CSR_WRITE_2(sc, AN_EVENT_ACK, status & (AN_EV_TX | AN_EV_TX_EXC)); 509 510 if (status & AN_EV_TX_EXC) 511 ifp->if_oerrors++; 512 else 513 ifp->if_opackets++; 514 515 cur = sc->sc_txcur; 516 if (sc->sc_txd[cur].d_fid == id) { 517 sc->sc_txd[cur].d_inuse = 0; 518 DPRINTF2(("an_txeof: sent %x/%d\n", id, cur)); 519 AN_INC(cur, AN_TX_RING_CNT); 520 sc->sc_txcur = cur; 521 } else { 522 for (cur = 0; cur < AN_TX_RING_CNT; cur++) { 523 if (id == sc->sc_txd[cur].d_fid) { 524 sc->sc_txd[cur].d_inuse = 0; 525 break; 526 } 527 } 528 if (ifp->if_flags & IFF_DEBUG) 529 printf("%s: tx mismatch: " 530 "expected %x(%d), actual %x(%d)\n", 531 sc->sc_dev.dv_xname, 532 sc->sc_txd[sc->sc_txcur].d_fid, sc->sc_txcur, 533 id, cur); 534 } 535 } 536 537 int 538 an_intr(void *arg) 539 { 540 struct an_softc *sc = arg; 541 struct ifnet *ifp = &sc->sc_ic.ic_if; 542 int i; 543 u_int16_t status; 544 545 if (!sc->sc_enabled || sc->sc_invalid || 546 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || 547 (ifp->if_flags & IFF_RUNNING) == 0) 548 return 0; 549 550 if ((ifp->if_flags & IFF_UP) == 0) { 551 CSR_WRITE_2(sc, AN_INT_EN, 0); 552 CSR_WRITE_2(sc, AN_EVENT_ACK, ~0); 553 return 1; 554 } 555 556 /* maximum 10 loops per interrupt */ 557 for (i = 0; i < 10; i++) { 558 if (!sc->sc_enabled || sc->sc_invalid) 559 return 1; 560 if (CSR_READ_2(sc, AN_SW0) != AN_MAGIC) { 561 DPRINTF(("an_intr: magic number changed: %x\n", 562 CSR_READ_2(sc, AN_SW0))); 563 sc->sc_invalid = 1; 564 return 1; 565 } 566 status = CSR_READ_2(sc, AN_EVENT_STAT); 567 CSR_WRITE_2(sc, AN_EVENT_ACK, status & ~(AN_INTRS)); 568 if ((status & AN_INTRS) == 0) 569 break; 570 571 if (status & AN_EV_RX) 572 an_rxeof(sc); 573 574 if (status & (AN_EV_TX | AN_EV_TX_EXC)) 575 an_txeof(sc, status); 576 577 if (status & AN_EV_LINKSTAT) 578 an_linkstat_intr(sc); 579 580 if ((ifp->if_flags & IFF_OACTIVE) == 0 && 581 sc->sc_ic.ic_state == IEEE80211_S_RUN && 582 !IFQ_IS_EMPTY(&ifp->if_snd)) 583 an_start(ifp); 584 } 585 586 return 1; 587 } 588 589 /* Must be called at proper protection level! */ 590 int 591 an_cmd(struct an_softc *sc, int cmd, int val) 592 { 593 int i, stat; 594 595 /* make sure previous command completed */ 596 if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) { 597 if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG) 598 printf("%s: command 0x%x busy\n", sc->sc_dev.dv_xname, 599 CSR_READ_2(sc, AN_COMMAND)); 600 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); 601 } 602 603 CSR_WRITE_2(sc, AN_PARAM0, val); 604 CSR_WRITE_2(sc, AN_PARAM1, 0); 605 CSR_WRITE_2(sc, AN_PARAM2, 0); 606 CSR_WRITE_2(sc, AN_COMMAND, cmd); 607 608 if (cmd == AN_CMD_FW_RESTART) { 609 /* XXX: should sleep here */ 610 DELAY(100*1000); 611 } 612 613 for (i = 0; i < AN_TIMEOUT; i++) { 614 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD) 615 break; 616 DELAY(10); 617 } 618 619 stat = CSR_READ_2(sc, AN_STATUS); 620 621 /* clear stuck command busy if necessary */ 622 if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) 623 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); 624 625 /* Ack the command */ 626 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); 627 628 if (i == AN_TIMEOUT) { 629 if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG) 630 printf("%s: command 0x%x param 0x%x timeout\n", 631 sc->sc_dev.dv_xname, cmd, val); 632 return ETIMEDOUT; 633 } 634 if (stat & AN_STAT_CMD_RESULT) { 635 if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG) 636 printf("%s: command 0x%x param 0x%x status 0x%x " 637 "resp 0x%x 0x%x 0x%x\n", 638 sc->sc_dev.dv_xname, cmd, val, stat, 639 CSR_READ_2(sc, AN_RESP0), CSR_READ_2(sc, AN_RESP1), 640 CSR_READ_2(sc, AN_RESP2)); 641 return EIO; 642 } 643 644 return 0; 645 } 646 647 int 648 an_reset(struct an_softc *sc) 649 { 650 651 DPRINTF(("an_reset\n")); 652 653 if (!sc->sc_enabled) 654 return ENXIO; 655 656 an_cmd(sc, AN_CMD_ENABLE, 0); 657 an_cmd(sc, AN_CMD_FW_RESTART, 0); 658 an_cmd(sc, AN_CMD_NOOP2, 0); 659 660 if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) { 661 printf("%s: reset failed\n", sc->sc_dev.dv_xname); 662 return ETIMEDOUT; 663 } 664 665 an_cmd(sc, AN_CMD_DISABLE, 0); 666 return 0; 667 } 668 669 void 670 an_linkstat_intr(struct an_softc *sc) 671 { 672 struct ieee80211com *ic = &sc->sc_ic; 673 u_int16_t status; 674 675 status = CSR_READ_2(sc, AN_LINKSTAT); 676 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT); 677 DPRINTF(("an_linkstat_intr: status 0x%x\n", status)); 678 679 if (status == AN_LINKSTAT_ASSOCIATED) { 680 if (ic->ic_state != IEEE80211_S_RUN 681 #ifndef IEEE80211_STA_ONLY 682 || ic->ic_opmode == IEEE80211_M_IBSS 683 #endif 684 ) 685 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 686 } else { 687 if (ic->ic_opmode == IEEE80211_M_STA) 688 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 689 } 690 } 691 692 /* 693 * Wait for firmware come up after power enabled. 694 */ 695 void 696 an_wait(struct an_softc *sc) 697 { 698 int i; 699 700 CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_NOOP2); 701 for (i = 0; i < 3*hz; i++) { 702 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD) 703 break; 704 (void)tsleep(sc, PWAIT, "anatch", 1); 705 } 706 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); 707 } 708 709 int 710 an_read_bap(struct an_softc *sc, int id, int off, void *buf, int len, int blen) 711 { 712 int error, cnt, cnt2; 713 714 if (len == 0 || blen == 0) 715 return 0; 716 if (off == -1) 717 off = sc->sc_bap_off; 718 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 719 if ((error = an_seek_bap(sc, id, off)) != 0) 720 return EIO; 721 } 722 723 cnt = (blen + 1) / 2; 724 CSR_READ_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt); 725 for (cnt2 = (len + 1) / 2; cnt < cnt2; cnt++) 726 (void) CSR_READ_2(sc, AN_DATA0); 727 sc->sc_bap_off += cnt * 2; 728 729 return 0; 730 } 731 732 int 733 an_write_bap(struct an_softc *sc, int id, int off, void *buf, int buflen) 734 { 735 int error, cnt; 736 737 if (buflen == 0) 738 return 0; 739 if (off == -1) 740 off = sc->sc_bap_off; 741 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 742 if ((error = an_seek_bap(sc, id, off)) != 0) 743 return EIO; 744 } 745 746 cnt = (buflen + 1) / 2; 747 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt); 748 sc->sc_bap_off += cnt * 2; 749 return 0; 750 } 751 752 int 753 an_seek_bap(struct an_softc *sc, int id, int off) 754 { 755 int i, status; 756 757 CSR_WRITE_2(sc, AN_SEL0, id); 758 CSR_WRITE_2(sc, AN_OFF0, off); 759 760 for (i = 0; ; i++) { 761 status = CSR_READ_2(sc, AN_OFF0); 762 if ((status & AN_OFF_BUSY) == 0) 763 break; 764 if (i == AN_TIMEOUT) { 765 printf("%s: timeout in an_seek_bap to 0x%x/0x%x\n", 766 sc->sc_dev.dv_xname, id, off); 767 sc->sc_bap_off = AN_OFF_ERR; /* invalidate */ 768 return ETIMEDOUT; 769 } 770 DELAY(10); 771 } 772 if (status & AN_OFF_ERR) { 773 printf("%s: failed in an_seek_bap to 0x%x/0x%x\n", 774 sc->sc_dev.dv_xname, id, off); 775 sc->sc_bap_off = AN_OFF_ERR; /* invalidate */ 776 return EIO; 777 } 778 sc->sc_bap_id = id; 779 sc->sc_bap_off = off; 780 return 0; 781 } 782 783 int 784 an_mwrite_bap(struct an_softc *sc, int id, int off, struct mbuf *m, int totlen) 785 { 786 int error, len, cnt; 787 788 if (off == -1) 789 off = sc->sc_bap_off; 790 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 791 if ((error = an_seek_bap(sc, id, off)) != 0) 792 return EIO; 793 } 794 795 for (len = 0; m != NULL; m = m->m_next) { 796 if (m->m_len == 0) 797 continue; 798 len = min(m->m_len, totlen); 799 800 if ((mtod(m, u_long) & 0x1) || (len & 0x1)) { 801 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_buf.sc_txbuf); 802 cnt = (totlen + 1) / 2; 803 an_swap16((u_int16_t *)&sc->sc_buf.sc_txbuf, cnt); 804 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, 805 sc->sc_buf.sc_val, cnt); 806 off += cnt * 2; 807 break; 808 } 809 cnt = len / 2; 810 an_swap16((u_int16_t *)mtod(m, u_int16_t *), cnt); 811 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, mtod(m, u_int16_t *), 812 cnt); 813 off += len; 814 totlen -= len; 815 } 816 sc->sc_bap_off = off; 817 return 0; 818 } 819 820 int 821 an_alloc_nicmem(struct an_softc *sc, int len, int *idp) 822 { 823 int i; 824 825 if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) { 826 printf("%s: failed to allocate %d bytes on NIC\n", 827 sc->sc_dev.dv_xname, len); 828 return(ENOMEM); 829 } 830 831 for (i = 0; i < AN_TIMEOUT; i++) { 832 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC) 833 break; 834 if (i == AN_TIMEOUT) { 835 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname); 836 return ETIMEDOUT; 837 } 838 DELAY(10); 839 } 840 841 *idp = CSR_READ_2(sc, AN_ALLOC_FID); 842 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC); 843 return 0; 844 } 845 846 int 847 an_read_rid(struct an_softc *sc, int rid, void *buf, int *buflenp) 848 { 849 int error; 850 u_int16_t len; 851 852 /* Tell the NIC to enter record read mode. */ 853 error = an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_READ, rid); 854 if (error) 855 return error; 856 857 /* length in byte, including length itself */ 858 error = an_read_bap(sc, rid, 0, &len, sizeof(len), sizeof(len)); 859 if (error) 860 return error; 861 862 len -= 2; 863 return an_read_bap(sc, rid, sizeof(len), buf, len, *buflenp); 864 } 865 866 int 867 an_write_rid(struct an_softc *sc, int rid, void *buf, int buflen) 868 { 869 int error; 870 u_int16_t len; 871 872 /* length in byte, including length itself */ 873 len = buflen + 2; 874 875 error = an_write_bap(sc, rid, 0, &len, sizeof(len)); 876 if (error) 877 return error; 878 error = an_write_bap(sc, rid, sizeof(len), buf, buflen); 879 if (error) 880 return error; 881 882 return an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_WRITE, rid); 883 } 884 885 int 886 an_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 887 { 888 struct an_softc *sc = ifp->if_softc; 889 struct ifaddr *ifa = (struct ifaddr *)data; 890 int s, error = 0; 891 892 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) 893 return ENXIO; 894 895 s = splnet(); 896 897 switch(command) { 898 case SIOCSIFADDR: 899 ifp->if_flags |= IFF_UP; 900 switch (ifa->ifa_addr->sa_family) { 901 #ifdef INET 902 case AF_INET: 903 error = an_init(ifp); 904 arp_ifinit(&sc->sc_ic.ic_ac, ifa); 905 break; 906 #endif 907 default: 908 error = an_init(ifp); 909 break; 910 } 911 break; 912 case SIOCSIFFLAGS: 913 if (ifp->if_flags & IFF_UP) { 914 if (sc->sc_enabled) { 915 /* 916 * To avoid rescanning another access point, 917 * do not call an_init() here. Instead, only 918 * reflect promisc mode settings. 919 */ 920 error = an_cmd(sc, AN_CMD_SET_MODE, 921 (ifp->if_flags & IFF_PROMISC) ? 0xffff : 0); 922 } else 923 error = an_init(ifp); 924 } else if (sc->sc_enabled) 925 an_stop(ifp, 1); 926 break; 927 case SIOCADDMULTI: 928 case SIOCDELMULTI: 929 /* The Aironet has no multicast filter. */ 930 error = 0; 931 break; 932 case SIOCS80211NWKEY: 933 error = an_set_nwkey(sc, (struct ieee80211_nwkey *)data); 934 break; 935 case SIOCG80211NWKEY: 936 error = an_get_nwkey(sc, (struct ieee80211_nwkey *)data); 937 break; 938 default: 939 error = ieee80211_ioctl(ifp, command, data); 940 break; 941 } 942 if (error == ENETRESET) { 943 if (sc->sc_enabled) 944 error = an_init(ifp); 945 else 946 error = 0; 947 } 948 splx(s); 949 return(error); 950 } 951 952 int 953 an_init(struct ifnet *ifp) 954 { 955 struct an_softc *sc = ifp->if_softc; 956 struct ieee80211com *ic = &sc->sc_ic; 957 int i, error, fid; 958 959 DPRINTF(("an_init: enabled %d\n", sc->sc_enabled)); 960 if (!sc->sc_enabled) { 961 if (sc->sc_enable) 962 (*sc->sc_enable)(sc); 963 an_wait(sc); 964 sc->sc_enabled = 1; 965 } else { 966 an_stop(ifp, 0); 967 if ((error = an_reset(sc)) != 0) { 968 printf("%s: failed to reset\n", ifp->if_xname); 969 an_stop(ifp, 1); 970 return error; 971 } 972 } 973 CSR_WRITE_2(sc, AN_SW0, AN_MAGIC); 974 975 /* Allocate the TX buffers */ 976 for (i = 0; i < AN_TX_RING_CNT; i++) { 977 if ((error = an_alloc_nicmem(sc, AN_TX_MAX_LEN, &fid)) != 0) { 978 printf("%s: failed to allocate nic memory\n", 979 ifp->if_xname); 980 an_stop(ifp, 1); 981 return error; 982 } 983 DPRINTF2(("an_init: txbuf %d allocated %x\n", i, fid)); 984 sc->sc_txd[i].d_fid = fid; 985 sc->sc_txd[i].d_inuse = 0; 986 } 987 sc->sc_txcur = sc->sc_txnext = 0; 988 989 IEEE80211_ADDR_COPY(sc->sc_config.an_macaddr, ic->ic_myaddr); 990 an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3); 991 sc->sc_config.an_scanmode = AN_SCANMODE_ACTIVE; 992 sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN; /*XXX*/ 993 if (ic->ic_flags & IEEE80211_F_WEPON) { 994 sc->sc_config.an_authtype |= 995 AN_AUTHTYPE_PRIVACY_IN_USE; 996 } 997 sc->sc_config.an_listen_interval = ic->ic_lintval; 998 sc->sc_config.an_beacon_period = ic->ic_lintval; 999 if (ic->ic_flags & IEEE80211_F_PMGTON) 1000 sc->sc_config.an_psave_mode = AN_PSAVE_PSP; 1001 else 1002 sc->sc_config.an_psave_mode = AN_PSAVE_CAM; 1003 sc->sc_config.an_ds_channel = 1004 ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 1005 1006 switch (ic->ic_opmode) { 1007 case IEEE80211_M_STA: 1008 sc->sc_config.an_opmode = 1009 AN_OPMODE_INFRASTRUCTURE_STATION; 1010 sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR; 1011 break; 1012 #ifndef IEEE80211_STA_ONLY 1013 case IEEE80211_M_IBSS: 1014 sc->sc_config.an_opmode = AN_OPMODE_IBSS_ADHOC; 1015 sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR; 1016 break; 1017 #endif 1018 case IEEE80211_M_MONITOR: 1019 sc->sc_config.an_opmode = 1020 AN_OPMODE_INFRASTRUCTURE_STATION; 1021 sc->sc_config.an_rxmode = 1022 AN_RXMODE_80211_MONITOR_ANYBSS; 1023 sc->sc_config.an_authtype = AN_AUTHTYPE_NONE; 1024 if (ic->ic_flags & IEEE80211_F_WEPON) 1025 sc->sc_config.an_authtype |= 1026 AN_AUTHTYPE_PRIVACY_IN_USE | 1027 AN_AUTHTYPE_ALLOW_UNENCRYPTED; 1028 break; 1029 default: 1030 printf("%s: bad opmode %d\n", ifp->if_xname, ic->ic_opmode); 1031 an_stop(ifp, 1); 1032 return EIO; 1033 } 1034 sc->sc_config.an_rxmode |= AN_RXMODE_NO_8023_HEADER; 1035 1036 /* Set the ssid list */ 1037 memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_ssidlist)); 1038 sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid_len = 1039 ic->ic_des_esslen; 1040 if (ic->ic_des_esslen) 1041 memcpy(sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid, 1042 ic->ic_des_essid, ic->ic_des_esslen); 1043 an_swap16((u_int16_t *)&sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid, 16); 1044 if (an_write_rid(sc, AN_RID_SSIDLIST, &sc->sc_buf, 1045 sizeof(sc->sc_buf.sc_ssidlist)) != 0) { 1046 printf("%s: failed to write ssid list\n", ifp->if_xname); 1047 an_stop(ifp, 1); 1048 return error; 1049 } 1050 1051 /* Set the AP list */ 1052 memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_aplist)); 1053 (void)an_write_rid(sc, AN_RID_APLIST, &sc->sc_buf, 1054 sizeof(sc->sc_buf.sc_aplist)); 1055 1056 /* Set the encapsulation */ 1057 for (i = 0; i < AN_ENCAP_NENTS; i++) { 1058 sc->sc_buf.sc_encap.an_entry[i].an_ethertype = 0; 1059 sc->sc_buf.sc_encap.an_entry[i].an_action = 1060 AN_RXENCAP_RFC1024 | AN_TXENCAP_RFC1024; 1061 } 1062 (void)an_write_rid(sc, AN_RID_ENCAP, &sc->sc_buf, 1063 sizeof(sc->sc_buf.sc_encap)); 1064 1065 /* Set the WEP Keys */ 1066 if (ic->ic_flags & IEEE80211_F_WEPON) 1067 an_write_wepkey(sc, AN_RID_WEP_VOLATILE, sc->sc_wepkeys, 1068 sc->sc_tx_key); 1069 1070 /* Set the configuration */ 1071 if (an_write_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, 1072 sizeof(sc->sc_config)) != 0) { 1073 printf("%s: failed to write config\n", ifp->if_xname); 1074 an_stop(ifp, 1); 1075 return error; 1076 } 1077 1078 /* Enable the MAC */ 1079 if (an_cmd(sc, AN_CMD_ENABLE, 0)) { 1080 printf("%s: failed to enable MAC\n", sc->sc_dev.dv_xname); 1081 an_stop(ifp, 1); 1082 return ENXIO; 1083 } 1084 if (ifp->if_flags & IFF_PROMISC) 1085 an_cmd(sc, AN_CMD_SET_MODE, 0xffff); 1086 1087 ifp->if_flags |= IFF_RUNNING; 1088 ifp->if_flags &= ~IFF_OACTIVE; 1089 ic->ic_state = IEEE80211_S_INIT; 1090 if (ic->ic_opmode == IEEE80211_M_MONITOR) 1091 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1092 1093 /* enable interrupts */ 1094 CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS); 1095 return 0; 1096 } 1097 1098 void 1099 an_start(struct ifnet *ifp) 1100 { 1101 struct an_softc *sc = (struct an_softc *)ifp->if_softc; 1102 struct ieee80211com *ic = &sc->sc_ic; 1103 struct ieee80211_node *ni; 1104 struct ieee80211_frame *wh; 1105 struct an_txframe frmhdr; 1106 struct mbuf *m; 1107 u_int16_t len; 1108 int cur, fid; 1109 1110 if (!sc->sc_enabled || sc->sc_invalid) { 1111 DPRINTF(("an_start: noop: enabled %d invalid %d\n", 1112 sc->sc_enabled, sc->sc_invalid)); 1113 return; 1114 } 1115 1116 memset(&frmhdr, 0, sizeof(frmhdr)); 1117 cur = sc->sc_txnext; 1118 for (;;) { 1119 if (ic->ic_state != IEEE80211_S_RUN) { 1120 DPRINTF(("an_start: not running %d\n", ic->ic_state)); 1121 break; 1122 } 1123 IFQ_POLL(&ifp->if_snd, m); 1124 if (m == NULL) { 1125 DPRINTF2(("an_start: no pending mbuf\n")); 1126 break; 1127 } 1128 if (sc->sc_txd[cur].d_inuse) { 1129 DPRINTF2(("an_start: %x/%d busy\n", 1130 sc->sc_txd[cur].d_fid, cur)); 1131 ifp->if_flags |= IFF_OACTIVE; 1132 break; 1133 } 1134 IFQ_DEQUEUE(&ifp->if_snd, m); 1135 ifp->if_opackets++; 1136 #if NBPFILTER > 0 1137 if (ifp->if_bpf) 1138 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 1139 #endif 1140 if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) { 1141 ifp->if_oerrors++; 1142 continue; 1143 } 1144 if (ni != NULL) 1145 ieee80211_release_node(ic, ni); 1146 #if NBPFILTER > 0 1147 if (ic->ic_rawbpf) 1148 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1149 #endif 1150 1151 wh = mtod(m, struct ieee80211_frame *); 1152 if (ic->ic_flags & IEEE80211_F_WEPON) 1153 wh->i_fc[1] |= IEEE80211_FC1_WEP; 1154 m_copydata(m, 0, sizeof(struct ieee80211_frame), 1155 (caddr_t)&frmhdr.an_whdr); 1156 an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2); 1157 1158 /* insert payload length in front of llc/snap */ 1159 len = htons(m->m_pkthdr.len - sizeof(struct ieee80211_frame)); 1160 m_adj(m, sizeof(struct ieee80211_frame) - sizeof(len)); 1161 if (mtod(m, u_long) & 0x01) 1162 memcpy(mtod(m, caddr_t), &len, sizeof(len)); 1163 else 1164 *mtod(m, u_int16_t *) = len; 1165 1166 /* 1167 * XXX Aironet firmware apparently convert the packet 1168 * with longer than 1500 bytes in length into LLC/SNAP. 1169 * If we have 1500 bytes in ethernet payload, it is 1170 * 1508 bytes including LLC/SNAP and will be inserted 1171 * additional LLC/SNAP header with 1501-1508 in its 1172 * ethertype !! 1173 * So we skip LLC/SNAP header and force firmware to 1174 * convert it to LLC/SNAP again. 1175 */ 1176 m_adj(m, sizeof(struct llc)); 1177 1178 frmhdr.an_tx_ctl = AN_TXCTL_80211; 1179 frmhdr.an_tx_payload_len = m->m_pkthdr.len; 1180 frmhdr.an_gaplen = AN_TXGAP_802_11; 1181 1182 if (ic->ic_fixed_rate != -1) 1183 frmhdr.an_tx_rate = 1184 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ 1185 ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1186 else 1187 frmhdr.an_tx_rate = 0; 1188 1189 if (sizeof(frmhdr) + AN_TXGAP_802_11 + sizeof(len) + 1190 m->m_pkthdr.len > AN_TX_MAX_LEN) { 1191 ifp->if_oerrors++; 1192 m_freem(m); 1193 continue; 1194 } 1195 1196 #if NBPFILTER > 0 1197 if (sc->sc_drvbpf) { 1198 struct mbuf mb; 1199 struct an_tx_radiotap_header *tap = &sc->sc_txtap; 1200 1201 tap->at_rate = 1202 ic->ic_bss->ni_rates.rs_rates[ic->ic_bss->ni_txrate]; 1203 tap->at_chan_freq = 1204 ic->ic_bss->ni_chan->ic_freq; 1205 tap->at_chan_flags = 1206 ic->ic_bss->ni_chan->ic_flags; 1207 1208 mb.m_data = (caddr_t)tap; 1209 mb.m_len = sizeof(sc->sc_txtapu); 1210 mb.m_next = m; 1211 mb.m_nextpkt = NULL; 1212 mb.m_type = 0; 1213 mb.m_flags = 0; 1214 bpf_mtap(sc->sc_drvbpf, m, BPF_DIRECTION_OUT); 1215 } 1216 #endif 1217 1218 fid = sc->sc_txd[cur].d_fid; 1219 if (an_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1220 ifp->if_oerrors++; 1221 m_freem(m); 1222 continue; 1223 } 1224 /* dummy write to avoid seek. */ 1225 an_write_bap(sc, fid, -1, &frmhdr, AN_TXGAP_802_11); 1226 an_mwrite_bap(sc, fid, -1, m, m->m_pkthdr.len); 1227 m_freem(m); 1228 1229 DPRINTF2(("an_start: send %d byte via %x/%d\n", 1230 ntohs(len) + sizeof(struct ieee80211_frame), 1231 fid, cur)); 1232 sc->sc_txd[cur].d_inuse = 1; 1233 if (an_cmd(sc, AN_CMD_TX, fid)) { 1234 printf("%s: xmit failed\n", ifp->if_xname); 1235 sc->sc_txd[cur].d_inuse = 0; 1236 continue; 1237 } 1238 sc->sc_tx_timer = 5; 1239 ifp->if_timer = 1; 1240 AN_INC(cur, AN_TX_RING_CNT); 1241 sc->sc_txnext = cur; 1242 } 1243 } 1244 1245 void 1246 an_stop(struct ifnet *ifp, int disable) 1247 { 1248 struct an_softc *sc = ifp->if_softc; 1249 int i, s; 1250 1251 if (!sc->sc_enabled) 1252 return; 1253 1254 DPRINTF(("an_stop: disable %d\n", disable)); 1255 1256 s = splnet(); 1257 ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1); 1258 if (!sc->sc_invalid) { 1259 an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0); 1260 CSR_WRITE_2(sc, AN_INT_EN, 0); 1261 an_cmd(sc, AN_CMD_DISABLE, 0); 1262 1263 for (i = 0; i < AN_TX_RING_CNT; i++) 1264 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->sc_txd[i].d_fid); 1265 } 1266 1267 sc->sc_tx_timer = 0; 1268 ifp->if_timer = 0; 1269 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); 1270 1271 if (disable) { 1272 if (sc->sc_disable) 1273 (*sc->sc_disable)(sc); 1274 sc->sc_enabled = 0; 1275 } 1276 splx(s); 1277 } 1278 1279 void 1280 an_watchdog(struct ifnet *ifp) 1281 { 1282 struct an_softc *sc = ifp->if_softc; 1283 1284 if (!sc->sc_enabled) 1285 return; 1286 1287 if (sc->sc_tx_timer) { 1288 if (--sc->sc_tx_timer == 0) { 1289 printf("%s: device timeout\n", ifp->if_xname); 1290 ifp->if_oerrors++; 1291 an_init(ifp); 1292 return; 1293 } 1294 ifp->if_timer = 1; 1295 } 1296 ieee80211_watchdog(ifp); 1297 } 1298 1299 void 1300 an_shutdown(void *self) 1301 { 1302 struct an_softc *sc = (struct an_softc *)self; 1303 1304 if (sc->sc_attached) 1305 an_stop(&sc->sc_ic.ic_if, 1); 1306 } 1307 1308 /* TBD factor with ieee80211_media_change */ 1309 int 1310 an_media_change(struct ifnet *ifp) 1311 { 1312 struct an_softc *sc = ifp->if_softc; 1313 struct ieee80211com *ic = &sc->sc_ic; 1314 struct ifmedia_entry *ime; 1315 enum ieee80211_opmode newmode; 1316 int i, rate, error = 0; 1317 1318 ime = ic->ic_media.ifm_cur; 1319 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) { 1320 i = -1; 1321 } else { 1322 struct ieee80211_rateset *rs = 1323 &ic->ic_sup_rates[IEEE80211_MODE_11B]; 1324 rate = ieee80211_media2rate(ime->ifm_media); 1325 if (rate == 0) 1326 return EINVAL; 1327 for (i = 0; i < rs->rs_nrates; i++) { 1328 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate) 1329 break; 1330 } 1331 if (i == rs->rs_nrates) 1332 return EINVAL; 1333 } 1334 if (ic->ic_fixed_rate != i) { 1335 ic->ic_fixed_rate = i; 1336 error = ENETRESET; 1337 } 1338 1339 #ifndef IEEE80211_STA_ONLY 1340 if (ime->ifm_media & IFM_IEEE80211_ADHOC) 1341 newmode = IEEE80211_M_IBSS; 1342 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) 1343 newmode = IEEE80211_M_HOSTAP; 1344 else 1345 #endif 1346 if (ime->ifm_media & IFM_IEEE80211_MONITOR) 1347 newmode = IEEE80211_M_MONITOR; 1348 else 1349 newmode = IEEE80211_M_STA; 1350 if (ic->ic_opmode != newmode) { 1351 ic->ic_opmode = newmode; 1352 error = ENETRESET; 1353 } 1354 if (error == ENETRESET) { 1355 if (sc->sc_enabled) 1356 error = an_init(ifp); 1357 else 1358 error = 0; 1359 } 1360 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); 1361 1362 return error; 1363 } 1364 1365 void 1366 an_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1367 { 1368 struct an_softc *sc = ifp->if_softc; 1369 struct ieee80211com *ic = &sc->sc_ic; 1370 int rate, buflen; 1371 1372 if (sc->sc_enabled == 0) { 1373 imr->ifm_active = IFM_IEEE80211 | IFM_NONE; 1374 imr->ifm_status = 0; 1375 return; 1376 } 1377 1378 imr->ifm_status = IFM_AVALID; 1379 imr->ifm_active = IFM_IEEE80211; 1380 if (ic->ic_state == IEEE80211_S_RUN) 1381 imr->ifm_status |= IFM_ACTIVE; 1382 buflen = sizeof(sc->sc_buf); 1383 if (ic->ic_fixed_rate != -1) 1384 rate = ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ 1385 ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1386 else if (an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen) != 0) 1387 rate = 0; 1388 else 1389 rate = sc->sc_buf.sc_status.an_current_tx_rate; 1390 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 1391 switch (ic->ic_opmode) { 1392 case IEEE80211_M_STA: 1393 break; 1394 #ifndef IEEE80211_STA_ONLY 1395 case IEEE80211_M_IBSS: 1396 imr->ifm_active |= IFM_IEEE80211_ADHOC; 1397 break; 1398 case IEEE80211_M_HOSTAP: 1399 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 1400 break; 1401 #endif 1402 case IEEE80211_M_MONITOR: 1403 imr->ifm_active |= IFM_IEEE80211_MONITOR; 1404 break; 1405 default: 1406 break; 1407 } 1408 } 1409 1410 int 1411 an_set_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1412 { 1413 int error; 1414 struct ieee80211com *ic = &sc->sc_ic; 1415 u_int16_t prevauth; 1416 1417 error = 0; 1418 prevauth = sc->sc_config.an_authtype; 1419 1420 switch (nwkey->i_wepon) { 1421 case IEEE80211_NWKEY_OPEN: 1422 sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN; 1423 ic->ic_flags &= ~IEEE80211_F_WEPON; 1424 break; 1425 1426 case IEEE80211_NWKEY_WEP: 1427 case IEEE80211_NWKEY_WEP | IEEE80211_NWKEY_PERSIST: 1428 error = an_set_nwkey_wep(sc, nwkey); 1429 if (error == 0 || error == ENETRESET) { 1430 sc->sc_config.an_authtype = 1431 AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE; 1432 ic->ic_flags |= IEEE80211_F_WEPON; 1433 } 1434 break; 1435 1436 default: 1437 error = EINVAL; 1438 break; 1439 } 1440 if (error == 0 && prevauth != sc->sc_config.an_authtype) 1441 error = ENETRESET; 1442 return error; 1443 } 1444 1445 int 1446 an_set_nwkey_wep(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1447 { 1448 int i, txkey, anysetkey, needreset, error; 1449 struct an_wepkey keys[IEEE80211_WEP_NKID]; 1450 1451 error = 0; 1452 memset(keys, 0, sizeof(keys)); 1453 anysetkey = needreset = 0; 1454 1455 /* load argument and sanity check */ 1456 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1457 keys[i].an_wep_keylen = nwkey->i_key[i].i_keylen; 1458 if (keys[i].an_wep_keylen < 0) 1459 continue; 1460 if (keys[i].an_wep_keylen != 0 && 1461 keys[i].an_wep_keylen < IEEE80211_WEP_KEYLEN) 1462 return EINVAL; 1463 if (keys[i].an_wep_keylen > sizeof(keys[i].an_wep_key)) 1464 return EINVAL; 1465 if ((error = copyin(nwkey->i_key[i].i_keydat, 1466 keys[i].an_wep_key, keys[i].an_wep_keylen)) != 0) 1467 return error; 1468 anysetkey++; 1469 } 1470 txkey = nwkey->i_defkid - 1; 1471 if (txkey >= 0) { 1472 if (txkey >= IEEE80211_WEP_NKID) 1473 return EINVAL; 1474 /* default key must have a valid value */ 1475 if (keys[txkey].an_wep_keylen == 0 || 1476 (keys[txkey].an_wep_keylen < 0 && 1477 sc->sc_perskeylen[txkey] == 0)) 1478 return EINVAL; 1479 anysetkey++; 1480 } 1481 DPRINTF(("an_set_nwkey_wep: %s: %sold(%d:%d,%d,%d,%d) " 1482 "pers(%d:%d,%d,%d,%d) new(%d:%d,%d,%d,%d)\n", 1483 sc->sc_dev.dv_xname, 1484 ((nwkey->i_wepon & IEEE80211_NWKEY_PERSIST) ? "persist: " : ""), 1485 sc->sc_tx_key, 1486 sc->sc_wepkeys[0].an_wep_keylen, sc->sc_wepkeys[1].an_wep_keylen, 1487 sc->sc_wepkeys[2].an_wep_keylen, sc->sc_wepkeys[3].an_wep_keylen, 1488 sc->sc_tx_perskey, 1489 sc->sc_perskeylen[0], sc->sc_perskeylen[1], 1490 sc->sc_perskeylen[2], sc->sc_perskeylen[3], 1491 txkey, 1492 keys[0].an_wep_keylen, keys[1].an_wep_keylen, 1493 keys[2].an_wep_keylen, keys[3].an_wep_keylen)); 1494 if (!(nwkey->i_wepon & IEEE80211_NWKEY_PERSIST)) { 1495 /* set temporary keys */ 1496 sc->sc_tx_key = txkey; 1497 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1498 if (keys[i].an_wep_keylen < 0) 1499 continue; 1500 memcpy(&sc->sc_wepkeys[i], &keys[i], sizeof(keys[i])); 1501 } 1502 } else { 1503 /* set persist keys */ 1504 if (anysetkey) { 1505 /* prepare to write nvram */ 1506 if (!sc->sc_enabled) { 1507 if (sc->sc_enable) 1508 (*sc->sc_enable)(sc); 1509 an_wait(sc); 1510 sc->sc_enabled = 1; 1511 error = an_write_wepkey(sc, 1512 AN_RID_WEP_PERSISTENT, keys, txkey); 1513 if (sc->sc_disable) 1514 (*sc->sc_disable)(sc); 1515 sc->sc_enabled = 0; 1516 } else { 1517 an_cmd(sc, AN_CMD_DISABLE, 0); 1518 error = an_write_wepkey(sc, 1519 AN_RID_WEP_PERSISTENT, keys, txkey); 1520 an_cmd(sc, AN_CMD_ENABLE, 0); 1521 } 1522 if (error) 1523 return error; 1524 } 1525 if (txkey >= 0) 1526 sc->sc_tx_perskey = txkey; 1527 if (sc->sc_tx_key >= 0) { 1528 sc->sc_tx_key = -1; 1529 needreset++; 1530 } 1531 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1532 if (sc->sc_wepkeys[i].an_wep_keylen >= 0) { 1533 memset(&sc->sc_wepkeys[i].an_wep_key, 0, 1534 sizeof(sc->sc_wepkeys[i].an_wep_key)); 1535 sc->sc_wepkeys[i].an_wep_keylen = -1; 1536 needreset++; 1537 } 1538 if (keys[i].an_wep_keylen >= 0) 1539 sc->sc_perskeylen[i] = keys[i].an_wep_keylen; 1540 } 1541 } 1542 if (needreset) { 1543 /* firmware restart to reload persistent key */ 1544 an_reset(sc); 1545 } 1546 if (anysetkey || needreset) 1547 error = ENETRESET; 1548 return error; 1549 } 1550 1551 int 1552 an_get_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1553 { 1554 int i, error; 1555 1556 error = 0; 1557 if (sc->sc_config.an_authtype & AN_AUTHTYPE_LEAP) 1558 nwkey->i_wepon = IEEE80211_NWKEY_EAP; 1559 else if (sc->sc_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) 1560 nwkey->i_wepon = IEEE80211_NWKEY_WEP; 1561 else 1562 nwkey->i_wepon = IEEE80211_NWKEY_OPEN; 1563 if (sc->sc_tx_key == -1) 1564 nwkey->i_defkid = sc->sc_tx_perskey + 1; 1565 else 1566 nwkey->i_defkid = sc->sc_tx_key + 1; 1567 if (nwkey->i_key[0].i_keydat == NULL) 1568 return 0; 1569 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1570 if (nwkey->i_key[i].i_keydat == NULL) 1571 continue; 1572 /* do not show any keys to non-root user */ 1573 if ((error = suser(curproc, 0)) != 0) 1574 break; 1575 nwkey->i_key[i].i_keylen = sc->sc_wepkeys[i].an_wep_keylen; 1576 if (nwkey->i_key[i].i_keylen < 0) { 1577 if (sc->sc_perskeylen[i] == 0) 1578 nwkey->i_key[i].i_keylen = 0; 1579 continue; 1580 } 1581 if ((error = copyout(sc->sc_wepkeys[i].an_wep_key, 1582 nwkey->i_key[i].i_keydat, 1583 sc->sc_wepkeys[i].an_wep_keylen)) != 0) 1584 break; 1585 } 1586 return error; 1587 } 1588 1589 int 1590 an_write_wepkey(struct an_softc *sc, int type, struct an_wepkey *keys, int kid) 1591 { 1592 int i, error; 1593 struct an_rid_wepkey *akey; 1594 1595 error = 0; 1596 akey = &sc->sc_buf.sc_wepkey; 1597 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1598 memset(akey, 0, sizeof(struct an_rid_wepkey)); 1599 if (keys[i].an_wep_keylen < 0 || 1600 keys[i].an_wep_keylen > sizeof(akey->an_key)) 1601 continue; 1602 akey->an_key_len = keys[i].an_wep_keylen; 1603 akey->an_key_index = i; 1604 akey->an_mac_addr[0] = 1; /* default mac */ 1605 an_swap16((u_int16_t *)&akey->an_mac_addr, 3); 1606 memcpy(akey->an_key, keys[i].an_wep_key, keys[i].an_wep_keylen); 1607 an_swap16((u_int16_t *)&akey->an_key, 8); 1608 if ((error = an_write_rid(sc, type, akey, sizeof(*akey))) != 0) 1609 return error; 1610 } 1611 if (kid >= 0) { 1612 memset(akey, 0, sizeof(struct an_rid_wepkey)); 1613 akey->an_key_index = 0xffff; 1614 akey->an_mac_addr[0] = kid; 1615 an_swap16((u_int16_t *)&akey->an_mac_addr, 3); 1616 akey->an_key_len = 0; 1617 memset(akey->an_key, 0, sizeof(akey->an_key)); 1618 error = an_write_rid(sc, type, akey, sizeof(*akey)); 1619 } 1620 return error; 1621 } 1622 1623 int 1624 an_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1625 { 1626 struct an_softc *sc = ic->ic_softc; 1627 struct ieee80211_node *ni = ic->ic_bss; 1628 enum ieee80211_state ostate; 1629 int buflen; 1630 1631 ostate = ic->ic_state; 1632 DPRINTF(("an_newstate: %s -> %s\n", ieee80211_state_name[ostate], 1633 ieee80211_state_name[nstate])); 1634 1635 switch (nstate) { 1636 case IEEE80211_S_INIT: 1637 ic->ic_flags &= ~IEEE80211_F_IBSSON; 1638 return (*sc->sc_newstate)(ic, nstate, arg); 1639 1640 case IEEE80211_S_RUN: 1641 buflen = sizeof(sc->sc_buf); 1642 an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen); 1643 an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_cur_bssid, 3); 1644 an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_ssid, 16); 1645 IEEE80211_ADDR_COPY(ni->ni_bssid, 1646 sc->sc_buf.sc_status.an_cur_bssid); 1647 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid); 1648 ni->ni_chan = &ic->ic_channels[ 1649 sc->sc_buf.sc_status.an_cur_channel]; 1650 ni->ni_esslen = sc->sc_buf.sc_status.an_ssidlen; 1651 if (ni->ni_esslen > IEEE80211_NWID_LEN) 1652 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ 1653 memcpy(ni->ni_essid, sc->sc_buf.sc_status.an_ssid, 1654 ni->ni_esslen); 1655 ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B]; /*XXX*/ 1656 if (ic->ic_if.if_flags & IFF_DEBUG) { 1657 printf("%s: ", sc->sc_dev.dv_xname); 1658 if (ic->ic_opmode == IEEE80211_M_STA) 1659 printf("associated "); 1660 else 1661 printf("synchronized "); 1662 printf("with %s ssid ", ether_sprintf(ni->ni_bssid)); 1663 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 1664 printf(" channel %u start %uMb\n", 1665 sc->sc_buf.sc_status.an_cur_channel, 1666 sc->sc_buf.sc_status.an_current_tx_rate/2); 1667 } 1668 break; 1669 1670 default: 1671 break; 1672 } 1673 ic->ic_state = nstate; 1674 /* skip standard ieee80211 handling */ 1675 return 0; 1676 } 1677 1678 int 1679 an_detach(struct an_softc *sc) 1680 { 1681 struct ifnet *ifp = &sc->sc_ic.ic_if; 1682 int s; 1683 1684 if (!sc->sc_attached) 1685 return 0; 1686 1687 s = splnet(); 1688 sc->sc_invalid = 1; 1689 an_stop(ifp, 1); 1690 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY); 1691 ieee80211_ifdetach(ifp); 1692 if_detach(ifp); 1693 if (sc->sc_sdhook != NULL) 1694 shutdownhook_disestablish(sc->sc_sdhook); 1695 splx(s); 1696 return 0; 1697 } 1698 1699