1 /* $OpenBSD: if_dwxe.c,v 1.15 2019/10/07 00:40:04 jmatthew Exp $ */ 2 /* 3 * Copyright (c) 2008 Mark Kettenis 4 * Copyright (c) 2017 Patrick Wildt <patrick@blueri.se> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 /* 20 * Driver for the ethernet controller on the Allwinner H3/A64 SoCs. 21 */ 22 23 #include "bpfilter.h" 24 25 #include <sys/param.h> 26 #include <sys/systm.h> 27 #include <sys/device.h> 28 #include <sys/kernel.h> 29 #include <sys/malloc.h> 30 #include <sys/mbuf.h> 31 #include <sys/queue.h> 32 #include <sys/socket.h> 33 #include <sys/sockio.h> 34 #include <sys/timeout.h> 35 36 #include <machine/bus.h> 37 #include <machine/fdt.h> 38 39 #include <net/if.h> 40 #include <net/if_media.h> 41 42 #include <dev/ofw/openfirm.h> 43 #include <dev/ofw/ofw_clock.h> 44 #include <dev/ofw/ofw_misc.h> 45 #include <dev/ofw/ofw_pinctrl.h> 46 #include <dev/ofw/ofw_regulator.h> 47 #include <dev/ofw/fdt.h> 48 49 #include <dev/mii/mii.h> 50 #include <dev/mii/miivar.h> 51 52 #if NBPFILTER > 0 53 #include <net/bpf.h> 54 #endif 55 56 #include <netinet/in.h> 57 #include <netinet/if_ether.h> 58 59 /* 60 * DWXE registers. 61 */ 62 63 #define DWXE_BASIC_CTL0 0x00 64 #define DWXE_BASIC_CTL0_DUPLEX (1 << 0) 65 #define DWXE_BASIC_CTL0_LOOPBACK (1 << 1) 66 #define DWXE_BASIC_CTL0_SPEED_1000 (0 << 2) 67 #define DWXE_BASIC_CTL0_SPEED_10 (2 << 2) 68 #define DWXE_BASIC_CTL0_SPEED_100 (3 << 2) 69 #define DWXE_BASIC_CTL0_SPEED_MASK (3 << 2) 70 #define DWXE_BASIC_CTL1 0x04 71 #define DWXE_BASIC_CTL1_SOFT_RST (1 << 0) 72 #define DWXE_BASIC_CTL1_RX_TX_PRI (1 << 1) 73 #define DWXE_BASIC_CTL1_BURST_LEN_MASK (0x3f << 24) 74 #define DWXE_BASIC_CTL1_BURST_LEN(x) ((x) << 24) 75 #define DWXE_INT_STA 0x08 76 #define DWXE_INT_STA_TX_INT (1 << 0) 77 #define DWXE_INT_STA_TX_DMA_STOP_INT (1 << 1) 78 #define DWXE_INT_STA_TX_BUF_UA_INT (1 << 2) 79 #define DWXE_INT_STA_TX_TIMEOUT_INT (1 << 3) 80 #define DWXE_INT_STA_TX_UNDERFLOW_INT (1 << 4) 81 #define DWXE_INT_STA_TX_EARLY_INT (1 << 5) 82 #define DWXE_INT_STA_RX_INT (1 << 8) 83 #define DWXE_INT_STA_RX_BUF_UA_INT (1 << 9) 84 #define DWXE_INT_STA_RX_DMA_STOP_INT (1 << 10) 85 #define DWXE_INT_STA_RX_TIMEOUT_INT (1 << 11) 86 #define DWXE_INT_STA_RX_OVERFLOW_INT (1 << 12) 87 #define DWXE_INT_STA_RX_EARLY_INT (1 << 13) 88 #define DWXE_INT_STA_RGMII_STA_INT (1 << 16) 89 #define DWXE_INT_EN 0x0C 90 #define DWXE_INT_EN_TX_INT (1 << 0) 91 #define DWXE_INT_EN_TX_DMA_STOP_INT (1 << 1) 92 #define DWXE_INT_EN_TX_BUF_UA_INT (1 << 2) 93 #define DWXE_INT_EN_TX_TIMEOUT_INT (1 << 3) 94 #define DWXE_INT_EN_TX_UNDERFLOW_INT (1 << 4) 95 #define DWXE_INT_EN_TX_EARLY_INT (1 << 5) 96 #define DWXE_INT_EN_RX_INT (1 << 8) 97 #define DWXE_INT_EN_RX_BUF_UA_INT (1 << 9) 98 #define DWXE_INT_EN_RX_DMA_STOP_INT (1 << 10) 99 #define DWXE_INT_EN_RX_TIMEOUT_INT (1 << 11) 100 #define DWXE_INT_EN_RX_OVERFLOW_INT (1 << 12) 101 #define DWXE_INT_EN_RX_EARLY_INT (1 << 13) 102 #define DWXE_INT_EN_RGMII_EN_INT (1 << 16) 103 #define DWXE_TX_CTL0 0x10 104 #define DWXE_TX_CTL0_TX_TRANSMITTER_EN (1U << 31) 105 #define DWXE_TX_CTL1 0x14 106 #define DWXE_TX_CTL1_TX_FIFO_FLUSH (1 << 0) 107 #define DWXE_TX_CTL1_TX_MD (1 << 1) 108 #define DWXE_TX_CTL1_TX_NEXT_FRM (1 << 2) 109 #define DWXE_TX_CTL1_TX_TH_MASK (0x3 << 8) 110 #define DWXE_TX_CTL1_TX_TH_64 0 111 #define DWXE_TX_CTL1_TX_TH_128 (0x1 << 8) 112 #define DWXE_TX_CTL1_TX_TH_192 (0x2 << 8) 113 #define DWXE_TX_CTL1_TX_TH_256 (0x3 << 8) 114 #define DWXE_TX_CTL1_TX_DMA_EN (1 << 30) 115 #define DWXE_TX_CTL1_TX_DMA_START (1U << 31) 116 #define DWXE_TX_FLOW_CTL 0x1C 117 #define DWXE_TX_FLOW_CTL_EN (1 << 0) 118 #define DWXE_TX_DESC_LIST 0x20 119 #define DWXE_RX_CTL0 0x24 120 #define DWXE_RX_CTL0_RX_FLOW_CTL_EN (1 << 16) 121 #define DWXE_RX_CTL0_RX_DO_CRC (1 << 27) 122 #define DWXE_RX_CTL0_RX_RECEIVER_EN (1U << 31) 123 #define DWXE_RX_CTL1 0x28 124 #define DWXE_RX_CTL1_RX_MD (1 << 1) 125 #define DWXE_RX_CTL1_RX_TH_MASK (0x3 << 4) 126 #define DWXE_RX_CTL1_RX_TH_32 (0x0 << 4) 127 #define DWXE_RX_CTL1_RX_TH_64 (0x1 << 4) 128 #define DWXE_RX_CTL1_RX_TH_96 (0x2 << 4) 129 #define DWXE_RX_CTL1_RX_TH_128 (0x3 << 4) 130 #define DWXE_RX_CTL1_RX_DMA_EN (1 << 30) 131 #define DWXE_RX_CTL1_RX_DMA_START (1U << 31) 132 #define DWXE_RX_DESC_LIST 0x34 133 #define DWXE_RX_FRM_FLT 0x38 134 #define DWXE_RX_FRM_FLT_RX_ALL (1 << 0) 135 #define DWXE_RX_FRM_FLT_HASH_UNICAST (1 << 8) 136 #define DWXE_RX_FRM_FLT_HASH_MULTICAST (1 << 9) 137 #define DWXE_RX_FRM_FLT_CTL (1 << 13) 138 #define DWXE_RX_FRM_FLT_RX_ALL_MULTICAST (1 << 16) 139 #define DWXE_RX_FRM_FLT_DIS_BROADCAST (1 << 17) 140 #define DWXE_RX_FRM_FLT_DIS_ADDR_FILTER (1U << 31) 141 #define DWXE_RX_HASH0 0x40 142 #define DWXE_RX_HASH1 0x44 143 #define DWXE_MDIO_CMD 0x48 144 #define DWXE_MDIO_CMD_MII_BUSY (1 << 0) 145 #define DWXE_MDIO_CMD_MII_WRITE (1 << 1) 146 #define DWXE_MDIO_CMD_PHY_REG_SHIFT 4 147 #define DWXE_MDIO_CMD_PHY_ADDR_SHIFT 12 148 #define DWXE_MDIO_CMD_MDC_DIV_RATIO_M_SHIFT 20 149 #define DWXE_MDIO_CMD_MDC_DIV_RATIO_M_MASK 0x7 150 #define DWXE_MDIO_CMD_MDC_DIV_RATIO_M_16 0 151 #define DWXE_MDIO_CMD_MDC_DIV_RATIO_M_32 1 152 #define DWXE_MDIO_CMD_MDC_DIV_RATIO_M_64 2 153 #define DWXE_MDIO_CMD_MDC_DIV_RATIO_M_128 3 154 #define DWXE_MDIO_DATA 0x4C 155 #define DWXE_MACADDR_HI 0x50 156 #define DWXE_MACADDR_LO 0x54 157 #define DWXE_TX_DMA_STA 0xB0 158 #define DWXE_TX_CUR_DESC 0xB4 159 #define DWXE_TX_CUR_BUF 0xB8 160 #define DWXE_RX_DMA_STA 0xC0 161 #define DWXE_RX_CUR_DESC 0xC4 162 #define DWXE_RX_CUR_BUF 0xC8 163 164 /* 165 * DWXE descriptors. 166 */ 167 168 struct dwxe_desc { 169 uint32_t sd_status; 170 uint32_t sd_len; 171 uint32_t sd_addr; 172 uint32_t sd_next; 173 }; 174 175 /* Tx status bits. */ 176 #define DWXE_TX_DEFER (1 << 0) 177 #define DWXE_TX_UNDERFLOW_ERR (1 << 1) 178 #define DWXE_TX_DEFER_ERR (1 << 2) 179 #define DWXE_TX_COL_CNT_MASK (0xf << 3) 180 #define DWXE_TX_COL_CNT_SHIFT 3 181 #define DWXE_TX_COL_ERR_1 (1 << 8) 182 #define DWXE_TX_COL_ERR_0 (1 << 9) 183 #define DWXE_TX_CRS_ERR (1 << 10) 184 #define DWXE_TX_PAYLOAD_ERR (1 << 12) 185 #define DWXE_TX_LENGTH_ERR (1 << 14) 186 #define DWXE_TX_HEADER_ERR (1 << 16) 187 #define DWXE_TX_DESC_CTL (1 << 31) 188 189 /* Rx status bits */ 190 #define DWXE_RX_PAYLOAD_ERR (1 << 0) 191 #define DWXE_RX_CRC_ERR (1 << 1) 192 #define DWXE_RX_PHY_ERR (1 << 3) 193 #define DWXE_RX_LENGTH_ERR (1 << 4) 194 #define DWXE_RX_FRM_TYPE (1 << 5) 195 #define DWXE_RX_COL_ERR (1 << 6) 196 #define DWXE_RX_HEADER_ERR (1 << 7) 197 #define DWXE_RX_LAST_DESC (1 << 8) 198 #define DWXE_RX_FIR_DESC (1 << 9) 199 #define DWXE_RX_OVERFLOW_ERR (1 << 11) 200 #define DWXE_RX_SAF_FAIL (1 << 13) 201 #define DWXE_RX_NO_ENOUGH_BUF_ERR (1 << 14) 202 #define DWXE_RX_FRM_LEN_MASK 0x3fff 203 #define DWXE_RX_FRM_LEN_SHIFT 16 204 #define DWXE_RX_DAF_FAIL (1 << 30) 205 #define DWXE_RX_DESC_CTL (1 << 31) 206 207 /* Tx size bits */ 208 #define DWXE_TX_BUF_SIZE (0xfff << 0) 209 #define DWXE_TX_CRC_CTL (1 << 26) 210 #define DWXE_TX_CHECKSUM_CTL_MASK (0x3 << 27) 211 #define DWXE_TX_CHECKSUM_CTL_IP (1 << 27) 212 #define DWXE_TX_CHECKSUM_CTL_NO_PSE (2 << 27) 213 #define DWXE_TX_CHECKSUM_CTL_FULL (3 << 27) 214 #define DWXE_TX_FIR_DESC (1 << 29) 215 #define DWXE_TX_LAST_DESC (1 << 30) 216 #define DWXE_TX_INT_CTL (1 << 31) 217 218 /* Rx size bits */ 219 #define DWXE_RX_BUF_SIZE (0xfff << 0) 220 #define DWXE_RX_INT_CTL (1 << 31) 221 222 /* EMAC syscon bits */ 223 #define SYSCON_EMAC 0x30 224 #define SYSCON_ETCS_MASK (0x3 << 0) 225 #define SYSCON_ETCS_MII (0 << 0) 226 #define SYSCON_ETCS_EXT_GMII (1 << 0) 227 #define SYSCON_ETCS_INT_GMII (2 << 0) 228 #define SYSCON_EPIT (1 << 2) /* 1: RGMII, 0: MII */ 229 #define SYSCON_ERXDC_MASK (0xf << 5) 230 #define SYSCON_ERXDC_SHIFT 5 231 #define SYSCON_ETXDC_MASK (0x7 << 10) 232 #define SYSCON_ETXDC_SHIFT 10 233 #define SYSCON_RMII_EN (1 << 13) /* 1: enable RMII (overrides EPIT) */ 234 #define SYSCON_H3_EPHY_SELECT (1 << 15) /* 1: internal PHY, 0: external PHY */ 235 #define SYSCON_H3_EPHY_SHUTDOWN (1 << 16) /* 1: shutdown, 0: power up */ 236 #define SYSCON_H3_EPHY_LED_POL (1 << 17) /* 1: active low, 0: active high */ 237 #define SYSCON_H3_EPHY_CLK_SEL (1 << 18) /* 1: 24MHz, 0: 25MHz */ 238 #define SYSCON_H3_EPHY_ADDR_MASK (0x1f << 20) 239 #define SYSCON_H3_EPHY_ADDR_SHIFT 20 240 241 /* GMAC syscon bits (Allwinner R40) */ 242 #define SYSCON_GMAC 0x00 243 #define SYSCON_GTCS_MASK SYSCON_ETCS_MASK 244 #define SYSCON_GTCS_MII SYSCON_ETCS_MII 245 #define SYSCON_GTCS_EXT_GMII SYSCON_ETCS_EXT_GMII 246 #define SYSCON_GTCS_INT_GMII SYSCON_ETCS_INT_GMII 247 #define SYSCON_GPIT SYSCON_EPIT 248 #define SYSCON_GRXDC_MASK (0x7 << 5) 249 #define SYSCON_GRXDC_SHIFT 5 250 251 struct dwxe_buf { 252 bus_dmamap_t tb_map; 253 struct mbuf *tb_m; 254 }; 255 256 #define DWXE_NTXDESC 256 257 #define DWXE_NTXSEGS 16 258 259 #define DWXE_NRXDESC 256 260 261 struct dwxe_dmamem { 262 bus_dmamap_t tdm_map; 263 bus_dma_segment_t tdm_seg; 264 size_t tdm_size; 265 caddr_t tdm_kva; 266 }; 267 #define DWXE_DMA_MAP(_tdm) ((_tdm)->tdm_map) 268 #define DWXE_DMA_LEN(_tdm) ((_tdm)->tdm_size) 269 #define DWXE_DMA_DVA(_tdm) ((_tdm)->tdm_map->dm_segs[0].ds_addr) 270 #define DWXE_DMA_KVA(_tdm) ((void *)(_tdm)->tdm_kva) 271 272 struct dwxe_softc { 273 struct device sc_dev; 274 int sc_node; 275 bus_space_tag_t sc_iot; 276 bus_space_handle_t sc_ioh; 277 bus_dma_tag_t sc_dmat; 278 279 struct arpcom sc_ac; 280 #define sc_lladdr sc_ac.ac_enaddr 281 struct mii_data sc_mii; 282 #define sc_media sc_mii.mii_media 283 int sc_link; 284 int sc_phyloc; 285 286 struct dwxe_dmamem *sc_txring; 287 struct dwxe_buf *sc_txbuf; 288 struct dwxe_desc *sc_txdesc; 289 int sc_tx_prod; 290 int sc_tx_cnt; 291 int sc_tx_cons; 292 293 struct dwxe_dmamem *sc_rxring; 294 struct dwxe_buf *sc_rxbuf; 295 struct dwxe_desc *sc_rxdesc; 296 int sc_rx_prod; 297 struct if_rxring sc_rx_ring; 298 int sc_rx_cons; 299 300 struct timeout sc_tick; 301 struct timeout sc_rxto; 302 303 uint32_t sc_clk; 304 }; 305 306 #define DEVNAME(_s) ((_s)->sc_dev.dv_xname) 307 308 int dwxe_match(struct device *, void *, void *); 309 void dwxe_attach(struct device *, struct device *, void *); 310 void dwxe_phy_setup_emac(struct dwxe_softc *); 311 void dwxe_phy_setup_gmac(struct dwxe_softc *); 312 313 struct cfattach dwxe_ca = { 314 sizeof(struct dwxe_softc), dwxe_match, dwxe_attach 315 }; 316 317 struct cfdriver dwxe_cd = { 318 NULL, "dwxe", DV_IFNET 319 }; 320 321 uint32_t dwxe_read(struct dwxe_softc *, bus_addr_t); 322 void dwxe_write(struct dwxe_softc *, bus_addr_t, uint32_t); 323 324 int dwxe_ioctl(struct ifnet *, u_long, caddr_t); 325 void dwxe_start(struct ifnet *); 326 void dwxe_watchdog(struct ifnet *); 327 328 int dwxe_media_change(struct ifnet *); 329 void dwxe_media_status(struct ifnet *, struct ifmediareq *); 330 331 int dwxe_mii_readreg(struct device *, int, int); 332 void dwxe_mii_writereg(struct device *, int, int, int); 333 void dwxe_mii_statchg(struct device *); 334 335 void dwxe_lladdr_read(struct dwxe_softc *, uint8_t *); 336 void dwxe_lladdr_write(struct dwxe_softc *); 337 338 void dwxe_tick(void *); 339 void dwxe_rxtick(void *); 340 341 int dwxe_intr(void *); 342 void dwxe_tx_proc(struct dwxe_softc *); 343 void dwxe_rx_proc(struct dwxe_softc *); 344 345 void dwxe_up(struct dwxe_softc *); 346 void dwxe_down(struct dwxe_softc *); 347 void dwxe_iff(struct dwxe_softc *); 348 int dwxe_encap(struct dwxe_softc *, struct mbuf *, int *); 349 350 void dwxe_reset(struct dwxe_softc *); 351 void dwxe_stop_dma(struct dwxe_softc *); 352 353 struct dwxe_dmamem * 354 dwxe_dmamem_alloc(struct dwxe_softc *, bus_size_t, bus_size_t); 355 void dwxe_dmamem_free(struct dwxe_softc *, struct dwxe_dmamem *); 356 struct mbuf *dwxe_alloc_mbuf(struct dwxe_softc *, bus_dmamap_t); 357 void dwxe_fill_rx_ring(struct dwxe_softc *); 358 359 int 360 dwxe_match(struct device *parent, void *cfdata, void *aux) 361 { 362 struct fdt_attach_args *faa = aux; 363 364 return OF_is_compatible(faa->fa_node, "allwinner,sun8i-h3-emac") || 365 OF_is_compatible(faa->fa_node, "allwinner,sun8i-r40-gmac") || 366 OF_is_compatible(faa->fa_node, "allwinner,sun50i-a64-emac"); 367 } 368 369 void 370 dwxe_attach(struct device *parent, struct device *self, void *aux) 371 { 372 struct dwxe_softc *sc = (void *)self; 373 struct fdt_attach_args *faa = aux; 374 struct ifnet *ifp; 375 uint32_t phy, phy_supply; 376 int node; 377 378 sc->sc_node = faa->fa_node; 379 sc->sc_iot = faa->fa_iot; 380 if (bus_space_map(sc->sc_iot, faa->fa_reg[0].addr, 381 faa->fa_reg[0].size, 0, &sc->sc_ioh)) { 382 printf("%s: cannot map registers\n", self->dv_xname); 383 return; 384 } 385 sc->sc_dmat = faa->fa_dmat; 386 387 /* Lookup PHY. */ 388 phy = OF_getpropint(faa->fa_node, "phy-handle", 0); 389 node = OF_getnodebyphandle(phy); 390 if (node) 391 sc->sc_phyloc = OF_getpropint(node, "reg", MII_PHY_ANY); 392 else 393 sc->sc_phyloc = MII_PHY_ANY; 394 395 pinctrl_byname(faa->fa_node, "default"); 396 397 /* Enable clock. */ 398 clock_enable(faa->fa_node, "stmmaceth"); 399 reset_deassert(faa->fa_node, "stmmaceth"); 400 delay(5000); 401 402 /* Power up PHY. */ 403 phy_supply = OF_getpropint(faa->fa_node, "phy-supply", 0); 404 if (phy_supply) 405 regulator_enable(phy_supply); 406 407 sc->sc_clk = clock_get_frequency(faa->fa_node, "stmmaceth"); 408 if (sc->sc_clk > 160000000) 409 sc->sc_clk = DWXE_MDIO_CMD_MDC_DIV_RATIO_M_128; 410 else if (sc->sc_clk > 80000000) 411 sc->sc_clk = DWXE_MDIO_CMD_MDC_DIV_RATIO_M_64; 412 else if (sc->sc_clk > 40000000) 413 sc->sc_clk = DWXE_MDIO_CMD_MDC_DIV_RATIO_M_32; 414 else 415 sc->sc_clk = DWXE_MDIO_CMD_MDC_DIV_RATIO_M_16; 416 417 if (OF_getprop(faa->fa_node, "local-mac-address", 418 &sc->sc_lladdr, ETHER_ADDR_LEN) != ETHER_ADDR_LEN) 419 dwxe_lladdr_read(sc, sc->sc_lladdr); 420 printf(": address %s\n", ether_sprintf(sc->sc_lladdr)); 421 422 /* Do hardware specific initializations. */ 423 if (OF_is_compatible(faa->fa_node, "allwinner,sun8i-r40-gmac")) 424 dwxe_phy_setup_gmac(sc); 425 else 426 dwxe_phy_setup_emac(sc); 427 428 timeout_set(&sc->sc_tick, dwxe_tick, sc); 429 timeout_set(&sc->sc_rxto, dwxe_rxtick, sc); 430 431 ifp = &sc->sc_ac.ac_if; 432 ifp->if_softc = sc; 433 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 434 ifp->if_ioctl = dwxe_ioctl; 435 ifp->if_start = dwxe_start; 436 ifp->if_watchdog = dwxe_watchdog; 437 IFQ_SET_MAXLEN(&ifp->if_snd, DWXE_NTXDESC - 1); 438 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); 439 440 ifp->if_capabilities = IFCAP_VLAN_MTU; 441 442 sc->sc_mii.mii_ifp = ifp; 443 sc->sc_mii.mii_readreg = dwxe_mii_readreg; 444 sc->sc_mii.mii_writereg = dwxe_mii_writereg; 445 sc->sc_mii.mii_statchg = dwxe_mii_statchg; 446 447 ifmedia_init(&sc->sc_media, 0, dwxe_media_change, dwxe_media_status); 448 449 dwxe_reset(sc); 450 451 mii_attach(self, &sc->sc_mii, 0xffffffff, sc->sc_phyloc, 452 MII_OFFSET_ANY, MIIF_NOISOLATE); 453 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 454 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); 455 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 456 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 457 } else 458 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO); 459 460 if_attach(ifp); 461 ether_ifattach(ifp); 462 463 fdt_intr_establish(faa->fa_node, IPL_NET, dwxe_intr, sc, 464 sc->sc_dev.dv_xname); 465 } 466 467 void 468 dwxe_phy_setup_emac(struct dwxe_softc *sc) 469 { 470 struct regmap *rm; 471 uint32_t syscon; 472 uint32_t tx_delay, rx_delay; 473 char *phy_mode; 474 int len; 475 476 rm = regmap_byphandle(OF_getpropint(sc->sc_node, "syscon", 0)); 477 if (rm == NULL) 478 return; 479 480 syscon = regmap_read_4(rm, SYSCON_EMAC); 481 syscon &= ~(SYSCON_ETCS_MASK|SYSCON_EPIT|SYSCON_RMII_EN); 482 syscon &= ~(SYSCON_ETXDC_MASK | SYSCON_ERXDC_MASK); 483 syscon &= ~SYSCON_H3_EPHY_SELECT; 484 485 if ((len = OF_getproplen(sc->sc_node, "phy-mode")) <= 0) 486 return; 487 phy_mode = malloc(len, M_TEMP, M_WAITOK); 488 OF_getprop(sc->sc_node, "phy-mode", phy_mode, len); 489 if (!strncmp(phy_mode, "rgmii", strlen("rgmii"))) 490 syscon |= SYSCON_EPIT | SYSCON_ETCS_INT_GMII; 491 else if (!strncmp(phy_mode, "rmii", strlen("rmii"))) 492 syscon |= SYSCON_EPIT | SYSCON_ETCS_EXT_GMII; 493 else if (!strncmp(phy_mode, "mii", strlen("mii")) && 494 OF_is_compatible(sc->sc_node, "allwinner,sun8i-h3-emac")) { 495 syscon &= ~SYSCON_H3_EPHY_SHUTDOWN; 496 syscon |= SYSCON_H3_EPHY_SELECT | SYSCON_H3_EPHY_CLK_SEL; 497 if (OF_getproplen(sc->sc_node, "allwinner,leds-active-low") == 0) 498 syscon |= SYSCON_H3_EPHY_LED_POL; 499 else 500 syscon &= ~SYSCON_H3_EPHY_LED_POL; 501 syscon &= ~SYSCON_H3_EPHY_ADDR_MASK; 502 syscon |= (sc->sc_phyloc << SYSCON_H3_EPHY_ADDR_SHIFT); 503 } 504 free(phy_mode, M_TEMP, len); 505 506 tx_delay = OF_getpropint(sc->sc_node, "allwinner,tx-delay-ps", 0); 507 rx_delay = OF_getpropint(sc->sc_node, "allwinner,rx-delay-ps", 0); 508 syscon |= ((tx_delay / 100) << SYSCON_ETXDC_SHIFT) & SYSCON_ETXDC_MASK; 509 syscon |= ((rx_delay / 100) << SYSCON_ERXDC_SHIFT) & SYSCON_ERXDC_MASK; 510 511 regmap_write_4(rm, SYSCON_EMAC, syscon); 512 dwxe_reset(sc); 513 } 514 515 void 516 dwxe_phy_setup_gmac(struct dwxe_softc *sc) 517 { 518 struct regmap *rm; 519 uint32_t syscon; 520 uint32_t rx_delay; 521 char *phy_mode; 522 int len; 523 524 rm = regmap_byphandle(OF_getpropint(sc->sc_node, "syscon", 0)); 525 if (rm == NULL) 526 return; 527 528 syscon = regmap_read_4(rm, SYSCON_GMAC); 529 syscon &= ~(SYSCON_GTCS_MASK|SYSCON_GPIT|SYSCON_ERXDC_MASK); 530 531 if ((len = OF_getproplen(sc->sc_node, "phy-mode")) <= 0) 532 return; 533 phy_mode = malloc(len, M_TEMP, M_WAITOK); 534 OF_getprop(sc->sc_node, "phy-mode", phy_mode, len); 535 if (!strncmp(phy_mode, "rgmii", strlen("rgmii"))) 536 syscon |= SYSCON_GPIT | SYSCON_GTCS_INT_GMII; 537 else if (!strncmp(phy_mode, "rmii", strlen("rmii"))) 538 syscon |= SYSCON_GPIT | SYSCON_GTCS_EXT_GMII; 539 free(phy_mode, M_TEMP, len); 540 541 rx_delay = OF_getpropint(sc->sc_node, "allwinner,rx-delay-ps", 0); 542 syscon |= ((rx_delay / 100) << SYSCON_ERXDC_SHIFT) & SYSCON_ERXDC_MASK; 543 544 regmap_write_4(rm, SYSCON_GMAC, syscon); 545 dwxe_reset(sc); 546 } 547 548 uint32_t 549 dwxe_read(struct dwxe_softc *sc, bus_addr_t addr) 550 { 551 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, addr); 552 } 553 554 void 555 dwxe_write(struct dwxe_softc *sc, bus_addr_t addr, uint32_t data) 556 { 557 bus_space_write_4(sc->sc_iot, sc->sc_ioh, addr, data); 558 } 559 560 void 561 dwxe_lladdr_read(struct dwxe_softc *sc, uint8_t *lladdr) 562 { 563 uint32_t machi, maclo; 564 565 machi = dwxe_read(sc, DWXE_MACADDR_HI); 566 maclo = dwxe_read(sc, DWXE_MACADDR_LO); 567 568 lladdr[0] = (maclo >> 0) & 0xff; 569 lladdr[1] = (maclo >> 8) & 0xff; 570 lladdr[2] = (maclo >> 16) & 0xff; 571 lladdr[3] = (maclo >> 24) & 0xff; 572 lladdr[4] = (machi >> 0) & 0xff; 573 lladdr[5] = (machi >> 8) & 0xff; 574 } 575 576 void 577 dwxe_lladdr_write(struct dwxe_softc *sc) 578 { 579 dwxe_write(sc, DWXE_MACADDR_HI, 580 sc->sc_lladdr[5] << 8 | sc->sc_lladdr[4] << 0); 581 dwxe_write(sc, DWXE_MACADDR_LO, 582 sc->sc_lladdr[3] << 24 | sc->sc_lladdr[2] << 16 | 583 sc->sc_lladdr[1] << 8 | sc->sc_lladdr[0] << 0); 584 } 585 586 void 587 dwxe_start(struct ifnet *ifp) 588 { 589 struct dwxe_softc *sc = ifp->if_softc; 590 struct mbuf *m; 591 int error, idx; 592 593 if (!(ifp->if_flags & IFF_RUNNING)) 594 return; 595 if (ifq_is_oactive(&ifp->if_snd)) 596 return; 597 if (IFQ_IS_EMPTY(&ifp->if_snd)) 598 return; 599 if (!sc->sc_link) 600 return; 601 602 idx = sc->sc_tx_prod; 603 while ((sc->sc_txdesc[idx].sd_status & DWXE_TX_DESC_CTL) == 0) { 604 m = ifq_deq_begin(&ifp->if_snd); 605 if (m == NULL) 606 break; 607 608 error = dwxe_encap(sc, m, &idx); 609 if (error == ENOBUFS) { 610 ifq_deq_rollback(&ifp->if_snd, m); 611 ifq_set_oactive(&ifp->if_snd); 612 break; 613 } 614 if (error == EFBIG) { 615 ifq_deq_commit(&ifp->if_snd, m); 616 m_freem(m); /* give up: drop it */ 617 ifp->if_oerrors++; 618 continue; 619 } 620 621 /* Now we are committed to transmit the packet. */ 622 ifq_deq_commit(&ifp->if_snd, m); 623 624 #if NBPFILTER > 0 625 if (ifp->if_bpf) 626 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 627 #endif 628 } 629 630 if (sc->sc_tx_prod != idx) { 631 sc->sc_tx_prod = idx; 632 633 /* Set a timeout in case the chip goes out to lunch. */ 634 ifp->if_timer = 5; 635 } 636 } 637 638 int 639 dwxe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr) 640 { 641 struct dwxe_softc *sc = ifp->if_softc; 642 struct ifreq *ifr = (struct ifreq *)addr; 643 int error = 0, s; 644 645 s = splnet(); 646 647 switch (cmd) { 648 case SIOCSIFADDR: 649 ifp->if_flags |= IFF_UP; 650 /* FALLTHROUGH */ 651 case SIOCSIFFLAGS: 652 if (ifp->if_flags & IFF_UP) { 653 if (ifp->if_flags & IFF_RUNNING) 654 error = ENETRESET; 655 else 656 dwxe_up(sc); 657 } else { 658 if (ifp->if_flags & IFF_RUNNING) 659 dwxe_down(sc); 660 } 661 break; 662 663 case SIOCGIFMEDIA: 664 case SIOCSIFMEDIA: 665 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 666 break; 667 668 case SIOCGIFRXR: 669 error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data, 670 NULL, MCLBYTES, &sc->sc_rx_ring); 671 break; 672 673 default: 674 error = ether_ioctl(ifp, &sc->sc_ac, cmd, addr); 675 break; 676 } 677 678 if (error == ENETRESET) { 679 if (ifp->if_flags & IFF_RUNNING) 680 dwxe_iff(sc); 681 error = 0; 682 } 683 684 splx(s); 685 return (error); 686 } 687 688 void 689 dwxe_watchdog(struct ifnet *ifp) 690 { 691 printf("%s\n", __func__); 692 } 693 694 int 695 dwxe_media_change(struct ifnet *ifp) 696 { 697 struct dwxe_softc *sc = ifp->if_softc; 698 699 if (LIST_FIRST(&sc->sc_mii.mii_phys)) 700 mii_mediachg(&sc->sc_mii); 701 702 return (0); 703 } 704 705 void 706 dwxe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 707 { 708 struct dwxe_softc *sc = ifp->if_softc; 709 710 if (LIST_FIRST(&sc->sc_mii.mii_phys)) { 711 mii_pollstat(&sc->sc_mii); 712 ifmr->ifm_active = sc->sc_mii.mii_media_active; 713 ifmr->ifm_status = sc->sc_mii.mii_media_status; 714 } 715 } 716 717 int 718 dwxe_mii_readreg(struct device *self, int phy, int reg) 719 { 720 struct dwxe_softc *sc = (void *)self; 721 int n; 722 723 dwxe_write(sc, DWXE_MDIO_CMD, 724 sc->sc_clk << DWXE_MDIO_CMD_MDC_DIV_RATIO_M_SHIFT | 725 phy << DWXE_MDIO_CMD_PHY_ADDR_SHIFT | 726 reg << DWXE_MDIO_CMD_PHY_REG_SHIFT | 727 DWXE_MDIO_CMD_MII_BUSY); 728 for (n = 0; n < 1000; n++) { 729 if ((dwxe_read(sc, DWXE_MDIO_CMD) & 730 DWXE_MDIO_CMD_MII_BUSY) == 0) 731 return dwxe_read(sc, DWXE_MDIO_DATA); 732 delay(10); 733 } 734 735 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname); 736 return (0); 737 } 738 739 void 740 dwxe_mii_writereg(struct device *self, int phy, int reg, int val) 741 { 742 struct dwxe_softc *sc = (void *)self; 743 int n; 744 745 dwxe_write(sc, DWXE_MDIO_DATA, val); 746 dwxe_write(sc, DWXE_MDIO_CMD, 747 sc->sc_clk << DWXE_MDIO_CMD_MDC_DIV_RATIO_M_SHIFT | 748 phy << DWXE_MDIO_CMD_PHY_ADDR_SHIFT | 749 reg << DWXE_MDIO_CMD_PHY_REG_SHIFT | 750 DWXE_MDIO_CMD_MII_WRITE | 751 DWXE_MDIO_CMD_MII_BUSY); 752 for (n = 0; n < 1000; n++) { 753 if ((dwxe_read(sc, DWXE_MDIO_CMD) & 754 DWXE_MDIO_CMD_MII_BUSY) == 0) 755 return; 756 delay(10); 757 } 758 759 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname); 760 } 761 762 void 763 dwxe_mii_statchg(struct device *self) 764 { 765 struct dwxe_softc *sc = (void *)self; 766 uint32_t basicctrl; 767 768 basicctrl = dwxe_read(sc, DWXE_BASIC_CTL0); 769 basicctrl &= ~DWXE_BASIC_CTL0_SPEED_MASK; 770 771 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) { 772 case IFM_1000_SX: 773 case IFM_1000_LX: 774 case IFM_1000_CX: 775 case IFM_1000_T: 776 basicctrl |= DWXE_BASIC_CTL0_SPEED_1000; 777 sc->sc_link = 1; 778 break; 779 case IFM_100_TX: 780 basicctrl |= DWXE_BASIC_CTL0_SPEED_100; 781 sc->sc_link = 1; 782 break; 783 case IFM_10_T: 784 basicctrl |= DWXE_BASIC_CTL0_SPEED_10; 785 sc->sc_link = 1; 786 break; 787 default: 788 sc->sc_link = 0; 789 return; 790 } 791 792 if (sc->sc_link == 0) 793 return; 794 795 basicctrl &= ~DWXE_BASIC_CTL0_DUPLEX; 796 if ((sc->sc_mii.mii_media_active & IFM_GMASK) == IFM_FDX) 797 basicctrl |= DWXE_BASIC_CTL0_DUPLEX; 798 799 /* XXX: RX/TX flow control? */ 800 801 dwxe_write(sc, DWXE_BASIC_CTL0, basicctrl); 802 } 803 804 void 805 dwxe_tick(void *arg) 806 { 807 struct dwxe_softc *sc = arg; 808 int s; 809 810 s = splnet(); 811 mii_tick(&sc->sc_mii); 812 splx(s); 813 814 timeout_add_sec(&sc->sc_tick, 1); 815 } 816 817 void 818 dwxe_rxtick(void *arg) 819 { 820 struct dwxe_softc *sc = arg; 821 uint32_t ctl; 822 int s; 823 824 s = splnet(); 825 826 ctl = dwxe_read(sc, DWXE_RX_CTL1); 827 dwxe_write(sc, DWXE_RX_CTL1, ctl & ~DWXE_RX_CTL1_RX_DMA_EN); 828 829 bus_dmamap_sync(sc->sc_dmat, DWXE_DMA_MAP(sc->sc_rxring), 830 0, DWXE_DMA_LEN(sc->sc_rxring), 831 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 832 833 dwxe_write(sc, DWXE_RX_DESC_LIST, 0); 834 835 sc->sc_rx_prod = sc->sc_rx_cons = 0; 836 dwxe_fill_rx_ring(sc); 837 838 bus_dmamap_sync(sc->sc_dmat, DWXE_DMA_MAP(sc->sc_rxring), 839 0, DWXE_DMA_LEN(sc->sc_rxring), 840 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 841 842 dwxe_write(sc, DWXE_RX_DESC_LIST, DWXE_DMA_DVA(sc->sc_rxring)); 843 dwxe_write(sc, DWXE_RX_CTL1, ctl); 844 845 splx(s); 846 } 847 848 int 849 dwxe_intr(void *arg) 850 { 851 struct dwxe_softc *sc = arg; 852 uint32_t reg; 853 854 reg = dwxe_read(sc, DWXE_INT_STA); 855 dwxe_write(sc, DWXE_INT_STA, reg); 856 857 if (reg & DWXE_INT_STA_RX_INT) 858 dwxe_rx_proc(sc); 859 860 if (reg & DWXE_INT_STA_TX_INT || 861 reg & DWXE_INT_STA_TX_BUF_UA_INT) 862 dwxe_tx_proc(sc); 863 864 return (1); 865 } 866 867 void 868 dwxe_tx_proc(struct dwxe_softc *sc) 869 { 870 struct ifnet *ifp = &sc->sc_ac.ac_if; 871 struct dwxe_desc *txd; 872 struct dwxe_buf *txb; 873 int idx, txfree; 874 875 bus_dmamap_sync(sc->sc_dmat, DWXE_DMA_MAP(sc->sc_txring), 0, 876 DWXE_DMA_LEN(sc->sc_txring), 877 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 878 879 txfree = 0; 880 while (sc->sc_tx_cnt > 0) { 881 idx = sc->sc_tx_cons; 882 KASSERT(idx < DWXE_NTXDESC); 883 884 txd = &sc->sc_txdesc[idx]; 885 if (txd->sd_status & DWXE_TX_DESC_CTL) 886 break; 887 888 txb = &sc->sc_txbuf[idx]; 889 if (txb->tb_m) { 890 bus_dmamap_sync(sc->sc_dmat, txb->tb_map, 0, 891 txb->tb_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 892 bus_dmamap_unload(sc->sc_dmat, txb->tb_map); 893 894 m_freem(txb->tb_m); 895 txb->tb_m = NULL; 896 } 897 898 txfree++; 899 sc->sc_tx_cnt--; 900 901 if (sc->sc_tx_cons == (DWXE_NTXDESC - 1)) 902 sc->sc_tx_cons = 0; 903 else 904 sc->sc_tx_cons++; 905 906 txd->sd_status = 0; 907 } 908 909 if (sc->sc_tx_cnt == 0) 910 ifp->if_timer = 0; 911 912 if (txfree) { 913 if (ifq_is_oactive(&ifp->if_snd)) 914 ifq_restart(&ifp->if_snd); 915 } 916 } 917 918 void 919 dwxe_rx_proc(struct dwxe_softc *sc) 920 { 921 struct ifnet *ifp = &sc->sc_ac.ac_if; 922 struct dwxe_desc *rxd; 923 struct dwxe_buf *rxb; 924 struct mbuf_list ml = MBUF_LIST_INITIALIZER(); 925 struct mbuf *m; 926 int idx, len; 927 928 if ((ifp->if_flags & IFF_RUNNING) == 0) 929 return; 930 931 bus_dmamap_sync(sc->sc_dmat, DWXE_DMA_MAP(sc->sc_rxring), 0, 932 DWXE_DMA_LEN(sc->sc_rxring), 933 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 934 935 while (if_rxr_inuse(&sc->sc_rx_ring) > 0) { 936 idx = sc->sc_rx_cons; 937 KASSERT(idx < DWXE_NRXDESC); 938 939 rxd = &sc->sc_rxdesc[idx]; 940 if (rxd->sd_status & DWXE_RX_DESC_CTL) 941 break; 942 943 len = (rxd->sd_status >> DWXE_RX_FRM_LEN_SHIFT) 944 & DWXE_RX_FRM_LEN_MASK; 945 rxb = &sc->sc_rxbuf[idx]; 946 KASSERT(rxb->tb_m); 947 948 bus_dmamap_sync(sc->sc_dmat, rxb->tb_map, 0, 949 len, BUS_DMASYNC_POSTREAD); 950 bus_dmamap_unload(sc->sc_dmat, rxb->tb_map); 951 952 /* Strip off CRC. */ 953 len -= ETHER_CRC_LEN; 954 KASSERT(len > 0); 955 956 m = rxb->tb_m; 957 rxb->tb_m = NULL; 958 m->m_pkthdr.len = m->m_len = len; 959 960 ml_enqueue(&ml, m); 961 962 if_rxr_put(&sc->sc_rx_ring, 1); 963 if (sc->sc_rx_cons == (DWXE_NRXDESC - 1)) 964 sc->sc_rx_cons = 0; 965 else 966 sc->sc_rx_cons++; 967 } 968 969 dwxe_fill_rx_ring(sc); 970 971 bus_dmamap_sync(sc->sc_dmat, DWXE_DMA_MAP(sc->sc_rxring), 0, 972 DWXE_DMA_LEN(sc->sc_rxring), 973 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 974 975 if_input(ifp, &ml); 976 } 977 978 void 979 dwxe_up(struct dwxe_softc *sc) 980 { 981 struct ifnet *ifp = &sc->sc_ac.ac_if; 982 struct dwxe_buf *txb, *rxb; 983 int i; 984 985 /* Allocate Tx descriptor ring. */ 986 sc->sc_txring = dwxe_dmamem_alloc(sc, 987 DWXE_NTXDESC * sizeof(struct dwxe_desc), 8); 988 sc->sc_txdesc = DWXE_DMA_KVA(sc->sc_txring); 989 990 sc->sc_txbuf = malloc(sizeof(struct dwxe_buf) * DWXE_NTXDESC, 991 M_DEVBUF, M_WAITOK); 992 for (i = 0; i < DWXE_NTXDESC; i++) { 993 txb = &sc->sc_txbuf[i]; 994 bus_dmamap_create(sc->sc_dmat, MCLBYTES, DWXE_NTXSEGS, 995 MCLBYTES, 0, BUS_DMA_WAITOK, &txb->tb_map); 996 txb->tb_m = NULL; 997 998 sc->sc_txdesc[i].sd_next = 999 DWXE_DMA_DVA(sc->sc_txring) + 1000 ((i+1) % DWXE_NTXDESC) * sizeof(struct dwxe_desc); 1001 } 1002 1003 bus_dmamap_sync(sc->sc_dmat, DWXE_DMA_MAP(sc->sc_txring), 1004 0, DWXE_DMA_LEN(sc->sc_txring), BUS_DMASYNC_PREWRITE); 1005 1006 sc->sc_tx_prod = sc->sc_tx_cons = 0; 1007 sc->sc_tx_cnt = 0; 1008 1009 dwxe_write(sc, DWXE_TX_DESC_LIST, DWXE_DMA_DVA(sc->sc_txring)); 1010 1011 /* Allocate descriptor ring. */ 1012 sc->sc_rxring = dwxe_dmamem_alloc(sc, 1013 DWXE_NRXDESC * sizeof(struct dwxe_desc), 8); 1014 sc->sc_rxdesc = DWXE_DMA_KVA(sc->sc_rxring); 1015 1016 sc->sc_rxbuf = malloc(sizeof(struct dwxe_buf) * DWXE_NRXDESC, 1017 M_DEVBUF, M_WAITOK); 1018 1019 for (i = 0; i < DWXE_NRXDESC; i++) { 1020 rxb = &sc->sc_rxbuf[i]; 1021 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1022 MCLBYTES, 0, BUS_DMA_WAITOK, &rxb->tb_map); 1023 rxb->tb_m = NULL; 1024 1025 sc->sc_rxdesc[i].sd_next = 1026 DWXE_DMA_DVA(sc->sc_rxring) + 1027 ((i+1) % DWXE_NRXDESC) * sizeof(struct dwxe_desc); 1028 } 1029 1030 if_rxr_init(&sc->sc_rx_ring, 2, DWXE_NRXDESC); 1031 1032 sc->sc_rx_prod = sc->sc_rx_cons = 0; 1033 dwxe_fill_rx_ring(sc); 1034 1035 bus_dmamap_sync(sc->sc_dmat, DWXE_DMA_MAP(sc->sc_rxring), 1036 0, DWXE_DMA_LEN(sc->sc_rxring), 1037 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1038 1039 dwxe_write(sc, DWXE_RX_DESC_LIST, DWXE_DMA_DVA(sc->sc_rxring)); 1040 1041 dwxe_lladdr_write(sc); 1042 1043 //dwxe_write(sc, DWXE_BASIC_CTL1, DWXE_BASIC_CTL1_SOFT_RST); 1044 1045 /* Configure media. */ 1046 if (LIST_FIRST(&sc->sc_mii.mii_phys)) 1047 mii_mediachg(&sc->sc_mii); 1048 1049 /* Program promiscuous mode and multicast filters. */ 1050 dwxe_iff(sc); 1051 1052 ifp->if_flags |= IFF_RUNNING; 1053 ifq_clr_oactive(&ifp->if_snd); 1054 1055 dwxe_write(sc, DWXE_INT_EN, DWXE_INT_EN_RX_INT | 1056 DWXE_INT_EN_TX_INT | DWXE_INT_EN_TX_BUF_UA_INT); 1057 1058 dwxe_write(sc, DWXE_TX_CTL1, dwxe_read(sc, DWXE_TX_CTL1) | 1059 DWXE_TX_CTL1_TX_MD | DWXE_TX_CTL1_TX_NEXT_FRM | 1060 DWXE_TX_CTL1_TX_DMA_EN); 1061 dwxe_write(sc, DWXE_RX_CTL1, dwxe_read(sc, DWXE_RX_CTL1) | 1062 DWXE_RX_CTL1_RX_MD | DWXE_RX_CTL1_RX_DMA_EN); 1063 1064 dwxe_write(sc, DWXE_TX_CTL0, dwxe_read(sc, DWXE_TX_CTL0) | 1065 DWXE_TX_CTL0_TX_TRANSMITTER_EN); 1066 dwxe_write(sc, DWXE_RX_CTL0, dwxe_read(sc, DWXE_RX_CTL0) | 1067 DWXE_RX_CTL0_RX_RECEIVER_EN | DWXE_RX_CTL0_RX_DO_CRC); 1068 1069 timeout_add_sec(&sc->sc_tick, 1); 1070 } 1071 1072 void 1073 dwxe_down(struct dwxe_softc *sc) 1074 { 1075 struct ifnet *ifp = &sc->sc_ac.ac_if; 1076 struct dwxe_buf *txb, *rxb; 1077 uint32_t dmactrl; 1078 int i; 1079 1080 timeout_del(&sc->sc_rxto); 1081 timeout_del(&sc->sc_tick); 1082 1083 ifp->if_flags &= ~IFF_RUNNING; 1084 ifq_clr_oactive(&ifp->if_snd); 1085 ifp->if_timer = 0; 1086 1087 dwxe_stop_dma(sc); 1088 1089 dwxe_write(sc, DWXE_TX_CTL0, dwxe_read(sc, 1090 DWXE_TX_CTL0) & ~DWXE_TX_CTL0_TX_TRANSMITTER_EN); 1091 1092 dwxe_write(sc, DWXE_RX_CTL0, dwxe_read(sc, 1093 DWXE_RX_CTL0) & ~DWXE_RX_CTL0_RX_RECEIVER_EN); 1094 1095 dmactrl = dwxe_read(sc, DWXE_TX_CTL1); 1096 dmactrl &= ~DWXE_TX_CTL1_TX_DMA_EN; 1097 dwxe_write(sc, DWXE_TX_CTL1, dmactrl); 1098 1099 dmactrl = dwxe_read(sc, DWXE_RX_CTL1); 1100 dmactrl &= ~DWXE_RX_CTL1_RX_DMA_EN; 1101 dwxe_write(sc, DWXE_RX_CTL1, dmactrl); 1102 1103 dwxe_write(sc, DWXE_INT_EN, 0); 1104 1105 for (i = 0; i < DWXE_NTXDESC; i++) { 1106 txb = &sc->sc_txbuf[i]; 1107 if (txb->tb_m) { 1108 bus_dmamap_sync(sc->sc_dmat, txb->tb_map, 0, 1109 txb->tb_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1110 bus_dmamap_unload(sc->sc_dmat, txb->tb_map); 1111 m_freem(txb->tb_m); 1112 } 1113 bus_dmamap_destroy(sc->sc_dmat, txb->tb_map); 1114 } 1115 1116 dwxe_dmamem_free(sc, sc->sc_txring); 1117 free(sc->sc_txbuf, M_DEVBUF, 0); 1118 1119 for (i = 0; i < DWXE_NRXDESC; i++) { 1120 rxb = &sc->sc_rxbuf[i]; 1121 if (rxb->tb_m) { 1122 bus_dmamap_sync(sc->sc_dmat, rxb->tb_map, 0, 1123 rxb->tb_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1124 bus_dmamap_unload(sc->sc_dmat, rxb->tb_map); 1125 m_freem(rxb->tb_m); 1126 } 1127 bus_dmamap_destroy(sc->sc_dmat, rxb->tb_map); 1128 } 1129 1130 dwxe_dmamem_free(sc, sc->sc_rxring); 1131 free(sc->sc_rxbuf, M_DEVBUF, 0); 1132 } 1133 1134 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */ 1135 static uint32_t 1136 bitrev32(uint32_t x) 1137 { 1138 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); 1139 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); 1140 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); 1141 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); 1142 1143 return (x >> 16) | (x << 16); 1144 } 1145 1146 void 1147 dwxe_iff(struct dwxe_softc *sc) 1148 { 1149 struct arpcom *ac = &sc->sc_ac; 1150 struct ifnet *ifp = &sc->sc_ac.ac_if; 1151 struct ether_multi *enm; 1152 struct ether_multistep step; 1153 uint32_t crc, hash[2], hashbit, hashreg; 1154 uint32_t reg; 1155 1156 reg = 0; 1157 1158 ifp->if_flags &= ~IFF_ALLMULTI; 1159 bzero(hash, sizeof(hash)); 1160 if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { 1161 ifp->if_flags |= IFF_ALLMULTI; 1162 reg |= DWXE_RX_FRM_FLT_RX_ALL_MULTICAST; 1163 if (ifp->if_flags & IFF_PROMISC) 1164 reg |= DWXE_RX_FRM_FLT_DIS_ADDR_FILTER; 1165 } else { 1166 reg |= DWXE_RX_FRM_FLT_HASH_MULTICAST; 1167 ETHER_FIRST_MULTI(step, ac, enm); 1168 while (enm != NULL) { 1169 crc = ether_crc32_le(enm->enm_addrlo, 1170 ETHER_ADDR_LEN) & 0x7f; 1171 1172 crc = bitrev32(~crc) >> 26; 1173 hashreg = (crc >> 5); 1174 hashbit = (crc & 0x1f); 1175 hash[hashreg] |= (1 << hashbit); 1176 1177 ETHER_NEXT_MULTI(step, enm); 1178 } 1179 } 1180 1181 dwxe_lladdr_write(sc); 1182 1183 dwxe_write(sc, DWXE_RX_HASH0, hash[1]); 1184 dwxe_write(sc, DWXE_RX_HASH1, hash[0]); 1185 1186 dwxe_write(sc, DWXE_RX_FRM_FLT, reg); 1187 } 1188 1189 int 1190 dwxe_encap(struct dwxe_softc *sc, struct mbuf *m, int *idx) 1191 { 1192 struct dwxe_desc *txd, *txd_start; 1193 bus_dmamap_t map; 1194 int cur, frag, i; 1195 1196 cur = frag = *idx; 1197 map = sc->sc_txbuf[cur].tb_map; 1198 1199 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT)) { 1200 if (m_defrag(m, M_DONTWAIT)) 1201 return (EFBIG); 1202 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT)) 1203 return (EFBIG); 1204 } 1205 1206 if (map->dm_nsegs > (DWXE_NTXDESC - sc->sc_tx_cnt - 2)) { 1207 bus_dmamap_unload(sc->sc_dmat, map); 1208 return (ENOBUFS); 1209 } 1210 1211 /* Sync the DMA map. */ 1212 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1213 BUS_DMASYNC_PREWRITE); 1214 1215 txd = txd_start = &sc->sc_txdesc[frag]; 1216 for (i = 0; i < map->dm_nsegs; i++) { 1217 txd->sd_addr = map->dm_segs[i].ds_addr; 1218 txd->sd_len = map->dm_segs[i].ds_len; 1219 if (i == 0) 1220 txd->sd_len |= DWXE_TX_FIR_DESC; 1221 if (i == (map->dm_nsegs - 1)) 1222 txd->sd_len |= DWXE_TX_LAST_DESC | DWXE_TX_INT_CTL; 1223 if (i != 0) 1224 txd->sd_status = DWXE_TX_DESC_CTL; 1225 1226 bus_dmamap_sync(sc->sc_dmat, DWXE_DMA_MAP(sc->sc_txring), 1227 frag * sizeof(*txd), sizeof(*txd), BUS_DMASYNC_PREWRITE); 1228 1229 cur = frag; 1230 if (frag == (DWXE_NTXDESC - 1)) { 1231 txd = &sc->sc_txdesc[0]; 1232 frag = 0; 1233 } else { 1234 txd++; 1235 frag++; 1236 } 1237 KASSERT(frag != sc->sc_tx_cons); 1238 } 1239 1240 txd_start->sd_status = DWXE_TX_DESC_CTL; 1241 bus_dmamap_sync(sc->sc_dmat, DWXE_DMA_MAP(sc->sc_txring), 1242 *idx * sizeof(*txd), sizeof(*txd), BUS_DMASYNC_PREWRITE); 1243 1244 dwxe_write(sc, DWXE_TX_CTL1, dwxe_read(sc, 1245 DWXE_TX_CTL1) | DWXE_TX_CTL1_TX_DMA_START); 1246 1247 KASSERT(sc->sc_txbuf[cur].tb_m == NULL); 1248 sc->sc_txbuf[*idx].tb_map = sc->sc_txbuf[cur].tb_map; 1249 sc->sc_txbuf[cur].tb_map = map; 1250 sc->sc_txbuf[cur].tb_m = m; 1251 1252 sc->sc_tx_cnt += map->dm_nsegs; 1253 *idx = frag; 1254 1255 return (0); 1256 } 1257 1258 void 1259 dwxe_reset(struct dwxe_softc *sc) 1260 { 1261 int n; 1262 1263 dwxe_stop_dma(sc); 1264 1265 dwxe_write(sc, DWXE_BASIC_CTL1, DWXE_BASIC_CTL1_SOFT_RST); 1266 1267 for (n = 0; n < 1000; n++) { 1268 if ((dwxe_read(sc, DWXE_BASIC_CTL1) & 1269 DWXE_BASIC_CTL1_SOFT_RST) == 0) 1270 return; 1271 delay(10); 1272 } 1273 1274 printf("%s: reset timeout\n", sc->sc_dev.dv_xname); 1275 } 1276 1277 void 1278 dwxe_stop_dma(struct dwxe_softc *sc) 1279 { 1280 uint32_t dmactrl; 1281 1282 /* Stop DMA. */ 1283 dmactrl = dwxe_read(sc, DWXE_TX_CTL1); 1284 dmactrl &= ~DWXE_TX_CTL1_TX_DMA_EN; 1285 dmactrl |= DWXE_TX_CTL1_TX_FIFO_FLUSH; 1286 dwxe_write(sc, DWXE_TX_CTL1, dmactrl); 1287 } 1288 1289 struct dwxe_dmamem * 1290 dwxe_dmamem_alloc(struct dwxe_softc *sc, bus_size_t size, bus_size_t align) 1291 { 1292 struct dwxe_dmamem *tdm; 1293 int nsegs; 1294 1295 tdm = malloc(sizeof(*tdm), M_DEVBUF, M_WAITOK | M_ZERO); 1296 tdm->tdm_size = size; 1297 1298 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 1299 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &tdm->tdm_map) != 0) 1300 goto tdmfree; 1301 1302 if (bus_dmamem_alloc(sc->sc_dmat, size, align, 0, &tdm->tdm_seg, 1, 1303 &nsegs, BUS_DMA_WAITOK) != 0) 1304 goto destroy; 1305 1306 if (bus_dmamem_map(sc->sc_dmat, &tdm->tdm_seg, nsegs, size, 1307 &tdm->tdm_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT) != 0) 1308 goto free; 1309 1310 if (bus_dmamap_load(sc->sc_dmat, tdm->tdm_map, tdm->tdm_kva, size, 1311 NULL, BUS_DMA_WAITOK) != 0) 1312 goto unmap; 1313 1314 bzero(tdm->tdm_kva, size); 1315 1316 return (tdm); 1317 1318 unmap: 1319 bus_dmamem_unmap(sc->sc_dmat, tdm->tdm_kva, size); 1320 free: 1321 bus_dmamem_free(sc->sc_dmat, &tdm->tdm_seg, 1); 1322 destroy: 1323 bus_dmamap_destroy(sc->sc_dmat, tdm->tdm_map); 1324 tdmfree: 1325 free(tdm, M_DEVBUF, 0); 1326 1327 return (NULL); 1328 } 1329 1330 void 1331 dwxe_dmamem_free(struct dwxe_softc *sc, struct dwxe_dmamem *tdm) 1332 { 1333 bus_dmamem_unmap(sc->sc_dmat, tdm->tdm_kva, tdm->tdm_size); 1334 bus_dmamem_free(sc->sc_dmat, &tdm->tdm_seg, 1); 1335 bus_dmamap_destroy(sc->sc_dmat, tdm->tdm_map); 1336 free(tdm, M_DEVBUF, 0); 1337 } 1338 1339 struct mbuf * 1340 dwxe_alloc_mbuf(struct dwxe_softc *sc, bus_dmamap_t map) 1341 { 1342 struct mbuf *m = NULL; 1343 1344 m = MCLGETI(NULL, M_DONTWAIT, NULL, MCLBYTES); 1345 if (!m) 1346 return (NULL); 1347 m->m_len = m->m_pkthdr.len = MCLBYTES; 1348 m_adj(m, ETHER_ALIGN); 1349 1350 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0) { 1351 printf("%s: could not load mbuf DMA map", DEVNAME(sc)); 1352 m_freem(m); 1353 return (NULL); 1354 } 1355 1356 bus_dmamap_sync(sc->sc_dmat, map, 0, 1357 m->m_pkthdr.len, BUS_DMASYNC_PREREAD); 1358 1359 return (m); 1360 } 1361 1362 void 1363 dwxe_fill_rx_ring(struct dwxe_softc *sc) 1364 { 1365 struct dwxe_desc *rxd; 1366 struct dwxe_buf *rxb; 1367 u_int slots; 1368 1369 for (slots = if_rxr_get(&sc->sc_rx_ring, DWXE_NRXDESC); 1370 slots > 0; slots--) { 1371 rxb = &sc->sc_rxbuf[sc->sc_rx_prod]; 1372 rxb->tb_m = dwxe_alloc_mbuf(sc, rxb->tb_map); 1373 if (rxb->tb_m == NULL) 1374 break; 1375 1376 rxd = &sc->sc_rxdesc[sc->sc_rx_prod]; 1377 rxd->sd_len = rxb->tb_map->dm_segs[0].ds_len - 1; 1378 rxd->sd_addr = rxb->tb_map->dm_segs[0].ds_addr; 1379 rxd->sd_status = DWXE_RX_DESC_CTL; 1380 1381 if (sc->sc_rx_prod == (DWXE_NRXDESC - 1)) 1382 sc->sc_rx_prod = 0; 1383 else 1384 sc->sc_rx_prod++; 1385 } 1386 if_rxr_put(&sc->sc_rx_ring, slots); 1387 1388 if (if_rxr_inuse(&sc->sc_rx_ring) == 0) 1389 timeout_add(&sc->sc_rxto, 1); 1390 } 1391