xref: /openbsd-src/sys/dev/acpi/acpi.c (revision 5054e3e78af0749a9bb00ba9a024b3ee2d90290f)
1 /* $OpenBSD: acpi.c,v 1.143 2009/10/26 20:17:26 deraadt Exp $ */
2 /*
3  * Copyright (c) 2005 Thorsten Lockert <tholo@sigmasoft.com>
4  * Copyright (c) 2005 Jordan Hargrave <jordan@openbsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/param.h>
20 #include <sys/systm.h>
21 #include <sys/device.h>
22 #include <sys/malloc.h>
23 #include <sys/fcntl.h>
24 #include <sys/ioccom.h>
25 #include <sys/event.h>
26 #include <sys/signalvar.h>
27 #include <sys/proc.h>
28 #include <sys/kthread.h>
29 #include <sys/workq.h>
30 
31 #include <machine/conf.h>
32 #include <machine/cpufunc.h>
33 #include <machine/bus.h>
34 
35 #include <dev/pci/pcivar.h>
36 #include <dev/acpi/acpireg.h>
37 #include <dev/acpi/acpivar.h>
38 #include <dev/acpi/amltypes.h>
39 #include <dev/acpi/acpidev.h>
40 #include <dev/acpi/dsdt.h>
41 
42 #include <dev/pci/pciidereg.h>
43 #include <dev/pci/pciidevar.h>
44 
45 #include <machine/apmvar.h>
46 #define APMUNIT(dev)	(minor(dev)&0xf0)
47 #define APMDEV(dev)	(minor(dev)&0x0f)
48 #define APMDEV_NORMAL	0
49 #define APMDEV_CTL	8
50 
51 #ifdef ACPI_DEBUG
52 int acpi_debug = 16;
53 #endif
54 int acpi_enabled;
55 int acpi_poll_enabled;
56 int acpi_hasprocfvs;
57 int acpi_thinkpad_enabled;
58 
59 #define ACPIEN_RETRIES 15
60 
61 void	acpi_isr_thread(void *);
62 void	acpi_create_thread(void *);
63 
64 int	acpi_match(struct device *, void *, void *);
65 void	acpi_attach(struct device *, struct device *, void *);
66 int	acpi_submatch(struct device *, void *, void *);
67 int	acpi_print(void *, const char *);
68 
69 void	acpi_map_pmregs(struct acpi_softc *);
70 
71 int	acpi_founddock(struct aml_node *, void *);
72 int	acpi_foundpss(struct aml_node *, void *);
73 int	acpi_foundhid(struct aml_node *, void *);
74 int	acpi_foundec(struct aml_node *, void *);
75 int	acpi_foundtmp(struct aml_node *, void *);
76 int	acpi_foundprt(struct aml_node *, void *);
77 int	acpi_foundprw(struct aml_node *, void *);
78 int	acpi_foundvideo(struct aml_node *, void *);
79 int	acpi_inidev(struct aml_node *, void *);
80 
81 int	acpi_loadtables(struct acpi_softc *, struct acpi_rsdp *);
82 
83 void	acpi_init_states(struct acpi_softc *);
84 void	acpi_init_gpes(struct acpi_softc *);
85 void	acpi_init_pm(struct acpi_softc *);
86 
87 void	acpi_dev_sort(void);
88 void	acpi_dev_free(void);
89 
90 int acpi_foundide(struct aml_node *node, void *arg);
91 int acpiide_notify(struct aml_node *, int, void *);
92 
93 void  wdcattach(struct channel_softc *);
94 int   wdcdetach(struct channel_softc *, int);
95 
96 struct acpi_q *acpi_maptable(paddr_t, const char *, const char *, const char *);
97 
98 struct idechnl
99 {
100 	struct acpi_softc *sc;
101 	int64_t 	addr;
102 	int64_t 	chnl;
103 	int64_t 	sta;
104 };
105 
106 int is_ejectable_bay(struct aml_node *node);
107 int is_ata(struct aml_node *node);
108 int is_ejectable(struct aml_node *node);
109 
110 #ifdef ACPI_SLEEP_ENABLED
111 void acpi_sleep_walk(struct acpi_softc *, int);
112 #endif /* ACPI_SLEEP_ENABLED */
113 
114 #ifndef SMALL_KERNEL
115 int acpi_add_device(struct aml_node *node, void *arg);
116 #endif /* SMALL_KERNEL */
117 
118 void	acpi_enable_onegpe(struct acpi_softc *, int, int);
119 int	acpi_gpe_level(struct acpi_softc *, int, void *);
120 int	acpi_gpe_edge(struct acpi_softc *, int, void *);
121 
122 struct gpe_block *acpi_find_gpe(struct acpi_softc *, int);
123 
124 #define	ACPI_LOCK(sc)
125 #define	ACPI_UNLOCK(sc)
126 
127 /* XXX move this into dsdt softc at some point */
128 extern struct aml_node aml_root;
129 
130 /* XXX do we need this? */
131 void	acpi_filtdetach(struct knote *);
132 int	acpi_filtread(struct knote *, long);
133 
134 struct filterops acpiread_filtops = {
135 	1, NULL, acpi_filtdetach, acpi_filtread
136 };
137 
138 struct cfattach acpi_ca = {
139 	sizeof(struct acpi_softc), acpi_match, acpi_attach
140 };
141 
142 struct cfdriver acpi_cd = {
143 	NULL, "acpi", DV_DULL
144 };
145 
146 struct acpi_softc *acpi_softc;
147 int acpi_evindex;
148 
149 #define acpi_bus_space_map	_bus_space_map
150 #define acpi_bus_space_unmap	_bus_space_unmap
151 
152 #define pch(x) (((x)>=' ' && (x)<='z') ? (x) : ' ')
153 
154 #if 0
155 void
156 acpi_delay(struct acpi_softc *sc, int64_t uSecs)
157 {
158 	/* XXX this needs to become a tsleep later */
159 	delay(uSecs);
160 }
161 #endif
162 
163 int
164 acpi_gasio(struct acpi_softc *sc, int iodir, int iospace, uint64_t address,
165     int access_size, int len, void *buffer)
166 {
167 	u_int8_t *pb;
168 	bus_space_handle_t ioh;
169 	struct acpi_mem_map mh;
170 	pci_chipset_tag_t pc;
171 	pcitag_t tag;
172 	bus_addr_t ioaddr;
173 	int reg, idx, ival, sval;
174 
175 	dnprintf(50, "gasio: %.2x 0x%.8llx %s\n",
176 	    iospace, address, (iodir == ACPI_IOWRITE) ? "write" : "read");
177 
178 	pb = (u_int8_t *)buffer;
179 	switch (iospace) {
180 	case GAS_SYSTEM_MEMORY:
181 		/* copy to/from system memory */
182 		acpi_map(address, len, &mh);
183 		if (iodir == ACPI_IOREAD)
184 			memcpy(buffer, mh.va, len);
185 		else
186 			memcpy(mh.va, buffer, len);
187 		acpi_unmap(&mh);
188 		break;
189 
190 	case GAS_SYSTEM_IOSPACE:
191 		/* read/write from I/O registers */
192 		ioaddr = address;
193 		if (acpi_bus_space_map(sc->sc_iot, ioaddr, len, 0, &ioh) != 0) {
194 			printf("unable to map iospace\n");
195 			return (-1);
196 		}
197 		for (reg = 0; reg < len; reg += access_size) {
198 			if (iodir == ACPI_IOREAD) {
199 				switch (access_size) {
200 				case 1:
201 					*(uint8_t *)(pb+reg) = bus_space_read_1(
202 					    sc->sc_iot, ioh, reg);
203 					dnprintf(80, "os_in8(%llx) = %x\n",
204 					    reg+address, *(uint8_t *)(pb+reg));
205 					break;
206 				case 2:
207 					*(uint16_t *)(pb+reg) = bus_space_read_2(
208 					    sc->sc_iot, ioh, reg);
209 					dnprintf(80, "os_in16(%llx) = %x\n",
210 					    reg+address, *(uint16_t *)(pb+reg));
211 					break;
212 				case 4:
213 					*(uint32_t *)(pb+reg) = bus_space_read_4(
214 					    sc->sc_iot, ioh, reg);
215 					break;
216 				default:
217 					printf("rdio: invalid size %d\n", access_size);
218 					break;
219 				}
220 			} else {
221 				switch (access_size) {
222 				case 1:
223 					bus_space_write_1(sc->sc_iot, ioh, reg,
224 					    *(uint8_t *)(pb+reg));
225 					dnprintf(80, "os_out8(%llx,%x)\n",
226 					    reg+address, *(uint8_t *)(pb+reg));
227 					break;
228 				case 2:
229 					bus_space_write_2(sc->sc_iot, ioh, reg,
230 					    *(uint16_t *)(pb+reg));
231 					dnprintf(80, "os_out16(%llx,%x)\n",
232 					    reg+address, *(uint16_t *)(pb+reg));
233 					break;
234 				case 4:
235 					bus_space_write_4(sc->sc_iot, ioh, reg,
236 					    *(uint32_t *)(pb+reg));
237 					break;
238 				default:
239 					printf("wrio: invalid size %d\n", access_size);
240 					break;
241 				}
242 			}
243 
244 			/* During autoconf some devices are still gathering
245 			 * information.  Delay here to give them an opportunity
246 			 * to finish.  During runtime we simply need to ignore
247 			 * transient values.
248 			 */
249 			if (cold)
250 				delay(10000);
251 		}
252 		acpi_bus_space_unmap(sc->sc_iot, ioh, len, &ioaddr);
253 		break;
254 
255 	case GAS_PCI_CFG_SPACE:
256 		/* format of address:
257 		 *    bits 00..15 = register
258 		 *    bits 16..31 = function
259 		 *    bits 32..47 = device
260 		 *    bits 48..63 = bus
261 		 */
262 		pc = NULL;
263 		tag = pci_make_tag(pc,
264 		    ACPI_PCI_BUS(address), ACPI_PCI_DEV(address),
265 		    ACPI_PCI_FN(address));
266 
267 		/* XXX: This is ugly. read-modify-write does a byte at a time */
268 		reg = ACPI_PCI_REG(address);
269 		for (idx = reg; idx < reg+len; idx++) {
270 			ival = pci_conf_read(pc, tag, idx & ~0x3);
271 			if (iodir == ACPI_IOREAD) {
272 				*pb = ival >> (8 * (idx & 0x3));
273 			} else {
274 				sval = *pb;
275 				ival &= ~(0xFF << (8* (idx & 0x3)));
276 				ival |= sval << (8* (idx & 0x3));
277 				pci_conf_write(pc, tag, idx & ~0x3, ival);
278 			}
279 			pb++;
280 		}
281 		break;
282 	case GAS_EMBEDDED:
283 		if (sc->sc_ec == NULL)
284 			break;
285 #ifndef SMALL_KERNEL
286 		if (iodir == ACPI_IOREAD)
287 			acpiec_read(sc->sc_ec, (u_int8_t)address, len, buffer);
288 		else
289 			acpiec_write(sc->sc_ec, (u_int8_t)address, len, buffer);
290 #endif
291 		break;
292 	}
293 	return (0);
294 }
295 
296 int
297 acpi_inidev(struct aml_node *node, void *arg)
298 {
299 	struct acpi_softc	*sc = (struct acpi_softc *)arg;
300 	int64_t st;
301 
302 	/*
303 	 * Per the ACPI spec 6.5.1, only run _INI when device is there or
304 	 * when there is no _STA.  We terminate the tree walk (with return 1)
305 	 * early if necessary.
306 	 */
307 
308 	/* Evaluate _STA to decide _INI fate and walk fate */
309 	if (aml_evalinteger(sc, node->parent, "_STA", 0, NULL, &st))
310 		st = STA_PRESENT | STA_ENABLED | STA_DEV_OK | 0x1000;
311 
312 	/* Evaluate _INI if we are present */
313 	if (st & STA_PRESENT)
314 		aml_evalnode(sc, node, 0, NULL, NULL);
315 
316 	/* If we are functioning, we walk/search our children */
317 	if(st & STA_DEV_OK)
318 		return 0;
319 
320 	/* If we are not enabled, or not present, terminate search */
321 	if (!(st & (STA_PRESENT|STA_ENABLED)))
322 		return 1;
323 
324 	/* Default just continue search */
325 	return 0;
326 }
327 
328 int
329 acpi_foundprt(struct aml_node *node, void *arg)
330 {
331 	struct acpi_softc	*sc = (struct acpi_softc *)arg;
332 	struct device		*self = (struct device *)arg;
333 	struct acpi_attach_args	aaa;
334 	int64_t st = 0;
335 
336 	dnprintf(10, "found prt entry: %s\n", node->parent->name);
337 
338 	/* Evaluate _STA to decide _PRT fate and walk fate */
339 	if (aml_evalinteger(sc, node->parent, "_STA", 0, NULL, &st))
340 		st = STA_PRESENT | STA_ENABLED | STA_DEV_OK | 0x1000;
341 
342 	if (st & STA_PRESENT) {
343 		memset(&aaa, 0, sizeof(aaa));
344 		aaa.aaa_iot = sc->sc_iot;
345 		aaa.aaa_memt = sc->sc_memt;
346 		aaa.aaa_node = node;
347 		aaa.aaa_name = "acpiprt";
348 
349 		config_found(self, &aaa, acpi_print);
350 	}
351 
352 	/* If we are functioning, we walk/search our children */
353 	if(st & STA_DEV_OK)
354 		return 0;
355 
356 	/* If we are not enabled, or not present, terminate search */
357 	if (!(st & (STA_PRESENT|STA_ENABLED)))
358 		return 1;
359 
360 	/* Default just continue search */
361 	return 0;
362 }
363 
364 int
365 is_ata(struct aml_node *node)
366 {
367 	return (aml_searchname(node, "_GTM") != NULL ||
368 	    aml_searchname(node, "_GTF") != NULL ||
369 	    aml_searchname(node, "_STM") != NULL ||
370 	    aml_searchname(node, "_SDD") != NULL);
371 }
372 
373 int
374 is_ejectable(struct aml_node *node)
375 {
376 	return (aml_searchname(node, "_EJ0") != NULL);
377 }
378 
379 int
380 is_ejectable_bay(struct aml_node *node)
381 {
382 	return ((is_ata(node) || is_ata(node->parent)) && is_ejectable(node));
383 }
384 
385 int
386 acpiide_notify(struct aml_node *node, int ntype, void *arg)
387 {
388 	struct idechnl 		*ide = arg;
389 	struct acpi_softc 	*sc = ide->sc;
390 	struct pciide_softc 	*wsc;
391 	struct device 		*dev;
392 	int 			b,d,f;
393 	int64_t 		sta;
394 
395 	if (aml_evalinteger(sc, node, "_STA", 0, NULL, &sta) != 0)
396 		return (0);
397 
398 	dnprintf(10, "IDE notify! %s %d status:%llx\n", aml_nodename(node),
399 	    ntype, sta);
400 
401 	/* Walk device list looking for IDE device match */
402 	TAILQ_FOREACH(dev, &alldevs, dv_list) {
403 		if (strcmp(dev->dv_cfdata->cf_driver->cd_name, "pciide"))
404 			continue;
405 
406 		wsc = (struct pciide_softc *)dev;
407 		pci_decompose_tag(NULL, wsc->sc_tag, &b, &d, &f);
408 		if (b != ACPI_PCI_BUS(ide->addr) ||
409 		    d != ACPI_PCI_DEV(ide->addr) ||
410 		    f != ACPI_PCI_FN(ide->addr))
411 			continue;
412 		dnprintf(10, "Found pciide: %s %x.%x.%x channel:%llx\n",
413 		    dev->dv_xname, b,d,f, ide->chnl);
414 
415 		if (sta == 0 && ide->sta)
416 			wdcdetach(
417 			    &wsc->pciide_channels[ide->chnl].wdc_channel, 0);
418 		else if (sta && !ide->sta)
419 			wdcattach(
420 			    &wsc->pciide_channels[ide->chnl].wdc_channel);
421 		ide->sta = sta;
422 	}
423 	return (0);
424 }
425 
426 int
427 acpi_foundide(struct aml_node *node, void *arg)
428 {
429 	struct acpi_softc 	*sc = arg;
430 	struct aml_node 	*pp;
431 	struct idechnl 		*ide;
432 	union amlpci_t 		pi;
433 	int 			lvl;
434 
435 	/* Check if this is an ejectable bay */
436 	if (!is_ejectable_bay(node))
437 		return (0);
438 
439 	ide = malloc(sizeof(struct idechnl), M_DEVBUF, M_NOWAIT | M_ZERO);
440 	ide->sc = sc;
441 
442 	/* GTM/GTF can be at 2/3 levels:  pciX.ideX.channelX[.driveX] */
443 	lvl = 0;
444 	for (pp=node->parent; pp; pp=pp->parent) {
445 		lvl++;
446 		if (aml_searchname(pp, "_HID"))
447 			break;
448 	}
449 
450 	/* Get PCI address and channel */
451 	if (lvl == 3) {
452 		aml_evalinteger(sc, node->parent, "_ADR", 0, NULL,
453 		    &ide->chnl);
454 		aml_rdpciaddr(node->parent->parent, &pi);
455 		ide->addr = pi.addr;
456 	} else if (lvl == 4) {
457 		aml_evalinteger(sc, node->parent->parent, "_ADR", 0, NULL,
458 		    &ide->chnl);
459 		aml_rdpciaddr(node->parent->parent->parent, &pi);
460 		ide->addr = pi.addr;
461 	}
462 	dnprintf(10, "%s %llx channel:%llx\n",
463 	    aml_nodename(node), ide->addr, ide->chnl);
464 
465 	aml_evalinteger(sc, node, "_STA", 0, NULL, &ide->sta);
466 	dnprintf(10, "Got Initial STA: %llx\n", ide->sta);
467 
468 	aml_register_notify(node, "acpiide", acpiide_notify, ide, 0);
469 	return (0);
470 }
471 
472 int
473 acpi_match(struct device *parent, void *match, void *aux)
474 {
475 	struct bios_attach_args	*ba = aux;
476 	struct cfdata		*cf = match;
477 
478 	/* sanity */
479 	if (strcmp(ba->ba_name, cf->cf_driver->cd_name))
480 		return (0);
481 
482 	if (!acpi_probe(parent, cf, ba))
483 		return (0);
484 
485 	return (1);
486 }
487 
488 void
489 acpi_attach(struct device *parent, struct device *self, void *aux)
490 {
491 	struct bios_attach_args *ba = aux;
492 	struct acpi_softc *sc = (struct acpi_softc *)self;
493 	struct acpi_mem_map handle;
494 	struct acpi_rsdp *rsdp;
495 	struct acpi_q *entry;
496 	struct acpi_dsdt *p_dsdt;
497 	int idx;
498 #ifndef SMALL_KERNEL
499 	struct acpi_wakeq *wentry;
500 	struct device *dev;
501 	struct acpi_ac *ac;
502 	struct acpi_bat *bat;
503 #endif /* SMALL_KERNEL */
504 	paddr_t facspa;
505 
506 	sc->sc_iot = ba->ba_iot;
507 	sc->sc_memt = ba->ba_memt;
508 
509 	if (acpi_map(ba->ba_acpipbase, sizeof(struct acpi_rsdp), &handle)) {
510 		printf(": can't map memory\n");
511 		return;
512 	}
513 
514 	rsdp = (struct acpi_rsdp *)handle.va;
515 	sc->sc_revision = (int)rsdp->rsdp_revision;
516 	printf(": rev %d", sc->sc_revision);
517 
518 	SIMPLEQ_INIT(&sc->sc_tables);
519 	SIMPLEQ_INIT(&sc->sc_wakedevs);
520 
521 #ifndef SMALL_KERNEL
522 	sc->sc_note = malloc(sizeof(struct klist), M_DEVBUF, M_NOWAIT | M_ZERO);
523 	if (sc->sc_note == NULL) {
524 		printf(", can't allocate memory\n");
525 		acpi_unmap(&handle);
526 		return;
527 	}
528 #endif /* SMALL_KERNEL */
529 
530 	if (acpi_loadtables(sc, rsdp)) {
531 		printf(", can't load tables\n");
532 		acpi_unmap(&handle);
533 		return;
534 	}
535 
536 	acpi_unmap(&handle);
537 
538 	/*
539 	 * Find the FADT
540 	 */
541 	SIMPLEQ_FOREACH(entry, &sc->sc_tables, q_next) {
542 		if (memcmp(entry->q_table, FADT_SIG,
543 		    sizeof(FADT_SIG) - 1) == 0) {
544 			sc->sc_fadt = entry->q_table;
545 			break;
546 		}
547 	}
548 	if (sc->sc_fadt == NULL) {
549 		printf(", no FADT\n");
550 		return;
551 	}
552 
553 	/*
554 	 * Check if we are able to enable ACPI control
555 	 */
556 	if (!sc->sc_fadt->smi_cmd ||
557 	    (!sc->sc_fadt->acpi_enable && !sc->sc_fadt->acpi_disable)) {
558 		printf(", ACPI control unavailable\n");
559 		return;
560 	}
561 
562 	/*
563 	 * Set up a pointer to the firmware control structure
564 	 */
565 	if (sc->sc_fadt->hdr_revision < 3 || sc->sc_fadt->x_firmware_ctl == 0)
566 		facspa = sc->sc_fadt->firmware_ctl;
567 	else
568 		facspa = sc->sc_fadt->x_firmware_ctl;
569 
570 	if (acpi_map(facspa, sizeof(struct acpi_facs), &handle))
571 		printf(" !FACS");
572 	else
573 		sc->sc_facs = (struct acpi_facs *)handle.va;
574 
575 	acpi_enabled = 1;
576 
577 	/* Create opcode hashtable */
578 	aml_hashopcodes();
579 
580 	/* Create Default AML objects */
581 	aml_create_defaultobjects();
582 
583 	/*
584 	 * Load the DSDT from the FADT pointer -- use the
585 	 * extended (64-bit) pointer if it exists
586 	 */
587 	if (sc->sc_fadt->hdr_revision < 3 || sc->sc_fadt->x_dsdt == 0)
588 		entry = acpi_maptable(sc->sc_fadt->dsdt, NULL, NULL, NULL);
589 	else
590 		entry = acpi_maptable(sc->sc_fadt->x_dsdt, NULL, NULL, NULL);
591 
592 	if (entry == NULL)
593 		printf(" !DSDT");
594 	SIMPLEQ_INSERT_HEAD(&sc->sc_tables, entry, q_next);
595 
596 	p_dsdt = entry->q_table;
597 	acpi_parse_aml(sc, p_dsdt->aml, p_dsdt->hdr_length -
598 	    sizeof(p_dsdt->hdr));
599 
600 	/* Load SSDT's */
601 	SIMPLEQ_FOREACH(entry, &sc->sc_tables, q_next) {
602 		if (memcmp(entry->q_table, SSDT_SIG,
603 		    sizeof(SSDT_SIG) - 1) == 0) {
604 			p_dsdt = entry->q_table;
605 			acpi_parse_aml(sc, p_dsdt->aml, p_dsdt->hdr_length -
606 			    sizeof(p_dsdt->hdr));
607 		}
608 	}
609 
610 	/* Perform post-parsing fixups */
611 	aml_postparse();
612 
613 #ifndef SMALL_KERNEL
614 	/* Find available sleeping states */
615 	acpi_init_states(sc);
616 
617 	/* Find available sleep/resume related methods. */
618 	acpi_init_pm(sc);
619 #endif /* SMALL_KERNEL */
620 
621 	/* Map Power Management registers */
622 	acpi_map_pmregs(sc);
623 
624 #ifndef SMALL_KERNEL
625 	/* Initialize GPE handlers */
626 	acpi_init_gpes(sc);
627 
628 	/* some devices require periodic polling */
629 	timeout_set(&sc->sc_dev_timeout, acpi_poll, sc);
630 #endif /* SMALL_KERNEL */
631 
632 	/*
633 	 * Take over ACPI control.  Note that once we do this, we
634 	 * effectively tell the system that we have ownership of
635 	 * the ACPI hardware registers, and that SMI should leave
636 	 * them alone
637 	 *
638 	 * This may prevent thermal control on some systems where
639 	 * that actually does work
640 	 */
641 	acpi_write_pmreg(sc, ACPIREG_SMICMD, 0, sc->sc_fadt->acpi_enable);
642 	idx = 0;
643 	do {
644 		if (idx++ > ACPIEN_RETRIES) {
645 			printf(", can't enable ACPI\n");
646 			return;
647 		}
648 	} while (!(acpi_read_pmreg(sc, ACPIREG_PM1_CNT, 0) & ACPI_PM1_SCI_EN));
649 
650 	printf("\n%s: tables", DEVNAME(sc));
651 	SIMPLEQ_FOREACH(entry, &sc->sc_tables, q_next) {
652 		printf(" %.4s", entry->q_table);
653 	}
654 	printf("\n");
655 
656 #ifndef SMALL_KERNEL
657 	/* Display wakeup devices and lowest S-state */
658 	printf("%s: wakeup devices", DEVNAME(sc));
659 	SIMPLEQ_FOREACH(wentry, &sc->sc_wakedevs, q_next) {
660 		printf(" %.4s(S%d)", wentry->q_node->name,
661 		    wentry->q_state);
662 	}
663 	printf("\n");
664 
665 
666 	/*
667 	 * ACPI is enabled now -- attach timer
668 	 */
669 	{
670 		struct acpi_attach_args aaa;
671 
672 		memset(&aaa, 0, sizeof(aaa));
673 		aaa.aaa_name = "acpitimer";
674 		aaa.aaa_iot = sc->sc_iot;
675 		aaa.aaa_memt = sc->sc_memt;
676 #if 0
677 		aaa.aaa_pcit = sc->sc_pcit;
678 		aaa.aaa_smbust = sc->sc_smbust;
679 #endif
680 		config_found(self, &aaa, acpi_print);
681 	}
682 #endif /* SMALL_KERNEL */
683 
684 	/*
685 	 * Attach table-defined devices
686 	 */
687 	SIMPLEQ_FOREACH(entry, &sc->sc_tables, q_next) {
688 		struct acpi_attach_args aaa;
689 
690 		memset(&aaa, 0, sizeof(aaa));
691 		aaa.aaa_iot = sc->sc_iot;
692 		aaa.aaa_memt = sc->sc_memt;
693 	#if 0
694 		aaa.aaa_pcit = sc->sc_pcit;
695 		aaa.aaa_smbust = sc->sc_smbust;
696 	#endif
697 		aaa.aaa_table = entry->q_table;
698 		config_found_sm(self, &aaa, acpi_print, acpi_submatch);
699 	}
700 
701 	acpi_softc = sc;
702 
703 	/* initialize runtime environment */
704 	aml_find_node(&aml_root, "_INI", acpi_inidev, sc);
705 
706 	/* attach pci interrupt routing tables */
707 	aml_find_node(&aml_root, "_PRT", acpi_foundprt, sc);
708 
709 #ifndef SMALL_KERNEL
710 	 /* XXX EC needs to be attached first on some systems */
711 	aml_find_node(&aml_root, "_HID", acpi_foundec, sc);
712 
713 	aml_walknodes(&aml_root, AML_WALK_PRE, acpi_add_device, sc);
714 
715 	/* attach battery, power supply and button devices */
716 	aml_find_node(&aml_root, "_HID", acpi_foundhid, sc);
717 
718 	/* Attach IDE bay */
719 	aml_walknodes(&aml_root, AML_WALK_PRE, acpi_foundide, sc);
720 
721 	/* attach docks */
722 	aml_find_node(&aml_root, "_DCK", acpi_founddock, sc);
723 
724 	/* attach video only if this is not a stinkpad */
725 	if (!acpi_thinkpad_enabled)
726 		aml_find_node(&aml_root, "_DOS", acpi_foundvideo, sc);
727 
728 	/* create list of devices we want to query when APM come in */
729 	SLIST_INIT(&sc->sc_ac);
730 	SLIST_INIT(&sc->sc_bat);
731 	TAILQ_FOREACH(dev, &alldevs, dv_list) {
732 		if (!strcmp(dev->dv_cfdata->cf_driver->cd_name, "acpiac")) {
733 			ac = malloc(sizeof(*ac), M_DEVBUF, M_WAITOK | M_ZERO);
734 			ac->aac_softc = (struct acpiac_softc *)dev;
735 			SLIST_INSERT_HEAD(&sc->sc_ac, ac, aac_link);
736 		} else if (!strcmp(dev->dv_cfdata->cf_driver->cd_name, "acpibat")) {
737 			bat = malloc(sizeof(*bat), M_DEVBUF, M_WAITOK | M_ZERO);
738 			bat->aba_softc = (struct acpibat_softc *)dev;
739 			SLIST_INSERT_HEAD(&sc->sc_bat, bat, aba_link);
740 		}
741 	}
742 
743 	/* Setup threads */
744 	sc->sc_thread = malloc(sizeof(struct acpi_thread), M_DEVBUF, M_WAITOK);
745 	sc->sc_thread->sc = sc;
746 	sc->sc_thread->running = 1;
747 
748 	acpi_attach_machdep(sc);
749 
750 	kthread_create_deferred(acpi_create_thread, sc);
751 #endif /* SMALL_KERNEL */
752 }
753 
754 int
755 acpi_submatch(struct device *parent, void *match, void *aux)
756 {
757 	struct acpi_attach_args *aaa = (struct acpi_attach_args *)aux;
758 	struct cfdata *cf = match;
759 
760 	if (aaa->aaa_table == NULL)
761 		return (0);
762 	return ((*cf->cf_attach->ca_match)(parent, match, aux));
763 }
764 
765 int
766 acpi_print(void *aux, const char *pnp)
767 {
768 	struct acpi_attach_args *aa = aux;
769 
770 	if (pnp) {
771 		if (aa->aaa_name)
772 			printf("%s at %s", aa->aaa_name, pnp);
773 		else
774 			return (QUIET);
775 	}
776 
777 	return (UNCONF);
778 }
779 
780 struct acpi_q *
781 acpi_maptable(paddr_t addr, const char *sig, const char *oem, const char *tbl)
782 {
783 	static int tblid;
784 	struct acpi_mem_map handle;
785 	struct acpi_table_header *hdr;
786 	struct acpi_q *entry;
787 	size_t len;
788 
789 	/* Check if we can map address */
790 	if (addr == 0)
791 		return NULL;
792 	if (acpi_map(addr, sizeof(*hdr), &handle))
793 		return NULL;
794 	hdr = (struct acpi_table_header *)handle.va;
795 	len = hdr->length;
796 	acpi_unmap(&handle);
797 
798 	/* Validate length/checksum */
799 	if (acpi_map(addr, len, &handle))
800 		return NULL;
801 	hdr = (struct acpi_table_header *)handle.va;
802 	if (acpi_checksum(hdr, len)) {
803 		acpi_unmap(&handle);
804 		return NULL;
805 	}
806 	if ((sig && memcmp(sig, hdr->signature, 4)) ||
807 	    (oem && memcmp(oem, hdr->oemid, 6)) ||
808 	    (tbl && memcmp(tbl, hdr->oemtableid, 8))) {
809 		acpi_unmap(&handle);
810 		return NULL;
811 	}
812 
813 	/* Allocate copy */
814 	entry = malloc(len + sizeof(*entry), M_DEVBUF, M_NOWAIT);
815 	if (entry != NULL) {
816 		memcpy(entry->q_data, handle.va, len);
817 		entry->q_table = entry->q_data;
818 		entry->q_id = ++tblid;
819 	}
820 	acpi_unmap(&handle);
821 	return entry;
822 }
823 
824 int
825 acpi_loadtables(struct acpi_softc *sc, struct acpi_rsdp *rsdp)
826 {
827 	struct acpi_q *entry, *sdt;
828 	int i, ntables;
829 	size_t len;
830 
831 	if (rsdp->rsdp_revision == 2 && rsdp->rsdp_xsdt) {
832 		struct acpi_xsdt *xsdt;
833 
834 		sdt = acpi_maptable(rsdp->rsdp_xsdt, NULL, NULL, NULL);
835 		if (sdt == NULL) {
836 			printf("couldn't map rsdt\n");
837 			return (ENOMEM);
838 		}
839 
840 		xsdt = (struct acpi_xsdt *)sdt->q_data;
841 		len  = xsdt->hdr.length;
842 		ntables = (len - sizeof(struct acpi_table_header)) /
843 		    sizeof(xsdt->table_offsets[0]);
844 
845 		for (i = 0; i < ntables; i++) {
846 			entry = acpi_maptable(xsdt->table_offsets[i], NULL, NULL,
847 			    NULL);
848 			if (entry != NULL)
849 				SIMPLEQ_INSERT_TAIL(&sc->sc_tables, entry,
850 				    q_next);
851 		}
852 		free(sdt, M_DEVBUF);
853 	} else {
854 		struct acpi_rsdt *rsdt;
855 
856 		sdt = acpi_maptable(rsdp->rsdp_rsdt, NULL, NULL, NULL);
857 		if (sdt == NULL) {
858 			printf("couldn't map rsdt\n");
859 			return (ENOMEM);
860 		}
861 
862 		rsdt = (struct acpi_rsdt *)sdt->q_data;
863 		len  = rsdt->hdr.length;
864 		ntables = (len - sizeof(struct acpi_table_header)) /
865 		    sizeof(rsdt->table_offsets[0]);
866 
867 		for (i = 0; i < ntables; i++) {
868 			entry = acpi_maptable(rsdt->table_offsets[i], NULL, NULL,
869 			    NULL);
870 			if (entry != NULL)
871 				SIMPLEQ_INSERT_TAIL(&sc->sc_tables, entry,
872 				    q_next);
873 		}
874 		free(sdt, M_DEVBUF);
875 	}
876 
877 	return (0);
878 }
879 
880 int
881 acpiopen(dev_t dev, int flag, int mode, struct proc *p)
882 {
883 	int error = 0;
884 #ifndef SMALL_KERNEL
885 	struct acpi_softc *sc;
886 
887 	if (!acpi_cd.cd_ndevs || APMUNIT(dev) != 0 ||
888 	    !(sc = acpi_cd.cd_devs[APMUNIT(dev)]))
889 		return (ENXIO);
890 
891 	switch (APMDEV(dev)) {
892 	case APMDEV_CTL:
893 		if (!(flag & FWRITE)) {
894 			error = EINVAL;
895 			break;
896 		}
897 		break;
898 	case APMDEV_NORMAL:
899 		if (!(flag & FREAD) || (flag & FWRITE)) {
900 			error = EINVAL;
901 			break;
902 		}
903 		break;
904 	default:
905 		error = ENXIO;
906 		break;
907 	}
908 #else
909 	error = ENXIO;
910 #endif
911 	return (error);
912 }
913 
914 int
915 acpiclose(dev_t dev, int flag, int mode, struct proc *p)
916 {
917 	int error = 0;
918 #ifndef SMALL_KERNEL
919 	struct acpi_softc *sc;
920 
921 	if (!acpi_cd.cd_ndevs || APMUNIT(dev) != 0 ||
922 	    !(sc = acpi_cd.cd_devs[APMUNIT(dev)]))
923 		return (ENXIO);
924 
925 	switch (APMDEV(dev)) {
926 	case APMDEV_CTL:
927 	case APMDEV_NORMAL:
928 		break;
929 	default:
930 		error = ENXIO;
931 		break;
932 	}
933 #else
934 	error = ENXIO;
935 #endif
936 	return (error);
937 }
938 
939 int
940 acpiioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
941 {
942 	int error = 0;
943 #ifndef SMALL_KERNEL
944 	struct acpi_softc *sc;
945 	struct acpi_ac *ac;
946 	struct acpi_bat *bat;
947 	struct apm_power_info *pi = (struct apm_power_info *)data;
948 	int bats;
949 	unsigned int remaining, rem, minutes, rate;
950 
951 	if (!acpi_cd.cd_ndevs || APMUNIT(dev) != 0 ||
952 	    !(sc = acpi_cd.cd_devs[APMUNIT(dev)]))
953 		return (ENXIO);
954 
955 	ACPI_LOCK(sc);
956 	/* fake APM */
957 	switch (cmd) {
958 #ifdef ACPI_SLEEP_ENABLED
959 	case APM_IOC_STANDBY_REQ:
960 	case APM_IOC_SUSPEND_REQ:
961 	case APM_IOC_SUSPEND:
962 	case APM_IOC_STANDBY:
963 		workq_add_task(NULL, 0, (workq_fn)acpi_sleep_state,
964 		    acpi_softc, (void *)ACPI_STATE_S3);
965 		break;
966 #endif /* ACPI_SLEEP_ENABLED */
967 	case APM_IOC_GETPOWER:
968 		/* A/C */
969 		pi->ac_state = APM_AC_UNKNOWN;
970 		SLIST_FOREACH(ac, &sc->sc_ac, aac_link) {
971 			if (ac->aac_softc->sc_ac_stat == PSR_ONLINE)
972 				pi->ac_state = APM_AC_ON;
973 			else if (ac->aac_softc->sc_ac_stat == PSR_OFFLINE)
974 				if (pi->ac_state == APM_AC_UNKNOWN)
975 					pi->ac_state = APM_AC_OFF;
976 		}
977 
978 		/* battery */
979 		pi->battery_state = APM_BATT_UNKNOWN;
980 		pi->battery_life = 0;
981 		pi->minutes_left = 0;
982 		bats = 0;
983 		remaining = rem = 0;
984 		minutes = 0;
985 		rate = 0;
986 		SLIST_FOREACH(bat, &sc->sc_bat, aba_link) {
987 			if (bat->aba_softc->sc_bat_present == 0)
988 				continue;
989 
990 			if (bat->aba_softc->sc_bif.bif_last_capacity == 0)
991 				continue;
992 
993 			bats++;
994 			rem = (bat->aba_softc->sc_bst.bst_capacity * 100) /
995 			    bat->aba_softc->sc_bif.bif_last_capacity;
996 			if (rem > 100)
997 				rem = 100;
998 			remaining += rem;
999 
1000 			if (bat->aba_softc->sc_bst.bst_rate == BST_UNKNOWN)
1001 				continue;
1002 			else if (bat->aba_softc->sc_bst.bst_rate > 1)
1003 				rate = bat->aba_softc->sc_bst.bst_rate;
1004 
1005 			minutes += bat->aba_softc->sc_bst.bst_capacity;
1006 		}
1007 
1008 		if (bats == 0) {
1009 			pi->battery_state = APM_BATTERY_ABSENT;
1010 			pi->battery_life = 0;
1011 			pi->minutes_left = (unsigned int)-1;
1012 			break;
1013 		}
1014 
1015 		if (pi->ac_state == APM_AC_ON || rate == 0)
1016 			pi->minutes_left = (unsigned int)-1;
1017 		else
1018 			pi->minutes_left = 100 * minutes / rate;
1019 
1020 		/* running on battery */
1021 		pi->battery_life = remaining / bats;
1022 		if (pi->battery_life > 50)
1023 			pi->battery_state = APM_BATT_HIGH;
1024 		else if (pi->battery_life > 25)
1025 			pi->battery_state = APM_BATT_LOW;
1026 		else
1027 			pi->battery_state = APM_BATT_CRITICAL;
1028 
1029 		break;
1030 
1031 	default:
1032 		error = ENOTTY;
1033 	}
1034 
1035 	ACPI_UNLOCK(sc);
1036 #else
1037 	error = ENXIO;
1038 #endif /* SMALL_KERNEL */
1039 	return (error);
1040 }
1041 
1042 void
1043 acpi_filtdetach(struct knote *kn)
1044 {
1045 #ifndef SMALL_KERNEL
1046 	struct acpi_softc *sc = kn->kn_hook;
1047 
1048 	ACPI_LOCK(sc);
1049 	SLIST_REMOVE(sc->sc_note, kn, knote, kn_selnext);
1050 	ACPI_UNLOCK(sc);
1051 #endif
1052 }
1053 
1054 int
1055 acpi_filtread(struct knote *kn, long hint)
1056 {
1057 #ifndef SMALL_KERNEL
1058 	/* XXX weird kqueue_scan() semantics */
1059 	if (hint & !kn->kn_data)
1060 		kn->kn_data = hint;
1061 #endif
1062 	return (1);
1063 }
1064 
1065 int
1066 acpikqfilter(dev_t dev, struct knote *kn)
1067 {
1068 #ifndef SMALL_KERNEL
1069 	struct acpi_softc *sc;
1070 
1071 	if (!acpi_cd.cd_ndevs || APMUNIT(dev) != 0 ||
1072 	    !(sc = acpi_cd.cd_devs[APMUNIT(dev)]))
1073 		return (ENXIO);
1074 
1075 	switch (kn->kn_filter) {
1076 	case EVFILT_READ:
1077 		kn->kn_fop = &acpiread_filtops;
1078 		break;
1079 	default:
1080 		return (1);
1081 	}
1082 
1083 	kn->kn_hook = sc;
1084 
1085 	ACPI_LOCK(sc);
1086 	SLIST_INSERT_HEAD(sc->sc_note, kn, kn_selnext);
1087 	ACPI_UNLOCK(sc);
1088 
1089 	return (0);
1090 #else
1091 	return (1);
1092 #endif
1093 }
1094 
1095 /* Read from power management register */
1096 int
1097 acpi_read_pmreg(struct acpi_softc *sc, int reg, int offset)
1098 {
1099 	bus_space_handle_t ioh;
1100 	bus_size_t size, __size;
1101 	int regval;
1102 
1103 	__size = 0;
1104 	/* Special cases: 1A/1B blocks can be OR'ed together */
1105 	switch (reg) {
1106 	case ACPIREG_PM1_EN:
1107 		return (acpi_read_pmreg(sc, ACPIREG_PM1A_EN, offset) |
1108 		    acpi_read_pmreg(sc, ACPIREG_PM1B_EN, offset));
1109 	case ACPIREG_PM1_STS:
1110 		return (acpi_read_pmreg(sc, ACPIREG_PM1A_STS, offset) |
1111 		    acpi_read_pmreg(sc, ACPIREG_PM1B_STS, offset));
1112 	case ACPIREG_PM1_CNT:
1113 		return (acpi_read_pmreg(sc, ACPIREG_PM1A_CNT, offset) |
1114 		    acpi_read_pmreg(sc, ACPIREG_PM1B_CNT, offset));
1115 	case ACPIREG_GPE_STS:
1116 		__size = 1;
1117 		dnprintf(50, "read GPE_STS  offset: %.2x %.2x %.2x\n", offset,
1118 		    sc->sc_fadt->gpe0_blk_len>>1, sc->sc_fadt->gpe1_blk_len>>1);
1119 		if (offset < (sc->sc_fadt->gpe0_blk_len >> 1)) {
1120 			reg = ACPIREG_GPE0_STS;
1121 		}
1122 		break;
1123 	case ACPIREG_GPE_EN:
1124 		__size = 1;
1125 		dnprintf(50, "read GPE_EN   offset: %.2x %.2x %.2x\n",
1126 		    offset, sc->sc_fadt->gpe0_blk_len>>1,
1127 		    sc->sc_fadt->gpe1_blk_len>>1);
1128 		if (offset < (sc->sc_fadt->gpe0_blk_len >> 1)) {
1129 			reg = ACPIREG_GPE0_EN;
1130 		}
1131 		break;
1132 	}
1133 
1134 	if (reg >= ACPIREG_MAXREG || sc->sc_pmregs[reg].size == 0)
1135 		return (0);
1136 
1137 	regval = 0;
1138 	ioh = sc->sc_pmregs[reg].ioh;
1139 	size = sc->sc_pmregs[reg].size;
1140 	if (__size)
1141 		size = __size;
1142 	if (size > 4)
1143 		size = 4;
1144 
1145 	switch (size) {
1146 	case 1:
1147 		regval = bus_space_read_1(sc->sc_iot, ioh, offset);
1148 		break;
1149 	case 2:
1150 		regval = bus_space_read_2(sc->sc_iot, ioh, offset);
1151 		break;
1152 	case 4:
1153 		regval = bus_space_read_4(sc->sc_iot, ioh, offset);
1154 		break;
1155 	}
1156 
1157 	dnprintf(30, "acpi_readpm: %s = %.4x:%.4x %x\n",
1158 	    sc->sc_pmregs[reg].name,
1159 	    sc->sc_pmregs[reg].addr, offset, regval);
1160 	return (regval);
1161 }
1162 
1163 /* Write to power management register */
1164 void
1165 acpi_write_pmreg(struct acpi_softc *sc, int reg, int offset, int regval)
1166 {
1167 	bus_space_handle_t ioh;
1168 	bus_size_t size, __size;
1169 
1170 	__size = 0;
1171 	/* Special cases: 1A/1B blocks can be written with same value */
1172 	switch (reg) {
1173 	case ACPIREG_PM1_EN:
1174 		acpi_write_pmreg(sc, ACPIREG_PM1A_EN, offset, regval);
1175 		acpi_write_pmreg(sc, ACPIREG_PM1B_EN, offset, regval);
1176 		break;
1177 	case ACPIREG_PM1_STS:
1178 		acpi_write_pmreg(sc, ACPIREG_PM1A_STS, offset, regval);
1179 		acpi_write_pmreg(sc, ACPIREG_PM1B_STS, offset, regval);
1180 		break;
1181 	case ACPIREG_PM1_CNT:
1182 		acpi_write_pmreg(sc, ACPIREG_PM1A_CNT, offset, regval);
1183 		acpi_write_pmreg(sc, ACPIREG_PM1B_CNT, offset, regval);
1184 		break;
1185 	case ACPIREG_GPE_STS:
1186 		__size = 1;
1187 		dnprintf(50, "write GPE_STS offset: %.2x %.2x %.2x %.2x\n",
1188 		    offset, sc->sc_fadt->gpe0_blk_len>>1,
1189 		    sc->sc_fadt->gpe1_blk_len>>1, regval);
1190 		if (offset < (sc->sc_fadt->gpe0_blk_len >> 1)) {
1191 			reg = ACPIREG_GPE0_STS;
1192 		}
1193 		break;
1194 	case ACPIREG_GPE_EN:
1195 		__size = 1;
1196 		dnprintf(50, "write GPE_EN  offset: %.2x %.2x %.2x %.2x\n",
1197 		    offset, sc->sc_fadt->gpe0_blk_len>>1,
1198 		    sc->sc_fadt->gpe1_blk_len>>1, regval);
1199 		if (offset < (sc->sc_fadt->gpe0_blk_len >> 1)) {
1200 			reg = ACPIREG_GPE0_EN;
1201 		}
1202 		break;
1203 	}
1204 
1205 	/* All special case return here */
1206 	if (reg >= ACPIREG_MAXREG)
1207 		return;
1208 
1209 	ioh = sc->sc_pmregs[reg].ioh;
1210 	size = sc->sc_pmregs[reg].size;
1211 	if (__size)
1212 		size = __size;
1213 	if (size > 4)
1214 		size = 4;
1215 	switch (size) {
1216 	case 1:
1217 		bus_space_write_1(sc->sc_iot, ioh, offset, regval);
1218 		break;
1219 	case 2:
1220 		bus_space_write_2(sc->sc_iot, ioh, offset, regval);
1221 		break;
1222 	case 4:
1223 		bus_space_write_4(sc->sc_iot, ioh, offset, regval);
1224 		break;
1225 	}
1226 
1227 	dnprintf(30, "acpi_writepm: %s = %.4x:%.4x %x\n",
1228 	    sc->sc_pmregs[reg].name, sc->sc_pmregs[reg].addr, offset, regval);
1229 }
1230 
1231 /* Map Power Management registers */
1232 void
1233 acpi_map_pmregs(struct acpi_softc *sc)
1234 {
1235 	bus_addr_t addr;
1236 	bus_size_t size;
1237 	const char *name;
1238 	int reg;
1239 
1240 	for (reg = 0; reg < ACPIREG_MAXREG; reg++) {
1241 		size = 0;
1242 		switch (reg) {
1243 		case ACPIREG_SMICMD:
1244 			name = "smi";
1245 			size = 1;
1246 			addr = sc->sc_fadt->smi_cmd;
1247 			break;
1248 		case ACPIREG_PM1A_STS:
1249 		case ACPIREG_PM1A_EN:
1250 			name = "pm1a_sts";
1251 			size = sc->sc_fadt->pm1_evt_len >> 1;
1252 			addr = sc->sc_fadt->pm1a_evt_blk;
1253 			if (reg == ACPIREG_PM1A_EN && addr) {
1254 				addr += size;
1255 				name = "pm1a_en";
1256 			}
1257 			break;
1258 		case ACPIREG_PM1A_CNT:
1259 			name = "pm1a_cnt";
1260 			size = sc->sc_fadt->pm1_cnt_len;
1261 			addr = sc->sc_fadt->pm1a_cnt_blk;
1262 			break;
1263 		case ACPIREG_PM1B_STS:
1264 		case ACPIREG_PM1B_EN:
1265 			name = "pm1b_sts";
1266 			size = sc->sc_fadt->pm1_evt_len >> 1;
1267 			addr = sc->sc_fadt->pm1b_evt_blk;
1268 			if (reg == ACPIREG_PM1B_EN && addr) {
1269 				addr += size;
1270 				name = "pm1b_en";
1271 			}
1272 			break;
1273 		case ACPIREG_PM1B_CNT:
1274 			name = "pm1b_cnt";
1275 			size = sc->sc_fadt->pm1_cnt_len;
1276 			addr = sc->sc_fadt->pm1b_cnt_blk;
1277 			break;
1278 		case ACPIREG_PM2_CNT:
1279 			name = "pm2_cnt";
1280 			size = sc->sc_fadt->pm2_cnt_len;
1281 			addr = sc->sc_fadt->pm2_cnt_blk;
1282 			break;
1283 #if 0
1284 		case ACPIREG_PM_TMR:
1285 			/* Allocated in acpitimer */
1286 			name = "pm_tmr";
1287 			size = sc->sc_fadt->pm_tmr_len;
1288 			addr = sc->sc_fadt->pm_tmr_blk;
1289 			break;
1290 #endif
1291 		case ACPIREG_GPE0_STS:
1292 		case ACPIREG_GPE0_EN:
1293 			name = "gpe0_sts";
1294 			size = sc->sc_fadt->gpe0_blk_len >> 1;
1295 			addr = sc->sc_fadt->gpe0_blk;
1296 
1297 			dnprintf(20, "gpe0 block len : %x\n",
1298 			    sc->sc_fadt->gpe0_blk_len >> 1);
1299 			dnprintf(20, "gpe0 block addr: %x\n",
1300 			    sc->sc_fadt->gpe0_blk);
1301 			if (reg == ACPIREG_GPE0_EN && addr) {
1302 				addr += size;
1303 				name = "gpe0_en";
1304 			}
1305 			break;
1306 		case ACPIREG_GPE1_STS:
1307 		case ACPIREG_GPE1_EN:
1308 			name = "gpe1_sts";
1309 			size = sc->sc_fadt->gpe1_blk_len >> 1;
1310 			addr = sc->sc_fadt->gpe1_blk;
1311 
1312 			dnprintf(20, "gpe1 block len : %x\n",
1313 			    sc->sc_fadt->gpe1_blk_len >> 1);
1314 			dnprintf(20, "gpe1 block addr: %x\n",
1315 			    sc->sc_fadt->gpe1_blk);
1316 			if (reg == ACPIREG_GPE1_EN && addr) {
1317 				addr += size;
1318 				name = "gpe1_en";
1319 			}
1320 			break;
1321 		}
1322 		if (size && addr) {
1323 			dnprintf(50, "mapping: %.4x %.4x %s\n",
1324 			    addr, size, name);
1325 
1326 			/* Size and address exist; map register space */
1327 			bus_space_map(sc->sc_iot, addr, size, 0,
1328 			    &sc->sc_pmregs[reg].ioh);
1329 
1330 			sc->sc_pmregs[reg].name = name;
1331 			sc->sc_pmregs[reg].size = size;
1332 			sc->sc_pmregs[reg].addr = addr;
1333 		}
1334 	}
1335 }
1336 
1337 /* move all stuff that doesn't go on the boot media in here */
1338 #ifndef SMALL_KERNEL
1339 void
1340 acpi_reset(void)
1341 {
1342 	struct acpi_fadt	*fadt;
1343 	u_int32_t		 reset_as, reset_len;
1344 	u_int32_t		 value;
1345 
1346 	fadt = acpi_softc->sc_fadt;
1347 
1348 	/*
1349 	 * RESET_REG_SUP is not properly set in some implementations,
1350 	 * but not testing against it breaks more machines than it fixes
1351 	 */
1352 	if (acpi_softc->sc_revision <= 1 ||
1353 	    !(fadt->flags & FADT_RESET_REG_SUP) || fadt->reset_reg.address == 0)
1354 		return;
1355 
1356 	value = fadt->reset_value;
1357 
1358 	reset_as = fadt->reset_reg.register_bit_width / 8;
1359 	if (reset_as == 0)
1360 		reset_as = 1;
1361 
1362 	reset_len = fadt->reset_reg.access_size;
1363 	if (reset_len == 0)
1364 		reset_len = reset_as;
1365 
1366 	acpi_gasio(acpi_softc, ACPI_IOWRITE,
1367 	    fadt->reset_reg.address_space_id,
1368 	    fadt->reset_reg.address, reset_as, reset_len, &value);
1369 
1370 	delay(100000);
1371 }
1372 
1373 int
1374 acpi_interrupt(void *arg)
1375 {
1376 	struct acpi_softc *sc = (struct acpi_softc *)arg;
1377 	u_int32_t processed, sts, en, idx, jdx;
1378 
1379 	processed = 0;
1380 
1381 #if 0
1382 	acpi_add_gpeblock(sc, sc->sc_fadt->gpe0_blk, sc->sc_fadt->gpe0_blk_len>>1, 0);
1383 	acpi_add_gpeblock(sc, sc->sc_fadt->gpe1_blk, sc->sc_fadt->gpe1_blk_len>>1,
1384 	    sc->sc_fadt->gpe1_base);
1385 #endif
1386 
1387 	dnprintf(40, "ACPI Interrupt\n");
1388 	for (idx = 0; idx < sc->sc_lastgpe; idx += 8) {
1389 		sts = acpi_read_pmreg(sc, ACPIREG_GPE_STS, idx>>3);
1390 		en  = acpi_read_pmreg(sc, ACPIREG_GPE_EN,  idx>>3);
1391 		if (en & sts) {
1392 			dnprintf(10, "GPE block: %.2x %.2x %.2x\n", idx, sts,
1393 			    en);
1394 			acpi_write_pmreg(sc, ACPIREG_GPE_EN, idx>>3, en & ~sts);
1395 			for (jdx = 0; jdx < 8; jdx++) {
1396 				if (en & sts & (1L << jdx)) {
1397 					/* Signal this GPE */
1398 					sc->gpe_table[idx+jdx].active = 1;
1399 					processed = 1;
1400 				}
1401 			}
1402 		}
1403 	}
1404 
1405 	sts = acpi_read_pmreg(sc, ACPIREG_PM1_STS, 0);
1406 	en  = acpi_read_pmreg(sc, ACPIREG_PM1_EN, 0);
1407 	if (sts & en) {
1408 		dnprintf(10,"GEN interrupt: %.4x\n", sts & en);
1409 		acpi_write_pmreg(sc, ACPIREG_PM1_EN, 0, en & ~sts);
1410 		acpi_write_pmreg(sc, ACPIREG_PM1_STS, 0, en);
1411 		acpi_write_pmreg(sc, ACPIREG_PM1_EN, 0, en);
1412 		if (sts & ACPI_PM1_PWRBTN_STS)
1413 			sc->sc_powerbtn = 1;
1414 		if (sts & ACPI_PM1_SLPBTN_STS)
1415 			sc->sc_sleepbtn = 1;
1416 		processed = 1;
1417 	}
1418 
1419 	if (processed) {
1420 		sc->sc_wakeup = 0;
1421 		wakeup(sc);
1422 	}
1423 
1424 	return (processed);
1425 }
1426 
1427 int
1428 acpi_add_device(struct aml_node *node, void *arg)
1429 {
1430 	static int nacpicpus = 0;
1431 	struct device *self = arg;
1432 	struct acpi_softc *sc = arg;
1433 	struct acpi_attach_args aaa;
1434 #ifdef MULTIPROCESSOR
1435 	struct aml_value res;
1436 	int proc_id = -1;
1437 #endif
1438 
1439 	memset(&aaa, 0, sizeof(aaa));
1440 	aaa.aaa_node = node;
1441 	aaa.aaa_iot = sc->sc_iot;
1442 	aaa.aaa_memt = sc->sc_memt;
1443 	if (node == NULL || node->value == NULL)
1444 		return 0;
1445 
1446 	switch (node->value->type) {
1447 	case AML_OBJTYPE_PROCESSOR:
1448 		if (nacpicpus >= ncpus)
1449 			return 0;
1450 #ifdef MULTIPROCESSOR
1451 		if (aml_evalnode(sc, aaa.aaa_node, 0, NULL, &res) == 0) {
1452 			if (res.type == AML_OBJTYPE_PROCESSOR)
1453 				proc_id = res.v_processor.proc_id;
1454 			aml_freevalue(&res);
1455 		}
1456 		if (proc_id < -1 || proc_id >= LAPIC_MAP_SIZE ||
1457 		    (acpi_lapic_flags[proc_id] & ACPI_PROC_ENABLE) == 0)
1458 			return 0;
1459 #endif
1460 		nacpicpus++;
1461 
1462 		aaa.aaa_name = "acpicpu";
1463 		break;
1464 	case AML_OBJTYPE_THERMZONE:
1465 		aaa.aaa_name = "acpitz";
1466 		break;
1467 	case AML_OBJTYPE_POWERRSRC:
1468 		aaa.aaa_name = "acpipwrres";
1469 		break;
1470 	default:
1471 		return 0;
1472 	}
1473 	config_found(self, &aaa, acpi_print);
1474 	return 0;
1475 }
1476 
1477 void
1478 acpi_enable_onegpe(struct acpi_softc *sc, int gpe, int enable)
1479 {
1480 	uint8_t mask = (1L << (gpe & 7));
1481 	uint8_t en;
1482 
1483 	/* Read enabled register */
1484 	en = acpi_read_pmreg(sc, ACPIREG_GPE_EN, gpe>>3);
1485 	dnprintf(50, "%sabling GPE %.2x (current: %sabled) %.2x\n",
1486 	    enable ? "en" : "dis", gpe, (en & mask) ? "en" : "dis", en);
1487 	if (enable)
1488 		en |= mask;
1489 	else
1490 		en &= ~mask;
1491 	acpi_write_pmreg(sc, ACPIREG_GPE_EN, gpe>>3, en);
1492 }
1493 
1494 int
1495 acpi_set_gpehandler(struct acpi_softc *sc, int gpe, int (*handler)
1496     (struct acpi_softc *, int, void *), void *arg, const char *label)
1497 {
1498 	struct gpe_block *ptbl;
1499 
1500 	ptbl = acpi_find_gpe(sc, gpe);
1501 	if (ptbl == NULL || handler == NULL)
1502 		return -EINVAL;
1503 	if (ptbl->handler != NULL) {
1504 		dnprintf(10, "error: GPE %.2x already enabled\n", gpe);
1505 		return -EBUSY;
1506 	}
1507 	dnprintf(50, "Adding GPE handler %.2x (%s)\n", gpe, label);
1508 	ptbl->handler = handler;
1509 	ptbl->arg = arg;
1510 
1511 	return (0);
1512 }
1513 
1514 int
1515 acpi_gpe_level(struct acpi_softc *sc, int gpe, void *arg)
1516 {
1517 	struct aml_node *node = arg;
1518 	uint8_t mask;
1519 
1520 	dnprintf(10, "handling Level-sensitive GPE %.2x\n", gpe);
1521 	mask = (1L << (gpe & 7));
1522 
1523 	aml_evalnode(sc, node, 0, NULL, NULL);
1524 	acpi_write_pmreg(sc, ACPIREG_GPE_STS, gpe>>3, mask);
1525 	acpi_write_pmreg(sc, ACPIREG_GPE_EN,  gpe>>3, mask);
1526 
1527 	return (0);
1528 }
1529 
1530 int
1531 acpi_gpe_edge(struct acpi_softc *sc, int gpe, void *arg)
1532 {
1533 
1534 	struct aml_node *node = arg;
1535 	uint8_t mask;
1536 
1537 	dnprintf(10, "handling Edge-sensitive GPE %.2x\n", gpe);
1538 	mask = (1L << (gpe & 7));
1539 
1540 	aml_evalnode(sc, node, 0, NULL, NULL);
1541 	acpi_write_pmreg(sc, ACPIREG_GPE_STS, gpe>>3, mask);
1542 	acpi_write_pmreg(sc, ACPIREG_GPE_EN,  gpe>>3, mask);
1543 
1544 	return (0);
1545 }
1546 
1547 /* Discover Devices that can wakeup the system
1548  * _PRW returns a package
1549  *  pkg[0] = integer (FADT gpe bit) or package (gpe block,gpe bit)
1550  *  pkg[1] = lowest sleep state
1551  *  pkg[2+] = power resource devices (optional)
1552  *
1553  * To enable wakeup devices:
1554  *    Evaluate _ON method in each power resource device
1555  *    Evaluate _PSW method
1556  */
1557 int
1558 acpi_foundprw(struct aml_node *node, void *arg)
1559 {
1560 	struct acpi_softc *sc = arg;
1561 	struct acpi_wakeq *wq;
1562 
1563 	wq = malloc(sizeof(struct acpi_wakeq), M_DEVBUF, M_NOWAIT | M_ZERO);
1564 	if (wq == NULL) {
1565 		return 0;
1566 	}
1567 
1568 	wq->q_wakepkg = malloc(sizeof(struct aml_value), M_DEVBUF,
1569 	    M_NOWAIT | M_ZERO);
1570 	if (wq->q_wakepkg == NULL) {
1571 		free(wq, M_DEVBUF);
1572 		return 0;
1573 	}
1574 	dnprintf(10, "Found _PRW (%s)\n", node->parent->name);
1575 	aml_evalnode(sc, node, 0, NULL, wq->q_wakepkg);
1576 	wq->q_node = node->parent;
1577 	wq->q_gpe = -1;
1578 
1579 	/* Get GPE of wakeup device, and lowest sleep level */
1580 	if (wq->q_wakepkg->type == AML_OBJTYPE_PACKAGE && wq->q_wakepkg->length >= 2) {
1581 	  if (wq->q_wakepkg->v_package[0]->type == AML_OBJTYPE_INTEGER) {
1582 	    wq->q_gpe = wq->q_wakepkg->v_package[0]->v_integer;
1583 	  }
1584 	  if (wq->q_wakepkg->v_package[1]->type == AML_OBJTYPE_INTEGER) {
1585 	    wq->q_state = wq->q_wakepkg->v_package[1]->v_integer;
1586 	  }
1587 	}
1588 	SIMPLEQ_INSERT_TAIL(&sc->sc_wakedevs, wq, q_next);
1589 	return 0;
1590 }
1591 
1592 struct gpe_block *
1593 acpi_find_gpe(struct acpi_softc *sc, int gpe)
1594 {
1595 #if 1
1596 	if (gpe >= sc->sc_lastgpe)
1597 		return NULL;
1598 	return &sc->gpe_table[gpe];
1599 #else
1600 	SIMPLEQ_FOREACH(pgpe, &sc->sc_gpes, gpe_link) {
1601 		if (gpe >= pgpe->start && gpe <= (pgpe->start+7))
1602 			return &pgpe->table[gpe & 7];
1603 	}
1604 	return NULL;
1605 #endif
1606 }
1607 
1608 #if 0
1609 /* New GPE handling code: Create GPE block */
1610 void
1611 acpi_init_gpeblock(struct acpi_softc *sc, int reg, int len, int base)
1612 {
1613 	int i, j;
1614 
1615 	if (!reg || !len)
1616 		return;
1617 	for (i=0; i<len; i++) {
1618 		pgpe = acpi_os_malloc(sizeof(gpeblock));
1619 		if (pgpe == NULL)
1620 			return;
1621 
1622 		/* Allocate GPE Handler Block */
1623 		pgpe->start = base + i;
1624 		acpi_bus_space_map(sc->sc_iot, reg+i,     1, 0, &pgpe->sts_ioh);
1625 		acpi_bus_space_map(sc->sc_iot, reg+i+len, 1, 0, &pgpe->en_ioh);
1626 		SIMPLEQ_INSERT_TAIL(&sc->sc_gpes, gpe, gpe_link);
1627 
1628 		/* Clear pending GPEs */
1629 		bus_space_write_1(sc->sc_iot, pgpe->sts_ioh, 0, 0xFF);
1630 		bus_space_write_1(sc->sc_iot, pgpe->en_ioh,  0, 0x00);
1631 	}
1632 
1633 	/* Search for GPE handlers */
1634 	for (i=0; i<len*8; i++) {
1635 		char gpestr[32];
1636 		struct aml_node *h;
1637 
1638 		snprintf(gpestr, sizeof(gpestr), "\\_GPE._L%.2X", base+i);
1639 		h = aml_searchnode(&aml_root, gpestr);
1640 		if (acpi_set_gpehandler(sc, base+i, acpi_gpe_level, h, "level") != 0) {
1641 			snprintf(gpestr, sizeof(gpestr), "\\_GPE._E%.2X", base+i);
1642 			h = aml_searchnode(&aml_root, gpestr);
1643 			acpi_set_gpehandler(sc, base+i, acpi_gpe_edge, h, "edge");
1644 		}
1645 	}
1646 }
1647 
1648 /* Process GPE interrupts */
1649 int
1650 acpi_handle_gpes(struct acpi_softc *sc)
1651 {
1652 	uint8_t en, sts;
1653 	int processed, i;
1654 
1655 	processed=0;
1656 	SIMPLEQ_FOREACH(pgpe, &sc->sc_gpes, gpe_link) {
1657 		sts = bus_space_read_1(sc->sc_iot, pgpe->sts_ioh, 0);
1658 		en = bus_space_read_1(sc->sc_iot, pgpe->en_ioh, 0);
1659 		for (i=0; i<8; i++) {
1660 			if (en & sts & (1L << i)) {
1661 				pgpe->table[i].active = 1;
1662 				processed=1;
1663 			}
1664 		}
1665 	}
1666 	return processed;
1667 }
1668 #endif
1669 
1670 #if 0
1671 void
1672 acpi_add_gpeblock(struct acpi_softc *sc, int reg, int len, int gpe)
1673 {
1674 	int idx, jdx;
1675 	u_int8_t en, sts;
1676 
1677 	if (!reg || !len)
1678 		return;
1679 	for (idx=0; idx<len; idx++) {
1680 		sts = inb(reg + idx);
1681 		en  = inb(reg + len + idx);
1682 		printf("-- gpe %.2x-%.2x : en:%.2x sts:%.2x  %.2x\n",
1683 		    gpe+idx*8, gpe+idx*8+7, en, sts, en&sts);
1684 		for (jdx=0; jdx<8; jdx++) {
1685 			char gpestr[32];
1686 			struct aml_node *l, *e;
1687 
1688 			if (en & sts & (1L << jdx)) {
1689 				snprintf(gpestr,sizeof(gpestr), "\\_GPE._L%.2X", gpe+idx*8+jdx);
1690 				l = aml_searchname(&aml_root, gpestr);
1691 				snprintf(gpestr,sizeof(gpestr), "\\_GPE._E%.2X", gpe+idx*8+jdx);
1692 				e = aml_searchname(&aml_root, gpestr);
1693 				printf("  GPE %.2x active L%x E%x\n", gpe+idx*8+jdx, l, e);
1694 			}
1695 		}
1696 	}
1697 }
1698 #endif
1699 
1700 void
1701 acpi_init_gpes(struct acpi_softc *sc)
1702 {
1703 	struct aml_node *gpe;
1704 	char name[12];
1705 	int  idx, ngpe;
1706 
1707 #if 0
1708 	acpi_add_gpeblock(sc, sc->sc_fadt->gpe0_blk, sc->sc_fadt->gpe0_blk_len>>1, 0);
1709 	acpi_add_gpeblock(sc, sc->sc_fadt->gpe1_blk, sc->sc_fadt->gpe1_blk_len>>1,
1710 	    sc->sc_fadt->gpe1_base);
1711 #endif
1712 
1713 	sc->sc_lastgpe = sc->sc_fadt->gpe0_blk_len << 2;
1714 	if (sc->sc_fadt->gpe1_blk_len) {
1715 	}
1716 	dnprintf(50, "Last GPE: %.2x\n", sc->sc_lastgpe);
1717 
1718 	/* Allocate GPE table */
1719 	sc->gpe_table = malloc(sc->sc_lastgpe * sizeof(struct gpe_block),
1720 	    M_DEVBUF, M_WAITOK | M_ZERO);
1721 
1722 	ngpe = 0;
1723 
1724 	/* Clear GPE status */
1725 	for (idx = 0; idx < sc->sc_lastgpe; idx += 8) {
1726 		acpi_write_pmreg(sc, ACPIREG_GPE_EN,  idx>>3, 0);
1727 		acpi_write_pmreg(sc, ACPIREG_GPE_STS, idx>>3, -1);
1728 	}
1729 	for (idx = 0; idx < sc->sc_lastgpe; idx++) {
1730 		/* Search Level-sensitive GPES */
1731 		snprintf(name, sizeof(name), "\\_GPE._L%.2X", idx);
1732 		gpe = aml_searchname(&aml_root, name);
1733 		if (gpe != NULL)
1734 			acpi_set_gpehandler(sc, idx, acpi_gpe_level, gpe,
1735 			    "level");
1736 		if (gpe == NULL) {
1737 			/* Search Edge-sensitive GPES */
1738 			snprintf(name, sizeof(name), "\\_GPE._E%.2X", idx);
1739 			gpe = aml_searchname(&aml_root, name);
1740 			if (gpe != NULL)
1741 				acpi_set_gpehandler(sc, idx, acpi_gpe_edge, gpe,
1742 				    "edge");
1743 		}
1744 	}
1745 	aml_find_node(&aml_root, "_PRW", acpi_foundprw, sc);
1746 	sc->sc_maxgpe = ngpe;
1747 }
1748 
1749 void
1750 acpi_init_states(struct acpi_softc *sc)
1751 {
1752 	struct aml_value res;
1753 	char name[8];
1754 	int i;
1755 
1756 	for (i = ACPI_STATE_S0; i <= ACPI_STATE_S5; i++) {
1757 		snprintf(name, sizeof(name), "_S%d_", i);
1758 		sc->sc_sleeptype[i].slp_typa = -1;
1759 		sc->sc_sleeptype[i].slp_typb = -1;
1760 		if (aml_evalname(sc, &aml_root, name, 0, NULL, &res) == 0) {
1761 			if (res.type == AML_OBJTYPE_PACKAGE) {
1762 				sc->sc_sleeptype[i].slp_typa = aml_val2int(res.v_package[0]);
1763 				sc->sc_sleeptype[i].slp_typb = aml_val2int(res.v_package[1]);
1764 			}
1765 			aml_freevalue(&res);
1766 		}
1767 	}
1768 }
1769 
1770 void
1771 acpi_init_pm(struct acpi_softc *sc)
1772 {
1773 	sc->sc_tts = aml_searchname(&aml_root, "_TTS");
1774 	sc->sc_pts = aml_searchname(&aml_root, "_PTS");
1775 	sc->sc_wak = aml_searchname(&aml_root, "_WAK");
1776 	sc->sc_bfs = aml_searchname(&aml_root, "_BFS");
1777 	sc->sc_gts = aml_searchname(&aml_root, "_GTS");
1778 }
1779 
1780 #ifndef SMALL_KERNEL
1781 void
1782 acpi_sleep_walk(struct acpi_softc *sc, int state)
1783 {
1784 	struct acpi_wakeq *wentry;
1785 	int idx;
1786 
1787 	/* Clear GPE status */
1788 	for (idx = 0; idx < sc->sc_lastgpe; idx += 8) {
1789 		acpi_write_pmreg(sc, ACPIREG_GPE_EN,  idx>>3, 0);
1790 		acpi_write_pmreg(sc, ACPIREG_GPE_STS, idx>>3, -1);
1791 	}
1792 
1793 	SIMPLEQ_FOREACH(wentry, &sc->sc_wakedevs, q_next) {
1794 		dnprintf(10, "%.4s(S%d) gpe %.2x\n", wentry->q_node->name,
1795 		    wentry->q_state,
1796 		    wentry->q_gpe);
1797 
1798 	if (state <= wentry->q_state)
1799 		acpi_enable_onegpe(sc, wentry->q_gpe, 1);
1800 	}
1801 }
1802 #endif /* ! SMALL_KERNEL */
1803 
1804 int
1805 acpi_sleep_state(struct acpi_softc *sc, int state)
1806 {
1807 	int ret;
1808 
1809 	switch (state) {
1810 	case ACPI_STATE_S0:
1811 		return (0);
1812 	case ACPI_STATE_S4:
1813 		return (EOPNOTSUPP);
1814 	case ACPI_STATE_S5:
1815 		break;
1816 	case ACPI_STATE_S1:
1817 	case ACPI_STATE_S2:
1818 	case ACPI_STATE_S3:
1819 		if (sc->sc_sleeptype[state].slp_typa == -1 ||
1820 		    sc->sc_sleeptype[state].slp_typb == -1)
1821 			return (EOPNOTSUPP);
1822 	}
1823 
1824 	acpi_sleep_walk(sc, state);
1825 
1826 	if ((ret = acpi_prepare_sleep_state(sc, state)) != 0)
1827 		return (ret);
1828 
1829 	if (state != ACPI_STATE_S1)
1830 		ret = acpi_sleep_machdep(sc, state);
1831 	else
1832 		ret = acpi_enter_sleep_state(sc, state);
1833 
1834 #ifndef SMALL_KERNEL
1835 	acpi_resume(sc);
1836 #endif /* ! SMALL_KERNEL */
1837 	return (ret);
1838 }
1839 
1840 int
1841 acpi_enter_sleep_state(struct acpi_softc *sc, int state)
1842 {
1843 	uint16_t rega, regb;
1844 	int retries;
1845 
1846 	/* Clear WAK_STS bit */
1847 	acpi_write_pmreg(sc, ACPIREG_PM1_STS, 1, ACPI_PM1_WAK_STS);
1848 
1849 	/* Disable BM arbitration */
1850 	acpi_write_pmreg(sc, ACPIREG_PM2_CNT, 1, ACPI_PM2_ARB_DIS);
1851 
1852 	/* Write SLP_TYPx values */
1853 	rega = acpi_read_pmreg(sc, ACPIREG_PM1A_CNT, 0);
1854 	regb = acpi_read_pmreg(sc, ACPIREG_PM1B_CNT, 0);
1855 	rega &= ~(ACPI_PM1_SLP_TYPX_MASK | ACPI_PM1_SLP_EN);
1856 	regb &= ~(ACPI_PM1_SLP_TYPX_MASK | ACPI_PM1_SLP_EN);
1857 	rega |= ACPI_PM1_SLP_TYPX(sc->sc_sleeptype[state].slp_typa);
1858 	regb |= ACPI_PM1_SLP_TYPX(sc->sc_sleeptype[state].slp_typb);
1859 	acpi_write_pmreg(sc, ACPIREG_PM1A_CNT, 0, rega);
1860 	acpi_write_pmreg(sc, ACPIREG_PM1B_CNT, 0, regb);
1861 
1862 	/* Set SLP_EN bit */
1863 	rega |= ACPI_PM1_SLP_EN;
1864 	regb |= ACPI_PM1_SLP_EN;
1865 
1866 	/*
1867 	 * Let the machdep code flush caches and do any other necessary
1868 	 * tasks before going away.
1869 	 */
1870 	acpi_cpu_flush(sc, state);
1871 
1872 	acpi_write_pmreg(sc, ACPIREG_PM1A_CNT, 0, rega);
1873 	acpi_write_pmreg(sc, ACPIREG_PM1B_CNT, 0, regb);
1874 	/* Loop on WAK_STS */
1875 	for (retries = 1000; retries > 0; retries--) {
1876 		rega = acpi_read_pmreg(sc, ACPIREG_PM1A_STS, 0);
1877 		regb = acpi_read_pmreg(sc, ACPIREG_PM1B_STS, 0);
1878 		if (rega & ACPI_PM1_WAK_STS ||
1879 		    regb & ACPI_PM1_WAK_STS)
1880 			break;
1881 		DELAY(10);
1882 	}
1883 
1884 	return (-1);
1885 }
1886 
1887 #ifndef SMALL_KERNEL
1888 void
1889 acpi_resume(struct acpi_softc *sc)
1890 {
1891 	struct aml_value env;
1892 
1893 	memset(&env, 0, sizeof(env));
1894 	env.type = AML_OBJTYPE_INTEGER;
1895 	env.v_integer = sc->sc_state;
1896 
1897 	if (sc->sc_bfs)
1898 		if (aml_evalnode(sc, sc->sc_bfs, 1, &env, NULL) != 0) {
1899 			dnprintf(10, "%s evaluating method _BFS failed.\n",
1900 			    DEVNAME(sc));
1901 		}
1902 
1903 	dopowerhooks(PWR_RESUME);
1904 	inittodr(0);
1905 
1906 	if (sc->sc_wak)
1907 		if (aml_evalnode(sc, sc->sc_wak, 1, &env, NULL) != 0) {
1908 			dnprintf(10, "%s evaluating method _WAK failed.\n",
1909 			    DEVNAME(sc));
1910 		}
1911 
1912 	sc->sc_state = ACPI_STATE_S0;
1913 	if (sc->sc_tts) {
1914 		env.v_integer = sc->sc_state;
1915 		if (aml_evalnode(sc, sc->sc_tts, 1, &env, NULL) != 0) {
1916 			dnprintf(10, "%s evaluating method _TTS failed.\n",
1917 			    DEVNAME(sc));
1918 		}
1919 	}
1920 }
1921 #endif /* ! SMALL_KERNEL */
1922 
1923 int
1924 acpi_prepare_sleep_state(struct acpi_softc *sc, int state)
1925 {
1926 	struct aml_value env;
1927 
1928 	if (sc == NULL || state == ACPI_STATE_S0)
1929 		return(0);
1930 
1931 	if (sc->sc_sleeptype[state].slp_typa == -1 ||
1932 	    sc->sc_sleeptype[state].slp_typb == -1) {
1933 		printf("%s: state S%d unavailable\n",
1934 		    sc->sc_dev.dv_xname, state);
1935 		return (ENXIO);
1936 	}
1937 
1938 	memset(&env, 0, sizeof(env));
1939 	env.type = AML_OBJTYPE_INTEGER;
1940 	env.v_integer = state;
1941 	/* _TTS(state) */
1942 	if (sc->sc_tts)
1943 		if (aml_evalnode(sc, sc->sc_tts, 1, &env, NULL) != 0) {
1944 			dnprintf(10, "%s evaluating method _TTS failed.\n",
1945 			    DEVNAME(sc));
1946 			return (ENXIO);
1947 		}
1948 
1949 	switch (state) {
1950 	case ACPI_STATE_S1:
1951 	case ACPI_STATE_S2:
1952 		resettodr();
1953 		dopowerhooks(PWR_SUSPEND);
1954 		break;
1955 	case ACPI_STATE_S3:
1956 		resettodr();
1957 		dopowerhooks(PWR_STANDBY);
1958 		break;
1959 	}
1960 
1961 	/* _PTS(state) */
1962 	if (sc->sc_pts)
1963 		if (aml_evalnode(sc, sc->sc_pts, 1, &env, NULL) != 0) {
1964 			dnprintf(10, "%s evaluating method _PTS failed.\n",
1965 			    DEVNAME(sc));
1966 			return (ENXIO);
1967 		}
1968 
1969 	sc->sc_state = state;
1970 	/* _GTS(state) */
1971 	if (sc->sc_gts)
1972 		if (aml_evalnode(sc, sc->sc_gts, 1, &env, NULL) != 0) {
1973 			dnprintf(10, "%s evaluating method _GTS failed.\n",
1974 			    DEVNAME(sc));
1975 			return (ENXIO);
1976 		}
1977 
1978 	disable_intr();
1979 	aml_evalname(sc, &aml_root, "\\_SST", 1, &env, NULL);
1980 	sc->sc_state = state;
1981 
1982 	return (0);
1983 }
1984 
1985 
1986 
1987 void
1988 acpi_powerdown(void)
1989 {
1990 	/*
1991 	 * In case acpi_prepare_sleep fails, we shouldn't try to enter
1992 	 * the sleep state. It might cost us the battery.
1993 	 */
1994 	acpi_sleep_walk(acpi_softc, ACPI_STATE_S5);
1995 	if (acpi_prepare_sleep_state(acpi_softc, ACPI_STATE_S5) == 0)
1996 		acpi_enter_sleep_state(acpi_softc, ACPI_STATE_S5);
1997 }
1998 
1999 
2000 extern int aml_busy;
2001 
2002 void
2003 acpi_isr_thread(void *arg)
2004 {
2005 	struct acpi_thread *thread = arg;
2006 	struct acpi_softc  *sc = thread->sc;
2007 	u_int32_t gpe;
2008 
2009 	/*
2010 	 * If we have an interrupt handler, we can get notification
2011 	 * when certain status bits changes in the ACPI registers,
2012 	 * so let us enable some events we can forward to userland
2013 	 */
2014 	if (sc->sc_interrupt) {
2015 		int16_t flag;
2016 
2017 		dnprintf(1,"slpbtn:%c  pwrbtn:%c\n",
2018 		    sc->sc_fadt->flags & FADT_SLP_BUTTON ? 'n' : 'y',
2019 		    sc->sc_fadt->flags & FADT_PWR_BUTTON ? 'n' : 'y');
2020 		dnprintf(10, "Enabling acpi interrupts...\n");
2021 		sc->sc_wakeup = 1;
2022 
2023 		/* Enable Sleep/Power buttons if they exist */
2024 		flag = acpi_read_pmreg(sc, ACPIREG_PM1_EN, 0);
2025 		if (!(sc->sc_fadt->flags & FADT_PWR_BUTTON)) {
2026 			flag |= ACPI_PM1_PWRBTN_EN;
2027 		}
2028 		if (!(sc->sc_fadt->flags & FADT_SLP_BUTTON)) {
2029 			flag |= ACPI_PM1_SLPBTN_EN;
2030 		}
2031 		acpi_write_pmreg(sc, ACPIREG_PM1_EN, 0, flag);
2032 
2033 		/* Enable handled GPEs here */
2034 		for (gpe = 0; gpe < sc->sc_lastgpe; gpe++) {
2035 			if (sc->gpe_table[gpe].handler)
2036 				acpi_enable_onegpe(sc, gpe, 1);
2037 		}
2038 	}
2039 
2040 	while (thread->running) {
2041 		dnprintf(10, "sleep... %d\n", sc->sc_wakeup);
2042 		while (sc->sc_wakeup)
2043 			tsleep(sc, PWAIT, "acpi_idle", 0);
2044 		sc->sc_wakeup = 1;
2045 		dnprintf(10, "wakeup..\n");
2046 		if (aml_busy)
2047 			continue;
2048 
2049 		for (gpe = 0; gpe < sc->sc_lastgpe; gpe++) {
2050 			struct gpe_block *pgpe = &sc->gpe_table[gpe];
2051 
2052 			if (pgpe->active) {
2053 				pgpe->active = 0;
2054 				dnprintf(50, "softgpe: %.2x\n", gpe);
2055 				if (pgpe->handler)
2056 					pgpe->handler(sc, gpe, pgpe->arg);
2057 			}
2058 		}
2059 		if (sc->sc_powerbtn) {
2060 			sc->sc_powerbtn = 0;
2061 
2062 			aml_notify_dev(ACPI_DEV_PBD, 0x80);
2063 
2064 			acpi_evindex++;
2065 			dnprintf(1,"power button pressed\n");
2066 			KNOTE(sc->sc_note, ACPI_EVENT_COMPOSE(ACPI_EV_PWRBTN,
2067 			    acpi_evindex));
2068 		}
2069 		if (sc->sc_sleepbtn) {
2070 			sc->sc_sleepbtn = 0;
2071 
2072 			aml_notify_dev(ACPI_DEV_SBD, 0x80);
2073 
2074 			acpi_evindex++;
2075 			dnprintf(1,"sleep button pressed\n");
2076 			KNOTE(sc->sc_note, ACPI_EVENT_COMPOSE(ACPI_EV_SLPBTN,
2077 			    acpi_evindex));
2078 		}
2079 
2080 		/* handle polling here to keep code non-concurrent*/
2081 		if (sc->sc_poll) {
2082 			sc->sc_poll = 0;
2083 			acpi_poll_notify();
2084 		}
2085 	}
2086 	free(thread, M_DEVBUF);
2087 
2088 	kthread_exit(0);
2089 }
2090 
2091 void
2092 acpi_create_thread(void *arg)
2093 {
2094 	struct acpi_softc *sc = arg;
2095 
2096 	if (kthread_create(acpi_isr_thread, sc->sc_thread, NULL, DEVNAME(sc))
2097 	    != 0) {
2098 		printf("%s: unable to create isr thread, GPEs disabled\n",
2099 		    DEVNAME(sc));
2100 		return;
2101 	}
2102 }
2103 
2104 int
2105 acpi_map_address(struct acpi_softc *sc, struct acpi_gas *gas, bus_addr_t base,
2106     bus_size_t size, bus_space_handle_t *pioh, bus_space_tag_t *piot)
2107 {
2108 	int iospace = GAS_SYSTEM_IOSPACE;
2109 
2110 	/* No GAS structure, default to I/O space */
2111 	if (gas != NULL) {
2112 		base += gas->address;
2113 		iospace = gas->address_space_id;
2114 	}
2115 	switch (iospace) {
2116 	case GAS_SYSTEM_MEMORY:
2117 		*piot = sc->sc_memt;
2118 		break;
2119 	case GAS_SYSTEM_IOSPACE:
2120 		*piot = sc->sc_iot;
2121 		break;
2122 	default:
2123 		return -1;
2124 	}
2125 	if (bus_space_map(*piot, base, size, 0, pioh))
2126 		return -1;
2127 
2128 	return 0;
2129 }
2130 
2131 int
2132 acpi_foundec(struct aml_node *node, void *arg)
2133 {
2134 	struct acpi_softc	*sc = (struct acpi_softc *)arg;
2135 	struct device		*self = (struct device *)arg;
2136 	const char		*dev;
2137 	struct aml_value	 res;
2138 	struct acpi_attach_args	aaa;
2139 
2140 	if (aml_evalnode(sc, node, 0, NULL, &res) != 0)
2141 		return 0;
2142 
2143 	switch (res.type) {
2144 	case AML_OBJTYPE_STRING:
2145 		dev = res.v_string;
2146 		break;
2147 	case AML_OBJTYPE_INTEGER:
2148 		dev = aml_eisaid(aml_val2int(&res));
2149 		break;
2150 	default:
2151 		dev = "unknown";
2152 		break;
2153 	}
2154 
2155 	if (strcmp(dev, ACPI_DEV_ECD))
2156 		return 0;
2157 
2158 	memset(&aaa, 0, sizeof(aaa));
2159 	aaa.aaa_iot = sc->sc_iot;
2160 	aaa.aaa_memt = sc->sc_memt;
2161 	aaa.aaa_node = node->parent;
2162 	aaa.aaa_dev = dev;
2163 	aaa.aaa_name = "acpiec";
2164 	config_found(self, &aaa, acpi_print);
2165 	aml_freevalue(&res);
2166 
2167 	return 0;
2168 }
2169 
2170 int
2171 acpi_matchhids(struct acpi_attach_args *aa, const char *hids[],
2172     const char *driver)
2173 {
2174 	int i;
2175 
2176 	if (aa->aaa_dev == NULL || aa->aaa_node == NULL)
2177 		return (0);
2178 	for (i = 0; hids[i]; i++) {
2179 		if (!strcmp(aa->aaa_dev, hids[i])) {
2180 			dnprintf(5, "driver %s matches %s\n", driver, hids[i]);
2181 			return (1);
2182 		}
2183 	}
2184 	return (0);
2185 }
2186 
2187 int
2188 acpi_foundhid(struct aml_node *node, void *arg)
2189 {
2190 	struct acpi_softc	*sc = (struct acpi_softc *)arg;
2191 	struct device		*self = (struct device *)arg;
2192 	const char		*dev;
2193 	struct aml_value	 res;
2194 	struct acpi_attach_args	aaa;
2195 
2196 	dnprintf(10, "found hid device: %s ", node->parent->name);
2197 	if (aml_evalnode(sc, node, 0, NULL, &res) != 0)
2198 		return 0;
2199 
2200 	switch (res.type) {
2201 	case AML_OBJTYPE_STRING:
2202 		dev = res.v_string;
2203 		break;
2204 	case AML_OBJTYPE_INTEGER:
2205 		dev = aml_eisaid(aml_val2int(&res));
2206 		break;
2207 	default:
2208 		dev = "unknown";
2209 		break;
2210 	}
2211 	dnprintf(10, "	device: %s\n", dev);
2212 
2213 	memset(&aaa, 0, sizeof(aaa));
2214 	aaa.aaa_iot = sc->sc_iot;
2215 	aaa.aaa_memt = sc->sc_memt;
2216 	aaa.aaa_node = node->parent;
2217 	aaa.aaa_dev = dev;
2218 
2219 	if (!strcmp(dev, ACPI_DEV_AC))
2220 		aaa.aaa_name = "acpiac";
2221 	else if (!strcmp(dev, ACPI_DEV_CMB))
2222 		aaa.aaa_name = "acpibat";
2223 	else if (!strcmp(dev, ACPI_DEV_LD) ||
2224 	    !strcmp(dev, ACPI_DEV_PBD) ||
2225 	    !strcmp(dev, ACPI_DEV_SBD))
2226 		aaa.aaa_name = "acpibtn";
2227 	else if (!strcmp(dev, ACPI_DEV_ASUS))
2228 		aaa.aaa_name = "acpiasus";
2229 	else if (!strcmp(dev, ACPI_DEV_THINKPAD)) {
2230 		aaa.aaa_name = "acpithinkpad";
2231 		acpi_thinkpad_enabled = 1;
2232 	} else if (!strcmp(dev, ACPI_DEV_ASUSAIBOOSTER))
2233 		aaa.aaa_name = "aibs";
2234 
2235 	if (aaa.aaa_name)
2236 		config_found(self, &aaa, acpi_print);
2237 
2238 	aml_freevalue(&res);
2239 
2240 	return 0;
2241 }
2242 
2243 int
2244 acpi_founddock(struct aml_node *node, void *arg)
2245 {
2246 	struct acpi_softc	*sc = (struct acpi_softc *)arg;
2247 	struct device		*self = (struct device *)arg;
2248 	struct acpi_attach_args	aaa;
2249 
2250 	dnprintf(10, "found dock entry: %s\n", node->parent->name);
2251 
2252 	memset(&aaa, 0, sizeof(aaa));
2253 	aaa.aaa_iot = sc->sc_iot;
2254 	aaa.aaa_memt = sc->sc_memt;
2255 	aaa.aaa_node = node->parent;
2256 	aaa.aaa_name = "acpidock";
2257 
2258 	config_found(self, &aaa, acpi_print);
2259 
2260 	return 0;
2261 }
2262 
2263 int
2264 acpi_foundvideo(struct aml_node *node, void *arg)
2265 {
2266 	struct acpi_softc *sc = (struct acpi_softc *)arg;
2267 	struct device *self = (struct device *)arg;
2268 	struct acpi_attach_args	aaa;
2269 
2270 	memset(&aaa, 0, sizeof(aaa));
2271 	aaa.aaa_iot = sc->sc_iot;
2272 	aaa.aaa_memt = sc->sc_memt;
2273 	aaa.aaa_node = node->parent;
2274 	aaa.aaa_name = "acpivideo";
2275 
2276 	config_found(self, &aaa, acpi_print);
2277 
2278 	return (0);
2279 }
2280 
2281 TAILQ_HEAD(acpi_dv_hn, acpi_dev_rank) acpi_dv_h;
2282 void
2283 acpi_dev_sort(void)
2284 {
2285 	struct device		*dev, *idev;
2286 	struct acpi_dev_rank	*rentry, *ientry;
2287 	int			rank;
2288 
2289 	TAILQ_INIT(&acpi_dv_h);
2290 
2291 	TAILQ_FOREACH(dev, &alldevs, dv_list) {
2292 		for (rank = -1, idev = dev; idev != NULL;
2293 		    idev = idev->dv_parent, rank++)
2294 			;	/* nothing */
2295 
2296 		rentry = malloc(sizeof(*rentry), M_DEVBUF, M_WAITOK | M_ZERO);
2297 		rentry->rank = rank;
2298 		rentry->dev = dev;
2299 
2300 		if (TAILQ_FIRST(&acpi_dv_h) == NULL)
2301 			TAILQ_INSERT_HEAD(&acpi_dv_h, rentry, link);
2302 		TAILQ_FOREACH_REVERSE(ientry, &acpi_dv_h, acpi_dv_hn, link) {
2303 			if (rentry->rank > ientry->rank) {
2304 				TAILQ_INSERT_AFTER(&acpi_dv_h, ientry, rentry,
2305 				    link);
2306 				break;
2307 			}
2308 		}
2309 	}
2310 }
2311 
2312 void
2313 acpi_dev_free(void)
2314 {
2315 	struct acpi_dev_rank	*dvr;
2316 
2317 	while ((dvr = TAILQ_FIRST(&acpi_dv_h)) != NULL) {
2318 		TAILQ_REMOVE(&acpi_dv_h, dvr, link);
2319 		if (dvr != NULL) {
2320 			free(dvr, M_DEVBUF);
2321 			dvr = NULL;
2322 		}
2323 	}
2324 }
2325 #endif /* SMALL_KERNEL */
2326