xref: /openbsd-src/sys/crypto/xform.c (revision f2da64fbbbf1b03f09f390ab01267c93dfd77c4c)
1 /*	$OpenBSD: xform.c,v 1.55 2016/09/19 18:09:40 tedu Exp $	*/
2 /*
3  * The authors of this code are John Ioannidis (ji@tla.org),
4  * Angelos D. Keromytis (kermit@csd.uch.gr),
5  * Niels Provos (provos@physnet.uni-hamburg.de),
6  * Damien Miller (djm@mindrot.org) and
7  * Mike Belopuhov (mikeb@openbsd.org).
8  *
9  * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
10  * in November 1995.
11  *
12  * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
13  * by Angelos D. Keromytis.
14  *
15  * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
16  * and Niels Provos.
17  *
18  * Additional features in 1999 by Angelos D. Keromytis.
19  *
20  * AES XTS implementation in 2008 by Damien Miller
21  *
22  * AES-GCM-16 and Chacha20-Poly1305 AEAD modes by Mike Belopuhov.
23  *
24  * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
25  * Angelos D. Keromytis and Niels Provos.
26  *
27  * Copyright (C) 2001, Angelos D. Keromytis.
28  *
29  * Copyright (C) 2008, Damien Miller
30  *
31  * Copyright (C) 2010, 2015, Mike Belopuhov
32  *
33  * Permission to use, copy, and modify this software with or without fee
34  * is hereby granted, provided that this entire notice is included in
35  * all copies of any software which is or includes a copy or
36  * modification of this software.
37  * You may use this code under the GNU public license if you so wish. Please
38  * contribute changes back to the authors under this freer than GPL license
39  * so that we may further the use of strong encryption without limitations to
40  * all.
41  *
42  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
43  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
44  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
45  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
46  * PURPOSE.
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <machine/cpu.h>
55 
56 #include <crypto/md5.h>
57 #include <crypto/sha1.h>
58 #include <crypto/sha2.h>
59 #include <crypto/rmd160.h>
60 #include <crypto/blf.h>
61 #include <crypto/cast.h>
62 #include <crypto/rijndael.h>
63 #include <crypto/cryptodev.h>
64 #include <crypto/xform.h>
65 #include <crypto/gmac.h>
66 #include <crypto/chachapoly.h>
67 
68 extern void des_ecb3_encrypt(caddr_t, caddr_t, caddr_t, caddr_t, caddr_t, int);
69 
70 int  des_set_key(void *, caddr_t);
71 int  des3_setkey(void *, u_int8_t *, int);
72 int  blf_setkey(void *, u_int8_t *, int);
73 int  cast5_setkey(void *, u_int8_t *, int);
74 int  rijndael128_setkey(void *, u_int8_t *, int);
75 int  aes_ctr_setkey(void *, u_int8_t *, int);
76 int  aes_xts_setkey(void *, u_int8_t *, int);
77 int  null_setkey(void *, u_int8_t *, int);
78 
79 void des3_encrypt(caddr_t, u_int8_t *);
80 void blf_encrypt(caddr_t, u_int8_t *);
81 void cast5_encrypt(caddr_t, u_int8_t *);
82 void rijndael128_encrypt(caddr_t, u_int8_t *);
83 void null_encrypt(caddr_t, u_int8_t *);
84 void aes_xts_encrypt(caddr_t, u_int8_t *);
85 
86 void des3_decrypt(caddr_t, u_int8_t *);
87 void blf_decrypt(caddr_t, u_int8_t *);
88 void cast5_decrypt(caddr_t, u_int8_t *);
89 void rijndael128_decrypt(caddr_t, u_int8_t *);
90 void null_decrypt(caddr_t, u_int8_t *);
91 void aes_xts_decrypt(caddr_t, u_int8_t *);
92 
93 void aes_ctr_crypt(caddr_t, u_int8_t *);
94 
95 void aes_ctr_reinit(caddr_t, u_int8_t *);
96 void aes_xts_reinit(caddr_t, u_int8_t *);
97 void aes_gcm_reinit(caddr_t, u_int8_t *);
98 
99 int MD5Update_int(void *, const u_int8_t *, u_int16_t);
100 int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
101 int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
102 int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
103 int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
104 int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
105 
106 u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
107 u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
108 u_int32_t lzs_dummy(u_int8_t *, u_int32_t, u_int8_t **);
109 
110 #define AESCTR_NONCESIZE	4
111 #define AESCTR_IVSIZE		8
112 #define AESCTR_BLOCKSIZE	16
113 
114 struct aes_ctr_ctx {
115 	u_int32_t	ac_ek[4*(AES_MAXROUNDS + 1)];
116 	u_int8_t	ac_block[AESCTR_BLOCKSIZE];
117 	int		ac_nr;
118 };
119 
120 #define AES_XTS_BLOCKSIZE	16
121 #define AES_XTS_IVSIZE		8
122 #define AES_XTS_ALPHA		0x87	/* GF(2^128) generator polynomial */
123 
124 struct aes_xts_ctx {
125 	rijndael_ctx key1;
126 	rijndael_ctx key2;
127 	u_int8_t tweak[AES_XTS_BLOCKSIZE];
128 };
129 
130 /* Helper */
131 void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int);
132 
133 /* Encryption instances */
134 struct enc_xform enc_xform_3des = {
135 	CRYPTO_3DES_CBC, "3DES",
136 	8, 8, 24, 24, 384,
137 	des3_encrypt,
138 	des3_decrypt,
139 	des3_setkey,
140 	NULL
141 };
142 
143 struct enc_xform enc_xform_blf = {
144 	CRYPTO_BLF_CBC, "Blowfish",
145 	8, 8, 5, 56 /* 448 bits, max key */,
146 	sizeof(blf_ctx),
147 	blf_encrypt,
148 	blf_decrypt,
149 	blf_setkey,
150 	NULL
151 };
152 
153 struct enc_xform enc_xform_cast5 = {
154 	CRYPTO_CAST_CBC, "CAST-128",
155 	8, 8, 5, 16,
156 	sizeof(cast_key),
157 	cast5_encrypt,
158 	cast5_decrypt,
159 	cast5_setkey,
160 	NULL
161 };
162 
163 struct enc_xform enc_xform_rijndael128 = {
164 	CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
165 	16, 16, 16, 32,
166 	sizeof(rijndael_ctx),
167 	rijndael128_encrypt,
168 	rijndael128_decrypt,
169 	rijndael128_setkey,
170 	NULL
171 };
172 
173 struct enc_xform enc_xform_aes_ctr = {
174 	CRYPTO_AES_CTR, "AES-CTR",
175 	16, 8, 16+4, 32+4,
176 	sizeof(struct aes_ctr_ctx),
177 	aes_ctr_crypt,
178 	aes_ctr_crypt,
179 	aes_ctr_setkey,
180 	aes_ctr_reinit
181 };
182 
183 struct enc_xform enc_xform_aes_gcm = {
184 	CRYPTO_AES_GCM_16, "AES-GCM",
185 	1, 8, 16+4, 32+4,
186 	sizeof(struct aes_ctr_ctx),
187 	aes_ctr_crypt,
188 	aes_ctr_crypt,
189 	aes_ctr_setkey,
190 	aes_gcm_reinit
191 };
192 
193 struct enc_xform enc_xform_aes_gmac = {
194 	CRYPTO_AES_GMAC, "AES-GMAC",
195 	1, 8, 16+4, 32+4, 0,
196 	NULL,
197 	NULL,
198 	NULL,
199 	NULL
200 };
201 
202 struct enc_xform enc_xform_aes_xts = {
203 	CRYPTO_AES_XTS, "AES-XTS",
204 	16, 8, 32, 64,
205 	sizeof(struct aes_xts_ctx),
206 	aes_xts_encrypt,
207 	aes_xts_decrypt,
208 	aes_xts_setkey,
209 	aes_xts_reinit
210 };
211 
212 struct enc_xform enc_xform_chacha20_poly1305 = {
213 	CRYPTO_CHACHA20_POLY1305, "CHACHA20-POLY1305",
214 	1, 8, 32+4, 32+4,
215 	sizeof(struct chacha20_ctx),
216 	chacha20_crypt,
217 	chacha20_crypt,
218 	chacha20_setkey,
219 	chacha20_reinit
220 };
221 
222 struct enc_xform enc_xform_null = {
223 	CRYPTO_NULL, "NULL",
224 	4, 0, 0, 256, 0,
225 	null_encrypt,
226 	null_decrypt,
227 	null_setkey,
228 	NULL
229 };
230 
231 /* Authentication instances */
232 struct auth_hash auth_hash_hmac_md5_96 = {
233 	CRYPTO_MD5_HMAC, "HMAC-MD5",
234 	16, 16, 12, sizeof(MD5_CTX), HMAC_MD5_BLOCK_LEN,
235 	(void (*) (void *)) MD5Init, NULL, NULL,
236 	MD5Update_int,
237 	(void (*) (u_int8_t *, void *)) MD5Final
238 };
239 
240 struct auth_hash auth_hash_hmac_sha1_96 = {
241 	CRYPTO_SHA1_HMAC, "HMAC-SHA1",
242 	20, 20, 12, sizeof(SHA1_CTX), HMAC_SHA1_BLOCK_LEN,
243 	(void (*) (void *)) SHA1Init, NULL, NULL,
244 	SHA1Update_int,
245 	(void (*) (u_int8_t *, void *)) SHA1Final
246 };
247 
248 struct auth_hash auth_hash_hmac_ripemd_160_96 = {
249 	CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
250 	20, 20, 12, sizeof(RMD160_CTX), HMAC_RIPEMD160_BLOCK_LEN,
251 	(void (*)(void *)) RMD160Init, NULL, NULL,
252 	RMD160Update_int,
253 	(void (*)(u_int8_t *, void *)) RMD160Final
254 };
255 
256 struct auth_hash auth_hash_hmac_sha2_256_128 = {
257 	CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
258 	32, 32, 16, sizeof(SHA2_CTX), HMAC_SHA2_256_BLOCK_LEN,
259 	(void (*)(void *)) SHA256Init, NULL, NULL,
260 	SHA256Update_int,
261 	(void (*)(u_int8_t *, void *)) SHA256Final
262 };
263 
264 struct auth_hash auth_hash_hmac_sha2_384_192 = {
265 	CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
266 	48, 48, 24, sizeof(SHA2_CTX), HMAC_SHA2_384_BLOCK_LEN,
267 	(void (*)(void *)) SHA384Init, NULL, NULL,
268 	SHA384Update_int,
269 	(void (*)(u_int8_t *, void *)) SHA384Final
270 };
271 
272 struct auth_hash auth_hash_hmac_sha2_512_256 = {
273 	CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
274 	64, 64, 32, sizeof(SHA2_CTX), HMAC_SHA2_512_BLOCK_LEN,
275 	(void (*)(void *)) SHA512Init, NULL, NULL,
276 	SHA512Update_int,
277 	(void (*)(u_int8_t *, void *)) SHA512Final
278 };
279 
280 struct auth_hash auth_hash_gmac_aes_128 = {
281 	CRYPTO_AES_128_GMAC, "GMAC-AES-128",
282 	16+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
283 	AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
284 	AES_GMAC_Update, AES_GMAC_Final
285 };
286 
287 struct auth_hash auth_hash_gmac_aes_192 = {
288 	CRYPTO_AES_192_GMAC, "GMAC-AES-192",
289 	24+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
290 	AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
291 	AES_GMAC_Update, AES_GMAC_Final
292 };
293 
294 struct auth_hash auth_hash_gmac_aes_256 = {
295 	CRYPTO_AES_256_GMAC, "GMAC-AES-256",
296 	32+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
297 	AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
298 	AES_GMAC_Update, AES_GMAC_Final
299 };
300 
301 struct auth_hash auth_hash_chacha20_poly1305 = {
302 	CRYPTO_CHACHA20_POLY1305_MAC, "CHACHA20-POLY1305",
303 	CHACHA20_KEYSIZE+CHACHA20_SALT, POLY1305_BLOCK_LEN, POLY1305_TAGLEN,
304 	sizeof(CHACHA20_POLY1305_CTX), CHACHA20_BLOCK_LEN,
305 	Chacha20_Poly1305_Init, Chacha20_Poly1305_Setkey,
306 	Chacha20_Poly1305_Reinit, Chacha20_Poly1305_Update,
307 	Chacha20_Poly1305_Final
308 };
309 
310 /* Compression instance */
311 struct comp_algo comp_algo_deflate = {
312 	CRYPTO_DEFLATE_COMP, "Deflate",
313 	90, deflate_compress,
314 	deflate_decompress
315 };
316 
317 struct comp_algo comp_algo_lzs = {
318 	CRYPTO_LZS_COMP, "LZS",
319 	90, lzs_dummy,
320 	lzs_dummy
321 };
322 
323 /*
324  * Encryption wrapper routines.
325  */
326 void
327 des3_encrypt(caddr_t key, u_int8_t *blk)
328 {
329 	des_ecb3_encrypt(blk, blk, key, key + 128, key + 256, 1);
330 }
331 
332 void
333 des3_decrypt(caddr_t key, u_int8_t *blk)
334 {
335 	des_ecb3_encrypt(blk, blk, key + 256, key + 128, key, 0);
336 }
337 
338 int
339 des3_setkey(void *sched, u_int8_t *key, int len)
340 {
341 	if (des_set_key(key, sched) < 0 || des_set_key(key + 8, sched + 128)
342 	    < 0 || des_set_key(key + 16, sched + 256) < 0)
343 		return -1;
344 
345 	return 0;
346 }
347 
348 void
349 blf_encrypt(caddr_t key, u_int8_t *blk)
350 {
351 	blf_ecb_encrypt((blf_ctx *) key, blk, 8);
352 }
353 
354 void
355 blf_decrypt(caddr_t key, u_int8_t *blk)
356 {
357 	blf_ecb_decrypt((blf_ctx *) key, blk, 8);
358 }
359 
360 int
361 blf_setkey(void *sched, u_int8_t *key, int len)
362 {
363 	blf_key((blf_ctx *)sched, key, len);
364 
365 	return 0;
366 }
367 
368 int
369 null_setkey(void *sched, u_int8_t *key, int len)
370 {
371 	return 0;
372 }
373 
374 void
375 null_encrypt(caddr_t key, u_int8_t *blk)
376 {
377 }
378 
379 void
380 null_decrypt(caddr_t key, u_int8_t *blk)
381 {
382 }
383 
384 void
385 cast5_encrypt(caddr_t key, u_int8_t *blk)
386 {
387 	cast_encrypt((cast_key *) key, blk, blk);
388 }
389 
390 void
391 cast5_decrypt(caddr_t key, u_int8_t *blk)
392 {
393 	cast_decrypt((cast_key *) key, blk, blk);
394 }
395 
396 int
397 cast5_setkey(void *sched, u_int8_t *key, int len)
398 {
399 	cast_setkey((cast_key *)sched, key, len);
400 
401 	return 0;
402 }
403 
404 void
405 rijndael128_encrypt(caddr_t key, u_int8_t *blk)
406 {
407 	rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
408 }
409 
410 void
411 rijndael128_decrypt(caddr_t key, u_int8_t *blk)
412 {
413 	rijndael_decrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
414 }
415 
416 int
417 rijndael128_setkey(void *sched, u_int8_t *key, int len)
418 {
419 	return rijndael_set_key((rijndael_ctx *)sched, (u_char *)key, len * 8);
420 }
421 
422 void
423 aes_ctr_reinit(caddr_t key, u_int8_t *iv)
424 {
425 	struct aes_ctr_ctx *ctx;
426 
427 	ctx = (struct aes_ctr_ctx *)key;
428 	bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
429 
430 	/* reset counter */
431 	bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
432 }
433 
434 void
435 aes_gcm_reinit(caddr_t key, u_int8_t *iv)
436 {
437 	struct aes_ctr_ctx *ctx;
438 
439 	ctx = (struct aes_ctr_ctx *)key;
440 	bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
441 
442 	/* reset counter */
443 	bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
444 	ctx->ac_block[AESCTR_BLOCKSIZE - 1] = 1; /* GCM starts with 1 */
445 }
446 
447 void
448 aes_ctr_crypt(caddr_t key, u_int8_t *data)
449 {
450 	struct aes_ctr_ctx *ctx;
451 	u_int8_t keystream[AESCTR_BLOCKSIZE];
452 	int i;
453 
454 	ctx = (struct aes_ctr_ctx *)key;
455 	/* increment counter */
456 	for (i = AESCTR_BLOCKSIZE - 1;
457 	     i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--)
458 		if (++ctx->ac_block[i])   /* continue on overflow */
459 			break;
460 	rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream);
461 	for (i = 0; i < AESCTR_BLOCKSIZE; i++)
462 		data[i] ^= keystream[i];
463 	explicit_bzero(keystream, sizeof(keystream));
464 }
465 
466 int
467 aes_ctr_setkey(void *sched, u_int8_t *key, int len)
468 {
469 	struct aes_ctr_ctx *ctx;
470 
471 	if (len < AESCTR_NONCESIZE)
472 		return -1;
473 
474 	ctx = (struct aes_ctr_ctx *)sched;
475 	ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (u_char *)key,
476 	    (len - AESCTR_NONCESIZE) * 8);
477 	if (ctx->ac_nr == 0)
478 		return -1;
479 	bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE);
480 	return 0;
481 }
482 
483 void
484 aes_xts_reinit(caddr_t key, u_int8_t *iv)
485 {
486 	struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
487 	u_int64_t blocknum;
488 	u_int i;
489 
490 	/*
491 	 * Prepare tweak as E_k2(IV). IV is specified as LE representation
492 	 * of a 64-bit block number which we allow to be passed in directly.
493 	 */
494 	memcpy(&blocknum, iv, AES_XTS_IVSIZE);
495 	for (i = 0; i < AES_XTS_IVSIZE; i++) {
496 		ctx->tweak[i] = blocknum & 0xff;
497 		blocknum >>= 8;
498 	}
499 	/* Last 64 bits of IV are always zero */
500 	bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
501 
502 	rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
503 }
504 
505 void
506 aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
507 {
508 	u_int8_t block[AES_XTS_BLOCKSIZE];
509 	u_int i, carry_in, carry_out;
510 
511 	for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
512 		block[i] = data[i] ^ ctx->tweak[i];
513 
514 	if (do_encrypt)
515 		rijndael_encrypt(&ctx->key1, block, data);
516 	else
517 		rijndael_decrypt(&ctx->key1, block, data);
518 
519 	for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
520 		data[i] ^= ctx->tweak[i];
521 
522 	/* Exponentiate tweak */
523 	carry_in = 0;
524 	for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
525 		carry_out = ctx->tweak[i] & 0x80;
526 		ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0);
527 		carry_in = carry_out;
528 	}
529 	if (carry_in)
530 		ctx->tweak[0] ^= AES_XTS_ALPHA;
531 	explicit_bzero(block, sizeof(block));
532 }
533 
534 void
535 aes_xts_encrypt(caddr_t key, u_int8_t *data)
536 {
537 	aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
538 }
539 
540 void
541 aes_xts_decrypt(caddr_t key, u_int8_t *data)
542 {
543 	aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
544 }
545 
546 int
547 aes_xts_setkey(void *sched, u_int8_t *key, int len)
548 {
549 	struct aes_xts_ctx *ctx;
550 
551 	if (len != 32 && len != 64)
552 		return -1;
553 
554 	ctx = (struct aes_xts_ctx *)sched;
555 
556 	rijndael_set_key(&ctx->key1, key, len * 4);
557 	rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
558 
559 	return 0;
560 }
561 
562 /*
563  * And now for auth.
564  */
565 
566 int
567 RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
568 {
569 	RMD160Update(ctx, buf, len);
570 	return 0;
571 }
572 
573 int
574 MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
575 {
576 	MD5Update(ctx, buf, len);
577 	return 0;
578 }
579 
580 int
581 SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
582 {
583 	SHA1Update(ctx, buf, len);
584 	return 0;
585 }
586 
587 int
588 SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
589 {
590 	SHA256Update(ctx, buf, len);
591 	return 0;
592 }
593 
594 int
595 SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
596 {
597 	SHA384Update(ctx, buf, len);
598 	return 0;
599 }
600 
601 int
602 SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
603 {
604 	SHA512Update(ctx, buf, len);
605 	return 0;
606 }
607 
608 
609 u_int32_t deflate_global(u_int8_t *, u_int32_t, int, u_int8_t **);
610 
611 struct deflate_buf {
612         u_int8_t *out;
613         u_int32_t size;
614         int flag;
615 };
616 
617 /*
618  * And compression
619  */
620 
621 u_int32_t
622 deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
623 {
624 	return deflate_global(data, size, 0, out);
625 }
626 
627 u_int32_t
628 deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
629 {
630 	return deflate_global(data, size, 1, out);
631 }
632 
633 u_int32_t
634 lzs_dummy(u_int8_t *data, u_int32_t size, u_int8_t **out)
635 {
636 	*out = NULL;
637 	return (0);
638 }
639