xref: /openbsd-src/sys/crypto/xform.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: xform.c,v 1.36 2008/09/06 22:23:21 djm Exp $	*/
2 /*
3  * The authors of this code are John Ioannidis (ji@tla.org),
4  * Angelos D. Keromytis (kermit@csd.uch.gr),
5  * Niels Provos (provos@physnet.uni-hamburg.de) and
6  * Damien Miller (djm@mindrot.org).
7  *
8  * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
9  * in November 1995.
10  *
11  * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
12  * by Angelos D. Keromytis.
13  *
14  * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
15  * and Niels Provos.
16  *
17  * Additional features in 1999 by Angelos D. Keromytis.
18  *
19  * AES XTS implementation in 2008 by Damien Miller
20  *
21  * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
22  * Angelos D. Keromytis and Niels Provos.
23  *
24  * Copyright (C) 2001, Angelos D. Keromytis.
25  *
26  * Copyright (C) 2008, Damien Miller
27  *
28  * Permission to use, copy, and modify this software with or without fee
29  * is hereby granted, provided that this entire notice is included in
30  * all copies of any software which is or includes a copy or
31  * modification of this software.
32  * You may use this code under the GNU public license if you so wish. Please
33  * contribute changes back to the authors under this freer than GPL license
34  * so that we may further the use of strong encryption without limitations to
35  * all.
36  *
37  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
38  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
39  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
40  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
41  * PURPOSE.
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/malloc.h>
47 #include <sys/sysctl.h>
48 #include <sys/errno.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <machine/cpu.h>
52 
53 #include <crypto/md5.h>
54 #include <crypto/sha1.h>
55 #include <crypto/sha2.h>
56 #include <crypto/rmd160.h>
57 #include <crypto/blf.h>
58 #include <crypto/cast.h>
59 #include <crypto/skipjack.h>
60 #include <crypto/rijndael.h>
61 #include <crypto/cryptodev.h>
62 #include <crypto/xform.h>
63 #include <crypto/deflate.h>
64 
65 extern void des_ecb3_encrypt(caddr_t, caddr_t, caddr_t, caddr_t, caddr_t, int);
66 extern void des_ecb_encrypt(caddr_t, caddr_t, caddr_t, int);
67 
68 int  des_set_key(caddr_t, caddr_t);
69 int  des1_setkey(u_int8_t **, u_int8_t *, int);
70 int  des3_setkey(u_int8_t **, u_int8_t *, int);
71 int  blf_setkey(u_int8_t **, u_int8_t *, int);
72 int  cast5_setkey(u_int8_t **, u_int8_t *, int);
73 int  skipjack_setkey(u_int8_t **, u_int8_t *, int);
74 int  rijndael128_setkey(u_int8_t **, u_int8_t *, int);
75 int  aes_ctr_setkey(u_int8_t **, u_int8_t *, int);
76 int  aes_xts_setkey(u_int8_t **, u_int8_t *, int);
77 int  null_setkey(u_int8_t **, u_int8_t *, int);
78 
79 void des1_encrypt(caddr_t, u_int8_t *);
80 void des3_encrypt(caddr_t, u_int8_t *);
81 void blf_encrypt(caddr_t, u_int8_t *);
82 void cast5_encrypt(caddr_t, u_int8_t *);
83 void skipjack_encrypt(caddr_t, u_int8_t *);
84 void rijndael128_encrypt(caddr_t, u_int8_t *);
85 void null_encrypt(caddr_t, u_int8_t *);
86 void aes_xts_encrypt(caddr_t, u_int8_t *);
87 
88 void des1_decrypt(caddr_t, u_int8_t *);
89 void des3_decrypt(caddr_t, u_int8_t *);
90 void blf_decrypt(caddr_t, u_int8_t *);
91 void cast5_decrypt(caddr_t, u_int8_t *);
92 void skipjack_decrypt(caddr_t, u_int8_t *);
93 void rijndael128_decrypt(caddr_t, u_int8_t *);
94 void null_decrypt(caddr_t, u_int8_t *);
95 void aes_xts_decrypt(caddr_t, u_int8_t *);
96 
97 void aes_ctr_crypt(caddr_t, u_int8_t *);
98 
99 void des1_zerokey(u_int8_t **);
100 void des3_zerokey(u_int8_t **);
101 void blf_zerokey(u_int8_t **);
102 void cast5_zerokey(u_int8_t **);
103 void skipjack_zerokey(u_int8_t **);
104 void rijndael128_zerokey(u_int8_t **);
105 void aes_ctr_zerokey(u_int8_t **);
106 void aes_xts_zerokey(u_int8_t **);
107 void null_zerokey(u_int8_t **);
108 
109 void aes_ctr_reinit(caddr_t, u_int8_t *);
110 void aes_xts_reinit(caddr_t, u_int8_t *);
111 
112 int MD5Update_int(void *, const u_int8_t *, u_int16_t);
113 int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
114 int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
115 int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
116 int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
117 int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
118 
119 u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
120 u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
121 u_int32_t lzs_dummy(u_int8_t *, u_int32_t, u_int8_t **);
122 
123 /* Helper */
124 struct aes_xts_ctx;
125 void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int);
126 
127 /* Encryption instances */
128 struct enc_xform enc_xform_des = {
129 	CRYPTO_DES_CBC, "DES",
130 	8, 8, 8, 8,
131 	des1_encrypt,
132 	des1_decrypt,
133 	des1_setkey,
134 	des1_zerokey,
135 	NULL
136 };
137 
138 struct enc_xform enc_xform_3des = {
139 	CRYPTO_3DES_CBC, "3DES",
140 	8, 8, 24, 24,
141 	des3_encrypt,
142 	des3_decrypt,
143 	des3_setkey,
144 	des3_zerokey,
145 	NULL
146 };
147 
148 struct enc_xform enc_xform_blf = {
149 	CRYPTO_BLF_CBC, "Blowfish",
150 	8, 8, 5, 56 /* 448 bits, max key */,
151 	blf_encrypt,
152 	blf_decrypt,
153 	blf_setkey,
154 	blf_zerokey,
155 	NULL
156 };
157 
158 struct enc_xform enc_xform_cast5 = {
159 	CRYPTO_CAST_CBC, "CAST-128",
160 	8, 8, 5, 16,
161 	cast5_encrypt,
162 	cast5_decrypt,
163 	cast5_setkey,
164 	cast5_zerokey,
165 	NULL
166 };
167 
168 struct enc_xform enc_xform_skipjack = {
169 	CRYPTO_SKIPJACK_CBC, "Skipjack",
170 	8, 8, 10, 10,
171 	skipjack_encrypt,
172 	skipjack_decrypt,
173 	skipjack_setkey,
174 	skipjack_zerokey,
175 	NULL
176 };
177 
178 struct enc_xform enc_xform_rijndael128 = {
179 	CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
180 	16, 16, 16, 32,
181 	rijndael128_encrypt,
182 	rijndael128_decrypt,
183 	rijndael128_setkey,
184 	rijndael128_zerokey,
185 	NULL
186 };
187 
188 struct enc_xform enc_xform_aes_ctr = {
189 	CRYPTO_AES_CTR, "AES-CTR",
190 	16, 8, 16+4, 32+4,
191 	aes_ctr_crypt,
192 	aes_ctr_crypt,
193 	aes_ctr_setkey,
194 	aes_ctr_zerokey,
195 	aes_ctr_reinit
196 };
197 
198 struct enc_xform enc_xform_aes_xts = {
199 	CRYPTO_AES_XTS, "AES-XTS",
200 	16, 8, 32, 64,
201 	aes_xts_encrypt,
202 	aes_xts_decrypt,
203 	aes_xts_setkey,
204 	aes_xts_zerokey,
205 	aes_xts_reinit
206 };
207 
208 struct enc_xform enc_xform_arc4 = {
209 	CRYPTO_ARC4, "ARC4",
210 	1, 1, 1, 32,
211 	NULL,
212 	NULL,
213 	NULL,
214 	NULL,
215 	NULL
216 };
217 
218 struct enc_xform enc_xform_null = {
219 	CRYPTO_NULL, "NULL",
220 	4, 0, 0, 256,
221 	null_encrypt,
222 	null_decrypt,
223 	null_setkey,
224 	null_zerokey,
225 	NULL
226 };
227 
228 /* Authentication instances */
229 struct auth_hash auth_hash_hmac_md5_96 = {
230 	CRYPTO_MD5_HMAC, "HMAC-MD5",
231 	16, 16, 12, sizeof(MD5_CTX),
232 	(void (*) (void *)) MD5Init, MD5Update_int,
233 	(void (*) (u_int8_t *, void *)) MD5Final
234 };
235 
236 struct auth_hash auth_hash_hmac_sha1_96 = {
237 	CRYPTO_SHA1_HMAC, "HMAC-SHA1",
238 	20, 20, 12, sizeof(SHA1_CTX),
239 	(void (*) (void *)) SHA1Init, SHA1Update_int,
240 	(void (*) (u_int8_t *, void *)) SHA1Final
241 };
242 
243 struct auth_hash auth_hash_hmac_ripemd_160_96 = {
244 	CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
245 	20, 20, 12, sizeof(RMD160_CTX),
246 	(void (*)(void *)) RMD160Init, RMD160Update_int,
247 	(void (*)(u_int8_t *, void *)) RMD160Final
248 };
249 
250 struct auth_hash auth_hash_hmac_sha2_256_96 = {
251 	CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
252 	32, 32, 12, sizeof(SHA2_CTX),
253 	(void (*)(void *)) SHA256Init, SHA256Update_int,
254 	(void (*)(u_int8_t *, void *)) SHA256Final
255 };
256 
257 struct auth_hash auth_hash_hmac_sha2_384_96 = {
258 	CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
259 	48, 48, 12, sizeof(SHA2_CTX),
260 	(void (*)(void *)) SHA384Init, SHA384Update_int,
261 	(void (*)(u_int8_t *, void *)) SHA384Final
262 };
263 
264 struct auth_hash auth_hash_hmac_sha2_512_96 = {
265 	CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
266 	64, 64, 12, sizeof(SHA2_CTX),
267 	(void (*)(void *)) SHA512Init, SHA512Update_int,
268 	(void (*)(u_int8_t *, void *)) SHA512Final
269 };
270 
271 struct auth_hash auth_hash_key_md5 = {
272 	CRYPTO_MD5_KPDK, "Keyed MD5",
273 	0, 16, 16, sizeof(MD5_CTX),
274 	(void (*)(void *)) MD5Init, MD5Update_int,
275 	(void (*)(u_int8_t *, void *)) MD5Final
276 };
277 
278 struct auth_hash auth_hash_key_sha1 = {
279 	CRYPTO_SHA1_KPDK, "Keyed SHA1",
280 	0, 20, 20, sizeof(SHA1_CTX),
281 	(void (*)(void *)) SHA1Init, SHA1Update_int,
282 	(void (*)(u_int8_t *, void *)) SHA1Final
283 };
284 
285 struct auth_hash auth_hash_md5 = {
286 	CRYPTO_MD5, "MD5",
287 	0, 16, 16, sizeof(MD5_CTX),
288 	(void (*) (void *)) MD5Init, MD5Update_int,
289 	(void (*) (u_int8_t *, void *)) MD5Final
290 };
291 
292 struct auth_hash auth_hash_sha1 = {
293 	CRYPTO_SHA1, "SHA1",
294 	0, 20, 20, sizeof(SHA1_CTX),
295 	(void (*)(void *)) SHA1Init, SHA1Update_int,
296 	(void (*)(u_int8_t *, void *)) SHA1Final
297 };
298 
299 /* Compression instance */
300 struct comp_algo comp_algo_deflate = {
301 	CRYPTO_DEFLATE_COMP, "Deflate",
302 	90, deflate_compress,
303 	deflate_decompress
304 };
305 
306 struct comp_algo comp_algo_lzs = {
307 	CRYPTO_LZS_COMP, "LZS",
308 	90, lzs_dummy,
309 	lzs_dummy
310 };
311 
312 /*
313  * Encryption wrapper routines.
314  */
315 void
316 des1_encrypt(caddr_t key, u_int8_t *blk)
317 {
318 	des_ecb_encrypt(blk, blk, key, 1);
319 }
320 
321 void
322 des1_decrypt(caddr_t key, u_int8_t *blk)
323 {
324 	des_ecb_encrypt(blk, blk, key, 0);
325 }
326 
327 int
328 des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
329 {
330 	*sched = malloc(128, M_CRYPTO_DATA, M_WAITOK | M_ZERO);
331 
332 	if (des_set_key(key, *sched) < 0) {
333 		des1_zerokey(sched);
334 		return -1;
335 	}
336 
337 	return 0;
338 }
339 
340 void
341 des1_zerokey(u_int8_t **sched)
342 {
343 	bzero(*sched, 128);
344 	free(*sched, M_CRYPTO_DATA);
345 	*sched = NULL;
346 }
347 
348 void
349 des3_encrypt(caddr_t key, u_int8_t *blk)
350 {
351 	des_ecb3_encrypt(blk, blk, key, key + 128, key + 256, 1);
352 }
353 
354 void
355 des3_decrypt(caddr_t key, u_int8_t *blk)
356 {
357 	des_ecb3_encrypt(blk, blk, key + 256, key + 128, key, 0);
358 }
359 
360 int
361 des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
362 {
363 	*sched = malloc(384, M_CRYPTO_DATA, M_WAITOK | M_ZERO);
364 
365 	if (des_set_key(key, *sched) < 0 || des_set_key(key + 8, *sched + 128)
366 	    < 0 || des_set_key(key + 16, *sched + 256) < 0) {
367 		des3_zerokey(sched);
368 		return -1;
369 	}
370 
371 	return 0;
372 }
373 
374 void
375 des3_zerokey(u_int8_t **sched)
376 {
377 	bzero(*sched, 384);
378 	free(*sched, M_CRYPTO_DATA);
379 	*sched = NULL;
380 }
381 
382 void
383 blf_encrypt(caddr_t key, u_int8_t *blk)
384 {
385 	blf_ecb_encrypt((blf_ctx *) key, blk, 8);
386 }
387 
388 void
389 blf_decrypt(caddr_t key, u_int8_t *blk)
390 {
391 	blf_ecb_decrypt((blf_ctx *) key, blk, 8);
392 }
393 
394 int
395 blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
396 {
397 	*sched = malloc(sizeof(blf_ctx), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
398 	blf_key((blf_ctx *)*sched, key, len);
399 
400 	return 0;
401 }
402 
403 void
404 blf_zerokey(u_int8_t **sched)
405 {
406 	bzero(*sched, sizeof(blf_ctx));
407 	free(*sched, M_CRYPTO_DATA);
408 	*sched = NULL;
409 }
410 
411 int
412 null_setkey(u_int8_t **sched, u_int8_t *key, int len)
413 {
414 	return 0;
415 }
416 
417 void
418 null_zerokey(u_int8_t **sched)
419 {
420 }
421 
422 void
423 null_encrypt(caddr_t key, u_int8_t *blk)
424 {
425 }
426 
427 void
428 null_decrypt(caddr_t key, u_int8_t *blk)
429 {
430 }
431 
432 void
433 cast5_encrypt(caddr_t key, u_int8_t *blk)
434 {
435 	cast_encrypt((cast_key *) key, blk, blk);
436 }
437 
438 void
439 cast5_decrypt(caddr_t key, u_int8_t *blk)
440 {
441 	cast_decrypt((cast_key *) key, blk, blk);
442 }
443 
444 int
445 cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
446 {
447 	*sched = malloc(sizeof(cast_key), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
448 	cast_setkey((cast_key *)*sched, key, len);
449 
450 	return 0;
451 }
452 
453 void
454 cast5_zerokey(u_int8_t **sched)
455 {
456 	bzero(*sched, sizeof(cast_key));
457 	free(*sched, M_CRYPTO_DATA);
458 	*sched = NULL;
459 }
460 
461 void
462 skipjack_encrypt(caddr_t key, u_int8_t *blk)
463 {
464 	skipjack_forwards(blk, blk, (u_int8_t **) key);
465 }
466 
467 void
468 skipjack_decrypt(caddr_t key, u_int8_t *blk)
469 {
470 	skipjack_backwards(blk, blk, (u_int8_t **) key);
471 }
472 
473 int
474 skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
475 {
476 	*sched = malloc(10 * sizeof(u_int8_t *), M_CRYPTO_DATA, M_WAITOK |
477 	    M_ZERO);
478 	subkey_table_gen(key, (u_int8_t **) *sched);
479 
480 	return 0;
481 }
482 
483 void
484 skipjack_zerokey(u_int8_t **sched)
485 {
486 	int k;
487 
488 	for (k = 0; k < 10; k++) {
489 		if (((u_int8_t **)(*sched))[k]) {
490 			bzero(((u_int8_t **)(*sched))[k], 0x100);
491 			free(((u_int8_t **)(*sched))[k], M_CRYPTO_DATA);
492 		}
493 	}
494 	bzero(*sched, 10 * sizeof(u_int8_t *));
495 	free(*sched, M_CRYPTO_DATA);
496 	*sched = NULL;
497 }
498 
499 void
500 rijndael128_encrypt(caddr_t key, u_int8_t *blk)
501 {
502 	rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
503 }
504 
505 void
506 rijndael128_decrypt(caddr_t key, u_int8_t *blk)
507 {
508 	rijndael_decrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
509 }
510 
511 int
512 rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
513 {
514 	*sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
515 
516 	if (rijndael_set_key((rijndael_ctx *)*sched, (u_char *)key, len * 8)
517 	    < 0) {
518 		rijndael128_zerokey(sched);
519 		return -1;
520 	}
521 
522 	return 0;
523 }
524 
525 void
526 rijndael128_zerokey(u_int8_t **sched)
527 {
528 	bzero(*sched, sizeof(rijndael_ctx));
529 	free(*sched, M_CRYPTO_DATA);
530 	*sched = NULL;
531 }
532 
533 #define AESCTR_NONCESIZE	4
534 #define AESCTR_IVSIZE		8
535 #define AESCTR_BLOCKSIZE	16
536 
537 struct aes_ctr_ctx {
538 	u_int32_t	ac_ek[4*(AES_MAXROUNDS + 1)];
539 	u_int8_t	ac_block[AESCTR_BLOCKSIZE];
540 	int		ac_nr;
541 };
542 
543 void
544 aes_ctr_reinit(caddr_t key, u_int8_t *iv)
545 {
546 	struct aes_ctr_ctx *ctx;
547 
548 	ctx = (struct aes_ctr_ctx *)key;
549 	bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
550 
551 	/* reset counter */
552 	bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
553 }
554 
555 void
556 aes_ctr_crypt(caddr_t key, u_int8_t *data)
557 {
558 	struct aes_ctr_ctx *ctx;
559 	u_int8_t keystream[AESCTR_BLOCKSIZE];
560 	int i;
561 
562 	ctx = (struct aes_ctr_ctx *)key;
563 	/* increment counter */
564 	for (i = AESCTR_BLOCKSIZE - 1;
565 	     i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--)
566 		if (++ctx->ac_block[i])   /* continue on overflow */
567 			break;
568 	rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream);
569 	for (i = 0; i < AESCTR_BLOCKSIZE; i++)
570 		data[i] ^= keystream[i];
571 }
572 
573 int
574 aes_ctr_setkey(u_int8_t **sched, u_int8_t *key, int len)
575 {
576 	struct aes_ctr_ctx *ctx;
577 
578 	if (len < AESCTR_NONCESIZE)
579 		return -1;
580 
581 	*sched = malloc(sizeof(struct aes_ctr_ctx), M_CRYPTO_DATA, M_WAITOK |
582 	    M_ZERO);
583 	ctx = (struct aes_ctr_ctx *)*sched;
584 	ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (u_char *)key,
585 	    (len - AESCTR_NONCESIZE) * 8);
586 	if (ctx->ac_nr == 0) {
587 		aes_ctr_zerokey(sched);
588 		return -1;
589 	}
590 	bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE);
591 	return 0;
592 }
593 
594 void
595 aes_ctr_zerokey(u_int8_t **sched)
596 {
597 	bzero(*sched, sizeof(struct aes_ctr_ctx));
598 	free(*sched, M_CRYPTO_DATA);
599 	*sched = NULL;
600 }
601 
602 #define AES_XTS_BLOCKSIZE	16
603 #define AES_XTS_IVSIZE		8
604 #define AES_XTS_ALPHA		0x87	/* GF(2^128) generator polynomial */
605 
606 struct aes_xts_ctx {
607 	rijndael_ctx key1;
608 	rijndael_ctx key2;
609 	u_int8_t tweak[AES_XTS_BLOCKSIZE];
610 };
611 
612 void
613 aes_xts_reinit(caddr_t key, u_int8_t *iv)
614 {
615 	struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
616 	u_int64_t blocknum;
617 	u_int i;
618 
619 	/*
620 	 * Prepare tweak as E_k2(IV). IV is specified as LE representation
621 	 * of a 64-bit block number which we allow to be passed in directly.
622 	 */
623 	bcopy(iv, &blocknum, AES_XTS_IVSIZE);
624 	for (i = 0; i < AES_XTS_IVSIZE; i++) {
625 		ctx->tweak[i] = blocknum & 0xff;
626 		blocknum >>= 8;
627 	}
628 	/* Last 64 bits of IV are always zero */
629 	bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
630 
631 	rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
632 }
633 
634 void
635 aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
636 {
637 	u_int8_t block[AES_XTS_BLOCKSIZE];
638 	u_int i, carry_in, carry_out;
639 
640 	for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
641 		block[i] = data[i] ^ ctx->tweak[i];
642 
643 	if (do_encrypt)
644 		rijndael_encrypt(&ctx->key1, block, data);
645 	else
646 		rijndael_decrypt(&ctx->key1, block, data);
647 
648 	for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
649 		data[i] ^= ctx->tweak[i];
650 
651 	/* Exponentiate tweak */
652 	carry_in = 0;
653 	for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
654 		carry_out = ctx->tweak[i] & 0x80;
655 		ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0);
656 		carry_in = carry_out;
657 	}
658 	if (carry_in)
659 		ctx->tweak[0] ^= AES_XTS_ALPHA;
660 	bzero(block, sizeof(block));
661 }
662 
663 void
664 aes_xts_encrypt(caddr_t key, u_int8_t *data)
665 {
666 	aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
667 }
668 
669 void
670 aes_xts_decrypt(caddr_t key, u_int8_t *data)
671 {
672 	aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
673 }
674 
675 int
676 aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len)
677 {
678 	struct aes_xts_ctx *ctx;
679 
680 	if (len != 32 && len != 64)
681 		return -1;
682 
683 	*sched = malloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA,
684 	    M_WAITOK | M_ZERO);
685 	ctx = (struct aes_xts_ctx *)*sched;
686 
687 	rijndael_set_key(&ctx->key1, key, len * 4);
688 	rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
689 
690 	return 0;
691 }
692 
693 void
694 aes_xts_zerokey(u_int8_t **sched)
695 {
696 	bzero(*sched, sizeof(struct aes_xts_ctx));
697 	free(*sched, M_CRYPTO_DATA);
698 	*sched = NULL;
699 }
700 
701 
702 /*
703  * And now for auth.
704  */
705 
706 int
707 RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
708 {
709 	RMD160Update(ctx, buf, len);
710 	return 0;
711 }
712 
713 int
714 MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
715 {
716 	MD5Update(ctx, buf, len);
717 	return 0;
718 }
719 
720 int
721 SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
722 {
723 	SHA1Update(ctx, buf, len);
724 	return 0;
725 }
726 
727 int
728 SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
729 {
730 	SHA256Update(ctx, buf, len);
731 	return 0;
732 }
733 
734 int
735 SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
736 {
737 	SHA384Update(ctx, buf, len);
738 	return 0;
739 }
740 
741 int
742 SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
743 {
744 	SHA512Update(ctx, buf, len);
745 	return 0;
746 }
747 
748 /*
749  * And compression
750  */
751 
752 u_int32_t
753 deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
754 {
755 	return deflate_global(data, size, 0, out);
756 }
757 
758 u_int32_t
759 deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
760 {
761 	return deflate_global(data, size, 1, out);
762 }
763 
764 u_int32_t
765 lzs_dummy(u_int8_t *data, u_int32_t size, u_int8_t **out)
766 {
767 	*out = NULL;
768 	return (0);
769 }
770