xref: /openbsd-src/sys/crypto/sha2.c (revision db3296cf5c1dd9058ceecc3a29fe4aaa0bd26000)
1 /*	$NetBSD: sha2.c,v 1.1 2003/07/22 03:24:25 itojun Exp $	*/
2 /*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
3 
4 /*
5  * sha2.c
6  *
7  * Version 1.0.0beta1
8  *
9  * Written by Aaron D. Gifford <me@aarongifford.com>
10  *
11  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the copyright holder nor the names of contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  */
38 
39 #include <sys/types.h>
40 #include <sys/time.h>
41 #include <sys/systm.h>
42 #include <machine/endian.h>
43 #include <crypto/sha2.h>
44 
45 /*
46  * ASSERT NOTE:
47  * Some sanity checking code is included using assert().  On my FreeBSD
48  * system, this additional code can be removed by compiling with NDEBUG
49  * defined.  Check your own systems manpage on assert() to see how to
50  * compile WITHOUT the sanity checking code on your system.
51  *
52  * UNROLLED TRANSFORM LOOP NOTE:
53  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
54  * loop version for the hash transform rounds (defined using macros
55  * later in this file).  Either define on the command line, for example:
56  *
57  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
58  *
59  * or define below:
60  *
61  *   #define SHA2_UNROLL_TRANSFORM
62  *
63  */
64 
65 #if defined(__bsdi__) || defined(__FreeBSD__)
66 #define assert(x)
67 #endif
68 
69 
70 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
71 /*
72  * BYTE_ORDER NOTE:
73  *
74  * Please make sure that your system defines BYTE_ORDER.  If your
75  * architecture is little-endian, make sure it also defines
76  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
77  * equivilent.
78  *
79  * If your system does not define the above, then you can do so by
80  * hand like this:
81  *
82  *   #define LITTLE_ENDIAN 1234
83  *   #define BIG_ENDIAN    4321
84  *
85  * And for little-endian machines, add:
86  *
87  *   #define BYTE_ORDER LITTLE_ENDIAN
88  *
89  * Or for big-endian machines:
90  *
91  *   #define BYTE_ORDER BIG_ENDIAN
92  *
93  * The FreeBSD machine this was written on defines BYTE_ORDER
94  * appropriately by including <sys/types.h> (which in turn includes
95  * <machine/endian.h> where the appropriate definitions are actually
96  * made).
97  */
98 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
99 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
100 #endif
101 
102 /*
103  * Define the followingsha2_* types to types of the correct length on
104  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
105  * types.  Machines with very recent ANSI C headers, can use the
106  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
107  * during compile or in the sha.h header file.
108  *
109  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
110  * will need to define these three typedefs below (and the appropriate
111  * ones in sha.h too) by hand according to their system architecture.
112  *
113  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
114  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
115  */
116 #if 0 /*def SHA2_USE_INTTYPES_H*/
117 
118 typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
119 typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
120 typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
121 
122 #else /* SHA2_USE_INTTYPES_H */
123 
124 typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
125 typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
126 typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
127 
128 #endif /* SHA2_USE_INTTYPES_H */
129 
130 
131 /*** SHA-256/384/512 Various Length Definitions ***********************/
132 /* NOTE: Most of these are in sha2.h */
133 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
134 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
135 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
136 
137 
138 /*** ENDIAN REVERSAL MACROS *******************************************/
139 #if BYTE_ORDER == LITTLE_ENDIAN
140 #define REVERSE32(w,x)	{ \
141 	sha2_word32 tmp = (w); \
142 	tmp = (tmp >> 16) | (tmp << 16); \
143 	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
144 }
145 #define REVERSE64(w,x)	{ \
146 	sha2_word64 tmp = (w); \
147 	tmp = (tmp >> 32) | (tmp << 32); \
148 	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
149 	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
150 	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
151 	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
152 }
153 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
154 
155 /*
156  * Macro for incrementally adding the unsigned 64-bit integer n to the
157  * unsigned 128-bit integer (represented using a two-element array of
158  * 64-bit words):
159  */
160 #define ADDINC128(w,n)	{ \
161 	(w)[0] += (sha2_word64)(n); \
162 	if ((w)[0] < (n)) { \
163 		(w)[1]++; \
164 	} \
165 }
166 
167 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
168 /*
169  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
170  *
171  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
172  *   S is a ROTATION) because the SHA-256/384/512 description document
173  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
174  *   same "backwards" definition.
175  */
176 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
177 #define R(b,x) 		((x) >> (b))
178 /* 32-bit Rotate-right (used in SHA-256): */
179 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
180 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
181 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
182 
183 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
184 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
185 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
186 
187 /* Four of six logical functions used in SHA-256: */
188 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
189 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
190 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
191 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
192 
193 /* Four of six logical functions used in SHA-384 and SHA-512: */
194 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
195 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
196 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
197 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
198 
199 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
200 /* NOTE: These should not be accessed directly from outside this
201  * library -- they are intended for private internal visibility/use
202  * only.
203  */
204 void SHA512_Last(SHA512_CTX*);
205 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
206 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
207 
208 
209 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
210 /* Hash constant words K for SHA-256: */
211 const static sha2_word32 K256[64] = {
212 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
213 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
214 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
215 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
216 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
217 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
218 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
219 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
220 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
221 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
222 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
223 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
224 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
225 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
226 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
227 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
228 };
229 
230 /* Initial hash value H for SHA-256: */
231 const static sha2_word32 sha256_initial_hash_value[8] = {
232 	0x6a09e667UL,
233 	0xbb67ae85UL,
234 	0x3c6ef372UL,
235 	0xa54ff53aUL,
236 	0x510e527fUL,
237 	0x9b05688cUL,
238 	0x1f83d9abUL,
239 	0x5be0cd19UL
240 };
241 
242 /* Hash constant words K for SHA-384 and SHA-512: */
243 const static sha2_word64 K512[80] = {
244 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
245 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
246 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
247 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
248 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
249 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
250 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
251 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
252 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
253 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
254 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
255 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
256 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
257 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
258 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
259 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
260 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
261 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
262 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
263 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
264 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
265 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
266 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
267 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
268 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
269 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
270 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
271 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
272 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
273 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
274 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
275 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
276 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
277 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
278 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
279 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
280 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
281 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
282 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
283 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
284 };
285 
286 /* Initial hash value H for SHA-384 */
287 const static sha2_word64 sha384_initial_hash_value[8] = {
288 	0xcbbb9d5dc1059ed8ULL,
289 	0x629a292a367cd507ULL,
290 	0x9159015a3070dd17ULL,
291 	0x152fecd8f70e5939ULL,
292 	0x67332667ffc00b31ULL,
293 	0x8eb44a8768581511ULL,
294 	0xdb0c2e0d64f98fa7ULL,
295 	0x47b5481dbefa4fa4ULL
296 };
297 
298 /* Initial hash value H for SHA-512 */
299 const static sha2_word64 sha512_initial_hash_value[8] = {
300 	0x6a09e667f3bcc908ULL,
301 	0xbb67ae8584caa73bULL,
302 	0x3c6ef372fe94f82bULL,
303 	0xa54ff53a5f1d36f1ULL,
304 	0x510e527fade682d1ULL,
305 	0x9b05688c2b3e6c1fULL,
306 	0x1f83d9abfb41bd6bULL,
307 	0x5be0cd19137e2179ULL
308 };
309 
310 /*
311  * Constant used by SHA256/384/512_End() functions for converting the
312  * digest to a readable hexadecimal character string:
313  */
314 static const char *sha2_hex_digits = "0123456789abcdef";
315 
316 
317 /*** SHA-256: *********************************************************/
318 void SHA256_Init(SHA256_CTX* context) {
319 	if (context == (SHA256_CTX*)0) {
320 		return;
321 	}
322 	bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
323 	bzero(context->buffer, SHA256_BLOCK_LENGTH);
324 	context->bitcount = 0;
325 }
326 
327 #ifdef SHA2_UNROLL_TRANSFORM
328 
329 /* Unrolled SHA-256 round macros: */
330 
331 #if BYTE_ORDER == LITTLE_ENDIAN
332 
333 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
334 	REVERSE32(*data++, W256[j]); \
335 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
336              K256[j] + W256[j]; \
337 	(d) += T1; \
338 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
339 	j++
340 
341 
342 #else /* BYTE_ORDER == LITTLE_ENDIAN */
343 
344 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
345 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
346 	     K256[j] + (W256[j] = *data++); \
347 	(d) += T1; \
348 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
349 	j++
350 
351 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
352 
353 #define ROUND256(a,b,c,d,e,f,g,h)	\
354 	s0 = W256[(j+1)&0x0f]; \
355 	s0 = sigma0_256(s0); \
356 	s1 = W256[(j+14)&0x0f]; \
357 	s1 = sigma1_256(s1); \
358 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
359 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
360 	(d) += T1; \
361 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
362 	j++
363 
364 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
365 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
366 	sha2_word32	T1, *W256;
367 	int		j;
368 
369 	W256 = (sha2_word32*)context->buffer;
370 
371 	/* Initialize registers with the prev. intermediate value */
372 	a = context->state[0];
373 	b = context->state[1];
374 	c = context->state[2];
375 	d = context->state[3];
376 	e = context->state[4];
377 	f = context->state[5];
378 	g = context->state[6];
379 	h = context->state[7];
380 
381 	j = 0;
382 	do {
383 		/* Rounds 0 to 15 (unrolled): */
384 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
385 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
386 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
387 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
388 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
389 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
390 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
391 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
392 	} while (j < 16);
393 
394 	/* Now for the remaining rounds to 64: */
395 	do {
396 		ROUND256(a,b,c,d,e,f,g,h);
397 		ROUND256(h,a,b,c,d,e,f,g);
398 		ROUND256(g,h,a,b,c,d,e,f);
399 		ROUND256(f,g,h,a,b,c,d,e);
400 		ROUND256(e,f,g,h,a,b,c,d);
401 		ROUND256(d,e,f,g,h,a,b,c);
402 		ROUND256(c,d,e,f,g,h,a,b);
403 		ROUND256(b,c,d,e,f,g,h,a);
404 	} while (j < 64);
405 
406 	/* Compute the current intermediate hash value */
407 	context->state[0] += a;
408 	context->state[1] += b;
409 	context->state[2] += c;
410 	context->state[3] += d;
411 	context->state[4] += e;
412 	context->state[5] += f;
413 	context->state[6] += g;
414 	context->state[7] += h;
415 
416 	/* Clean up */
417 	a = b = c = d = e = f = g = h = T1 = 0;
418 }
419 
420 #else /* SHA2_UNROLL_TRANSFORM */
421 
422 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
423 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
424 	sha2_word32	T1, T2, *W256;
425 	int		j;
426 
427 	W256 = (sha2_word32*)context->buffer;
428 
429 	/* Initialize registers with the prev. intermediate value */
430 	a = context->state[0];
431 	b = context->state[1];
432 	c = context->state[2];
433 	d = context->state[3];
434 	e = context->state[4];
435 	f = context->state[5];
436 	g = context->state[6];
437 	h = context->state[7];
438 
439 	j = 0;
440 	do {
441 #if BYTE_ORDER == LITTLE_ENDIAN
442 		/* Copy data while converting to host byte order */
443 		REVERSE32(*data++,W256[j]);
444 		/* Apply the SHA-256 compression function to update a..h */
445 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
446 #else /* BYTE_ORDER == LITTLE_ENDIAN */
447 		/* Apply the SHA-256 compression function to update a..h with copy */
448 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
449 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
450 		T2 = Sigma0_256(a) + Maj(a, b, c);
451 		h = g;
452 		g = f;
453 		f = e;
454 		e = d + T1;
455 		d = c;
456 		c = b;
457 		b = a;
458 		a = T1 + T2;
459 
460 		j++;
461 	} while (j < 16);
462 
463 	do {
464 		/* Part of the message block expansion: */
465 		s0 = W256[(j+1)&0x0f];
466 		s0 = sigma0_256(s0);
467 		s1 = W256[(j+14)&0x0f];
468 		s1 = sigma1_256(s1);
469 
470 		/* Apply the SHA-256 compression function to update a..h */
471 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
472 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
473 		T2 = Sigma0_256(a) + Maj(a, b, c);
474 		h = g;
475 		g = f;
476 		f = e;
477 		e = d + T1;
478 		d = c;
479 		c = b;
480 		b = a;
481 		a = T1 + T2;
482 
483 		j++;
484 	} while (j < 64);
485 
486 	/* Compute the current intermediate hash value */
487 	context->state[0] += a;
488 	context->state[1] += b;
489 	context->state[2] += c;
490 	context->state[3] += d;
491 	context->state[4] += e;
492 	context->state[5] += f;
493 	context->state[6] += g;
494 	context->state[7] += h;
495 
496 	/* Clean up */
497 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
498 }
499 
500 #endif /* SHA2_UNROLL_TRANSFORM */
501 
502 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
503 	unsigned int	freespace, usedspace;
504 
505 	if (len == 0) {
506 		/* Calling with no data is valid - we do nothing */
507 		return;
508 	}
509 
510 	/* Sanity check: */
511 	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
512 
513 	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
514 	if (usedspace > 0) {
515 		/* Calculate how much free space is available in the buffer */
516 		freespace = SHA256_BLOCK_LENGTH - usedspace;
517 
518 		if (len >= freespace) {
519 			/* Fill the buffer completely and process it */
520 			bcopy(data, &context->buffer[usedspace], freespace);
521 			context->bitcount += freespace << 3;
522 			len -= freespace;
523 			data += freespace;
524 			SHA256_Transform(context, (sha2_word32*)context->buffer);
525 		} else {
526 			/* The buffer is not yet full */
527 			bcopy(data, &context->buffer[usedspace], len);
528 			context->bitcount += len << 3;
529 			/* Clean up: */
530 			usedspace = freespace = 0;
531 			return;
532 		}
533 	}
534 	while (len >= SHA256_BLOCK_LENGTH) {
535 		/* Process as many complete blocks as we can */
536 		SHA256_Transform(context, (const sha2_word32*)data);
537 		context->bitcount += SHA256_BLOCK_LENGTH << 3;
538 		len -= SHA256_BLOCK_LENGTH;
539 		data += SHA256_BLOCK_LENGTH;
540 	}
541 	if (len > 0) {
542 		/* There's left-overs, so save 'em */
543 		bcopy(data, context->buffer, len);
544 		context->bitcount += len << 3;
545 	}
546 	/* Clean up: */
547 	usedspace = freespace = 0;
548 }
549 
550 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
551 	sha2_word32	*d = (sha2_word32*)digest;
552 	unsigned int	usedspace;
553 
554 	/* Sanity check: */
555 	assert(context != (SHA256_CTX*)0);
556 
557 	/* If no digest buffer is passed, we don't bother doing this: */
558 	if (digest != (sha2_byte*)0) {
559 		usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
560 #if BYTE_ORDER == LITTLE_ENDIAN
561 		/* Convert FROM host byte order */
562 		REVERSE64(context->bitcount,context->bitcount);
563 #endif
564 		if (usedspace > 0) {
565 			/* Begin padding with a 1 bit: */
566 			context->buffer[usedspace++] = 0x80;
567 
568 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
569 				/* Set-up for the last transform: */
570 				bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
571 			} else {
572 				if (usedspace < SHA256_BLOCK_LENGTH) {
573 					bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
574 				}
575 				/* Do second-to-last transform: */
576 				SHA256_Transform(context, (sha2_word32*)context->buffer);
577 
578 				/* And set-up for the last transform: */
579 				bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
580 			}
581 		} else {
582 			/* Set-up for the last transform: */
583 			bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
584 
585 			/* Begin padding with a 1 bit: */
586 			*context->buffer = 0x80;
587 		}
588 		/* Set the bit count: */
589 		*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
590 
591 		/* Final transform: */
592 		SHA256_Transform(context, (sha2_word32*)context->buffer);
593 
594 #if BYTE_ORDER == LITTLE_ENDIAN
595 		{
596 			/* Convert TO host byte order */
597 			int	j;
598 			for (j = 0; j < 8; j++) {
599 				REVERSE32(context->state[j],context->state[j]);
600 				*d++ = context->state[j];
601 			}
602 		}
603 #else
604 		bcopy(context->state, d, SHA256_DIGEST_LENGTH);
605 #endif
606 	}
607 
608 	/* Clean up state data: */
609 	bzero(context, sizeof(context));
610 	usedspace = 0;
611 }
612 
613 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
614 	sha2_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
615 	int		i;
616 
617 	/* Sanity check: */
618 	assert(context != (SHA256_CTX*)0);
619 
620 	if (buffer != (char*)0) {
621 		SHA256_Final(digest, context);
622 
623 		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
624 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
625 			*buffer++ = sha2_hex_digits[*d & 0x0f];
626 			d++;
627 		}
628 		*buffer = (char)0;
629 	} else {
630 		bzero(context, sizeof(context));
631 	}
632 	bzero(digest, SHA256_DIGEST_LENGTH);
633 	return buffer;
634 }
635 
636 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
637 	SHA256_CTX	context;
638 
639 	SHA256_Init(&context);
640 	SHA256_Update(&context, data, len);
641 	return SHA256_End(&context, digest);
642 }
643 
644 
645 /*** SHA-512: *********************************************************/
646 void SHA512_Init(SHA512_CTX* context) {
647 	if (context == (SHA512_CTX*)0) {
648 		return;
649 	}
650 	bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
651 	bzero(context->buffer, SHA512_BLOCK_LENGTH);
652 	context->bitcount[0] = context->bitcount[1] =  0;
653 }
654 
655 #ifdef SHA2_UNROLL_TRANSFORM
656 
657 /* Unrolled SHA-512 round macros: */
658 #if BYTE_ORDER == LITTLE_ENDIAN
659 
660 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
661 	REVERSE64(*data++, W512[j]); \
662 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
663              K512[j] + W512[j]; \
664 	(d) += T1, \
665 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
666 	j++
667 
668 
669 #else /* BYTE_ORDER == LITTLE_ENDIAN */
670 
671 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
672 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
673              K512[j] + (W512[j] = *data++); \
674 	(d) += T1; \
675 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
676 	j++
677 
678 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
679 
680 #define ROUND512(a,b,c,d,e,f,g,h)	\
681 	s0 = W512[(j+1)&0x0f]; \
682 	s0 = sigma0_512(s0); \
683 	s1 = W512[(j+14)&0x0f]; \
684 	s1 = sigma1_512(s1); \
685 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
686              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
687 	(d) += T1; \
688 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
689 	j++
690 
691 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
692 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
693 	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
694 	int		j;
695 
696 	/* Initialize registers with the prev. intermediate value */
697 	a = context->state[0];
698 	b = context->state[1];
699 	c = context->state[2];
700 	d = context->state[3];
701 	e = context->state[4];
702 	f = context->state[5];
703 	g = context->state[6];
704 	h = context->state[7];
705 
706 	j = 0;
707 	do {
708 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
709 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
710 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
711 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
712 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
713 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
714 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
715 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
716 	} while (j < 16);
717 
718 	/* Now for the remaining rounds up to 79: */
719 	do {
720 		ROUND512(a,b,c,d,e,f,g,h);
721 		ROUND512(h,a,b,c,d,e,f,g);
722 		ROUND512(g,h,a,b,c,d,e,f);
723 		ROUND512(f,g,h,a,b,c,d,e);
724 		ROUND512(e,f,g,h,a,b,c,d);
725 		ROUND512(d,e,f,g,h,a,b,c);
726 		ROUND512(c,d,e,f,g,h,a,b);
727 		ROUND512(b,c,d,e,f,g,h,a);
728 	} while (j < 80);
729 
730 	/* Compute the current intermediate hash value */
731 	context->state[0] += a;
732 	context->state[1] += b;
733 	context->state[2] += c;
734 	context->state[3] += d;
735 	context->state[4] += e;
736 	context->state[5] += f;
737 	context->state[6] += g;
738 	context->state[7] += h;
739 
740 	/* Clean up */
741 	a = b = c = d = e = f = g = h = T1 = 0;
742 }
743 
744 #else /* SHA2_UNROLL_TRANSFORM */
745 
746 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
747 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
748 	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
749 	int		j;
750 
751 	/* Initialize registers with the prev. intermediate value */
752 	a = context->state[0];
753 	b = context->state[1];
754 	c = context->state[2];
755 	d = context->state[3];
756 	e = context->state[4];
757 	f = context->state[5];
758 	g = context->state[6];
759 	h = context->state[7];
760 
761 	j = 0;
762 	do {
763 #if BYTE_ORDER == LITTLE_ENDIAN
764 		/* Convert TO host byte order */
765 		REVERSE64(*data++, W512[j]);
766 		/* Apply the SHA-512 compression function to update a..h */
767 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
768 #else /* BYTE_ORDER == LITTLE_ENDIAN */
769 		/* Apply the SHA-512 compression function to update a..h with copy */
770 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
771 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
772 		T2 = Sigma0_512(a) + Maj(a, b, c);
773 		h = g;
774 		g = f;
775 		f = e;
776 		e = d + T1;
777 		d = c;
778 		c = b;
779 		b = a;
780 		a = T1 + T2;
781 
782 		j++;
783 	} while (j < 16);
784 
785 	do {
786 		/* Part of the message block expansion: */
787 		s0 = W512[(j+1)&0x0f];
788 		s0 = sigma0_512(s0);
789 		s1 = W512[(j+14)&0x0f];
790 		s1 =  sigma1_512(s1);
791 
792 		/* Apply the SHA-512 compression function to update a..h */
793 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
794 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
795 		T2 = Sigma0_512(a) + Maj(a, b, c);
796 		h = g;
797 		g = f;
798 		f = e;
799 		e = d + T1;
800 		d = c;
801 		c = b;
802 		b = a;
803 		a = T1 + T2;
804 
805 		j++;
806 	} while (j < 80);
807 
808 	/* Compute the current intermediate hash value */
809 	context->state[0] += a;
810 	context->state[1] += b;
811 	context->state[2] += c;
812 	context->state[3] += d;
813 	context->state[4] += e;
814 	context->state[5] += f;
815 	context->state[6] += g;
816 	context->state[7] += h;
817 
818 	/* Clean up */
819 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
820 }
821 
822 #endif /* SHA2_UNROLL_TRANSFORM */
823 
824 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
825 	unsigned int	freespace, usedspace;
826 
827 	if (len == 0) {
828 		/* Calling with no data is valid - we do nothing */
829 		return;
830 	}
831 
832 	/* Sanity check: */
833 	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
834 
835 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
836 	if (usedspace > 0) {
837 		/* Calculate how much free space is available in the buffer */
838 		freespace = SHA512_BLOCK_LENGTH - usedspace;
839 
840 		if (len >= freespace) {
841 			/* Fill the buffer completely and process it */
842 			bcopy(data, &context->buffer[usedspace], freespace);
843 			ADDINC128(context->bitcount, freespace << 3);
844 			len -= freespace;
845 			data += freespace;
846 			SHA512_Transform(context, (sha2_word64*)context->buffer);
847 		} else {
848 			/* The buffer is not yet full */
849 			bcopy(data, &context->buffer[usedspace], len);
850 			ADDINC128(context->bitcount, len << 3);
851 			/* Clean up: */
852 			usedspace = freespace = 0;
853 			return;
854 		}
855 	}
856 	while (len >= SHA512_BLOCK_LENGTH) {
857 		/* Process as many complete blocks as we can */
858 		SHA512_Transform(context, (const sha2_word64*)data);
859 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
860 		len -= SHA512_BLOCK_LENGTH;
861 		data += SHA512_BLOCK_LENGTH;
862 	}
863 	if (len > 0) {
864 		/* There's left-overs, so save 'em */
865 		bcopy(data, context->buffer, len);
866 		ADDINC128(context->bitcount, len << 3);
867 	}
868 	/* Clean up: */
869 	usedspace = freespace = 0;
870 }
871 
872 void SHA512_Last(SHA512_CTX* context) {
873 	unsigned int	usedspace;
874 
875 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
876 #if BYTE_ORDER == LITTLE_ENDIAN
877 	/* Convert FROM host byte order */
878 	REVERSE64(context->bitcount[0],context->bitcount[0]);
879 	REVERSE64(context->bitcount[1],context->bitcount[1]);
880 #endif
881 	if (usedspace > 0) {
882 		/* Begin padding with a 1 bit: */
883 		context->buffer[usedspace++] = 0x80;
884 
885 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
886 			/* Set-up for the last transform: */
887 			bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
888 		} else {
889 			if (usedspace < SHA512_BLOCK_LENGTH) {
890 				bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
891 			}
892 			/* Do second-to-last transform: */
893 			SHA512_Transform(context, (sha2_word64*)context->buffer);
894 
895 			/* And set-up for the last transform: */
896 			bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
897 		}
898 	} else {
899 		/* Prepare for final transform: */
900 		bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
901 
902 		/* Begin padding with a 1 bit: */
903 		*context->buffer = 0x80;
904 	}
905 	/* Store the length of input data (in bits): */
906 	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
907 	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
908 
909 	/* Final transform: */
910 	SHA512_Transform(context, (sha2_word64*)context->buffer);
911 }
912 
913 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
914 	sha2_word64	*d = (sha2_word64*)digest;
915 
916 	/* Sanity check: */
917 	assert(context != (SHA512_CTX*)0);
918 
919 	/* If no digest buffer is passed, we don't bother doing this: */
920 	if (digest != (sha2_byte*)0) {
921 		SHA512_Last(context);
922 
923 		/* Save the hash data for output: */
924 #if BYTE_ORDER == LITTLE_ENDIAN
925 		{
926 			/* Convert TO host byte order */
927 			int	j;
928 			for (j = 0; j < 8; j++) {
929 				REVERSE64(context->state[j],context->state[j]);
930 				*d++ = context->state[j];
931 			}
932 		}
933 #else
934 		bcopy(context->state, d, SHA512_DIGEST_LENGTH);
935 #endif
936 	}
937 
938 	/* Zero out state data */
939 	bzero(context, sizeof(context));
940 }
941 
942 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
943 	sha2_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
944 	int		i;
945 
946 	/* Sanity check: */
947 	assert(context != (SHA512_CTX*)0);
948 
949 	if (buffer != (char*)0) {
950 		SHA512_Final(digest, context);
951 
952 		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
953 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
954 			*buffer++ = sha2_hex_digits[*d & 0x0f];
955 			d++;
956 		}
957 		*buffer = (char)0;
958 	} else {
959 		bzero(context, sizeof(context));
960 	}
961 	bzero(digest, SHA512_DIGEST_LENGTH);
962 	return buffer;
963 }
964 
965 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
966 	SHA512_CTX	context;
967 
968 	SHA512_Init(&context);
969 	SHA512_Update(&context, data, len);
970 	return SHA512_End(&context, digest);
971 }
972 
973 
974 /*** SHA-384: *********************************************************/
975 void SHA384_Init(SHA384_CTX* context) {
976 	if (context == (SHA384_CTX*)0) {
977 		return;
978 	}
979 	bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
980 	bzero(context->buffer, SHA384_BLOCK_LENGTH);
981 	context->bitcount[0] = context->bitcount[1] = 0;
982 }
983 
984 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
985 	SHA512_Update((SHA512_CTX*)context, data, len);
986 }
987 
988 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
989 	sha2_word64	*d = (sha2_word64*)digest;
990 
991 	/* Sanity check: */
992 	assert(context != (SHA384_CTX*)0);
993 
994 	/* If no digest buffer is passed, we don't bother doing this: */
995 	if (digest != (sha2_byte*)0) {
996 		SHA512_Last((SHA512_CTX*)context);
997 
998 		/* Save the hash data for output: */
999 #if BYTE_ORDER == LITTLE_ENDIAN
1000 		{
1001 			/* Convert TO host byte order */
1002 			int	j;
1003 			for (j = 0; j < 6; j++) {
1004 				REVERSE64(context->state[j],context->state[j]);
1005 				*d++ = context->state[j];
1006 			}
1007 		}
1008 #else
1009 		bcopy(context->state, d, SHA384_DIGEST_LENGTH);
1010 #endif
1011 	}
1012 
1013 	/* Zero out state data */
1014 	bzero(context, sizeof(context));
1015 }
1016 
1017 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1018 	sha2_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
1019 	int		i;
1020 
1021 	/* Sanity check: */
1022 	assert(context != (SHA384_CTX*)0);
1023 
1024 	if (buffer != (char*)0) {
1025 		SHA384_Final(digest, context);
1026 
1027 		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1028 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1029 			*buffer++ = sha2_hex_digits[*d & 0x0f];
1030 			d++;
1031 		}
1032 		*buffer = (char)0;
1033 	} else {
1034 		bzero(context, sizeof(context));
1035 	}
1036 	bzero(digest, SHA384_DIGEST_LENGTH);
1037 	return buffer;
1038 }
1039 
1040 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1041 	SHA384_CTX	context;
1042 
1043 	SHA384_Init(&context);
1044 	SHA384_Update(&context, data, len);
1045 	return SHA384_End(&context, digest);
1046 }
1047