1 /* $OpenBSD: cryptosoft.c,v 1.80 2015/12/10 21:00:51 naddy Exp $ */ 2 3 /* 4 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 5 * 6 * This code was written by Angelos D. Keromytis in Athens, Greece, in 7 * February 2000. Network Security Technologies Inc. (NSTI) kindly 8 * supported the development of this code. 9 * 10 * Copyright (c) 2000, 2001 Angelos D. Keromytis 11 * 12 * Permission to use, copy, and modify this software with or without fee 13 * is hereby granted, provided that this entire notice is included in 14 * all source code copies of any software which is or includes a copy or 15 * modification of this software. 16 * 17 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 18 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 19 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 20 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 21 * PURPOSE. 22 */ 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/mbuf.h> 28 #include <sys/errno.h> 29 #include <dev/rndvar.h> 30 #include <crypto/md5.h> 31 #include <crypto/sha1.h> 32 #include <crypto/rmd160.h> 33 #include <crypto/cast.h> 34 #include <crypto/cryptodev.h> 35 #include <crypto/cryptosoft.h> 36 #include <crypto/xform.h> 37 38 const u_int8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN] = { 39 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 40 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 41 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 42 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 43 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 44 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 45 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 46 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 47 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 48 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 49 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 50 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 51 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 52 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 53 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 54 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 55 }; 56 57 const u_int8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN] = { 58 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 59 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 60 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 61 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 62 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 63 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 64 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 65 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 66 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 67 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 68 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 69 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 70 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 71 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 72 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 73 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C 74 }; 75 76 77 struct swcr_data **swcr_sessions = NULL; 78 u_int32_t swcr_sesnum = 0; 79 int32_t swcr_id = -1; 80 81 #define COPYBACK(x, a, b, c, d) \ 82 do { \ 83 if ((x) == CRYPTO_BUF_MBUF) \ 84 m_copyback((struct mbuf *)a,b,c,d,M_NOWAIT); \ 85 else \ 86 cuio_copyback((struct uio *)a,b,c,d); \ 87 } while (0) 88 #define COPYDATA(x, a, b, c, d) \ 89 do { \ 90 if ((x) == CRYPTO_BUF_MBUF) \ 91 m_copydata((struct mbuf *)a,b,c,d); \ 92 else \ 93 cuio_copydata((struct uio *)a,b,c,d); \ 94 } while (0) 95 96 /* 97 * Apply a symmetric encryption/decryption algorithm. 98 */ 99 int 100 swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf, 101 int outtype) 102 { 103 unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat; 104 unsigned char *ivp, *nivp, iv2[EALG_MAX_BLOCK_LEN]; 105 struct enc_xform *exf; 106 int i, k, j, blks, ind, count, ivlen; 107 struct mbuf *m = NULL; 108 struct uio *uio = NULL; 109 110 exf = sw->sw_exf; 111 blks = exf->blocksize; 112 ivlen = exf->ivsize; 113 114 /* Check for non-padded data */ 115 if (crd->crd_len % blks) 116 return EINVAL; 117 118 if (outtype == CRYPTO_BUF_MBUF) 119 m = (struct mbuf *) buf; 120 else 121 uio = (struct uio *) buf; 122 123 /* Initialize the IV */ 124 if (crd->crd_flags & CRD_F_ENCRYPT) { 125 /* IV explicitly provided ? */ 126 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 127 bcopy(crd->crd_iv, iv, ivlen); 128 else 129 arc4random_buf(iv, ivlen); 130 131 /* Do we need to write the IV */ 132 if (!(crd->crd_flags & CRD_F_IV_PRESENT)) 133 COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv); 134 135 } else { /* Decryption */ 136 /* IV explicitly provided ? */ 137 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 138 bcopy(crd->crd_iv, iv, ivlen); 139 else { 140 /* Get IV off buf */ 141 COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv); 142 } 143 } 144 145 ivp = iv; 146 147 /* 148 * xforms that provide a reinit method perform all IV 149 * handling themselves. 150 */ 151 if (exf->reinit) 152 exf->reinit(sw->sw_kschedule, iv); 153 154 if (outtype == CRYPTO_BUF_MBUF) { 155 /* Find beginning of data */ 156 m = m_getptr(m, crd->crd_skip, &k); 157 if (m == NULL) 158 return EINVAL; 159 160 i = crd->crd_len; 161 162 while (i > 0) { 163 /* 164 * If there's insufficient data at the end of 165 * an mbuf, we have to do some copying. 166 */ 167 if (m->m_len < k + blks && m->m_len != k) { 168 m_copydata(m, k, blks, blk); 169 170 /* Actual encryption/decryption */ 171 if (exf->reinit) { 172 if (crd->crd_flags & CRD_F_ENCRYPT) { 173 exf->encrypt(sw->sw_kschedule, 174 blk); 175 } else { 176 exf->decrypt(sw->sw_kschedule, 177 blk); 178 } 179 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 180 /* XOR with previous block */ 181 for (j = 0; j < blks; j++) 182 blk[j] ^= ivp[j]; 183 184 exf->encrypt(sw->sw_kschedule, blk); 185 186 /* 187 * Keep encrypted block for XOR'ing 188 * with next block 189 */ 190 bcopy(blk, iv, blks); 191 ivp = iv; 192 } else { /* decrypt */ 193 /* 194 * Keep encrypted block for XOR'ing 195 * with next block 196 */ 197 nivp = (ivp == iv) ? iv2 : iv; 198 bcopy(blk, nivp, blks); 199 200 exf->decrypt(sw->sw_kschedule, blk); 201 202 /* XOR with previous block */ 203 for (j = 0; j < blks; j++) 204 blk[j] ^= ivp[j]; 205 ivp = nivp; 206 } 207 208 /* Copy back decrypted block */ 209 m_copyback(m, k, blks, blk, M_NOWAIT); 210 211 /* Advance pointer */ 212 m = m_getptr(m, k + blks, &k); 213 if (m == NULL) 214 return EINVAL; 215 216 i -= blks; 217 218 /* Could be done... */ 219 if (i == 0) 220 break; 221 } 222 223 /* Skip possibly empty mbufs */ 224 if (k == m->m_len) { 225 for (m = m->m_next; m && m->m_len == 0; 226 m = m->m_next) 227 ; 228 k = 0; 229 } 230 231 /* Sanity check */ 232 if (m == NULL) 233 return EINVAL; 234 235 /* 236 * Warning: idat may point to garbage here, but 237 * we only use it in the while() loop, only if 238 * there are indeed enough data. 239 */ 240 idat = mtod(m, unsigned char *) + k; 241 242 while (m->m_len >= k + blks && i > 0) { 243 if (exf->reinit) { 244 if (crd->crd_flags & CRD_F_ENCRYPT) { 245 exf->encrypt(sw->sw_kschedule, 246 idat); 247 } else { 248 exf->decrypt(sw->sw_kschedule, 249 idat); 250 } 251 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 252 /* XOR with previous block/IV */ 253 for (j = 0; j < blks; j++) 254 idat[j] ^= ivp[j]; 255 256 exf->encrypt(sw->sw_kschedule, idat); 257 ivp = idat; 258 } else { /* decrypt */ 259 /* 260 * Keep encrypted block to be used 261 * in next block's processing. 262 */ 263 nivp = (ivp == iv) ? iv2 : iv; 264 bcopy(idat, nivp, blks); 265 266 exf->decrypt(sw->sw_kschedule, idat); 267 268 /* XOR with previous block/IV */ 269 for (j = 0; j < blks; j++) 270 idat[j] ^= ivp[j]; 271 ivp = nivp; 272 } 273 274 idat += blks; 275 k += blks; 276 i -= blks; 277 } 278 } 279 } else { 280 /* Find beginning of data */ 281 count = crd->crd_skip; 282 ind = cuio_getptr(uio, count, &k); 283 if (ind == -1) 284 return EINVAL; 285 286 i = crd->crd_len; 287 288 while (i > 0) { 289 /* 290 * If there's insufficient data at the end, 291 * we have to do some copying. 292 */ 293 if (uio->uio_iov[ind].iov_len < k + blks && 294 uio->uio_iov[ind].iov_len != k) { 295 cuio_copydata(uio, count, blks, blk); 296 297 /* Actual encryption/decryption */ 298 if (exf->reinit) { 299 if (crd->crd_flags & CRD_F_ENCRYPT) { 300 exf->encrypt(sw->sw_kschedule, 301 blk); 302 } else { 303 exf->decrypt(sw->sw_kschedule, 304 blk); 305 } 306 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 307 /* XOR with previous block */ 308 for (j = 0; j < blks; j++) 309 blk[j] ^= ivp[j]; 310 311 exf->encrypt(sw->sw_kschedule, blk); 312 313 /* 314 * Keep encrypted block for XOR'ing 315 * with next block 316 */ 317 bcopy(blk, iv, blks); 318 ivp = iv; 319 } else { /* decrypt */ 320 /* 321 * Keep encrypted block for XOR'ing 322 * with next block 323 */ 324 nivp = (ivp == iv) ? iv2 : iv; 325 bcopy(blk, nivp, blks); 326 327 exf->decrypt(sw->sw_kschedule, blk); 328 329 /* XOR with previous block */ 330 for (j = 0; j < blks; j++) 331 blk[j] ^= ivp[j]; 332 ivp = nivp; 333 } 334 335 /* Copy back decrypted block */ 336 cuio_copyback(uio, count, blks, blk); 337 338 count += blks; 339 340 /* Advance pointer */ 341 ind = cuio_getptr(uio, count, &k); 342 if (ind == -1) 343 return (EINVAL); 344 345 i -= blks; 346 347 /* Could be done... */ 348 if (i == 0) 349 break; 350 } 351 352 /* 353 * Warning: idat may point to garbage here, but 354 * we only use it in the while() loop, only if 355 * there are indeed enough data. 356 */ 357 idat = (char *)uio->uio_iov[ind].iov_base + k; 358 359 while (uio->uio_iov[ind].iov_len >= k + blks && 360 i > 0) { 361 if (exf->reinit) { 362 if (crd->crd_flags & CRD_F_ENCRYPT) { 363 exf->encrypt(sw->sw_kschedule, 364 idat); 365 } else { 366 exf->decrypt(sw->sw_kschedule, 367 idat); 368 } 369 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 370 /* XOR with previous block/IV */ 371 for (j = 0; j < blks; j++) 372 idat[j] ^= ivp[j]; 373 374 exf->encrypt(sw->sw_kschedule, idat); 375 ivp = idat; 376 } else { /* decrypt */ 377 /* 378 * Keep encrypted block to be used 379 * in next block's processing. 380 */ 381 nivp = (ivp == iv) ? iv2 : iv; 382 bcopy(idat, nivp, blks); 383 384 exf->decrypt(sw->sw_kschedule, idat); 385 386 /* XOR with previous block/IV */ 387 for (j = 0; j < blks; j++) 388 idat[j] ^= ivp[j]; 389 ivp = nivp; 390 } 391 392 idat += blks; 393 count += blks; 394 k += blks; 395 i -= blks; 396 } 397 398 /* 399 * Advance to the next iov if the end of the current iov 400 * is aligned with the end of a cipher block. 401 * Note that the code is equivalent to calling: 402 * ind = cuio_getptr(uio, count, &k); 403 */ 404 if (i > 0 && k == uio->uio_iov[ind].iov_len) { 405 k = 0; 406 ind++; 407 if (ind >= uio->uio_iovcnt) 408 return (EINVAL); 409 } 410 } 411 } 412 413 return 0; /* Done with encryption/decryption */ 414 } 415 416 /* 417 * Compute keyed-hash authenticator. 418 */ 419 int 420 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd, 421 struct swcr_data *sw, caddr_t buf, int outtype) 422 { 423 unsigned char aalg[AALG_MAX_RESULT_LEN]; 424 struct auth_hash *axf; 425 union authctx ctx; 426 int err; 427 428 if (sw->sw_ictx == 0) 429 return EINVAL; 430 431 axf = sw->sw_axf; 432 433 bcopy(sw->sw_ictx, &ctx, axf->ctxsize); 434 435 if (outtype == CRYPTO_BUF_MBUF) 436 err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len, 437 (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update, 438 (caddr_t) &ctx); 439 else 440 err = cuio_apply((struct uio *) buf, crd->crd_skip, 441 crd->crd_len, 442 (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update, 443 (caddr_t) &ctx); 444 445 if (err) 446 return err; 447 448 if (crd->crd_flags & CRD_F_ESN) 449 axf->Update(&ctx, crd->crd_esn, 4); 450 451 switch (sw->sw_alg) { 452 case CRYPTO_MD5_HMAC: 453 case CRYPTO_SHA1_HMAC: 454 case CRYPTO_RIPEMD160_HMAC: 455 case CRYPTO_SHA2_256_HMAC: 456 case CRYPTO_SHA2_384_HMAC: 457 case CRYPTO_SHA2_512_HMAC: 458 if (sw->sw_octx == NULL) 459 return EINVAL; 460 461 axf->Final(aalg, &ctx); 462 bcopy(sw->sw_octx, &ctx, axf->ctxsize); 463 axf->Update(&ctx, aalg, axf->hashsize); 464 axf->Final(aalg, &ctx); 465 break; 466 } 467 468 /* Inject the authentication data */ 469 if (outtype == CRYPTO_BUF_MBUF) 470 COPYBACK(outtype, buf, crd->crd_inject, axf->authsize, aalg); 471 else 472 bcopy(aalg, crp->crp_mac, axf->authsize); 473 474 return 0; 475 } 476 477 /* 478 * Apply a combined encryption-authentication transformation 479 */ 480 int 481 swcr_authenc(struct cryptop *crp) 482 { 483 uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))]; 484 u_char *blk = (u_char *)blkbuf; 485 u_char aalg[AALG_MAX_RESULT_LEN]; 486 u_char iv[EALG_MAX_BLOCK_LEN]; 487 union authctx ctx; 488 struct cryptodesc *crd, *crda = NULL, *crde = NULL; 489 struct swcr_data *sw, *swa, *swe = NULL; 490 struct auth_hash *axf = NULL; 491 struct enc_xform *exf = NULL; 492 struct mbuf *m = NULL; 493 struct uio *uio = NULL; 494 caddr_t buf = (caddr_t)crp->crp_buf; 495 uint32_t *blkp; 496 int aadlen, blksz, i, ivlen, outtype, len, iskip, oskip; 497 498 ivlen = blksz = iskip = oskip = 0; 499 500 for (crd = crp->crp_desc; crd; crd = crd->crd_next) { 501 for (sw = swcr_sessions[crp->crp_sid & 0xffffffff]; 502 sw && sw->sw_alg != crd->crd_alg; 503 sw = sw->sw_next) 504 ; 505 if (sw == NULL) 506 return (EINVAL); 507 508 switch (sw->sw_alg) { 509 case CRYPTO_AES_GCM_16: 510 case CRYPTO_AES_GMAC: 511 case CRYPTO_CHACHA20_POLY1305: 512 swe = sw; 513 crde = crd; 514 exf = swe->sw_exf; 515 ivlen = exf->ivsize; 516 break; 517 case CRYPTO_AES_128_GMAC: 518 case CRYPTO_AES_192_GMAC: 519 case CRYPTO_AES_256_GMAC: 520 case CRYPTO_CHACHA20_POLY1305_MAC: 521 swa = sw; 522 crda = crd; 523 axf = swa->sw_axf; 524 if (swa->sw_ictx == 0) 525 return (EINVAL); 526 bcopy(swa->sw_ictx, &ctx, axf->ctxsize); 527 blksz = axf->blocksize; 528 break; 529 default: 530 return (EINVAL); 531 } 532 } 533 if (crde == NULL || crda == NULL) 534 return (EINVAL); 535 536 if (crp->crp_flags & CRYPTO_F_IMBUF) { 537 outtype = CRYPTO_BUF_MBUF; 538 m = (struct mbuf *)buf; 539 } else { 540 outtype = CRYPTO_BUF_IOV; 541 uio = (struct uio *)buf; 542 } 543 544 /* Initialize the IV */ 545 if (crde->crd_flags & CRD_F_ENCRYPT) { 546 /* IV explicitly provided ? */ 547 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 548 bcopy(crde->crd_iv, iv, ivlen); 549 else 550 arc4random_buf(iv, ivlen); 551 552 /* Do we need to write the IV */ 553 if (!(crde->crd_flags & CRD_F_IV_PRESENT)) 554 COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv); 555 556 } else { /* Decryption */ 557 /* IV explicitly provided ? */ 558 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 559 bcopy(crde->crd_iv, iv, ivlen); 560 else { 561 /* Get IV off buf */ 562 COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv); 563 } 564 } 565 566 /* Supply MAC with IV */ 567 if (axf->Reinit) 568 axf->Reinit(&ctx, iv, ivlen); 569 570 /* Supply MAC with AAD */ 571 aadlen = crda->crd_len; 572 /* 573 * Section 5 of RFC 4106 specifies that AAD construction consists of 574 * {SPI, ESN, SN} whereas the real packet contains only {SPI, SN}. 575 * Unfortunately it doesn't follow a good example set in the Section 576 * 3.3.2.1 of RFC 4303 where upper part of the ESN, located in the 577 * external (to the packet) memory buffer, is processed by the hash 578 * function in the end thus allowing to retain simple programming 579 * interfaces and avoid kludges like the one below. 580 */ 581 if (crda->crd_flags & CRD_F_ESN) { 582 aadlen += 4; 583 /* SPI */ 584 COPYDATA(outtype, buf, crda->crd_skip, 4, blk); 585 iskip = 4; /* loop below will start with an offset of 4 */ 586 /* ESN */ 587 bcopy(crda->crd_esn, blk + 4, 4); 588 oskip = iskip + 4; /* offset output buffer blk by 8 */ 589 } 590 for (i = iskip; i < crda->crd_len; i += axf->hashsize) { 591 len = MIN(crda->crd_len - i, axf->hashsize - oskip); 592 COPYDATA(outtype, buf, crda->crd_skip + i, len, blk + oskip); 593 bzero(blk + len + oskip, axf->hashsize - len - oskip); 594 axf->Update(&ctx, blk, axf->hashsize); 595 oskip = 0; /* reset initial output offset */ 596 } 597 598 if (exf->reinit) 599 exf->reinit(swe->sw_kschedule, iv); 600 601 /* Do encryption/decryption with MAC */ 602 for (i = 0; i < crde->crd_len; i += blksz) { 603 len = MIN(crde->crd_len - i, blksz); 604 if (len < blksz) 605 bzero(blk, blksz); 606 COPYDATA(outtype, buf, crde->crd_skip + i, len, blk); 607 if (crde->crd_flags & CRD_F_ENCRYPT) { 608 exf->encrypt(swe->sw_kschedule, blk); 609 axf->Update(&ctx, blk, len); 610 } else { 611 axf->Update(&ctx, blk, len); 612 exf->decrypt(swe->sw_kschedule, blk); 613 } 614 COPYBACK(outtype, buf, crde->crd_skip + i, len, blk); 615 } 616 617 /* Do any required special finalization */ 618 switch (crda->crd_alg) { 619 case CRYPTO_AES_128_GMAC: 620 case CRYPTO_AES_192_GMAC: 621 case CRYPTO_AES_256_GMAC: 622 /* length block */ 623 bzero(blk, axf->hashsize); 624 blkp = (uint32_t *)blk + 1; 625 *blkp = htobe32(aadlen * 8); 626 blkp = (uint32_t *)blk + 3; 627 *blkp = htobe32(crde->crd_len * 8); 628 axf->Update(&ctx, blk, axf->hashsize); 629 break; 630 case CRYPTO_CHACHA20_POLY1305_MAC: 631 /* length block */ 632 bzero(blk, axf->hashsize); 633 blkp = (uint32_t *)blk; 634 *blkp = htole32(aadlen); 635 blkp = (uint32_t *)blk + 2; 636 *blkp = htole32(crde->crd_len); 637 axf->Update(&ctx, blk, axf->hashsize); 638 break; 639 } 640 641 /* Finalize MAC */ 642 axf->Final(aalg, &ctx); 643 644 /* Inject the authentication data */ 645 if (outtype == CRYPTO_BUF_MBUF) 646 COPYBACK(outtype, buf, crda->crd_inject, axf->authsize, aalg); 647 else 648 bcopy(aalg, crp->crp_mac, axf->authsize); 649 650 return (0); 651 } 652 653 /* 654 * Apply a compression/decompression algorithm 655 */ 656 int 657 swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw, 658 caddr_t buf, int outtype) 659 { 660 u_int8_t *data, *out; 661 struct comp_algo *cxf; 662 int adj; 663 u_int32_t result; 664 665 cxf = sw->sw_cxf; 666 667 /* We must handle the whole buffer of data in one time 668 * then if there is not all the data in the mbuf, we must 669 * copy in a buffer. 670 */ 671 672 data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT); 673 if (data == NULL) 674 return (EINVAL); 675 COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data); 676 677 if (crd->crd_flags & CRD_F_COMP) 678 result = cxf->compress(data, crd->crd_len, &out); 679 else 680 result = cxf->decompress(data, crd->crd_len, &out); 681 682 free(data, M_CRYPTO_DATA, crd->crd_len); 683 if (result == 0) 684 return EINVAL; 685 686 /* Copy back the (de)compressed data. m_copyback is 687 * extending the mbuf as necessary. 688 */ 689 sw->sw_size = result; 690 /* Check the compressed size when doing compression */ 691 if (crd->crd_flags & CRD_F_COMP) { 692 if (result > crd->crd_len) { 693 /* Compression was useless, we lost time */ 694 free(out, M_CRYPTO_DATA, 0); 695 return 0; 696 } 697 } 698 699 COPYBACK(outtype, buf, crd->crd_skip, result, out); 700 if (result < crd->crd_len) { 701 adj = result - crd->crd_len; 702 if (outtype == CRYPTO_BUF_MBUF) { 703 adj = result - crd->crd_len; 704 m_adj((struct mbuf *)buf, adj); 705 } else { 706 struct uio *uio = (struct uio *)buf; 707 int ind; 708 709 adj = crd->crd_len - result; 710 ind = uio->uio_iovcnt - 1; 711 712 while (adj > 0 && ind >= 0) { 713 if (adj < uio->uio_iov[ind].iov_len) { 714 uio->uio_iov[ind].iov_len -= adj; 715 break; 716 } 717 718 adj -= uio->uio_iov[ind].iov_len; 719 uio->uio_iov[ind].iov_len = 0; 720 ind--; 721 uio->uio_iovcnt--; 722 } 723 } 724 } 725 free(out, M_CRYPTO_DATA, 0); 726 return 0; 727 } 728 729 /* 730 * Generate a new software session. 731 */ 732 int 733 swcr_newsession(u_int32_t *sid, struct cryptoini *cri) 734 { 735 struct swcr_data **swd; 736 struct auth_hash *axf; 737 struct enc_xform *txf; 738 struct comp_algo *cxf; 739 u_int32_t i; 740 int k; 741 742 if (sid == NULL || cri == NULL) 743 return EINVAL; 744 745 if (swcr_sessions) { 746 for (i = 1; i < swcr_sesnum; i++) 747 if (swcr_sessions[i] == NULL) 748 break; 749 } 750 751 if (swcr_sessions == NULL || i == swcr_sesnum) { 752 if (swcr_sessions == NULL) { 753 i = 1; /* We leave swcr_sessions[0] empty */ 754 swcr_sesnum = CRYPTO_SW_SESSIONS; 755 } else 756 swcr_sesnum *= 2; 757 758 swd = mallocarray(swcr_sesnum, sizeof(struct swcr_data *), 759 M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 760 if (swd == NULL) { 761 /* Reset session number */ 762 if (swcr_sesnum == CRYPTO_SW_SESSIONS) 763 swcr_sesnum = 0; 764 else 765 swcr_sesnum /= 2; 766 return ENOBUFS; 767 } 768 769 /* Copy existing sessions */ 770 if (swcr_sessions) { 771 bcopy(swcr_sessions, swd, 772 (swcr_sesnum / 2) * sizeof(struct swcr_data *)); 773 free(swcr_sessions, M_CRYPTO_DATA, 774 (swcr_sesnum / 2) * sizeof(struct swcr_data *)); 775 } 776 777 swcr_sessions = swd; 778 } 779 780 swd = &swcr_sessions[i]; 781 *sid = i; 782 783 while (cri) { 784 *swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA, 785 M_NOWAIT | M_ZERO); 786 if (*swd == NULL) { 787 swcr_freesession(i); 788 return ENOBUFS; 789 } 790 791 switch (cri->cri_alg) { 792 case CRYPTO_3DES_CBC: 793 txf = &enc_xform_3des; 794 goto enccommon; 795 case CRYPTO_BLF_CBC: 796 txf = &enc_xform_blf; 797 goto enccommon; 798 case CRYPTO_CAST_CBC: 799 txf = &enc_xform_cast5; 800 goto enccommon; 801 case CRYPTO_RIJNDAEL128_CBC: 802 txf = &enc_xform_rijndael128; 803 goto enccommon; 804 case CRYPTO_AES_CTR: 805 txf = &enc_xform_aes_ctr; 806 goto enccommon; 807 case CRYPTO_AES_XTS: 808 txf = &enc_xform_aes_xts; 809 goto enccommon; 810 case CRYPTO_AES_GCM_16: 811 txf = &enc_xform_aes_gcm; 812 goto enccommon; 813 case CRYPTO_AES_GMAC: 814 txf = &enc_xform_aes_gmac; 815 (*swd)->sw_exf = txf; 816 break; 817 case CRYPTO_CHACHA20_POLY1305: 818 txf = &enc_xform_chacha20_poly1305; 819 goto enccommon; 820 case CRYPTO_NULL: 821 txf = &enc_xform_null; 822 goto enccommon; 823 enccommon: 824 if (txf->ctxsize > 0) { 825 (*swd)->sw_kschedule = malloc(txf->ctxsize, 826 M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 827 if ((*swd)->sw_kschedule == NULL) { 828 swcr_freesession(i); 829 return EINVAL; 830 } 831 } 832 if (txf->setkey((*swd)->sw_kschedule, cri->cri_key, 833 cri->cri_klen / 8) < 0) { 834 swcr_freesession(i); 835 return EINVAL; 836 } 837 (*swd)->sw_exf = txf; 838 break; 839 840 case CRYPTO_MD5_HMAC: 841 axf = &auth_hash_hmac_md5_96; 842 goto authcommon; 843 case CRYPTO_SHA1_HMAC: 844 axf = &auth_hash_hmac_sha1_96; 845 goto authcommon; 846 case CRYPTO_RIPEMD160_HMAC: 847 axf = &auth_hash_hmac_ripemd_160_96; 848 goto authcommon; 849 case CRYPTO_SHA2_256_HMAC: 850 axf = &auth_hash_hmac_sha2_256_128; 851 goto authcommon; 852 case CRYPTO_SHA2_384_HMAC: 853 axf = &auth_hash_hmac_sha2_384_192; 854 goto authcommon; 855 case CRYPTO_SHA2_512_HMAC: 856 axf = &auth_hash_hmac_sha2_512_256; 857 goto authcommon; 858 authcommon: 859 (*swd)->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, 860 M_NOWAIT); 861 if ((*swd)->sw_ictx == NULL) { 862 swcr_freesession(i); 863 return ENOBUFS; 864 } 865 866 (*swd)->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA, 867 M_NOWAIT); 868 if ((*swd)->sw_octx == NULL) { 869 swcr_freesession(i); 870 return ENOBUFS; 871 } 872 873 for (k = 0; k < cri->cri_klen / 8; k++) 874 cri->cri_key[k] ^= HMAC_IPAD_VAL; 875 876 axf->Init((*swd)->sw_ictx); 877 axf->Update((*swd)->sw_ictx, cri->cri_key, 878 cri->cri_klen / 8); 879 axf->Update((*swd)->sw_ictx, hmac_ipad_buffer, 880 axf->blocksize - (cri->cri_klen / 8)); 881 882 for (k = 0; k < cri->cri_klen / 8; k++) 883 cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); 884 885 axf->Init((*swd)->sw_octx); 886 axf->Update((*swd)->sw_octx, cri->cri_key, 887 cri->cri_klen / 8); 888 axf->Update((*swd)->sw_octx, hmac_opad_buffer, 889 axf->blocksize - (cri->cri_klen / 8)); 890 891 for (k = 0; k < cri->cri_klen / 8; k++) 892 cri->cri_key[k] ^= HMAC_OPAD_VAL; 893 (*swd)->sw_axf = axf; 894 break; 895 896 case CRYPTO_AES_128_GMAC: 897 axf = &auth_hash_gmac_aes_128; 898 goto authenccommon; 899 case CRYPTO_AES_192_GMAC: 900 axf = &auth_hash_gmac_aes_192; 901 goto authenccommon; 902 case CRYPTO_AES_256_GMAC: 903 axf = &auth_hash_gmac_aes_256; 904 goto authenccommon; 905 case CRYPTO_CHACHA20_POLY1305_MAC: 906 axf = &auth_hash_chacha20_poly1305; 907 goto authenccommon; 908 authenccommon: 909 (*swd)->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, 910 M_NOWAIT); 911 if ((*swd)->sw_ictx == NULL) { 912 swcr_freesession(i); 913 return ENOBUFS; 914 } 915 axf->Init((*swd)->sw_ictx); 916 axf->Setkey((*swd)->sw_ictx, cri->cri_key, 917 cri->cri_klen / 8); 918 (*swd)->sw_axf = axf; 919 break; 920 921 case CRYPTO_DEFLATE_COMP: 922 cxf = &comp_algo_deflate; 923 (*swd)->sw_cxf = cxf; 924 break; 925 case CRYPTO_ESN: 926 /* nothing to do */ 927 break; 928 default: 929 swcr_freesession(i); 930 return EINVAL; 931 } 932 933 (*swd)->sw_alg = cri->cri_alg; 934 cri = cri->cri_next; 935 swd = &((*swd)->sw_next); 936 } 937 return 0; 938 } 939 940 /* 941 * Free a session. 942 */ 943 int 944 swcr_freesession(u_int64_t tid) 945 { 946 struct swcr_data *swd; 947 struct enc_xform *txf; 948 struct auth_hash *axf; 949 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; 950 951 if (sid > swcr_sesnum || swcr_sessions == NULL || 952 swcr_sessions[sid] == NULL) 953 return EINVAL; 954 955 /* Silently accept and return */ 956 if (sid == 0) 957 return 0; 958 959 while ((swd = swcr_sessions[sid]) != NULL) { 960 swcr_sessions[sid] = swd->sw_next; 961 962 switch (swd->sw_alg) { 963 case CRYPTO_3DES_CBC: 964 case CRYPTO_BLF_CBC: 965 case CRYPTO_CAST_CBC: 966 case CRYPTO_RIJNDAEL128_CBC: 967 case CRYPTO_AES_CTR: 968 case CRYPTO_AES_XTS: 969 case CRYPTO_AES_GCM_16: 970 case CRYPTO_AES_GMAC: 971 case CRYPTO_CHACHA20_POLY1305: 972 case CRYPTO_NULL: 973 txf = swd->sw_exf; 974 975 if (swd->sw_kschedule) { 976 explicit_bzero(swd->sw_kschedule, txf->ctxsize); 977 free(swd->sw_kschedule, M_CRYPTO_DATA, 0); 978 } 979 break; 980 981 case CRYPTO_MD5_HMAC: 982 case CRYPTO_SHA1_HMAC: 983 case CRYPTO_RIPEMD160_HMAC: 984 case CRYPTO_SHA2_256_HMAC: 985 case CRYPTO_SHA2_384_HMAC: 986 case CRYPTO_SHA2_512_HMAC: 987 axf = swd->sw_axf; 988 989 if (swd->sw_ictx) { 990 explicit_bzero(swd->sw_ictx, axf->ctxsize); 991 free(swd->sw_ictx, M_CRYPTO_DATA, 0); 992 } 993 if (swd->sw_octx) { 994 explicit_bzero(swd->sw_octx, axf->ctxsize); 995 free(swd->sw_octx, M_CRYPTO_DATA, 0); 996 } 997 break; 998 999 case CRYPTO_AES_128_GMAC: 1000 case CRYPTO_AES_192_GMAC: 1001 case CRYPTO_AES_256_GMAC: 1002 case CRYPTO_CHACHA20_POLY1305_MAC: 1003 axf = swd->sw_axf; 1004 1005 if (swd->sw_ictx) { 1006 explicit_bzero(swd->sw_ictx, axf->ctxsize); 1007 free(swd->sw_ictx, M_CRYPTO_DATA, 0); 1008 } 1009 break; 1010 } 1011 1012 free(swd, M_CRYPTO_DATA, 0); 1013 } 1014 return 0; 1015 } 1016 1017 /* 1018 * Process a software request. 1019 */ 1020 int 1021 swcr_process(struct cryptop *crp) 1022 { 1023 struct cryptodesc *crd; 1024 struct swcr_data *sw; 1025 u_int32_t lid; 1026 int type; 1027 1028 /* Sanity check */ 1029 if (crp == NULL) 1030 return EINVAL; 1031 1032 if (crp->crp_desc == NULL || crp->crp_buf == NULL) { 1033 crp->crp_etype = EINVAL; 1034 goto done; 1035 } 1036 1037 lid = crp->crp_sid & 0xffffffff; 1038 if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) { 1039 crp->crp_etype = ENOENT; 1040 goto done; 1041 } 1042 1043 if (crp->crp_flags & CRYPTO_F_IMBUF) 1044 type = CRYPTO_BUF_MBUF; 1045 else 1046 type = CRYPTO_BUF_IOV; 1047 1048 /* Go through crypto descriptors, processing as we go */ 1049 for (crd = crp->crp_desc; crd; crd = crd->crd_next) { 1050 /* 1051 * Find the crypto context. 1052 * 1053 * XXX Note that the logic here prevents us from having 1054 * XXX the same algorithm multiple times in a session 1055 * XXX (or rather, we can but it won't give us the right 1056 * XXX results). To do that, we'd need some way of differentiating 1057 * XXX between the various instances of an algorithm (so we can 1058 * XXX locate the correct crypto context). 1059 */ 1060 for (sw = swcr_sessions[lid]; 1061 sw && sw->sw_alg != crd->crd_alg; 1062 sw = sw->sw_next) 1063 ; 1064 1065 /* No such context ? */ 1066 if (sw == NULL) { 1067 crp->crp_etype = EINVAL; 1068 goto done; 1069 } 1070 1071 switch (sw->sw_alg) { 1072 case CRYPTO_NULL: 1073 break; 1074 case CRYPTO_3DES_CBC: 1075 case CRYPTO_BLF_CBC: 1076 case CRYPTO_CAST_CBC: 1077 case CRYPTO_RIJNDAEL128_CBC: 1078 case CRYPTO_AES_CTR: 1079 case CRYPTO_AES_XTS: 1080 if ((crp->crp_etype = swcr_encdec(crd, sw, 1081 crp->crp_buf, type)) != 0) 1082 goto done; 1083 break; 1084 case CRYPTO_MD5_HMAC: 1085 case CRYPTO_SHA1_HMAC: 1086 case CRYPTO_RIPEMD160_HMAC: 1087 case CRYPTO_SHA2_256_HMAC: 1088 case CRYPTO_SHA2_384_HMAC: 1089 case CRYPTO_SHA2_512_HMAC: 1090 if ((crp->crp_etype = swcr_authcompute(crp, crd, sw, 1091 crp->crp_buf, type)) != 0) 1092 goto done; 1093 break; 1094 1095 case CRYPTO_AES_GCM_16: 1096 case CRYPTO_AES_GMAC: 1097 case CRYPTO_AES_128_GMAC: 1098 case CRYPTO_AES_192_GMAC: 1099 case CRYPTO_AES_256_GMAC: 1100 case CRYPTO_CHACHA20_POLY1305: 1101 case CRYPTO_CHACHA20_POLY1305_MAC: 1102 crp->crp_etype = swcr_authenc(crp); 1103 goto done; 1104 1105 case CRYPTO_DEFLATE_COMP: 1106 if ((crp->crp_etype = swcr_compdec(crd, sw, 1107 crp->crp_buf, type)) != 0) 1108 goto done; 1109 else 1110 crp->crp_olen = (int)sw->sw_size; 1111 break; 1112 1113 default: 1114 /* Unknown/unsupported algorithm */ 1115 crp->crp_etype = EINVAL; 1116 goto done; 1117 } 1118 } 1119 1120 done: 1121 crypto_done(crp); 1122 return 0; 1123 } 1124 1125 /* 1126 * Initialize the driver, called from the kernel main(). 1127 */ 1128 void 1129 swcr_init(void) 1130 { 1131 int algs[CRYPTO_ALGORITHM_MAX + 1]; 1132 int flags = CRYPTOCAP_F_SOFTWARE; 1133 1134 swcr_id = crypto_get_driverid(flags); 1135 if (swcr_id < 0) { 1136 /* This should never happen */ 1137 panic("Software crypto device cannot initialize!"); 1138 } 1139 1140 bzero(algs, sizeof(algs)); 1141 1142 algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1143 algs[CRYPTO_BLF_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1144 algs[CRYPTO_CAST_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1145 algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1146 algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1147 algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1148 algs[CRYPTO_RIJNDAEL128_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1149 algs[CRYPTO_AES_CTR] = CRYPTO_ALG_FLAG_SUPPORTED; 1150 algs[CRYPTO_AES_XTS] = CRYPTO_ALG_FLAG_SUPPORTED; 1151 algs[CRYPTO_AES_GCM_16] = CRYPTO_ALG_FLAG_SUPPORTED; 1152 algs[CRYPTO_AES_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1153 algs[CRYPTO_DEFLATE_COMP] = CRYPTO_ALG_FLAG_SUPPORTED; 1154 algs[CRYPTO_NULL] = CRYPTO_ALG_FLAG_SUPPORTED; 1155 algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1156 algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1157 algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1158 algs[CRYPTO_AES_128_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1159 algs[CRYPTO_AES_192_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1160 algs[CRYPTO_AES_256_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1161 algs[CRYPTO_CHACHA20_POLY1305] = CRYPTO_ALG_FLAG_SUPPORTED; 1162 algs[CRYPTO_CHACHA20_POLY1305_MAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1163 algs[CRYPTO_ESN] = CRYPTO_ALG_FLAG_SUPPORTED; 1164 1165 crypto_register(swcr_id, algs, swcr_newsession, 1166 swcr_freesession, swcr_process); 1167 } 1168