xref: /openbsd-src/sys/arch/sparc64/fpu/fpu_explode.c (revision db3296cf5c1dd9058ceecc3a29fe4aaa0bd26000)
1 /*	$OpenBSD: fpu_explode.c,v 1.3 2003/06/02 23:27:55 millert Exp $	*/
2 /*	$NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $ */
3 
4 /*
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  * All advertising materials mentioning features or use of this software
13  * must display the following acknowledgement:
14  *	This product includes software developed by the University of
15  *	California, Lawrence Berkeley Laboratory.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
42  */
43 
44 /*
45  * FPU subroutines: `explode' the machine's `packed binary' format numbers
46  * into our internal format.
47  */
48 
49 #include <sys/types.h>
50 #include <sys/systm.h>
51 
52 #include <machine/ieee.h>
53 #include <machine/instr.h>
54 #include <machine/reg.h>
55 
56 #include <sparc64/fpu/fpu_arith.h>
57 #include <sparc64/fpu/fpu_emu.h>
58 #include <sparc64/fpu/fpu_extern.h>
59 
60 /*
61  * N.B.: in all of the following, we assume the FP format is
62  *
63  *	---------------------------
64  *	| s | exponent | fraction |
65  *	---------------------------
66  *
67  * (which represents -1**s * 1.fraction * 2**exponent), so that the
68  * sign bit is way at the top (bit 31), the exponent is next, and
69  * then the remaining bits mark the fraction.  A zero exponent means
70  * zero or denormalized (0.fraction rather than 1.fraction), and the
71  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
72  *
73  * Since the sign bit is always the topmost bit---this holds even for
74  * integers---we set that outside all the *tof functions.  Each function
75  * returns the class code for the new number (but note that we use
76  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
77  */
78 
79 /*
80  * int -> fpn.
81  */
82 int
83 fpu_itof(fp, i)
84 	register struct fpn *fp;
85 	register u_int i;
86 {
87 
88 	if (i == 0)
89 		return (FPC_ZERO);
90 	/*
91 	 * The value FP_1 represents 2^FP_LG, so set the exponent
92 	 * there and let normalization fix it up.  Convert negative
93 	 * numbers to sign-and-magnitude.  Note that this relies on
94 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
95 	 */
96 	fp->fp_exp = FP_LG;
97 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
98 	fp->fp_mant[1] = 0;
99 	fp->fp_mant[2] = 0;
100 	fp->fp_mant[3] = 0;
101 	fpu_norm(fp);
102 	return (FPC_NUM);
103 }
104 
105 #ifdef SUN4U
106 /*
107  * 64-bit int -> fpn.
108  */
109 int
110 fpu_xtof(fp, i)
111 	register struct fpn *fp;
112 	register u_int64_t i;
113 {
114 	if (i == 0)
115 		return (FPC_ZERO);
116 
117 	/*
118 	 * The value FP_1 represents 2^FP_LG, so set the exponent
119 	 * there and let normalization fix it up.  Convert negative
120 	 * numbers to sign-and-magnitude.  Note that this relies on
121 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
122 	 */
123 	fp->fp_exp = FP_LG2;
124 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
125 	fp->fp_mant[2] = 0;
126 	fp->fp_mant[3] = 0;
127 	fpu_norm(fp);
128 	return (FPC_NUM);
129 }
130 #endif /* SUN4U */
131 
132 #define	mask(nbits) ((1L << (nbits)) - 1)
133 
134 /*
135  * All external floating formats convert to internal in the same manner,
136  * as defined here.  Note that only normals get an implied 1.0 inserted.
137  */
138 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
139 	if (exp == 0) { \
140 		if (allfrac == 0) \
141 			return (FPC_ZERO); \
142 		fp->fp_exp = 1 - expbias; \
143 		fp->fp_mant[0] = f0; \
144 		fp->fp_mant[1] = f1; \
145 		fp->fp_mant[2] = f2; \
146 		fp->fp_mant[3] = f3; \
147 		fpu_norm(fp); \
148 		return (FPC_NUM); \
149 	} \
150 	if (exp == (2 * expbias + 1)) { \
151 		if (allfrac == 0) \
152 			return (FPC_INF); \
153 		fp->fp_mant[0] = f0; \
154 		fp->fp_mant[1] = f1; \
155 		fp->fp_mant[2] = f2; \
156 		fp->fp_mant[3] = f3; \
157 		return (FPC_QNAN); \
158 	} \
159 	fp->fp_exp = exp - expbias; \
160 	fp->fp_mant[0] = FP_1 | f0; \
161 	fp->fp_mant[1] = f1; \
162 	fp->fp_mant[2] = f2; \
163 	fp->fp_mant[3] = f3; \
164 	return (FPC_NUM)
165 
166 /*
167  * 32-bit single precision -> fpn.
168  * We assume a single occupies at most (64-FP_LG) bits in the internal
169  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
170  */
171 int
172 fpu_stof(fp, i)
173 	register struct fpn *fp;
174 	register u_int i;
175 {
176 	register int exp;
177 	register u_int frac, f0, f1;
178 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
179 
180 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
181 	frac = i & mask(SNG_FRACBITS);
182 	f0 = frac >> SNG_SHIFT;
183 	f1 = frac << (32 - SNG_SHIFT);
184 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
185 }
186 
187 /*
188  * 64-bit double -> fpn.
189  * We assume this uses at most (96-FP_LG) bits.
190  */
191 int
192 fpu_dtof(fp, i, j)
193 	register struct fpn *fp;
194 	register u_int i, j;
195 {
196 	register int exp;
197 	register u_int frac, f0, f1, f2;
198 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
199 
200 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
201 	frac = i & mask(DBL_FRACBITS - 32);
202 	f0 = frac >> DBL_SHIFT;
203 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
204 	f2 = j << (32 - DBL_SHIFT);
205 	frac |= j;
206 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
207 }
208 
209 /*
210  * 128-bit extended -> fpn.
211  */
212 int
213 fpu_qtof(fp, i, j, k, l)
214 	register struct fpn *fp;
215 	register u_int i, j, k, l;
216 {
217 	register int exp;
218 	register u_int frac, f0, f1, f2, f3;
219 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
220 
221 	/*
222 	 * Note that ext and fpn `line up', hence no shifting needed.
223 	 */
224 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
225 	frac = i & mask(EXT_FRACBITS - 3 * 32);
226 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
227 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
228 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
229 	f3 = l << EXT_SHIFT;
230 	frac |= j | k | l;
231 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
232 }
233 
234 /*
235  * Explode the contents of a register / regpair / regquad.
236  * If the input is a signalling NaN, an NV (invalid) exception
237  * will be set.  (Note that nothing but NV can occur until ALU
238  * operations are performed.)
239  */
240 void
241 fpu_explode(fe, fp, type, reg)
242 	register struct fpemu *fe;
243 	register struct fpn *fp;
244 	int type, reg;
245 {
246 	register u_int s, *space;
247 #ifdef SUN4U
248 	u_int64_t l, *xspace;
249 
250 	xspace = (u_int64_t *)&fe->fe_fpstate->fs_regs[reg & ~1];
251 	l = xspace[0];
252 #endif /* SUN4U */
253 	space = &fe->fe_fpstate->fs_regs[reg];
254 	s = space[0];
255 	fp->fp_sign = s >> 31;
256 	fp->fp_sticky = 0;
257 	DPRINTF(FPE_INSN, ("fpu_explode: "));
258 	switch (type) {
259 #ifdef SUN4U
260 	case FTYPE_LNG:
261 		DPRINTF(FPE_INSN, ("LNG: %llx", l));
262 		s = fpu_xtof(fp, l);
263 		break;
264 #endif /* SUN4U */
265 
266 	case FTYPE_INT:
267 		DPRINTF(FPE_INSN, ("INT: %x", s));
268 		s = fpu_itof(fp, s);
269 		break;
270 
271 	case FTYPE_SNG:
272 		DPRINTF(FPE_INSN, ("SNG: %x", s));
273 		s = fpu_stof(fp, s);
274 		break;
275 
276 	case FTYPE_DBL:
277 		DPRINTF(FPE_INSN, ("DBL: %x %x", s, space[1]));
278 		s = fpu_dtof(fp, s, space[1]);
279 		break;
280 
281 	case FTYPE_EXT:
282 		DPRINTF(FPE_INSN, ("EXT: %x %x %x %x", s, space[1],
283 		    space[2], space[3]));
284 		s = fpu_qtof(fp, s, space[1], space[2], space[3]);
285 		break;
286 
287 	default:
288 		panic("fpu_explode");
289 	}
290 	DPRINTF(FPE_INSN, ("\n"));
291 
292 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
293 		/*
294 		 * Input is a signalling NaN.  All operations that return
295 		 * an input NaN operand put it through a ``NaN conversion'',
296 		 * which basically just means ``turn on the quiet bit''.
297 		 * We do this here so that all NaNs internally look quiet
298 		 * (we can tell signalling ones by their class).
299 		 */
300 		fp->fp_mant[0] |= FP_QUIETBIT;
301 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
302 		s = FPC_SNAN;
303 	}
304 	fp->fp_class = s;
305 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
306 	    ((type == FTYPE_INT) ? 'i' :
307 		((type == FTYPE_SNG) ? 's' :
308 		    ((type == FTYPE_DBL) ? 'd' :
309 			((type == FTYPE_EXT) ? 'q' : '?')))),
310 	    reg));
311 	DUMPFPN(FPE_REG, fp);
312 	DPRINTF(FPE_REG, ("\n"));
313 }
314