1 /* $OpenBSD: zs.c,v 1.22 2008/06/26 05:42:13 ray Exp $ */ 2 /* $NetBSD: zs.c,v 1.29 2001/05/30 15:24:24 lukem Exp $ */ 3 4 /*- 5 * Copyright (c) 1996 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Gordon W. Ross. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Zilog Z8530 Dual UART driver (machine-dependent part) 35 * 36 * Runs two serial lines per chip using slave drivers. 37 * Plain tty/async lines use the zs_async slave. 38 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves. 39 */ 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/conf.h> 44 #include <sys/device.h> 45 #include <sys/file.h> 46 #include <sys/ioctl.h> 47 #include <sys/kernel.h> 48 #include <sys/proc.h> 49 #include <sys/tty.h> 50 #include <sys/time.h> 51 #include <sys/syslog.h> 52 53 #include <machine/autoconf.h> 54 #include <machine/openfirm.h> 55 #include <machine/conf.h> 56 #include <machine/cpu.h> 57 #include <machine/psl.h> 58 #include <machine/z8530var.h> 59 60 #include <dev/cons.h> 61 #include <sparc64/dev/z8530reg.h> 62 #include <sparc64/dev/fhcvar.h> 63 #include <ddb/db_output.h> 64 65 #include <sparc64/dev/cons.h> 66 67 #include "zs.h" /* NZS */ 68 69 struct cfdriver zs_cd = { 70 NULL, "zs", DV_TTY 71 }; 72 73 /* Make life easier for the initialized arrays here. */ 74 #if NZS < 3 75 #undef NZS 76 #define NZS 3 77 #endif 78 79 /* 80 * Some warts needed by z8530tty.c - 81 * The default parity REALLY needs to be the same as the PROM uses, 82 * or you can not see messages done with printf during boot-up... 83 */ 84 int zs_def_cflag = (CREAD | CS8 | HUPCL); 85 int zs_major = 12; 86 87 /* 88 * The Sun provides a 4.9152 MHz clock to the ZS chips. 89 */ 90 #define PCLK (9600 * 512) /* PCLK pin input clock rate */ 91 92 #define ZS_DELAY() 93 94 /* The layout of this is hardware-dependent (padding, order). */ 95 struct zschan { 96 volatile u_char zc_csr; /* ctrl,status, and indirect access */ 97 u_char zc_xxx0; 98 volatile u_char zc_data; /* data */ 99 u_char zc_xxx1; 100 }; 101 struct zsdevice { 102 /* Yes, they are backwards. */ 103 struct zschan zs_chan_b; 104 struct zschan zs_chan_a; 105 }; 106 107 /* ZS channel used as the console device (if any) */ 108 void *zs_conschan_get, *zs_conschan_put; 109 110 /* Saved PROM mappings */ 111 static struct zsdevice *zsaddr[NZS]; 112 113 static u_char zs_init_reg[16] = { 114 0, /* 0: CMD (reset, etc.) */ 115 0, /* 1: No interrupts yet. */ 116 0, /* 2: IVECT */ 117 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 118 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, 119 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 120 0, /* 6: TXSYNC/SYNCLO */ 121 0, /* 7: RXSYNC/SYNCHI */ 122 0, /* 8: alias for data port */ 123 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR, 124 0, /*10: Misc. TX/RX control bits */ 125 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 126 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */ 127 0, /*13: BAUDHI (default=9600) */ 128 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, 129 ZSWR15_BREAK_IE, 130 }; 131 132 /* Console ops */ 133 static int zscngetc(dev_t); 134 static void zscnputc(dev_t, int); 135 static void zscnpollc(dev_t, int); 136 137 struct consdev zs_consdev = { 138 NULL, 139 NULL, 140 zscngetc, 141 zscnputc, 142 zscnpollc, 143 NULL, 144 }; 145 146 147 /**************************************************************** 148 * Autoconfig 149 ****************************************************************/ 150 151 /* Definition of the driver for autoconfig. */ 152 static int zs_match_sbus(struct device *, void *, void *); 153 static void zs_attach_sbus(struct device *, struct device *, void *); 154 155 static int zs_match_fhc(struct device *, void *, void *); 156 static void zs_attach_fhc(struct device *, struct device *, void *); 157 158 static void zs_attach(struct zsc_softc *, struct zsdevice *, int); 159 static int zs_print(void *, const char *name); 160 161 struct cfattach zs_sbus_ca = { 162 sizeof(struct zsc_softc), zs_match_sbus, zs_attach_sbus 163 }; 164 165 struct cfattach zs_fhc_ca = { 166 sizeof(struct zsc_softc), zs_match_fhc, zs_attach_fhc 167 }; 168 169 extern int stdinnode; 170 extern int fbnode; 171 172 /* Interrupt handlers. */ 173 int zscheckintr(void *); 174 static int zshard(void *); 175 static void zssoft(void *); 176 177 static int zs_get_speed(struct zs_chanstate *); 178 179 /* Console device support */ 180 static int zs_console_flags(int, int, int); 181 182 /* Power management hooks */ 183 int zs_enable(struct zs_chanstate *); 184 void zs_disable(struct zs_chanstate *); 185 186 /* 187 * Is the zs chip present? 188 */ 189 static int 190 zs_match_sbus(parent, vcf, aux) 191 struct device *parent; 192 void *vcf; 193 void *aux; 194 { 195 struct cfdata *cf = vcf; 196 struct sbus_attach_args *sa = aux; 197 198 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0) 199 return (0); 200 201 return (1); 202 } 203 204 static int 205 zs_match_fhc(parent, vcf, aux) 206 struct device *parent; 207 void *vcf; 208 void *aux; 209 { 210 struct cfdata *cf = vcf; 211 struct fhc_attach_args *fa = aux; 212 213 if (strcmp(cf->cf_driver->cd_name, fa->fa_name) != 0) 214 return (0); 215 return (1); 216 } 217 218 static void 219 zs_attach_sbus(parent, self, aux) 220 struct device *parent; 221 struct device *self; 222 void *aux; 223 { 224 struct zsc_softc *zsc = (void *) self; 225 struct sbus_attach_args *sa = aux; 226 int zs_unit = zsc->zsc_dev.dv_unit; 227 228 if (sa->sa_nintr == 0) { 229 printf(" no interrupt lines\n"); 230 return; 231 } 232 233 /* Use the mapping setup by the Sun PROM. */ 234 if (zsaddr[zs_unit] == NULL) { 235 /* Only map registers once. */ 236 if (sa->sa_npromvaddrs) { 237 /* 238 * We're converting from a 32-bit pointer to a 64-bit 239 * pointer. Since the 32-bit entity is negative, but 240 * the kernel is still mapped into the lower 4GB 241 * range, this needs to be zero-extended. 242 * 243 * XXXXX If we map the kernel and devices into the 244 * high 4GB range, this needs to be changed to 245 * sign-extend the address. 246 */ 247 zsaddr[zs_unit] = 248 (struct zsdevice *) 249 (unsigned long int)sa->sa_promvaddrs[0]; 250 } else { 251 bus_space_handle_t kvaddr; 252 253 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot, 254 sa->sa_offset, 255 sa->sa_size, 256 BUS_SPACE_MAP_LINEAR, 257 0, &kvaddr) != 0) { 258 printf("%s @ sbus: cannot map registers\n", 259 self->dv_xname); 260 return; 261 } 262 zsaddr[zs_unit] = (struct zsdevice *) 263 bus_space_vaddr(sa->sa_bustag, kvaddr); 264 } 265 } 266 zsc->zsc_bustag = sa->sa_bustag; 267 zsc->zsc_dmatag = sa->sa_dmatag; 268 zsc->zsc_promunit = getpropint(sa->sa_node, "slave", -2); 269 zsc->zsc_node = sa->sa_node; 270 zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri); 271 } 272 273 static void 274 zs_attach_fhc(parent, self, aux) 275 struct device *parent; 276 struct device *self; 277 void *aux; 278 { 279 struct zsc_softc *zsc = (void *) self; 280 struct fhc_attach_args *fa = aux; 281 int zs_unit = zsc->zsc_dev.dv_unit; 282 bus_space_handle_t kvaddr; 283 284 if (fa->fa_nreg < 1 && fa->fa_npromvaddrs < 1) { 285 printf(": no registers\n"); 286 return; 287 } 288 289 if (fa->fa_nintr < 1) { 290 printf(": no interrupts\n"); 291 return; 292 } 293 294 if (zsaddr[zs_unit] == NULL) { 295 if (fa->fa_npromvaddrs) { 296 /* 297 * We're converting from a 32-bit pointer to a 64-bit 298 * pointer. Since the 32-bit entity is negative, but 299 * the kernel is still mapped into the lower 4GB 300 * range, this needs to be zero-extended. 301 * 302 * XXXXX If we map the kernel and devices into the 303 * high 4GB range, this needs to be changed to 304 * sign-extend the address. 305 */ 306 zsaddr[zs_unit] = (struct zsdevice *) 307 (unsigned long int)fa->fa_promvaddrs[0]; 308 } else { 309 if (fhc_bus_map(fa->fa_bustag, fa->fa_reg[0].fbr_slot, 310 fa->fa_reg[0].fbr_offset, fa->fa_reg[0].fbr_size, 311 BUS_SPACE_MAP_LINEAR, &kvaddr) != 0) { 312 printf("%s @ fhc: cannot map registers\n", 313 self->dv_xname); 314 return; 315 } 316 zsaddr[zs_unit] = (struct zsdevice *) 317 bus_space_vaddr(fa->fa_bustag, kvaddr); 318 } 319 } 320 321 zsc->zsc_bustag = fa->fa_bustag; 322 zsc->zsc_dmatag = NULL; 323 zsc->zsc_promunit = getpropint(fa->fa_node, "slave", -2); 324 zsc->zsc_node = fa->fa_node; 325 326 zs_attach(zsc, zsaddr[zs_unit], fa->fa_intr[0]); 327 } 328 329 /* 330 * Attach a found zs. 331 * 332 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR 333 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? 334 */ 335 static void 336 zs_attach(zsc, zsd, pri) 337 struct zsc_softc *zsc; 338 struct zsdevice *zsd; 339 int pri; 340 { 341 struct zsc_attach_args zsc_args; 342 struct zs_chanstate *cs; 343 int s, channel, softpri = PIL_TTY; 344 345 if (zsd == NULL) { 346 printf("configuration incomplete\n"); 347 return; 348 } 349 350 printf(" softpri %d\n", softpri); 351 352 /* 353 * Initialize software state for each channel. 354 */ 355 for (channel = 0; channel < 2; channel++) { 356 struct zschan *zc; 357 struct device *child; 358 359 zsc_args.type = "serial"; 360 if (getproplen(zsc->zsc_node, "keyboard") == 0) { 361 if (channel == 0) 362 zsc_args.type = "keyboard"; 363 if (channel == 1) 364 zsc_args.type = "mouse"; 365 } 366 367 zsc_args.channel = channel; 368 cs = &zsc->zsc_cs_store[channel]; 369 zsc->zsc_cs[channel] = cs; 370 371 cs->cs_channel = channel; 372 cs->cs_private = NULL; 373 cs->cs_ops = &zsops_null; 374 cs->cs_brg_clk = PCLK / 16; 375 376 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b; 377 378 zsc_args.consdev = NULL; 379 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit, 380 zsc->zsc_node, 381 channel); 382 383 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) { 384 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV; 385 zsc_args.consdev = &zs_consdev; 386 } 387 388 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) { 389 zs_conschan_get = zc; 390 } 391 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) { 392 zs_conschan_put = zc; 393 } 394 /* Childs need to set cn_dev, etc */ 395 396 cs->cs_reg_csr = &zc->zc_csr; 397 cs->cs_reg_data = &zc->zc_data; 398 399 bcopy(zs_init_reg, cs->cs_creg, 16); 400 bcopy(zs_init_reg, cs->cs_preg, 16); 401 402 /* XXX: Consult PROM properties for this?! */ 403 cs->cs_defspeed = zs_get_speed(cs); 404 cs->cs_defcflag = zs_def_cflag; 405 406 /* Make these correspond to cs_defcflag (-crtscts) */ 407 cs->cs_rr0_dcd = ZSRR0_DCD; 408 cs->cs_rr0_cts = 0; 409 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 410 cs->cs_wr5_rts = 0; 411 412 /* 413 * Clear the master interrupt enable. 414 * The INTENA is common to both channels, 415 * so just do it on the A channel. 416 */ 417 if (channel == 0) { 418 zs_write_reg(cs, 9, 0); 419 } 420 421 /* 422 * Look for a child driver for this channel. 423 * The child attach will setup the hardware. 424 */ 425 if (!(child = 426 config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print))) { 427 /* No sub-driver. Just reset it. */ 428 u_char reset = (channel == 0) ? 429 ZSWR9_A_RESET : ZSWR9_B_RESET; 430 s = splzs(); 431 zs_write_reg(cs, 9, reset); 432 splx(s); 433 } 434 } 435 436 /* 437 * Now safe to install interrupt handlers. Note the arguments 438 * to the interrupt handlers aren't used. Note, we only do this 439 * once since both SCCs interrupt at the same level and vector. 440 */ 441 if (bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0, zshard, 442 zsc, zsc->zsc_dev.dv_xname) == NULL) 443 panic("zsattach: could not establish interrupt"); 444 if (!(zsc->zsc_softintr = softintr_establish(softpri, zssoft, zsc))) 445 panic("zsattach: could not establish soft interrupt"); 446 447 /* 448 * Set the master interrupt enable and interrupt vector. 449 * (common to both channels, do it on A) 450 */ 451 cs = zsc->zsc_cs[0]; 452 s = splhigh(); 453 /* interrupt vector */ 454 zs_write_reg(cs, 2, zs_init_reg[2]); 455 /* master interrupt control (enable) */ 456 zs_write_reg(cs, 9, zs_init_reg[9]); 457 splx(s); 458 459 } 460 461 static int 462 zs_print(aux, name) 463 void *aux; 464 const char *name; 465 { 466 struct zsc_attach_args *args = aux; 467 468 if (name != NULL) 469 printf("%s: ", name); 470 471 if (args->channel != -1) 472 printf(" channel %d", args->channel); 473 474 return (UNCONF); 475 } 476 477 /* Deprecate this? */ 478 static volatile int zssoftpending; 479 480 static int 481 zshard(arg) 482 void *arg; 483 { 484 struct zsc_softc *zsc = (struct zsc_softc *)arg; 485 int rr3, rval; 486 487 rval = 0; 488 while ((rr3 = zsc_intr_hard(zsc))) { 489 /* Count up the interrupts. */ 490 rval |= rr3; 491 } 492 if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) || 493 (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) && 494 zsc->zsc_softintr) { 495 zssoftpending = PIL_TTY; 496 softintr_schedule(zsc->zsc_softintr); 497 } 498 return (rval); 499 } 500 501 int 502 zscheckintr(arg) 503 void *arg; 504 { 505 struct zsc_softc *zsc; 506 int unit, rval; 507 508 rval = 0; 509 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) { 510 511 zsc = zs_cd.cd_devs[unit]; 512 if (zsc == NULL) 513 continue; 514 rval = (zshard((void *)zsc) || rval); 515 } 516 return (rval); 517 } 518 519 520 /* 521 * We need this only for TTY_DEBUG purposes. 522 */ 523 static void 524 zssoft(arg) 525 void *arg; 526 { 527 struct zsc_softc *zsc = (struct zsc_softc *)arg; 528 int s; 529 530 /* Make sure we call the tty layer at spltty. */ 531 s = spltty(); 532 zssoftpending = 0; 533 (void)zsc_intr_soft(zsc); 534 #ifdef TTY_DEBUG 535 { 536 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private; 537 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private; 538 if (zst0->zst_overflows || zst1->zst_overflows ) { 539 struct trapframe *frame = (struct trapframe *)arg; 540 541 printf("zs silo overflow from %p\n", 542 (long)frame->tf_pc); 543 } 544 } 545 #endif 546 splx(s); 547 } 548 549 550 /* 551 * Compute the current baud rate given a ZS channel. 552 */ 553 static int 554 zs_get_speed(cs) 555 struct zs_chanstate *cs; 556 { 557 int tconst; 558 559 tconst = zs_read_reg(cs, 12); 560 tconst |= zs_read_reg(cs, 13) << 8; 561 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); 562 } 563 564 /* 565 * MD functions for setting the baud rate and control modes. 566 */ 567 int 568 zs_set_speed(cs, bps) 569 struct zs_chanstate *cs; 570 int bps; /* bits per second */ 571 { 572 int tconst, real_bps; 573 574 if (bps == 0) 575 return (0); 576 577 #ifdef DIAGNOSTIC 578 if (cs->cs_brg_clk == 0) 579 panic("zs_set_speed"); 580 #endif 581 582 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); 583 if (tconst < 0) 584 return (EINVAL); 585 586 /* Convert back to make sure we can do it. */ 587 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); 588 589 /* XXX - Allow some tolerance here? */ 590 if (real_bps != bps) 591 return (EINVAL); 592 593 cs->cs_preg[12] = tconst; 594 cs->cs_preg[13] = tconst >> 8; 595 596 /* Caller will stuff the pending registers. */ 597 return (0); 598 } 599 600 int 601 zs_set_modes(cs, cflag) 602 struct zs_chanstate *cs; 603 int cflag; /* bits per second */ 604 { 605 int s; 606 607 /* 608 * Output hardware flow control on the chip is horrendous: 609 * if carrier detect drops, the receiver is disabled, and if 610 * CTS drops, the transmitter is stopped IN MID CHARACTER! 611 * Therefore, NEVER set the HFC bit, and instead use the 612 * status interrupt to detect CTS changes. 613 */ 614 s = splzs(); 615 cs->cs_rr0_pps = 0; 616 if ((cflag & (CLOCAL | MDMBUF)) != 0) { 617 cs->cs_rr0_dcd = 0; 618 if ((cflag & MDMBUF) == 0) 619 cs->cs_rr0_pps = ZSRR0_DCD; 620 } else 621 cs->cs_rr0_dcd = ZSRR0_DCD; 622 if ((cflag & CRTSCTS) != 0) { 623 cs->cs_wr5_dtr = ZSWR5_DTR; 624 cs->cs_wr5_rts = ZSWR5_RTS; 625 cs->cs_rr0_cts = ZSRR0_CTS; 626 #if 0 /* JLW */ 627 } else if ((cflag & CDTRCTS) != 0) { 628 cs->cs_wr5_dtr = 0; 629 cs->cs_wr5_rts = ZSWR5_DTR; 630 cs->cs_rr0_cts = ZSRR0_CTS; 631 #endif 632 } else if ((cflag & MDMBUF) != 0) { 633 cs->cs_wr5_dtr = 0; 634 cs->cs_wr5_rts = ZSWR5_DTR; 635 cs->cs_rr0_cts = ZSRR0_DCD; 636 } else { 637 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 638 cs->cs_wr5_rts = 0; 639 cs->cs_rr0_cts = 0; 640 } 641 splx(s); 642 643 /* Caller will stuff the pending registers. */ 644 return (0); 645 } 646 647 648 /* 649 * Read or write the chip with suitable delays. 650 */ 651 652 u_char 653 zs_read_reg(cs, reg) 654 struct zs_chanstate *cs; 655 u_char reg; 656 { 657 u_char val; 658 659 *cs->cs_reg_csr = reg; 660 ZS_DELAY(); 661 val = *cs->cs_reg_csr; 662 ZS_DELAY(); 663 return (val); 664 } 665 666 void 667 zs_write_reg(cs, reg, val) 668 struct zs_chanstate *cs; 669 u_char reg, val; 670 { 671 *cs->cs_reg_csr = reg; 672 ZS_DELAY(); 673 *cs->cs_reg_csr = val; 674 ZS_DELAY(); 675 } 676 677 u_char 678 zs_read_csr(cs) 679 struct zs_chanstate *cs; 680 { 681 u_char val; 682 683 val = *cs->cs_reg_csr; 684 ZS_DELAY(); 685 return (val); 686 } 687 688 void zs_write_csr(cs, val) 689 struct zs_chanstate *cs; 690 u_char val; 691 { 692 *cs->cs_reg_csr = val; 693 ZS_DELAY(); 694 } 695 696 u_char zs_read_data(cs) 697 struct zs_chanstate *cs; 698 { 699 u_char val; 700 701 val = *cs->cs_reg_data; 702 ZS_DELAY(); 703 return (val); 704 } 705 706 void zs_write_data(cs, val) 707 struct zs_chanstate *cs; 708 u_char val; 709 { 710 *cs->cs_reg_data = val; 711 ZS_DELAY(); 712 } 713 714 /**************************************************************** 715 * Console support functions (Sun specific!) 716 * Note: this code is allowed to know about the layout of 717 * the chip registers, and uses that to keep things simple. 718 * XXX - I think I like the mvme167 code better. -gwr 719 ****************************************************************/ 720 721 extern void Debugger(void); 722 723 /* 724 * Handle user request to enter kernel debugger. 725 */ 726 void 727 zs_abort(cs) 728 struct zs_chanstate *cs; 729 { 730 volatile struct zschan *zc = zs_conschan_get; 731 int rr0; 732 733 /* Wait for end of break to avoid PROM abort. */ 734 /* XXX - Limit the wait? */ 735 do { 736 rr0 = zc->zc_csr; 737 ZS_DELAY(); 738 } while (rr0 & ZSRR0_BREAK); 739 740 #if defined(KGDB) 741 zskgdb(cs); 742 #elif defined(DDB) 743 { 744 extern int db_active; 745 746 if (!db_active) 747 Debugger(); 748 else 749 /* Debugger is probably hozed */ 750 callrom(); 751 } 752 #else 753 printf("stopping on keyboard abort\n"); 754 callrom(); 755 #endif 756 } 757 758 759 /* 760 * Polled input char. 761 */ 762 int 763 zs_getc(arg) 764 void *arg; 765 { 766 volatile struct zschan *zc = arg; 767 int s, c, rr0; 768 769 s = splhigh(); 770 /* Wait for a character to arrive. */ 771 do { 772 rr0 = zc->zc_csr; 773 ZS_DELAY(); 774 } while ((rr0 & ZSRR0_RX_READY) == 0); 775 776 c = zc->zc_data; 777 ZS_DELAY(); 778 splx(s); 779 780 return (c); 781 } 782 783 /* 784 * Polled output char. 785 */ 786 void 787 zs_putc(arg, c) 788 void *arg; 789 int c; 790 { 791 volatile struct zschan *zc = arg; 792 int s, rr0; 793 794 s = splhigh(); 795 796 /* Wait for transmitter to become ready. */ 797 do { 798 rr0 = zc->zc_csr; 799 ZS_DELAY(); 800 } while ((rr0 & ZSRR0_TX_READY) == 0); 801 802 /* 803 * Send the next character. 804 * Now you'd think that this could be followed by a ZS_DELAY() 805 * just like all the other chip accesses, but it turns out that 806 * the `transmit-ready' interrupt isn't de-asserted until 807 * some period of time after the register write completes 808 * (more than a couple instructions). So to avoid stray 809 * interrupts we put in the 2us delay regardless of cpu model. 810 */ 811 zc->zc_data = c; 812 delay(2); 813 814 splx(s); 815 } 816 817 /*****************************************************************/ 818 819 820 821 822 /* 823 * Polled console input putchar. 824 */ 825 static int 826 zscngetc(dev) 827 dev_t dev; 828 { 829 return (zs_getc(zs_conschan_get)); 830 } 831 832 /* 833 * Polled console output putchar. 834 */ 835 static void 836 zscnputc(dev, c) 837 dev_t dev; 838 int c; 839 { 840 zs_putc(zs_conschan_put, c); 841 } 842 843 int swallow_zsintrs; 844 845 static void 846 zscnpollc(dev, on) 847 dev_t dev; 848 int on; 849 { 850 /* 851 * Need to tell zs driver to acknowledge all interrupts or we get 852 * annoying spurious interrupt messages. This is because mucking 853 * with spl() levels during polling does not prevent interrupts from 854 * being generated. 855 */ 856 857 if (on) swallow_zsintrs++; 858 else swallow_zsintrs--; 859 } 860 861 int 862 zs_console_flags(promunit, node, channel) 863 int promunit; 864 int node; 865 int channel; 866 { 867 int cookie, flags = 0; 868 u_int options; 869 char buf[255]; 870 871 /* 872 * We'll just to the OBP grovelling down here since that's 873 * the only type of firmware we support. 874 */ 875 options = OF_finddevice("/options"); 876 877 /* Default to channel 0 if there are no explicit prom args */ 878 cookie = 0; 879 880 if (node == OF_instance_to_package(OF_stdin())) { 881 if (OF_getprop(options, "input-device", 882 buf, sizeof(buf)) != -1) { 883 if (strncmp("ttyb", buf, strlen("ttyb")) == 0) 884 cookie = 1; 885 } 886 887 if (channel == cookie) 888 flags |= ZS_HWFLAG_CONSOLE_INPUT; 889 } 890 891 if (node == OF_instance_to_package(OF_stdout())) { 892 if (OF_getprop(options, "output-device", 893 buf, sizeof(buf)) != -1) { 894 if (strncmp("ttyb", buf, strlen("ttyb")) == 0) 895 cookie = 1; 896 } 897 898 if (channel == cookie) 899 flags |= ZS_HWFLAG_CONSOLE_OUTPUT; 900 } 901 902 return (flags); 903 } 904 905