xref: /openbsd-src/sys/arch/arm/include/pte.h (revision f2da64fbbbf1b03f09f390ab01267c93dfd77c4c)
1 /*	$OpenBSD: pte.h,v 1.8 2016/08/27 14:22:35 kettenis Exp $	*/
2 /*	$NetBSD: pte.h,v 1.6 2003/04/18 11:08:28 scw Exp $	*/
3 
4 /*
5  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
6  * All rights reserved.
7  *
8  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed for the NetBSD Project by
21  *	Wasabi Systems, Inc.
22  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23  *    or promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #ifndef _ARM_PTE_H_
40 #define	_ARM_PTE_H_
41 
42 /*
43  * The ARM MMU architecture was introduced with ARM v3 (previous ARM
44  * architecture versions used an optional off-CPU memory controller
45  * to perform address translation).
46  *
47  * The ARM MMU consists of a TLB and translation table walking logic.
48  * There is typically one TLB per memory interface (or, put another
49  * way, one TLB per software-visible cache).
50  *
51  * The ARM MMU is capable of mapping memory in the following chunks:
52  *
53  *	1M	Sections (L1 table)
54  *
55  *	64K	Large Pages (L2 table)
56  *
57  *	4K	Small Pages (L2 table)
58  *
59  *	1K	Tiny Pages (L2 table)
60  *
61  * There are two types of L2 tables: Coarse Tables and Fine Tables.
62  * Coarse Tables can map Large and Small Pages.  Fine Tables can
63  * map Tiny Pages.
64  *
65  * Coarse Tables can define 4 Subpages within Large and Small pages.
66  * Subpages define different permissions for each Subpage within
67  * a Page.
68  *
69  * Coarse Tables are 1K in length.  Fine tables are 4K in length.
70  *
71  * The Translation Table Base register holds the pointer to the
72  * L1 Table.  The L1 Table is a 16K contiguous chunk of memory
73  * aligned to a 16K boundary.  Each entry in the L1 Table maps
74  * 1M of virtual address space, either via a Section mapping or
75  * via an L2 Table.
76  *
77  * In addition, the Fast Context Switching Extension (FCSE) is available
78  * on some ARM v4 and ARM v5 processors.  FCSE is a way of eliminating
79  * TLB/cache flushes on context switch by use of a smaller address space
80  * and a "process ID" that modifies the virtual address before being
81  * presented to the translation logic.
82  */
83 
84 #ifndef _LOCORE
85 typedef uint32_t	pd_entry_t;	/* L1 table entry */
86 typedef uint32_t	pt_entry_t;	/* L2 table entry */
87 #endif /* _LOCORE */
88 
89 #define	L1_S_SIZE	0x00100000	/* 1M */
90 #define	L1_S_OFFSET	(L1_S_SIZE - 1)
91 #define	L1_S_FRAME	(~L1_S_OFFSET)
92 #define	L1_S_SHIFT	20
93 
94 #define	L2_L_SIZE	0x00010000	/* 64K */
95 #define	L2_L_OFFSET	(L2_L_SIZE - 1)
96 #define	L2_L_FRAME	(~L2_L_OFFSET)
97 #define	L2_L_SHIFT	16
98 
99 #define	L2_S_SIZE	0x00001000	/* 4K */
100 #define	L2_S_OFFSET	(L2_S_SIZE - 1)
101 #define	L2_S_FRAME	(~L2_S_OFFSET)
102 #define	L2_S_SHIFT	12
103 
104 #define	L2_T_SIZE	0x00000400	/* 1K */
105 #define	L2_T_OFFSET	(L2_T_SIZE - 1)
106 #define	L2_T_FRAME	(~L2_T_OFFSET)
107 #define	L2_T_SHIFT	10
108 
109 /*
110  * The NetBSD VM implementation only works on whole pages (4K),
111  * whereas the ARM MMU's Coarse tables are sized in terms of 1K
112  * (16K L1 table, 1K L2 table).
113  *
114  * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
115  * table.
116  */
117 #define	L1_ADDR_BITS	0xfff00000	/* L1 PTE address bits */
118 #define	L2_ADDR_BITS	0x000ff000	/* L2 PTE address bits */
119 
120 #define	L1_TABLE_SIZE	0x4000		/* 16K */
121 #define	L2_TABLE_SIZE	0x1000		/* 4K */
122 /*
123  * The new pmap deals with the 1KB coarse L2 tables by
124  * allocating them from a pool. Until every port has been converted,
125  * keep the old L2_TABLE_SIZE define lying around. Converted ports
126  * should use L2_TABLE_SIZE_REAL until then.
127  */
128 #define	L2_TABLE_SIZE_REAL	0x400	/* 1K */
129 
130 /*
131  * ARM L1 Descriptors
132  */
133 
134 #define	L1_TYPE_INV	0x00		/* Invalid (fault) */
135 #define	L1_TYPE_C	0x01		/* Coarse L2 */
136 #define	L1_TYPE_S	0x02		/* Section or Supersection */
137 #define	L1_TYPE_F	0x03		/* Fine L2 (pre-V7) */
138 #define	L1_TYPE_MASK	0x03		/* mask of type bits */
139 
140 /* L1 Section Descriptor */
141 #define	L1_S_B		0x00000004	/* bufferable Section */
142 #define	L1_S_C		0x00000008	/* cacheable Section */
143 #define	L1_S_IMP	0x00000010	/* implementation defined */
144 #define	L1_S_DOM(x)	((x) << 5)	/* domain */
145 #define	L1_S_DOM_MASK	L1_S_DOM(0xf)
146 #define	L1_S_AP(x)	((x) << 10)	/* access permissions */
147 #define	L1_S_ADDR_MASK	0xfff00000	/* phys address of section */
148 
149 #define	L1_S_XSCALE_P	0x00000200	/* ECC enable for this section */
150 #define	L1_S_XSCALE_TEX(x) ((x) << 12)	/* Type Extension */
151 
152 #define	L1_S_V7_TEX(x)	(((x) & 0x7) << 12)	/* Type Extension */
153 #define	L1_S_V7_TEX_MASK	(0x7 << 12)	/* Type Extension */
154 #define	L1_S_V7_NS	0x00080000	/* Non-secure */
155 #define	L1_S_V7_SS	0x00040000	/* Supersection */
156 #define	L1_S_V7_nG	0x00020000	/* not Global */
157 #define	L1_S_V7_S	0x00010000	/* Shareable */
158 #define	L1_S_V7_AP(x)	((((x) & 0x4) << 13) | (((x) & 0x2) << 10))	/* AP */
159 #define	L1_S_V7_AF	0x00000400	/* Access Flag */
160 #define	L1_S_V7_IMP	0x00000200	/* implementation defined */
161 #define	L1_S_V7_XN	0x00000010	/* eXecute Never */
162 #define	L1_S_V7_PXN	0x00000001	/* Privileged eXecute Never */
163 
164 /* L1 Coarse Descriptor */
165 #define	L1_C_IMP0	0x00000004	/* implementation defined */
166 #define	L1_C_IMP1	0x00000008	/* implementation defined */
167 #define	L1_C_IMP2	0x00000010	/* implementation defined */
168 #define	L1_C_DOM(x)	((x) << 5)	/* domain */
169 #define	L1_C_DOM_MASK	L1_C_DOM(0xf)
170 #define	L1_C_ADDR_MASK	0xfffffc00	/* phys address of L2 Table */
171 
172 #define	L1_C_XSCALE_P	0x00000200	/* ECC enable for this section */
173 
174 #define	L1_C_V7_IMP	0x00000200	/* implementation defined */
175 #define	L1_C_V7_NS	0x00000008	/* Non-secure */
176 #define	L1_C_V7_PXN	0x00000004	/* Privileged eXecute Never */
177 
178 /* L1 Fine Descriptor */
179 #define	L1_F_IMP0	0x00000004	/* implementation defined */
180 #define	L1_F_IMP1	0x00000008	/* implementation defined */
181 #define	L1_F_IMP2	0x00000010	/* implementation defined */
182 #define	L1_F_DOM(x)	((x) << 5)	/* domain */
183 #define	L1_F_DOM_MASK	L1_F_DOM(0xf)
184 #define	L1_F_ADDR_MASK	0xfffff000	/* phys address of L2 Table */
185 
186 #define	L1_F_XSCALE_P	0x00000200	/* ECC enable for this section */
187 
188 /*
189  * ARM L2 Descriptors
190  */
191 
192 #define	L2_TYPE_INV	0x00		/* Invalid (fault) */
193 #define	L2_TYPE_L	0x01		/* Large Page */
194 #define	L2_TYPE_S	0x02		/* Small Page */
195 #define	L2_TYPE_T	0x03		/* Tiny Page (pre-V7) */
196 #define	L2_TYPE_MASK	0x03		/* mask of type bits */
197 
198 	/*
199 	 * This L2 Descriptor type is available on XScale processors
200 	 * when using a Coarse L1 Descriptor.  The Extended Small
201 	 * Descriptor has the same format as the XScale Tiny Descriptor,
202 	 * but describes a 4K page, rather than a 1K page.
203 	 */
204 #define	L2_TYPE_XSCALE_XS 0x03		/* XScale Extended Small Page */
205 
206 #define	L2_B		0x00000004	/* Bufferable page */
207 #define	L2_C		0x00000008	/* Cacheable page */
208 #define	L2_AP0(x)	((x) << 4)	/* access permissions (sp 0) */
209 #define	L2_AP1(x)	((x) << 6)	/* access permissions (sp 1) */
210 #define	L2_AP2(x)	((x) << 8)	/* access permissions (sp 2) */
211 #define	L2_AP3(x)	((x) << 10)	/* access permissions (sp 3) */
212 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
213 
214 #define	L2_XSCALE_L_TEX(x) ((x) << 12)	/* Type Extension */
215 #define	L2_XSCALE_T_TEX(x) ((x) << 6)	/* Type Extension */
216 
217 #define	L2_V7_L_TEX(x)	(((x) & 0x7) << 12)	/* Type Extension */
218 #define	L2_V7_L_TEX_MASK	(0x7 << 12)	/* Type Extension */
219 #define	L2_V7_L_XN	0x00008000	/* eXecute Never */
220 #define	L2_V7_S_TEX(x)	(((x) & 0x7) << 6)	/* Type Extension */
221 #define	L2_V7_S_TEX_MASK	(0x7 << 6)	/* Type Extension */
222 #define	L2_V7_S_XN	0x00000001	/* eXecute Never */
223 
224 #define	L2_V7_AP(x)	((((x) & 0x4) << 7) | (((x) & 0x2) << 4))	/* AP */
225 #define	L2_V7_AF	0x00000010	/* Access Flag */
226 #define	L2_V7_S		0x00000400	/* Sharable */
227 #define	L2_V7_nG	0x00000800	/* not Global */
228 
229 /*
230  * Access Permissions for L1 and L2 Descriptors. (except for V7)
231  */
232 #define	AP_W		0x01		/* writable */
233 #define	AP_U		0x02		/* user */
234 
235 /*
236  * Short-hand for common AP_* constants.
237  *
238  * Note: These values assume the S (System) bit is set and
239  * the R (ROM) bit is clear in CP15 register 1.
240  */
241 #define	AP_KR		0x00		/* kernel read */
242 #define	AP_V7_KR	0x05
243 #define	AP_KRW		0x01		/* kernel read/write */
244 #define	AP_KRWUR	0x02		/* kernel read/write usr read */
245 #define	AP_V7_KRUR	0x07		/* kernel read usr read */
246 #define	AP_KRWURW	0x03		/* kernel read/write usr read/write */
247 
248 /*
249  * Domain Types for the Domain Access Control Register.
250  */
251 #define	DOMAIN_FAULT	0x00		/* no access */
252 #define	DOMAIN_CLIENT	0x01		/* client */
253 #define	DOMAIN_RESERVED	0x02		/* reserved */
254 #define	DOMAIN_MANAGER	0x03		/* manager */
255 
256 /*
257  * Type Extension bits for XScale processors.
258  *
259  * Behavior of C and B when X == 0:
260  *
261  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
262  * 0 0      N          N            -                 -
263  * 0 1      N          Y            -                 -
264  * 1 0      Y          Y       Write-through    Read Allocate
265  * 1 1      Y          Y        Write-back      Read Allocate
266  *
267  * Behavior of C and B when X == 1:
268  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
269  * 0 0      -          -            -                 -           DO NOT USE
270  * 0 1      N          Y            -                 -
271  * 1 0  Mini-Data      -            -                 -
272  * 1 1      Y          Y        Write-back       R/W Allocate
273  */
274 #define	TEX_XSCALE_X	0x01		/* X modifies C and B */
275 
276 #endif /* _ARM_PTE_H_ */
277