xref: /openbsd-src/sys/arch/arm/include/pmap.h (revision fc405d53b73a2d73393cb97f684863d17b583e38)
1 /*	$OpenBSD: pmap.h,v 1.54 2023/04/13 15:23:22 miod Exp $	*/
2 /*	$NetBSD: pmap.h,v 1.76 2003/09/06 09:10:46 rearnsha Exp $	*/
3 
4 /*
5  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
6  * All rights reserved.
7  *
8  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed for the NetBSD Project by
21  *	Wasabi Systems, Inc.
22  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23  *    or promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1994,1995 Mark Brinicombe.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by Mark Brinicombe
54  * 4. The name of the author may not be used to endorse or promote products
55  *    derived from this software without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
61  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
62  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
63  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
64  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
65  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
66  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 #ifndef	_ARM_PMAP_H_
70 #define	_ARM_PMAP_H_
71 
72 #ifdef _KERNEL
73 
74 #include <arm/cpuconf.h>
75 #include <arm/pte.h>
76 #ifndef _LOCORE
77 #include <arm/cpufunc.h>
78 #endif
79 
80 /*
81  * a pmap describes a processes' 4GB virtual address space.  this
82  * virtual address space can be broken up into 4096 1MB regions which
83  * are described by L1 PTEs in the L1 table.
84  *
85  * There is a line drawn at KERNEL_BASE.  Everything below that line
86  * changes when the VM context is switched.  Everything above that line
87  * is the same no matter which VM context is running.  This is achieved
88  * by making the L1 PTEs for those slots above KERNEL_BASE reference
89  * kernel L2 tables.
90  *
91  * The basic layout of the virtual address space thus looks like this:
92  *
93  *	0xffffffff
94  *	.
95  *	.
96  *	.
97  *	KERNEL_BASE
98  *	--------------------
99  *	.
100  *	.
101  *	.
102  *	0x00000000
103  */
104 
105 /*
106  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
107  * A bucket size of 16 provides for 16MB of contiguous virtual address
108  * space per l2_dtable. Most processes will, therefore, require only two or
109  * three of these to map their whole working set.
110  */
111 #define	L2_BUCKET_LOG2	4
112 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
113 
114 /*
115  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
116  * of l2_dtable structures required to track all possible page descriptors
117  * mappable by an L1 translation table is given by the following constants:
118  */
119 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
120 #define	L2_SIZE		(1 << L2_LOG2)
121 
122 #ifndef _LOCORE
123 
124 struct l1_ttable;
125 struct l2_dtable;
126 
127 /*
128  * Track cache/tlb occupancy using the following structure
129  */
130 union pmap_cache_state {
131 	struct {
132 		union {
133 			u_int8_t csu_cache_b[2];
134 			u_int16_t csu_cache;
135 		} cs_cache_u;
136 
137 		union {
138 			u_int8_t csu_tlb_b[2];
139 			u_int16_t csu_tlb;
140 		} cs_tlb_u;
141 	} cs_s;
142 	u_int32_t cs_all;
143 };
144 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
145 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
146 #define	cs_cache	cs_s.cs_cache_u.csu_cache
147 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
148 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
149 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
150 
151 /*
152  * Assigned to cs_all to force cacheops to work for a particular pmap
153  */
154 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
155 
156 /*
157  * This structure is used by machine-dependent code to describe
158  * static mappings of devices, created at bootstrap time.
159  */
160 struct pmap_devmap {
161 	vaddr_t		pd_va;		/* virtual address */
162 	paddr_t		pd_pa;		/* physical address */
163 	psize_t		pd_size;	/* size of region */
164 	vm_prot_t	pd_prot;	/* protection code */
165 	int		pd_cache;	/* cache attributes */
166 };
167 
168 /*
169  * The pmap structure itself
170  */
171 struct pmap {
172 	u_int8_t		pm_domain;
173 	int			pm_remove_all;
174 	struct l1_ttable	*pm_l1;
175 	union pmap_cache_state	pm_cstate;
176 	u_int			pm_refs;
177 	struct l2_dtable	*pm_l2[L2_SIZE];
178 	struct pmap_statistics	pm_stats;
179 };
180 
181 typedef struct pmap *pmap_t;
182 
183 /*
184  * MD flags that we use for pmap_enter (in the pa):
185  */
186 #define PMAP_PA_MASK	~((paddr_t)PAGE_MASK) /* to remove the flags */
187 #define PMAP_NOCACHE	0x1 /* non-cacheable memory. */
188 #define PMAP_DEVICE	0x2 /* device memory. */
189 
190 /*
191  * Physical / virtual address structure. In a number of places (particularly
192  * during bootstrapping) we need to keep track of the physical and virtual
193  * addresses of various pages
194  */
195 typedef struct pv_addr {
196 	SLIST_ENTRY(pv_addr) pv_list;
197 	paddr_t pv_pa;
198 	vaddr_t pv_va;
199 } pv_addr_t;
200 
201 /*
202  * Determine various modes for PTEs (user vs. kernel, cacheable
203  * vs. non-cacheable).
204  */
205 #define	PTE_KERNEL	0
206 #define	PTE_USER	1
207 #define	PTE_NOCACHE	0
208 #define	PTE_CACHE	1
209 #define	PTE_PAGETABLE	2
210 
211 /*
212  * Flags that indicate attributes of pages or mappings of pages.
213  *
214  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
215  * page.  PVF_WIRED and PVF_WRITE are kept in individual pv_entry's
216  * for each page.  They live in the same "namespace" so that we can
217  * clear multiple attributes at a time.
218  */
219 #define	PVF_MOD		0x01		/* page is modified */
220 #define	PVF_REF		0x02		/* page is referenced */
221 #define	PVF_WIRED	0x04		/* mapping is wired */
222 #define	PVF_WRITE	0x08		/* mapping is writable */
223 #define	PVF_EXEC	0x10		/* mapping is executable */
224 
225 /*
226  * Commonly referenced structures
227  */
228 extern struct pmap	kernel_pmap_store;
229 
230 /*
231  * Macros that we need to export
232  */
233 #define pmap_kernel()			(&kernel_pmap_store)
234 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
235 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
236 
237 #define	pmap_is_modified(pg)	\
238 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
239 #define	pmap_is_referenced(pg)	\
240 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
241 
242 #define	pmap_deactivate(p)		do { /* nothing */ } while (0)
243 
244 #define pmap_unuse_final(p)		do { /* nothing */ } while (0)
245 #define	pmap_remove_holes(vm)		do { /* nothing */ } while (0)
246 
247 /*
248  * Functions that we need to export
249  */
250 void	pmap_remove_all(pmap_t);
251 void	pmap_uncache_page(paddr_t, vaddr_t);
252 
253 #define PMAP_CHECK_COPYIN	1
254 
255 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
256 
257 /* Functions we use internally. */
258 void	pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
259 
260 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
261 int pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
262 int pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
263 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
264 
265 void	pmap_postinit(void);
266 
267 void	vector_page_setprot(int);
268 
269 /* XXX */
270 void pmap_kenter_cache(vaddr_t va, paddr_t pa, vm_prot_t prot, int cacheable);
271 
272 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
273 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
274 
275 /* Bootstrapping routines. */
276 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
277 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
278 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
279 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
280 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
281 void	pmap_devmap_register(const struct pmap_devmap *);
282 
283 /*
284  * The current top of kernel VM
285  */
286 extern vaddr_t	pmap_curmaxkvaddr;
287 
288 /*
289  * Useful macros and constants
290  */
291 
292 /* Virtual address to page table entry */
293 static __inline pt_entry_t *
294 vtopte(vaddr_t va)
295 {
296 	pd_entry_t *pdep;
297 	pt_entry_t *ptep;
298 
299 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
300 		return (NULL);
301 	return (ptep);
302 }
303 
304 /*
305  * The new pmap ensures that page-tables are always mapping Write-Thru.
306  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
307  * on every change.
308  *
309  * Unfortunately, not all CPUs have a write-through cache mode.  So we
310  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
311  * and if there is the chance for PTE syncs to be needed, we define
312  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
313  * the code.
314  */
315 extern int pmap_needs_pte_sync;
316 
317 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
318 #define	PMAP_INCLUDE_PTE_SYNC
319 
320 #define	PTE_SYNC(pte)							\
321 do {									\
322 	cpu_drain_writebuf();						\
323 	if (PMAP_NEEDS_PTE_SYNC) {					\
324 		paddr_t pa;						\
325 		cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
326 		if (cpu_sdcache_enabled()) { 				\
327 		(void)pmap_extract(pmap_kernel(), (vaddr_t)(pte), &pa);	\
328 		cpu_sdcache_wb_range((vaddr_t)(pte), (paddr_t)(pa),	\
329 		    sizeof(pt_entry_t));				\
330 		};							\
331 		cpu_drain_writebuf();					\
332 	}								\
333 } while (/*CONSTCOND*/0)
334 
335 #define	PTE_SYNC_RANGE(pte, cnt)					\
336 do {									\
337 	cpu_drain_writebuf();						\
338 	if (PMAP_NEEDS_PTE_SYNC) {					\
339 		paddr_t pa;						\
340 		cpu_dcache_wb_range((vaddr_t)(pte),			\
341 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
342 		if (cpu_sdcache_enabled()) { 				\
343 		(void)pmap_extract(pmap_kernel(), (vaddr_t)(pte), &pa);\
344 		cpu_sdcache_wb_range((vaddr_t)(pte), (paddr_t)(pa),	\
345 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
346 		};							\
347 		cpu_drain_writebuf();					\
348 	}								\
349 } while (/*CONSTCOND*/0)
350 
351 #define	l1pte_valid(pde)	(((pde) & L1_TYPE_MASK) != L1_TYPE_INV)
352 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
353 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
354 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
355 
356 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
357 #define	l2pte_valid(pte)	(((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
358 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
359 
360 /* L1 and L2 page table macros */
361 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
362 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
363 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
364 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
365 
366 /************************* ARM MMU configuration *****************************/
367 
368 #if (ARM_MMU_V7) != 0
369 void	pmap_copy_page_generic(struct vm_page *, struct vm_page *);
370 void	pmap_zero_page_generic(struct vm_page *);
371 
372 void	pmap_pte_init_generic(void);
373 void	pmap_pte_init_armv7(void);
374 #endif /* (ARM_MMU_V7) != 0 */
375 
376 #if ARM_MMU_V7 == 1
377 void	pmap_pte_init_v7(void);
378 #endif /* ARM_MMU_V7 == 1 */
379 
380 extern pt_entry_t		pte_l1_s_cache_mode;
381 extern pt_entry_t		pte_l1_s_cache_mask;
382 
383 extern pt_entry_t		pte_l2_l_cache_mode;
384 extern pt_entry_t		pte_l2_l_cache_mask;
385 
386 extern pt_entry_t		pte_l2_s_cache_mode;
387 extern pt_entry_t		pte_l2_s_cache_mask;
388 
389 extern pt_entry_t		pte_l1_s_cache_mode_pt;
390 extern pt_entry_t		pte_l2_l_cache_mode_pt;
391 extern pt_entry_t		pte_l2_s_cache_mode_pt;
392 
393 extern pt_entry_t		pte_l1_s_coherent;
394 extern pt_entry_t		pte_l2_l_coherent;
395 extern pt_entry_t		pte_l2_s_coherent;
396 
397 extern pt_entry_t		pte_l1_s_prot_ur;
398 extern pt_entry_t		pte_l1_s_prot_uw;
399 extern pt_entry_t		pte_l1_s_prot_kr;
400 extern pt_entry_t		pte_l1_s_prot_kw;
401 extern pt_entry_t		pte_l1_s_prot_mask;
402 
403 extern pt_entry_t		pte_l2_l_prot_ur;
404 extern pt_entry_t		pte_l2_l_prot_uw;
405 extern pt_entry_t		pte_l2_l_prot_kr;
406 extern pt_entry_t		pte_l2_l_prot_kw;
407 extern pt_entry_t		pte_l2_l_prot_mask;
408 
409 extern pt_entry_t		pte_l2_s_prot_ur;
410 extern pt_entry_t		pte_l2_s_prot_uw;
411 extern pt_entry_t		pte_l2_s_prot_kr;
412 extern pt_entry_t		pte_l2_s_prot_kw;
413 extern pt_entry_t		pte_l2_s_prot_mask;
414 
415 extern pt_entry_t		pte_l1_s_proto;
416 extern pt_entry_t		pte_l1_c_proto;
417 extern pt_entry_t		pte_l2_s_proto;
418 
419 extern void (*pmap_copy_page_func)(struct vm_page *, struct vm_page *);
420 extern void (*pmap_zero_page_func)(struct vm_page *);
421 
422 #endif /* !_LOCORE */
423 
424 /*****************************************************************************/
425 
426 /*
427  * Definitions for MMU domains
428  */
429 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
430 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
431 
432 /*
433  * These macros define the various bit masks in the PTE.
434  *
435  * We use these macros since we use different bits on different processor
436  * models.
437  */
438 #define	L1_S_PROT_UR_v7		(L1_S_V7_AP(AP_V7_KRUR))
439 #define	L1_S_PROT_UW_v7		(L1_S_V7_AP(AP_KRWURW))
440 #define	L1_S_PROT_KR_v7		(L1_S_V7_AP(AP_V7_KR))
441 #define	L1_S_PROT_KW_v7		(L1_S_V7_AP(AP_KRW))
442 #define	L1_S_PROT_MASK_v7	(L1_S_V7_AP(0x07))
443 
444 #define	L1_S_CACHE_MASK_v7	(L1_S_B|L1_S_C|L1_S_V7_TEX_MASK)
445 
446 #define	L1_S_COHERENT_v7	(L1_S_C)
447 
448 #define	L2_L_PROT_UR_v7		(L2_V7_AP(AP_V7_KRUR))
449 #define	L2_L_PROT_UW_v7		(L2_V7_AP(AP_KRWURW))
450 #define	L2_L_PROT_KR_v7		(L2_V7_AP(AP_V7_KR))
451 #define	L2_L_PROT_KW_v7		(L2_V7_AP(AP_KRW))
452 #define	L2_L_PROT_MASK_v7	(L2_V7_AP(0x07) | L2_V7_L_XN)
453 
454 #define	L2_L_CACHE_MASK_v7	(L2_B|L2_C|L2_V7_L_TEX_MASK)
455 
456 #define	L2_L_COHERENT_v7	(L2_C)
457 
458 #define	L2_S_PROT_UR_v7		(L2_V7_AP(AP_V7_KRUR))
459 #define	L2_S_PROT_UW_v7		(L2_V7_AP(AP_KRWURW))
460 #define	L2_S_PROT_KR_v7		(L2_V7_AP(AP_V7_KR))
461 #define	L2_S_PROT_KW_v7		(L2_V7_AP(AP_KRW))
462 #define	L2_S_PROT_MASK_v7	(L2_V7_AP(0x07) | L2_V7_S_XN)
463 
464 #define	L2_S_CACHE_MASK_v7	(L2_B|L2_C|L2_V7_S_TEX_MASK)
465 
466 #define	L2_S_COHERENT_v7	(L2_C)
467 
468 #define	L1_S_PROTO_v7		(L1_TYPE_S)
469 
470 #define	L1_C_PROTO_v7		(L1_TYPE_C)
471 
472 #define	L2_L_PROTO		(L2_TYPE_L)
473 
474 #define	L2_S_PROTO_v7		(L2_TYPE_S)
475 
476 /*
477  * User-visible names for the ones that vary with MMU class.
478  */
479 
480 #if ARM_NMMUS > 1
481 /* More than one MMU class configured; use variables. */
482 #define	L1_S_PROT_UR		pte_l1_s_prot_ur
483 #define	L1_S_PROT_UW		pte_l1_s_prot_uw
484 #define	L1_S_PROT_KR		pte_l1_s_prot_kr
485 #define	L1_S_PROT_KW		pte_l1_s_prot_kw
486 #define	L1_S_PROT_MASK		pte_l1_s_prot_mask
487 
488 #define	L2_L_PROT_UR		pte_l2_l_prot_ur
489 #define	L2_L_PROT_UW		pte_l2_l_prot_uw
490 #define	L2_L_PROT_KR		pte_l2_l_prot_kr
491 #define	L2_L_PROT_KW		pte_l2_l_prot_kw
492 #define	L2_L_PROT_MASK		pte_l2_l_prot_mask
493 
494 #define	L2_S_PROT_UR		pte_l2_s_prot_ur
495 #define	L2_S_PROT_UW		pte_l2_s_prot_uw
496 #define	L2_S_PROT_KR		pte_l2_s_prot_kr
497 #define	L2_S_PROT_KW		pte_l2_s_prot_kw
498 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
499 
500 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
501 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
502 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
503 
504 #define	L1_S_COHERENT		pte_l1_s_coherent
505 #define	L2_L_COHERENT		pte_l2_l_coherent
506 #define	L2_S_COHERENT		pte_l2_s_coherent
507 
508 #define	L1_S_PROTO		pte_l1_s_proto
509 #define	L1_C_PROTO		pte_l1_c_proto
510 #define	L2_S_PROTO		pte_l2_s_proto
511 
512 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
513 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
514 #elif ARM_MMU_V7 == 1
515 #define	L1_S_PROT_UR		L1_S_PROT_UR_v7
516 #define	L1_S_PROT_UW		L1_S_PROT_UW_v7
517 #define	L1_S_PROT_KR		L1_S_PROT_KR_v7
518 #define	L1_S_PROT_KW		L1_S_PROT_KW_v7
519 #define	L1_S_PROT_MASK		L1_S_PROT_MASK_v7
520 
521 #define	L2_L_PROT_UR		L2_L_PROT_UR_v7
522 #define	L2_L_PROT_UW		L2_L_PROT_UW_v7
523 #define	L2_L_PROT_KR		L2_L_PROT_KR_v7
524 #define	L2_L_PROT_KW		L2_L_PROT_KW_v7
525 #define	L2_L_PROT_MASK		L2_L_PROT_MASK_v7
526 
527 #define	L2_S_PROT_UR		L2_S_PROT_UR_v7
528 #define	L2_S_PROT_UW		L2_S_PROT_UW_v7
529 #define	L2_S_PROT_KR		L2_S_PROT_KR_v7
530 #define	L2_S_PROT_KW		L2_S_PROT_KW_v7
531 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_v7
532 
533 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_v7
534 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_v7
535 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_v7
536 
537 #define	L1_S_COHERENT		L1_S_COHERENT_v7
538 #define	L2_L_COHERENT		L2_L_COHERENT_v7
539 #define	L2_S_COHERENT		L2_S_COHERENT_v7
540 
541 #define	L1_S_PROTO		L1_S_PROTO_v7
542 #define	L1_C_PROTO		L1_C_PROTO_v7
543 #define	L2_S_PROTO		L2_S_PROTO_v7
544 
545 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
546 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
547 #endif /* ARM_NMMUS > 1 */
548 
549 /*
550  * These macros return various bits based on kernel/user and protection.
551  * Note that the compiler will usually fold these at compile time.
552  */
553 #ifndef _LOCORE
554 static __inline pt_entry_t
555 L1_S_PROT(int ku, vm_prot_t pr)
556 {
557 	pt_entry_t pte;
558 
559 	if (ku == PTE_USER)
560 		pte = (pr & PROT_WRITE) ? L1_S_PROT_UW : L1_S_PROT_UR;
561 	else
562 		pte = (pr & PROT_WRITE) ? L1_S_PROT_KW : L1_S_PROT_KR;
563 
564 	if ((pr & PROT_EXEC) == 0)
565 		pte |= L1_S_V7_XN;
566 
567 	return pte;
568 }
569 static __inline pt_entry_t
570 L2_L_PROT(int ku, vm_prot_t pr)
571 {
572 	pt_entry_t pte;
573 
574 	if (ku == PTE_USER)
575 		pte = (pr & PROT_WRITE) ? L2_L_PROT_UW : L2_L_PROT_UR;
576 	else
577 		pte = (pr & PROT_WRITE) ? L2_L_PROT_KW : L2_L_PROT_KR;
578 
579 	if ((pr & PROT_EXEC) == 0)
580 		pte |= L2_V7_L_XN;
581 
582 	return pte;
583 }
584 static __inline pt_entry_t
585 L2_S_PROT(int ku, vm_prot_t pr)
586 {
587 	pt_entry_t pte;
588 
589 	if (ku == PTE_USER)
590 		pte = (pr & PROT_WRITE) ? L2_S_PROT_UW : L2_S_PROT_UR;
591 	else
592 		pte = (pr & PROT_WRITE) ? L2_S_PROT_KW : L2_S_PROT_KR;
593 
594 	if ((pr & PROT_EXEC) == 0)
595 		pte |= L2_V7_S_XN;
596 
597 	return pte;
598 }
599 
600 static __inline int
601 l2pte_is_writeable(pt_entry_t pte, struct pmap *pm)
602 {
603 	return (pte & L2_V7_AP(0x4)) == 0;
604 }
605 #endif
606 
607 /*
608  * Macros to test if a mapping is mappable with an L1 Section mapping
609  * or an L2 Large Page mapping.
610  */
611 #define	L1_S_MAPPABLE_P(va, pa, size)					\
612 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
613 
614 #define	L2_L_MAPPABLE_P(va, pa, size)					\
615 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
616 
617 #endif /* _KERNEL */
618 
619 #ifndef _LOCORE
620 /*
621  * pmap-specific data store in the vm_page structure.
622  */
623 struct vm_page_md {
624 	struct pv_entry *pvh_list;		/* pv_entry list */
625 	int pvh_attrs;				/* page attributes */
626 };
627 
628 #define	VM_MDPAGE_INIT(pg)						\
629 do {									\
630 	(pg)->mdpage.pvh_list = NULL;					\
631 	(pg)->mdpage.pvh_attrs = 0;					\
632 } while (/*CONSTCOND*/0)
633 #endif /* _LOCORE */
634 
635 #endif	/* _ARM_PMAP_H_ */
636