xref: /openbsd-src/sys/arch/arm/include/pmap.h (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: pmap.h,v 1.9 2007/10/10 15:53:51 art Exp $	*/
2 /*	$NetBSD: pmap.h,v 1.76 2003/09/06 09:10:46 rearnsha Exp $	*/
3 
4 /*
5  * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
6  * All rights reserved.
7  *
8  * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed for the NetBSD Project by
21  *	Wasabi Systems, Inc.
22  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23  *    or promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1994,1995 Mark Brinicombe.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by Mark Brinicombe
54  * 4. The name of the author may not be used to endorse or promote products
55  *    derived from this software without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
61  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
62  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
63  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
64  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
65  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
66  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 #ifndef	_ARM32_PMAP_H_
70 #define	_ARM32_PMAP_H_
71 
72 #ifdef _KERNEL
73 
74 #include <arm/cpuconf.h>
75 #include <arm/pte.h>
76 #ifndef _LOCORE
77 #include <arm/cpufunc.h>
78 #endif
79 
80 /*
81  * a pmap describes a processes' 4GB virtual address space.  this
82  * virtual address space can be broken up into 4096 1MB regions which
83  * are described by L1 PTEs in the L1 table.
84  *
85  * There is a line drawn at KERNEL_BASE.  Everything below that line
86  * changes when the VM context is switched.  Everything above that line
87  * is the same no matter which VM context is running.  This is achieved
88  * by making the L1 PTEs for those slots above KERNEL_BASE reference
89  * kernel L2 tables.
90  *
91  * The basic layout of the virtual address space thus looks like this:
92  *
93  *	0xffffffff
94  *	.
95  *	.
96  *	.
97  *	KERNEL_BASE
98  *	--------------------
99  *	.
100  *	.
101  *	.
102  *	0x00000000
103  */
104 
105 /*
106  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
107  * A bucket size of 16 provides for 16MB of contiguous virtual address
108  * space per l2_dtable. Most processes will, therefore, require only two or
109  * three of these to map their whole working set.
110  */
111 #define	L2_BUCKET_LOG2	4
112 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
113 
114 /*
115  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
116  * of l2_dtable structures required to track all possible page descriptors
117  * mappable by an L1 translation table is given by the following constants:
118  */
119 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
120 #define	L2_SIZE		(1 << L2_LOG2)
121 
122 #ifndef _LOCORE
123 
124 struct l1_ttable;
125 struct l2_dtable;
126 
127 /*
128  * Track cache/tlb occupancy using the following structure
129  */
130 union pmap_cache_state {
131 	struct {
132 		union {
133 			u_int8_t csu_cache_b[2];
134 			u_int16_t csu_cache;
135 		} cs_cache_u;
136 
137 		union {
138 			u_int8_t csu_tlb_b[2];
139 			u_int16_t csu_tlb;
140 		} cs_tlb_u;
141 	} cs_s;
142 	u_int32_t cs_all;
143 };
144 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
145 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
146 #define	cs_cache	cs_s.cs_cache_u.csu_cache
147 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
148 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
149 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
150 
151 /*
152  * Assigned to cs_all to force cacheops to work for a particular pmap
153  */
154 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
155 
156 /*
157  * This structure is used by machine-dependent code to describe
158  * static mappings of devices, created at bootstrap time.
159  */
160 struct pmap_devmap {
161 	vaddr_t		pd_va;		/* virtual address */
162 	paddr_t		pd_pa;		/* physical address */
163 	psize_t		pd_size;	/* size of region */
164 	vm_prot_t	pd_prot;	/* protection code */
165 	int		pd_cache;	/* cache attributes */
166 };
167 
168 /*
169  * The pmap structure itself
170  */
171 struct pmap {
172 	u_int8_t		pm_domain;
173 	boolean_t		pm_remove_all;
174 	struct l1_ttable	*pm_l1;
175 	union pmap_cache_state	pm_cstate;
176 	u_int			pm_refs;
177 	simple_lock_data_t	pm_lock;
178 	struct l2_dtable	*pm_l2[L2_SIZE];
179 	struct pmap_statistics	pm_stats;
180 	LIST_ENTRY(pmap)	pm_list;
181 };
182 
183 typedef struct pmap *pmap_t;
184 
185 /*
186  * Physical / virtual address structure. In a number of places (particularly
187  * during bootstrapping) we need to keep track of the physical and virtual
188  * addresses of various pages
189  */
190 typedef struct pv_addr {
191 	SLIST_ENTRY(pv_addr) pv_list;
192 	paddr_t pv_pa;
193 	vaddr_t pv_va;
194 } pv_addr_t;
195 
196 /*
197  * Determine various modes for PTEs (user vs. kernel, cacheable
198  * vs. non-cacheable).
199  */
200 #define	PTE_KERNEL	0
201 #define	PTE_USER	1
202 #define	PTE_NOCACHE	0
203 #define	PTE_CACHE	1
204 #define	PTE_PAGETABLE	2
205 
206 /*
207  * Flags that indicate attributes of pages or mappings of pages.
208  *
209  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
210  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
211  * pv_entry's for each page.  They live in the same "namespace" so
212  * that we can clear multiple attributes at a time.
213  *
214  * Note the "non-cacheable" flag generally means the page has
215  * multiple mappings in a given address space.
216  */
217 #define	PVF_MOD		0x01		/* page is modified */
218 #define	PVF_REF		0x02		/* page is referenced */
219 #define	PVF_WIRED	0x04		/* mapping is wired */
220 #define	PVF_WRITE	0x08		/* mapping is writable */
221 #define	PVF_EXEC	0x10		/* mapping is executable */
222 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
223 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
224 #define	PVF_NC		(PVF_UNC|PVF_KNC)
225 
226 /*
227  * Commonly referenced structures
228  */
229 extern struct pmap	kernel_pmap_store;
230 extern int		pmap_debug_level; /* Only exists if PMAP_DEBUG */
231 
232 /*
233  * Macros that we need to export
234  */
235 #define pmap_kernel()			(&kernel_pmap_store)
236 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
237 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
238 
239 #define	pmap_is_modified(pg)	\
240 	(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
241 #define	pmap_is_referenced(pg)	\
242 	(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
243 
244 #define	pmap_deactivate(p)		do { /* nothing */ } while (0)
245 #define	pmap_copy(dp, sp, da, l, sa)	do { /* nothing */ } while (0)
246 
247 #define pmap_phys_address(ppn)		(ptoa(ppn))
248 
249 #define pmap_proc_iflush(p, va, len)	do { /* nothing */ } while (0)
250 #define pmap_unuse_final(p)		do { /* nothing */ } while (0)
251 #define	pmap_remove_holes(map)		do { /* nothing */ } while (0)
252 
253 /*
254  * Functions that we need to export
255  */
256 void	pmap_procwr(struct proc *, vaddr_t, int);
257 void	pmap_remove_all(pmap_t);
258 boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *);
259 
260 #define	PMAP_NEED_PROCWR
261 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
262 
263 /* Functions we use internally. */
264 void	pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
265 
266 int	pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
267 boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
268 boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
269 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
270 
271 void	pmap_debug(int);
272 void	pmap_postinit(void);
273 
274 void	vector_page_setprot(int);
275 
276 const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
277 const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
278 
279 /* Bootstrapping routines. */
280 void	pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
281 void	pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
282 vsize_t	pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
283 void	pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
284 void	pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
285 void	pmap_devmap_register(const struct pmap_devmap *);
286 
287 /*
288  * Special page zero routine for use by the idle loop (no cache cleans).
289  */
290 boolean_t	pmap_pageidlezero(struct vm_page *);
291 #define PMAP_PAGEIDLEZERO(pg)	pmap_pageidlezero((pg))
292 
293 /*
294  * The current top of kernel VM
295  */
296 extern vaddr_t	pmap_curmaxkvaddr;
297 
298 /*
299  * Useful macros and constants
300  */
301 
302 /* Virtual address to page table entry */
303 static __inline pt_entry_t *
304 vtopte(vaddr_t va)
305 {
306 	pd_entry_t *pdep;
307 	pt_entry_t *ptep;
308 
309 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
310 		return (NULL);
311 	return (ptep);
312 }
313 
314 /*
315  * The new pmap ensures that page-tables are always mapping Write-Thru.
316  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
317  * on every change.
318  *
319  * Unfortunately, not all CPUs have a write-through cache mode.  So we
320  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
321  * and if there is the chance for PTE syncs to be needed, we define
322  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
323  * the code.
324  */
325 extern int pmap_needs_pte_sync;
326 
327 /*
328  * StrongARM SA-1 caches do not have a write-through mode.  So, on these,
329  * we need to do PTE syncs.  If only SA-1 is configured, then evaluate
330  * this at compile time.
331  */
332 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
333 #define	PMAP_NEEDS_PTE_SYNC	1
334 #define	PMAP_INCLUDE_PTE_SYNC
335 #elif (ARM_MMU_SA1 == 0)
336 #define	PMAP_NEEDS_PTE_SYNC	0
337 #endif
338 
339 /*
340  * Provide a fallback in case we were not able to determine it at
341  * compile-time.
342  */
343 #ifndef PMAP_NEEDS_PTE_SYNC
344 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
345 #define	PMAP_INCLUDE_PTE_SYNC
346 #endif
347 
348 #define	PTE_SYNC(pte)							\
349 do {									\
350 	if (PMAP_NEEDS_PTE_SYNC)					\
351 		cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
352 } while (/*CONSTCOND*/0)
353 
354 #define	PTE_SYNC_RANGE(pte, cnt)					\
355 do {									\
356 	if (PMAP_NEEDS_PTE_SYNC) {					\
357 		cpu_dcache_wb_range((vaddr_t)(pte),			\
358 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
359 	}								\
360 } while (/*CONSTCOND*/0)
361 
362 #define	l1pte_valid(pde)	((pde) != 0)
363 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
364 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
365 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
366 
367 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
368 #define	l2pte_valid(pte)	((pte) != 0)
369 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
370 #define l2pte_minidata(pte)	(((pte) & \
371 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
372 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
373 
374 /* L1 and L2 page table macros */
375 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
376 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
377 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
378 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
379 
380 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
381 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
382 
383 /* Size of the kernel part of the L1 page table */
384 #define KERNEL_PD_SIZE	\
385 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
386 
387 /************************* ARM MMU configuration *****************************/
388 
389 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
390 void	pmap_copy_page_generic(struct vm_page *, struct vm_page *);
391 void	pmap_zero_page_generic(struct vm_page *);
392 
393 void	pmap_pte_init_generic(void);
394 #if defined(CPU_ARM8)
395 void	pmap_pte_init_arm8(void);
396 #endif
397 #if defined(CPU_ARM9)
398 void	pmap_pte_init_arm9(void);
399 #endif /* CPU_ARM9 */
400 #if defined(CPU_ARM10)
401 void	pmap_pte_init_arm10(void);
402 #endif /* CPU_ARM10 */
403 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
404 
405 #if ARM_MMU_SA1 == 1
406 void	pmap_pte_init_sa1(void);
407 #endif /* ARM_MMU_SA1 == 1 */
408 
409 #if ARM_MMU_XSCALE == 1
410 void	pmap_copy_page_xscale(struct vm_page *, struct vm_page *);
411 void	pmap_zero_page_xscale(struct vm_page *);
412 
413 void	pmap_pte_init_xscale(void);
414 
415 void	xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
416 
417 #define	PMAP_UAREA(va)		pmap_uarea(va)
418 void	pmap_uarea(vaddr_t);
419 #endif /* ARM_MMU_XSCALE == 1 */
420 
421 extern pt_entry_t		pte_l1_s_cache_mode;
422 extern pt_entry_t		pte_l1_s_cache_mask;
423 
424 extern pt_entry_t		pte_l2_l_cache_mode;
425 extern pt_entry_t		pte_l2_l_cache_mask;
426 
427 extern pt_entry_t		pte_l2_s_cache_mode;
428 extern pt_entry_t		pte_l2_s_cache_mask;
429 
430 extern pt_entry_t		pte_l1_s_cache_mode_pt;
431 extern pt_entry_t		pte_l2_l_cache_mode_pt;
432 extern pt_entry_t		pte_l2_s_cache_mode_pt;
433 
434 extern pt_entry_t		pte_l2_s_prot_u;
435 extern pt_entry_t		pte_l2_s_prot_w;
436 extern pt_entry_t		pte_l2_s_prot_mask;
437 
438 extern pt_entry_t		pte_l1_s_proto;
439 extern pt_entry_t		pte_l1_c_proto;
440 extern pt_entry_t		pte_l2_s_proto;
441 
442 extern void (*pmap_copy_page_func)(struct vm_page *, struct vm_page *);
443 extern void (*pmap_zero_page_func)(struct vm_page *);
444 
445 #endif /* !_LOCORE */
446 
447 /*****************************************************************************/
448 
449 /*
450  * tell MI code that the cache is virtually-indexed *and* virtually-tagged.
451  */
452 #define PMAP_CACHE_VIVT
453 
454 /*
455  * Definitions for MMU domains
456  */
457 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
458 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
459 
460 /*
461  * These macros define the various bit masks in the PTE.
462  *
463  * We use these macros since we use different bits on different processor
464  * models.
465  */
466 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
467 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
468 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
469 
470 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
471 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
472 
473 #define	L2_L_PROT_U		(L2_AP(AP_U))
474 #define	L2_L_PROT_W		(L2_AP(AP_W))
475 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
476 
477 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
478 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
479 
480 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
481 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
482 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
483 
484 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
485 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
486 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
487 
488 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
489 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
490 
491 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
492 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
493 
494 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
495 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
496 
497 #define	L2_L_PROTO		(L2_TYPE_L)
498 
499 #define	L2_S_PROTO_generic	(L2_TYPE_S)
500 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
501 
502 /*
503  * User-visible names for the ones that vary with MMU class.
504  */
505 
506 #if ARM_NMMUS > 1
507 /* More than one MMU class configured; use variables. */
508 #define	L2_S_PROT_U		pte_l2_s_prot_u
509 #define	L2_S_PROT_W		pte_l2_s_prot_w
510 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
511 
512 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
513 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
514 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
515 
516 #define	L1_S_PROTO		pte_l1_s_proto
517 #define	L1_C_PROTO		pte_l1_c_proto
518 #define	L2_S_PROTO		pte_l2_s_proto
519 
520 #define	pmap_copy_page(s, d)	(*pmap_copy_page_func)((s), (d))
521 #define	pmap_zero_page(d)	(*pmap_zero_page_func)((d))
522 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
523 #define	L2_S_PROT_U		L2_S_PROT_U_generic
524 #define	L2_S_PROT_W		L2_S_PROT_W_generic
525 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
526 
527 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
528 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
529 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
530 
531 #define	L1_S_PROTO		L1_S_PROTO_generic
532 #define	L1_C_PROTO		L1_C_PROTO_generic
533 #define	L2_S_PROTO		L2_S_PROTO_generic
534 
535 #define	pmap_copy_page(s, d)	pmap_copy_page_generic((s), (d))
536 #define	pmap_zero_page(d)	pmap_zero_page_generic((d))
537 #elif ARM_MMU_XSCALE == 1
538 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
539 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
540 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
541 
542 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
543 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
544 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
545 
546 #define	L1_S_PROTO		L1_S_PROTO_xscale
547 #define	L1_C_PROTO		L1_C_PROTO_xscale
548 #define	L2_S_PROTO		L2_S_PROTO_xscale
549 
550 #define	pmap_copy_page(s, d)	pmap_copy_page_xscale((s), (d))
551 #define	pmap_zero_page(d)	pmap_zero_page_xscale((d))
552 #endif /* ARM_NMMUS > 1 */
553 
554 /*
555  * These macros return various bits based on kernel/user and protection.
556  * Note that the compiler will usually fold these at compile time.
557  */
558 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
559 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
560 
561 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
562 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
563 
564 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
565 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
566 
567 /*
568  * Macros to test if a mapping is mappable with an L1 Section mapping
569  * or an L2 Large Page mapping.
570  */
571 #define	L1_S_MAPPABLE_P(va, pa, size)					\
572 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
573 
574 #define	L2_L_MAPPABLE_P(va, pa, size)					\
575 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
576 
577 #endif /* _KERNEL */
578 
579 #endif	/* _ARM32_PMAP_H_ */
580