xref: /openbsd-src/regress/lib/libm/msun/csqrt_test.c (revision 4e1ee0786f11cc571bd0be17d38e46f635c719fc)
1 /*	$OpenBSD: csqrt_test.c,v 1.1 2021/10/22 18:00:22 mbuhl Exp $	*/
2 /*-
3  * Copyright (c) 2007 David Schultz <das@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include "macros.h"
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 
35 #include <complex.h>
36 #include <float.h>
37 #include <math.h>
38 #include <stdio.h>
39 
40 #include "test-utils.h"
41 
42 /*
43  * This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf().
44  * The latter two convert to float or double, respectively, and test csqrtf()
45  * and csqrt() with the same arguments.
46  */
47 static long double complex (*t_csqrt)(long double complex);
48 
49 static long double complex
50 _csqrtf(long double complex d)
51 {
52 
53 	return (csqrtf((float complex)d));
54 }
55 
56 static long double complex
57 _csqrt(long double complex d)
58 {
59 
60 	return (csqrt((double complex)d));
61 }
62 
63 #pragma	STDC CX_LIMITED_RANGE	OFF
64 
65 /*
66  * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
67  * Fail an assertion if they differ.
68  */
69 #define assert_equal(d1, d2) CHECK_CFPEQUAL_CS(d1, d2, CS_BOTH)
70 
71 /*
72  * Test csqrt for some finite arguments where the answer is exact.
73  * (We do not test if it produces correctly rounded answers when the
74  * result is inexact, nor do we check whether it throws spurious
75  * exceptions.)
76  */
77 static void
78 test_finite(void)
79 {
80 	static const double tests[] = {
81 	     /* csqrt(a + bI) = x + yI */
82 	     /* a	b	x	y */
83 		0,	8,	2,	2,
84 		0,	-8,	2,	-2,
85 		4,	0,	2,	0,
86 		-4,	0,	0,	2,
87 		3,	4,	2,	1,
88 		3,	-4,	2,	-1,
89 		-3,	4,	1,	2,
90 		-3,	-4,	1,	-2,
91 		5,	12,	3,	2,
92 		7,	24,	4,	3,
93 		9,	40,	5,	4,
94 		11,	60,	6,	5,
95 		13,	84,	7,	6,
96 		33,	56,	7,	4,
97 		39,	80,	8,	5,
98 		65,	72,	9,	4,
99 		987,	9916,	74,	67,
100 		5289,	6640,	83,	40,
101 		460766389075.0, 16762287900.0, 678910, 12345
102 	};
103 	/*
104 	 * We also test some multiples of the above arguments. This
105 	 * array defines which multiples we use. Note that these have
106 	 * to be small enough to not cause overflow for float precision
107 	 * with all of the constants in the above table.
108 	 */
109 	static const double mults[] = {
110 		1,
111 		2,
112 		3,
113 		13,
114 		16,
115 		0x1.p30,
116 		0x1.p-30,
117 	};
118 
119 	double a, b;
120 	double x, y;
121 	unsigned i, j;
122 
123 	for (i = 0; i < nitems(tests); i += 4) {
124 		for (j = 0; j < nitems(mults); j++) {
125 			a = tests[i] * mults[j] * mults[j];
126 			b = tests[i + 1] * mults[j] * mults[j];
127 			x = tests[i + 2] * mults[j];
128 			y = tests[i + 3] * mults[j];
129 			ATF_CHECK(t_csqrt(CMPLXL(a, b)) == CMPLXL(x, y));
130 		}
131 	}
132 
133 }
134 
135 /*
136  * Test the handling of +/- 0.
137  */
138 static void
139 test_zeros(void)
140 {
141 
142 	assert_equal(t_csqrt(CMPLXL(0.0, 0.0)), CMPLXL(0.0, 0.0));
143 	assert_equal(t_csqrt(CMPLXL(-0.0, 0.0)), CMPLXL(0.0, 0.0));
144 	assert_equal(t_csqrt(CMPLXL(0.0, -0.0)), CMPLXL(0.0, -0.0));
145 	assert_equal(t_csqrt(CMPLXL(-0.0, -0.0)), CMPLXL(0.0, -0.0));
146 }
147 
148 /*
149  * Test the handling of infinities when the other argument is not NaN.
150  */
151 static void
152 test_infinities(void)
153 {
154 	static const double vals[] = {
155 		0.0,
156 		-0.0,
157 		42.0,
158 		-42.0,
159 		INFINITY,
160 		-INFINITY,
161 	};
162 
163 	unsigned i;
164 
165 	for (i = 0; i < nitems(vals); i++) {
166 		if (isfinite(vals[i])) {
167 			assert_equal(t_csqrt(CMPLXL(-INFINITY, vals[i])),
168 			    CMPLXL(0.0, copysignl(INFINITY, vals[i])));
169 			assert_equal(t_csqrt(CMPLXL(INFINITY, vals[i])),
170 			    CMPLXL(INFINITY, copysignl(0.0, vals[i])));
171 		}
172 		assert_equal(t_csqrt(CMPLXL(vals[i], INFINITY)),
173 		    CMPLXL(INFINITY, INFINITY));
174 		assert_equal(t_csqrt(CMPLXL(vals[i], -INFINITY)),
175 		    CMPLXL(INFINITY, -INFINITY));
176 	}
177 }
178 
179 /*
180  * Test the handling of NaNs.
181  */
182 static void
183 test_nans(void)
184 {
185 
186 	ATF_CHECK(creall(t_csqrt(CMPLXL(INFINITY, NAN))) == INFINITY);
187 	ATF_CHECK(isnan(cimagl(t_csqrt(CMPLXL(INFINITY, NAN)))));
188 
189 	ATF_CHECK(isnan(creall(t_csqrt(CMPLXL(-INFINITY, NAN)))));
190 	ATF_CHECK(isinf(cimagl(t_csqrt(CMPLXL(-INFINITY, NAN)))));
191 
192 	assert_equal(t_csqrt(CMPLXL(NAN, INFINITY)),
193 		     CMPLXL(INFINITY, INFINITY));
194 	assert_equal(t_csqrt(CMPLXL(NAN, -INFINITY)),
195 		     CMPLXL(INFINITY, -INFINITY));
196 
197 	assert_equal(t_csqrt(CMPLXL(0.0, NAN)), CMPLXL(NAN, NAN));
198 	assert_equal(t_csqrt(CMPLXL(-0.0, NAN)), CMPLXL(NAN, NAN));
199 	assert_equal(t_csqrt(CMPLXL(42.0, NAN)), CMPLXL(NAN, NAN));
200 	assert_equal(t_csqrt(CMPLXL(-42.0, NAN)), CMPLXL(NAN, NAN));
201 	assert_equal(t_csqrt(CMPLXL(NAN, 0.0)), CMPLXL(NAN, NAN));
202 	assert_equal(t_csqrt(CMPLXL(NAN, -0.0)), CMPLXL(NAN, NAN));
203 	assert_equal(t_csqrt(CMPLXL(NAN, 42.0)), CMPLXL(NAN, NAN));
204 	assert_equal(t_csqrt(CMPLXL(NAN, -42.0)), CMPLXL(NAN, NAN));
205 	assert_equal(t_csqrt(CMPLXL(NAN, NAN)), CMPLXL(NAN, NAN));
206 }
207 
208 /*
209  * Test whether csqrt(a + bi) works for inputs that are large enough to
210  * cause overflow in hypot(a, b) + a.  Each of the tests is scaled up to
211  * near MAX_EXP.
212  */
213 static void
214 test_overflow(int maxexp)
215 {
216 	long double a, b;
217 	long double complex result;
218 	int exp, i;
219 
220 	ATF_CHECK(maxexp > 0 && maxexp % 2 == 0);
221 
222 	for (i = 0; i < 4; i++) {
223 		exp = maxexp - 2 * i;
224 
225 		/* csqrt(115 + 252*I) == 14 + 9*I */
226 		a = ldexpl(115 * 0x1p-8, exp);
227 		b = ldexpl(252 * 0x1p-8, exp);
228 		result = t_csqrt(CMPLXL(a, b));
229 		ATF_CHECK_EQ(creall(result), ldexpl(14 * 0x1p-4, exp / 2));
230 		ATF_CHECK_EQ(cimagl(result), ldexpl(9 * 0x1p-4, exp / 2));
231 
232 		/* csqrt(-11 + 60*I) = 5 + 6*I */
233 		a = ldexpl(-11 * 0x1p-6, exp);
234 		b = ldexpl(60 * 0x1p-6, exp);
235 		result = t_csqrt(CMPLXL(a, b));
236 		ATF_CHECK_EQ(creall(result), ldexpl(5 * 0x1p-3, exp / 2));
237 		ATF_CHECK_EQ(cimagl(result), ldexpl(6 * 0x1p-3, exp / 2));
238 
239 		/* csqrt(225 + 0*I) == 15 + 0*I */
240 		a = ldexpl(225 * 0x1p-8, exp);
241 		b = 0;
242 		result = t_csqrt(CMPLXL(a, b));
243 		ATF_CHECK_EQ(creall(result), ldexpl(15 * 0x1p-4, exp / 2));
244 		ATF_CHECK_EQ(cimagl(result), 0);
245 	}
246 }
247 
248 /*
249  * Test that precision is maintained for some large squares.  Set all or
250  * some bits in the lower mantdig/2 bits, square the number, and try to
251  * recover the sqrt.  Note:
252  * 	(x + xI)**2 = 2xxI
253  */
254 static void
255 test_precision(int maxexp, int mantdig)
256 {
257 	long double b, x;
258 	long double complex result;
259 #if LDBL_MANT_DIG <= 64
260 	typedef uint64_t ldbl_mant_type;
261 #elif LDBL_MANT_DIG <= 128
262 	typedef __uint128_t ldbl_mant_type;
263 #else
264 #error "Unsupported long double format"
265 #endif
266 	ldbl_mant_type mantbits, sq_mantbits;
267 	int exp, i;
268 
269 	ATF_REQUIRE(maxexp > 0 && maxexp % 2 == 0);
270 	ATF_REQUIRE(mantdig <= LDBL_MANT_DIG);
271 	mantdig = rounddown(mantdig, 2);
272 
273 	for (exp = 0; exp <= maxexp; exp += 2) {
274 		mantbits = ((ldbl_mant_type)1 << (mantdig / 2)) - 1;
275 		for (i = 0; i < 100 &&
276 		     mantbits > ((ldbl_mant_type)1 << (mantdig / 2 - 1));
277 		     i++, mantbits--) {
278 			sq_mantbits = mantbits * mantbits;
279 			/*
280 			 * sq_mantibts is a mantdig-bit number.  Divide by
281 			 * 2**mantdig to normalize it to [0.5, 1), where,
282 			 * note, the binary power will be -1.  Raise it by
283 			 * 2**exp for the test.  exp is even.  Lower it by
284 			 * one to reach a final binary power which is also
285 			 * even.  The result should be exactly
286 			 * representable, given that mantdig is less than or
287 			 * equal to the available precision.
288 			 */
289 			b = ldexpl((long double)sq_mantbits,
290 			    exp - 1 - mantdig);
291 			x = ldexpl(mantbits, (exp - 2 - mantdig) / 2);
292 			CHECK_FPEQUAL(b, x * x * 2);
293 			result = t_csqrt(CMPLXL(0, b));
294 			CHECK_FPEQUAL(x, creall(result));
295 			CHECK_FPEQUAL(x, cimagl(result));
296 		}
297 	}
298 }
299 
300 ATF_TC_WITHOUT_HEAD(csqrt);
301 ATF_TC_BODY(csqrt, tc)
302 {
303 	/* Test csqrt() */
304 	t_csqrt = _csqrt;
305 
306 	test_finite();
307 
308 	test_zeros();
309 
310 	test_infinities();
311 
312 	test_nans();
313 
314 	test_overflow(DBL_MAX_EXP);
315 
316 	test_precision(DBL_MAX_EXP, DBL_MANT_DIG);
317 }
318 
319 ATF_TC_WITHOUT_HEAD(csqrtf);
320 ATF_TC_BODY(csqrtf, tc)
321 {
322 	/* Now test csqrtf() */
323 	t_csqrt = _csqrtf;
324 
325 	test_finite();
326 
327 	test_zeros();
328 
329 	test_infinities();
330 
331 	test_nans();
332 
333 	test_overflow(FLT_MAX_EXP);
334 
335 	test_precision(FLT_MAX_EXP, FLT_MANT_DIG);
336 }
337 
338 ATF_TC_WITHOUT_HEAD(csqrtl);
339 ATF_TC_BODY(csqrtl, tc)
340 {
341 	/* Now test csqrtl() */
342 	t_csqrt = csqrtl;
343 
344 	test_finite();
345 
346 	test_zeros();
347 
348 	test_infinities();
349 
350 	test_nans();
351 
352 	test_overflow(LDBL_MAX_EXP);
353 
354 	/* i386 is configured to use 53-bit rounding precision for long double. */
355 #ifndef __i386__
356 	test_precision(LDBL_MAX_EXP, LDBL_MANT_DIG);
357 #else
358 	test_precision(LDBL_MAX_EXP, DBL_MANT_DIG);
359 #endif
360 }
361 
362 ATF_TP_ADD_TCS(tp)
363 {
364 	ATF_TP_ADD_TC(tp, csqrt);
365 	ATF_TP_ADD_TC(tp, csqrtf);
366 	ATF_TP_ADD_TC(tp, csqrtl);
367 
368 	return (atf_no_error());
369 }
370