xref: /openbsd-src/lib/libssl/t1_enc.c (revision d1df930ffab53da22f3324c32bed7ac5709915e6)
1 /* $OpenBSD: t1_enc.c,v 1.114 2018/09/08 14:39:41 jsing Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 /* ====================================================================
112  * Copyright 2005 Nokia. All rights reserved.
113  *
114  * The portions of the attached software ("Contribution") is developed by
115  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
116  * license.
117  *
118  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
119  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
120  * support (see RFC 4279) to OpenSSL.
121  *
122  * No patent licenses or other rights except those expressly stated in
123  * the OpenSSL open source license shall be deemed granted or received
124  * expressly, by implication, estoppel, or otherwise.
125  *
126  * No assurances are provided by Nokia that the Contribution does not
127  * infringe the patent or other intellectual property rights of any third
128  * party or that the license provides you with all the necessary rights
129  * to make use of the Contribution.
130  *
131  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
132  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
133  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
134  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
135  * OTHERWISE.
136  */
137 
138 #include <limits.h>
139 #include <stdio.h>
140 
141 #include "ssl_locl.h"
142 
143 #include <openssl/evp.h>
144 #include <openssl/hmac.h>
145 #include <openssl/md5.h>
146 
147 int tls1_PRF(SSL *s, const unsigned char *secret, size_t secret_len,
148     const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
149     const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
150     const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len);
151 
152 void
153 tls1_cleanup_key_block(SSL *s)
154 {
155 	freezero(S3I(s)->hs.key_block, S3I(s)->hs.key_block_len);
156 	S3I(s)->hs.key_block = NULL;
157 	S3I(s)->hs.key_block_len = 0;
158 }
159 
160 int
161 tls1_init_finished_mac(SSL *s)
162 {
163 	BIO_free(S3I(s)->handshake_buffer);
164 
165 	S3I(s)->handshake_buffer = BIO_new(BIO_s_mem());
166 	if (S3I(s)->handshake_buffer == NULL)
167 		return (0);
168 
169 	(void)BIO_set_close(S3I(s)->handshake_buffer, BIO_CLOSE);
170 
171 	return (1);
172 }
173 
174 int
175 tls1_finish_mac(SSL *s, const unsigned char *buf, int len)
176 {
177 	if (len < 0)
178 		return 0;
179 
180 	if (!tls1_handshake_hash_update(s, buf, len))
181 		return 0;
182 
183 	if (S3I(s)->handshake_buffer &&
184 	    !(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) {
185 		BIO_write(S3I(s)->handshake_buffer, (void *)buf, len);
186 		return 1;
187 	}
188 
189 	return 1;
190 }
191 
192 int
193 tls1_digest_cached_records(SSL *s)
194 {
195 	long hdatalen;
196 	void *hdata;
197 
198 	hdatalen = BIO_get_mem_data(S3I(s)->handshake_buffer, &hdata);
199 	if (hdatalen <= 0) {
200 		SSLerror(s, SSL_R_BAD_HANDSHAKE_LENGTH);
201 		goto err;
202 	}
203 
204 	if (!(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) {
205 		BIO_free(S3I(s)->handshake_buffer);
206 		S3I(s)->handshake_buffer = NULL;
207 	}
208 
209 	return 1;
210 
211  err:
212 	return 0;
213 }
214 
215 void
216 tls1_record_sequence_increment(unsigned char *seq)
217 {
218 	int i;
219 
220 	for (i = SSL3_SEQUENCE_SIZE - 1; i >= 0; i--) {
221 		if (++seq[i] != 0)
222 			break;
223 	}
224 }
225 
226 /*
227  * TLS P_hash() data expansion function - see RFC 5246, section 5.
228  */
229 static int
230 tls1_P_hash(const EVP_MD *md, const unsigned char *secret, size_t secret_len,
231     const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
232     const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
233     const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len)
234 {
235 	unsigned char A1[EVP_MAX_MD_SIZE], hmac[EVP_MAX_MD_SIZE];
236 	size_t A1_len, hmac_len;
237 	EVP_MD_CTX ctx;
238 	EVP_PKEY *mac_key;
239 	int ret = 0;
240 	int chunk;
241 	size_t i;
242 
243 	chunk = EVP_MD_size(md);
244 	OPENSSL_assert(chunk >= 0);
245 
246 	EVP_MD_CTX_init(&ctx);
247 
248 	mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, secret, secret_len);
249 	if (!mac_key)
250 		goto err;
251 	if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
252 		goto err;
253 	if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
254 		goto err;
255 	if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
256 		goto err;
257 	if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
258 		goto err;
259 	if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
260 		goto err;
261 	if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
262 		goto err;
263 	if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
264 		goto err;
265 
266 	for (;;) {
267 		if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
268 			goto err;
269 		if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
270 			goto err;
271 		if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
272 			goto err;
273 		if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
274 			goto err;
275 		if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
276 			goto err;
277 		if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
278 			goto err;
279 		if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
280 			goto err;
281 		if (!EVP_DigestSignFinal(&ctx, hmac, &hmac_len))
282 			goto err;
283 
284 		if (hmac_len > out_len)
285 			hmac_len = out_len;
286 
287 		for (i = 0; i < hmac_len; i++)
288 			out[i] ^= hmac[i];
289 
290 		out += hmac_len;
291 		out_len -= hmac_len;
292 
293 		if (out_len == 0)
294 			break;
295 
296 		if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
297 			goto err;
298 		if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
299 			goto err;
300 		if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
301 			goto err;
302 	}
303 	ret = 1;
304 
305  err:
306 	EVP_PKEY_free(mac_key);
307 	EVP_MD_CTX_cleanup(&ctx);
308 
309 	explicit_bzero(A1, sizeof(A1));
310 	explicit_bzero(hmac, sizeof(hmac));
311 
312 	return ret;
313 }
314 
315 int
316 tls1_PRF(SSL *s, const unsigned char *secret, size_t secret_len,
317     const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
318     const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
319     const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len)
320 {
321 	const EVP_MD *md;
322 	size_t half_len;
323 
324 	memset(out, 0, out_len);
325 
326 	if (!ssl_get_handshake_evp_md(s, &md))
327 		return (0);
328 
329 	if (md->type == NID_md5_sha1) {
330 		/*
331 		 * Partition secret between MD5 and SHA1, then XOR result.
332 		 * If the secret length is odd, a one byte overlap is used.
333 		 */
334 		half_len = secret_len - (secret_len / 2);
335 		if (!tls1_P_hash(EVP_md5(), secret, half_len, seed1, seed1_len,
336 		    seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
337 		    seed5, seed5_len, out, out_len))
338 			return (0);
339 
340 		secret += secret_len - half_len;
341 		if (!tls1_P_hash(EVP_sha1(), secret, half_len, seed1, seed1_len,
342 		    seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
343 		    seed5, seed5_len, out, out_len))
344 			return (0);
345 
346 		return (1);
347 	}
348 
349 	if (!tls1_P_hash(md, secret, secret_len, seed1, seed1_len,
350 	    seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
351 	    seed5, seed5_len, out, out_len))
352 		return (0);
353 
354 	return (1);
355 }
356 
357 static int
358 tls1_generate_key_block(SSL *s, unsigned char *km, int num)
359 {
360 	if (num < 0)
361 		return (0);
362 
363 	return tls1_PRF(s,
364 	    s->session->master_key, s->session->master_key_length,
365 	    TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE,
366 	    s->s3->server_random, SSL3_RANDOM_SIZE,
367 	    s->s3->client_random, SSL3_RANDOM_SIZE,
368 	    NULL, 0, NULL, 0, km, num);
369 }
370 
371 /*
372  * tls1_aead_ctx_init allocates aead_ctx, if needed. It returns 1 on success
373  * and 0 on failure.
374  */
375 static int
376 tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx)
377 {
378 	if (*aead_ctx != NULL) {
379 		EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx);
380 		return (1);
381 	}
382 
383 	*aead_ctx = malloc(sizeof(SSL_AEAD_CTX));
384 	if (*aead_ctx == NULL) {
385 		SSLerrorx(ERR_R_MALLOC_FAILURE);
386 		return (0);
387 	}
388 
389 	return (1);
390 }
391 
392 static int
393 tls1_change_cipher_state_aead(SSL *s, char is_read, const unsigned char *key,
394     unsigned key_len, const unsigned char *iv, unsigned iv_len)
395 {
396 	const EVP_AEAD *aead = S3I(s)->tmp.new_aead;
397 	SSL_AEAD_CTX *aead_ctx;
398 
399 	if (is_read) {
400 		ssl_clear_cipher_read_state(s);
401 		if (!tls1_aead_ctx_init(&s->internal->aead_read_ctx))
402 			return 0;
403 		aead_ctx = s->internal->aead_read_ctx;
404 	} else {
405 		/* XXX - Need to correctly handle DTLS. */
406 		ssl_clear_cipher_write_state(s);
407 		if (!tls1_aead_ctx_init(&s->internal->aead_write_ctx))
408 			return 0;
409 		aead_ctx = s->internal->aead_write_ctx;
410 	}
411 
412 	if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len,
413 	    EVP_AEAD_DEFAULT_TAG_LENGTH, NULL))
414 		return (0);
415 	if (iv_len > sizeof(aead_ctx->fixed_nonce)) {
416 		SSLerrorx(ERR_R_INTERNAL_ERROR);
417 		return (0);
418 	}
419 	memcpy(aead_ctx->fixed_nonce, iv, iv_len);
420 	aead_ctx->fixed_nonce_len = iv_len;
421 	aead_ctx->variable_nonce_len = 8;  /* always the case, currently. */
422 	aead_ctx->variable_nonce_in_record =
423 	    (S3I(s)->hs.new_cipher->algorithm2 &
424 	    SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_IN_RECORD) != 0;
425 	aead_ctx->xor_fixed_nonce =
426 	    S3I(s)->hs.new_cipher->algorithm_enc == SSL_CHACHA20POLY1305;
427 	aead_ctx->tag_len = EVP_AEAD_max_overhead(aead);
428 
429 	if (aead_ctx->xor_fixed_nonce) {
430 		if (aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead) ||
431 		    aead_ctx->variable_nonce_len > EVP_AEAD_nonce_length(aead)) {
432 			SSLerrorx(ERR_R_INTERNAL_ERROR);
433 			return (0);
434 		}
435 	} else {
436 		if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len !=
437 		    EVP_AEAD_nonce_length(aead)) {
438 			SSLerrorx(ERR_R_INTERNAL_ERROR);
439 			return (0);
440 		}
441 	}
442 
443 	return (1);
444 }
445 
446 /*
447  * tls1_change_cipher_state_cipher performs the work needed to switch cipher
448  * states when using EVP_CIPHER. The argument is_read is true iff this function
449  * is being called due to reading, as opposed to writing, a ChangeCipherSpec
450  * message.
451  */
452 static int
453 tls1_change_cipher_state_cipher(SSL *s, char is_read,
454     const unsigned char *mac_secret, unsigned int mac_secret_size,
455     const unsigned char *key, unsigned int key_len, const unsigned char *iv,
456     unsigned int iv_len)
457 {
458 	EVP_CIPHER_CTX *cipher_ctx;
459 	const EVP_CIPHER *cipher;
460 	EVP_MD_CTX *mac_ctx;
461 	EVP_PKEY *mac_key;
462 	const EVP_MD *mac;
463 	int mac_type;
464 
465 	cipher = S3I(s)->tmp.new_sym_enc;
466 	mac = S3I(s)->tmp.new_hash;
467 	mac_type = S3I(s)->tmp.new_mac_pkey_type;
468 
469 	if (is_read) {
470 		if (S3I(s)->hs.new_cipher->algorithm2 & TLS1_STREAM_MAC)
471 			s->internal->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
472 		else
473 			s->internal->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
474 
475 		ssl_clear_cipher_read_state(s);
476 
477 		if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL)
478 			goto err;
479 		s->enc_read_ctx = cipher_ctx;
480 		if ((mac_ctx = EVP_MD_CTX_new()) == NULL)
481 			goto err;
482 		s->read_hash = mac_ctx;
483 	} else {
484 		if (S3I(s)->hs.new_cipher->algorithm2 & TLS1_STREAM_MAC)
485 			s->internal->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
486 		else
487 			s->internal->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
488 
489 		/*
490 		 * DTLS fragments retain a pointer to the compression, cipher
491 		 * and hash contexts, so that it can restore state in order
492 		 * to perform retransmissions. As such, we cannot free write
493 		 * contexts that are used for DTLS - these are instead freed
494 		 * by DTLS when its frees a ChangeCipherSpec fragment.
495 		 */
496 		if (!SSL_IS_DTLS(s))
497 			ssl_clear_cipher_write_state(s);
498 
499 		if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL)
500 			goto err;
501 		s->internal->enc_write_ctx = cipher_ctx;
502 		if ((mac_ctx = EVP_MD_CTX_new()) == NULL)
503 			goto err;
504 		s->internal->write_hash = mac_ctx;
505 	}
506 
507 	EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, iv, !is_read);
508 
509 	if ((mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, mac_secret,
510 	    mac_secret_size)) == NULL)
511 		goto err;
512 	EVP_DigestSignInit(mac_ctx, NULL, mac, NULL, mac_key);
513 	EVP_PKEY_free(mac_key);
514 
515 	if (S3I(s)->hs.new_cipher->algorithm_enc == SSL_eGOST2814789CNT) {
516 		int nid;
517 		if (S3I(s)->hs.new_cipher->algorithm2 & SSL_HANDSHAKE_MAC_GOST94)
518 			nid = NID_id_Gost28147_89_CryptoPro_A_ParamSet;
519 		else
520 			nid = NID_id_tc26_gost_28147_param_Z;
521 
522 		EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GOST_SET_SBOX, nid, 0);
523 		if (S3I(s)->hs.new_cipher->algorithm_mac == SSL_GOST89MAC)
524 			EVP_MD_CTX_ctrl(mac_ctx, EVP_MD_CTRL_GOST_SET_SBOX, nid, 0);
525 	}
526 
527 	return (1);
528 
529 err:
530 	SSLerrorx(ERR_R_MALLOC_FAILURE);
531 	return (0);
532 }
533 
534 int
535 tls1_change_cipher_state(SSL *s, int which)
536 {
537 	const unsigned char *client_write_mac_secret, *server_write_mac_secret;
538 	const unsigned char *client_write_key, *server_write_key;
539 	const unsigned char *client_write_iv, *server_write_iv;
540 	const unsigned char *mac_secret, *key, *iv;
541 	int mac_secret_size, key_len, iv_len;
542 	unsigned char *key_block, *seq;
543 	const EVP_CIPHER *cipher;
544 	const EVP_AEAD *aead;
545 	char is_read, use_client_keys;
546 
547 	cipher = S3I(s)->tmp.new_sym_enc;
548 	aead = S3I(s)->tmp.new_aead;
549 
550 	/*
551 	 * is_read is true if we have just read a ChangeCipherSpec message,
552 	 * that is we need to update the read cipherspec. Otherwise we have
553 	 * just written one.
554 	 */
555 	is_read = (which & SSL3_CC_READ) != 0;
556 
557 	/*
558 	 * use_client_keys is true if we wish to use the keys for the "client
559 	 * write" direction. This is the case if we're a client sending a
560 	 * ChangeCipherSpec, or a server reading a client's ChangeCipherSpec.
561 	 */
562 	use_client_keys = ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
563 	    (which == SSL3_CHANGE_CIPHER_SERVER_READ));
564 
565 	/*
566 	 * Reset sequence number to zero - for DTLS this is handled in
567 	 * dtls1_reset_seq_numbers().
568 	 */
569 	if (!SSL_IS_DTLS(s)) {
570 		seq = is_read ? S3I(s)->read_sequence : S3I(s)->write_sequence;
571 		memset(seq, 0, SSL3_SEQUENCE_SIZE);
572 	}
573 
574 	if (aead != NULL) {
575 		key_len = EVP_AEAD_key_length(aead);
576 		iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(S3I(s)->hs.new_cipher);
577 	} else {
578 		key_len = EVP_CIPHER_key_length(cipher);
579 		iv_len = EVP_CIPHER_iv_length(cipher);
580 	}
581 
582 	mac_secret_size = s->s3->tmp.new_mac_secret_size;
583 
584 	key_block = S3I(s)->hs.key_block;
585 	client_write_mac_secret = key_block;
586 	key_block += mac_secret_size;
587 	server_write_mac_secret = key_block;
588 	key_block += mac_secret_size;
589 	client_write_key = key_block;
590 	key_block += key_len;
591 	server_write_key = key_block;
592 	key_block += key_len;
593 	client_write_iv = key_block;
594 	key_block += iv_len;
595 	server_write_iv = key_block;
596 	key_block += iv_len;
597 
598 	if (use_client_keys) {
599 		mac_secret = client_write_mac_secret;
600 		key = client_write_key;
601 		iv = client_write_iv;
602 	} else {
603 		mac_secret = server_write_mac_secret;
604 		key = server_write_key;
605 		iv = server_write_iv;
606 	}
607 
608 	if (key_block - S3I(s)->hs.key_block != S3I(s)->hs.key_block_len) {
609 		SSLerror(s, ERR_R_INTERNAL_ERROR);
610 		goto err2;
611 	}
612 
613 	if (is_read) {
614 		memcpy(S3I(s)->read_mac_secret, mac_secret, mac_secret_size);
615 		S3I(s)->read_mac_secret_size = mac_secret_size;
616 	} else {
617 		memcpy(S3I(s)->write_mac_secret, mac_secret, mac_secret_size);
618 		S3I(s)->write_mac_secret_size = mac_secret_size;
619 	}
620 
621 	if (aead != NULL) {
622 		return tls1_change_cipher_state_aead(s, is_read, key, key_len,
623 		    iv, iv_len);
624 	}
625 
626 	return tls1_change_cipher_state_cipher(s, is_read,
627 	    mac_secret, mac_secret_size, key, key_len, iv, iv_len);
628 
629 err2:
630 	return (0);
631 }
632 
633 int
634 tls1_setup_key_block(SSL *s)
635 {
636 	unsigned char *key_block;
637 	int mac_type = NID_undef, mac_secret_size = 0;
638 	int key_block_len, key_len, iv_len;
639 	const EVP_CIPHER *cipher = NULL;
640 	const EVP_AEAD *aead = NULL;
641 	const EVP_MD *mac = NULL;
642 	int ret = 0;
643 
644 	if (S3I(s)->hs.key_block_len != 0)
645 		return (1);
646 
647 	if (s->session->cipher &&
648 	    (s->session->cipher->algorithm_mac & SSL_AEAD)) {
649 		if (!ssl_cipher_get_evp_aead(s->session, &aead)) {
650 			SSLerror(s, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
651 			return (0);
652 		}
653 		key_len = EVP_AEAD_key_length(aead);
654 		iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher);
655 	} else {
656 		if (!ssl_cipher_get_evp(s->session, &cipher, &mac, &mac_type,
657 		    &mac_secret_size)) {
658 			SSLerror(s, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
659 			return (0);
660 		}
661 		key_len = EVP_CIPHER_key_length(cipher);
662 		iv_len = EVP_CIPHER_iv_length(cipher);
663 	}
664 
665 	S3I(s)->tmp.new_aead = aead;
666 	S3I(s)->tmp.new_sym_enc = cipher;
667 	S3I(s)->tmp.new_hash = mac;
668 	S3I(s)->tmp.new_mac_pkey_type = mac_type;
669 	s->s3->tmp.new_mac_secret_size = mac_secret_size;
670 
671 	tls1_cleanup_key_block(s);
672 
673 	if ((key_block = reallocarray(NULL, mac_secret_size + key_len + iv_len,
674 	    2)) == NULL) {
675 		SSLerror(s, ERR_R_MALLOC_FAILURE);
676 		goto err;
677 	}
678 	key_block_len = (mac_secret_size + key_len + iv_len) * 2;
679 
680 	S3I(s)->hs.key_block_len = key_block_len;
681 	S3I(s)->hs.key_block = key_block;
682 
683 	if (!tls1_generate_key_block(s, key_block, key_block_len))
684 		goto err;
685 
686 	if (!(s->internal->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) &&
687 	    s->method->internal->version <= TLS1_VERSION) {
688 		/*
689 		 * Enable vulnerability countermeasure for CBC ciphers with
690 		 * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt)
691 		 */
692 		S3I(s)->need_empty_fragments = 1;
693 
694 		if (s->session->cipher != NULL) {
695 			if (s->session->cipher->algorithm_enc == SSL_eNULL)
696 				S3I(s)->need_empty_fragments = 0;
697 
698 #ifndef OPENSSL_NO_RC4
699 			if (s->session->cipher->algorithm_enc == SSL_RC4)
700 				S3I(s)->need_empty_fragments = 0;
701 #endif
702 		}
703 	}
704 
705 	ret = 1;
706 
707  err:
708 	return (ret);
709 }
710 
711 /* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
712  *
713  * Returns:
714  *   0: (in non-constant time) if the record is publically invalid (i.e. too
715  *       short etc).
716  *   1: if the record's padding is valid / the encryption was successful.
717  *   -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
718  *       an internal error occured.
719  */
720 int
721 tls1_enc(SSL *s, int send)
722 {
723 	const SSL_AEAD_CTX *aead;
724 	const EVP_CIPHER *enc;
725 	EVP_CIPHER_CTX *ds;
726 	SSL3_RECORD *rec;
727 	unsigned char *seq;
728 	unsigned long l;
729 	int bs, i, j, k, pad = 0, ret, mac_size = 0;
730 
731 	if (send) {
732 		aead = s->internal->aead_write_ctx;
733 		rec = &S3I(s)->wrec;
734 		seq = S3I(s)->write_sequence;
735 	} else {
736 		aead = s->internal->aead_read_ctx;
737 		rec = &S3I(s)->rrec;
738 		seq = S3I(s)->read_sequence;
739 	}
740 
741 	if (aead) {
742 		unsigned char ad[13], *in, *out, nonce[16];
743 		size_t out_len, pad_len = 0;
744 		unsigned int nonce_used;
745 
746 		if (SSL_IS_DTLS(s)) {
747 			dtls1_build_sequence_number(ad, seq,
748 			    send ? D1I(s)->w_epoch : D1I(s)->r_epoch);
749 		} else {
750 			memcpy(ad, seq, SSL3_SEQUENCE_SIZE);
751 			tls1_record_sequence_increment(seq);
752 		}
753 
754 		ad[8] = rec->type;
755 		ad[9] = (unsigned char)(s->version >> 8);
756 		ad[10] = (unsigned char)(s->version);
757 
758 		if (aead->variable_nonce_len > 8 ||
759 		    aead->variable_nonce_len > sizeof(nonce))
760 			return -1;
761 
762 		if (aead->xor_fixed_nonce) {
763 			if (aead->fixed_nonce_len > sizeof(nonce) ||
764 			    aead->variable_nonce_len > aead->fixed_nonce_len)
765 				return -1;  /* Should never happen. */
766 			pad_len = aead->fixed_nonce_len - aead->variable_nonce_len;
767 		} else {
768 			if (aead->fixed_nonce_len +
769 			    aead->variable_nonce_len > sizeof(nonce))
770 				return -1;  /* Should never happen. */
771 		}
772 
773 		if (send) {
774 			size_t len = rec->length;
775 			size_t eivlen = 0;
776 			in = rec->input;
777 			out = rec->data;
778 
779 			if (aead->xor_fixed_nonce) {
780 				/*
781 				 * The sequence number is left zero
782 				 * padded, then xored with the fixed
783 				 * nonce.
784 				 */
785 				memset(nonce, 0, pad_len);
786 				memcpy(nonce + pad_len, ad,
787 				    aead->variable_nonce_len);
788 				for (i = 0; i < aead->fixed_nonce_len; i++)
789 					nonce[i] ^= aead->fixed_nonce[i];
790 				nonce_used = aead->fixed_nonce_len;
791 			} else {
792 				/*
793 				 * When sending we use the sequence number as
794 				 * the variable part of the nonce.
795 				 */
796 				memcpy(nonce, aead->fixed_nonce,
797 				    aead->fixed_nonce_len);
798 				nonce_used = aead->fixed_nonce_len;
799 				memcpy(nonce + nonce_used, ad,
800 				    aead->variable_nonce_len);
801 				nonce_used += aead->variable_nonce_len;
802 			}
803 
804 			/*
805 			 * In do_ssl3_write, rec->input is moved forward by
806 			 * variable_nonce_len in order to leave space for the
807 			 * variable nonce. Thus we can copy the sequence number
808 			 * bytes into place without overwriting any of the
809 			 * plaintext.
810 			 */
811 			if (aead->variable_nonce_in_record) {
812 				memcpy(out, ad, aead->variable_nonce_len);
813 				len -= aead->variable_nonce_len;
814 				eivlen = aead->variable_nonce_len;
815 			}
816 
817 			ad[11] = len >> 8;
818 			ad[12] = len & 0xff;
819 
820 			if (!EVP_AEAD_CTX_seal(&aead->ctx,
821 			    out + eivlen, &out_len, len + aead->tag_len, nonce,
822 			    nonce_used, in + eivlen, len, ad, sizeof(ad)))
823 				return -1;
824 			if (aead->variable_nonce_in_record)
825 				out_len += aead->variable_nonce_len;
826 		} else {
827 			/* receive */
828 			size_t len = rec->length;
829 
830 			if (rec->data != rec->input)
831 				return -1;  /* internal error - should never happen. */
832 			out = in = rec->input;
833 
834 			if (len < aead->variable_nonce_len)
835 				return 0;
836 
837 			if (aead->xor_fixed_nonce) {
838 				/*
839 				 * The sequence number is left zero
840 				 * padded, then xored with the fixed
841 				 * nonce.
842 				 */
843 				memset(nonce, 0, pad_len);
844 				memcpy(nonce + pad_len, ad,
845 				    aead->variable_nonce_len);
846 				for (i = 0; i < aead->fixed_nonce_len; i++)
847 					nonce[i] ^= aead->fixed_nonce[i];
848 				nonce_used = aead->fixed_nonce_len;
849 			} else {
850 				memcpy(nonce, aead->fixed_nonce,
851 				    aead->fixed_nonce_len);
852 				nonce_used = aead->fixed_nonce_len;
853 
854 				memcpy(nonce + nonce_used,
855 				    aead->variable_nonce_in_record ? in : ad,
856 				    aead->variable_nonce_len);
857 				nonce_used += aead->variable_nonce_len;
858 			}
859 
860 			if (aead->variable_nonce_in_record) {
861 				in += aead->variable_nonce_len;
862 				len -= aead->variable_nonce_len;
863 				out += aead->variable_nonce_len;
864 			}
865 
866 			if (len < aead->tag_len)
867 				return 0;
868 			len -= aead->tag_len;
869 
870 			ad[11] = len >> 8;
871 			ad[12] = len & 0xff;
872 
873 			if (!EVP_AEAD_CTX_open(&aead->ctx, out, &out_len, len,
874 			    nonce, nonce_used, in, len + aead->tag_len, ad,
875 			    sizeof(ad)))
876 				return -1;
877 
878 			rec->data = rec->input = out;
879 		}
880 
881 		rec->length = out_len;
882 
883 		return 1;
884 	}
885 
886 	if (send) {
887 		if (EVP_MD_CTX_md(s->internal->write_hash)) {
888 			int n = EVP_MD_CTX_size(s->internal->write_hash);
889 			OPENSSL_assert(n >= 0);
890 		}
891 		ds = s->internal->enc_write_ctx;
892 		if (s->internal->enc_write_ctx == NULL)
893 			enc = NULL;
894 		else {
895 			int ivlen = 0;
896 			enc = EVP_CIPHER_CTX_cipher(s->internal->enc_write_ctx);
897 			if (SSL_USE_EXPLICIT_IV(s) &&
898 			    EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
899 				ivlen = EVP_CIPHER_iv_length(enc);
900 			if (ivlen > 1) {
901 				if (rec->data != rec->input) {
902 #ifdef DEBUG
903 					/* we can't write into the input stream:
904 					 * Can this ever happen?? (steve)
905 					 */
906 					fprintf(stderr,
907 					    "%s:%d: rec->data != rec->input\n",
908 					    __FILE__, __LINE__);
909 #endif
910 				} else
911 					arc4random_buf(rec->input, ivlen);
912 			}
913 		}
914 	} else {
915 		if (EVP_MD_CTX_md(s->read_hash)) {
916 			int n = EVP_MD_CTX_size(s->read_hash);
917 			OPENSSL_assert(n >= 0);
918 		}
919 		ds = s->enc_read_ctx;
920 		if (s->enc_read_ctx == NULL)
921 			enc = NULL;
922 		else
923 			enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
924 	}
925 
926 	if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
927 		memmove(rec->data, rec->input, rec->length);
928 		rec->input = rec->data;
929 		ret = 1;
930 	} else {
931 		l = rec->length;
932 		bs = EVP_CIPHER_block_size(ds->cipher);
933 
934 		if (bs != 1 && send) {
935 			i = bs - ((int)l % bs);
936 
937 			/* Add weird padding of upto 256 bytes */
938 
939 			/* we need to add 'i' padding bytes of value j */
940 			j = i - 1;
941 			for (k = (int)l; k < (int)(l + i); k++)
942 				rec->input[k] = j;
943 			l += i;
944 			rec->length += i;
945 		}
946 
947 		if (!send) {
948 			if (l == 0 || l % bs != 0)
949 				return 0;
950 		}
951 
952 		i = EVP_Cipher(ds, rec->data, rec->input, l);
953 		if ((EVP_CIPHER_flags(ds->cipher) &
954 		    EVP_CIPH_FLAG_CUSTOM_CIPHER) ? (i < 0) : (i == 0))
955 			return -1;	/* AEAD can fail to verify MAC */
956 
957 		ret = 1;
958 		if (EVP_MD_CTX_md(s->read_hash) != NULL)
959 			mac_size = EVP_MD_CTX_size(s->read_hash);
960 		if ((bs != 1) && !send)
961 			ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
962 		if (pad && !send)
963 			rec->length -= pad;
964 	}
965 	return ret;
966 }
967 
968 int
969 tls1_final_finish_mac(SSL *s, const char *str, int str_len, unsigned char *out)
970 {
971 	unsigned char buf[EVP_MAX_MD_SIZE];
972 	size_t hash_len;
973 
974 	if (str_len < 0)
975 		return 0;
976 
977 	if (!tls1_handshake_hash_value(s, buf, sizeof(buf), &hash_len))
978 		return 0;
979 
980 	if (!tls1_PRF(s, s->session->master_key, s->session->master_key_length,
981 	    str, str_len, buf, hash_len, NULL, 0, NULL, 0, NULL, 0,
982 	    out, TLS1_FINISH_MAC_LENGTH))
983 		return 0;
984 
985 	return TLS1_FINISH_MAC_LENGTH;
986 }
987 
988 int
989 tls1_mac(SSL *ssl, unsigned char *md, int send)
990 {
991 	SSL3_RECORD *rec;
992 	unsigned char *seq;
993 	EVP_MD_CTX *hash;
994 	size_t md_size, orig_len;
995 	EVP_MD_CTX hmac, *mac_ctx;
996 	unsigned char header[13];
997 	int stream_mac = (send ?
998 	    (ssl->internal->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) :
999 	    (ssl->internal->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM));
1000 	int t;
1001 
1002 	if (send) {
1003 		rec = &(ssl->s3->internal->wrec);
1004 		seq = &(ssl->s3->internal->write_sequence[0]);
1005 		hash = ssl->internal->write_hash;
1006 	} else {
1007 		rec = &(ssl->s3->internal->rrec);
1008 		seq = &(ssl->s3->internal->read_sequence[0]);
1009 		hash = ssl->read_hash;
1010 	}
1011 
1012 	t = EVP_MD_CTX_size(hash);
1013 	OPENSSL_assert(t >= 0);
1014 	md_size = t;
1015 
1016 	/* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
1017 	if (stream_mac) {
1018 		mac_ctx = hash;
1019 	} else {
1020 		if (!EVP_MD_CTX_copy(&hmac, hash))
1021 			return -1;
1022 		mac_ctx = &hmac;
1023 	}
1024 
1025 	if (SSL_IS_DTLS(ssl))
1026 		dtls1_build_sequence_number(header, seq,
1027 		    send ? D1I(ssl)->w_epoch : D1I(ssl)->r_epoch);
1028 	else
1029 		memcpy(header, seq, SSL3_SEQUENCE_SIZE);
1030 
1031 	/* kludge: tls1_cbc_remove_padding passes padding length in rec->type */
1032 	orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8);
1033 	rec->type &= 0xff;
1034 
1035 	header[8] = rec->type;
1036 	header[9] = (unsigned char)(ssl->version >> 8);
1037 	header[10] = (unsigned char)(ssl->version);
1038 	header[11] = (rec->length) >> 8;
1039 	header[12] = (rec->length) & 0xff;
1040 
1041 	if (!send &&
1042 	    EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
1043 	    ssl3_cbc_record_digest_supported(mac_ctx)) {
1044 		/* This is a CBC-encrypted record. We must avoid leaking any
1045 		 * timing-side channel information about how many blocks of
1046 		 * data we are hashing because that gives an attacker a
1047 		 * timing-oracle. */
1048 		if (!ssl3_cbc_digest_record(mac_ctx,
1049 		    md, &md_size, header, rec->input,
1050 		    rec->length + md_size, orig_len,
1051 		    ssl->s3->internal->read_mac_secret,
1052 		    ssl->s3->internal->read_mac_secret_size))
1053 			return -1;
1054 	} else {
1055 		EVP_DigestSignUpdate(mac_ctx, header, sizeof(header));
1056 		EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length);
1057 		t = EVP_DigestSignFinal(mac_ctx, md, &md_size);
1058 		OPENSSL_assert(t > 0);
1059 	}
1060 
1061 	if (!stream_mac)
1062 		EVP_MD_CTX_cleanup(&hmac);
1063 
1064 	if (!SSL_IS_DTLS(ssl))
1065 		tls1_record_sequence_increment(seq);
1066 
1067 	return (md_size);
1068 }
1069 
1070 int
1071 tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
1072     int len)
1073 {
1074 	if (len < 0)
1075 		return 0;
1076 
1077 	if (!tls1_PRF(s, p, len,
1078 	    TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE,
1079 	    s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0,
1080 	    s->s3->server_random, SSL3_RANDOM_SIZE, NULL, 0,
1081 	    s->session->master_key, SSL_MAX_MASTER_KEY_LENGTH))
1082 		return 0;
1083 
1084 	return (SSL_MAX_MASTER_KEY_LENGTH);
1085 }
1086 
1087 int
1088 tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
1089     const char *label, size_t llen, const unsigned char *context,
1090     size_t contextlen, int use_context)
1091 {
1092 	unsigned char *val = NULL;
1093 	size_t vallen, currentvalpos;
1094 	int rv;
1095 
1096 	/* construct PRF arguments
1097 	 * we construct the PRF argument ourself rather than passing separate
1098 	 * values into the TLS PRF to ensure that the concatenation of values
1099 	 * does not create a prohibited label.
1100 	 */
1101 	vallen = llen + SSL3_RANDOM_SIZE * 2;
1102 	if (use_context) {
1103 		vallen += 2 + contextlen;
1104 	}
1105 
1106 	val = malloc(vallen);
1107 	if (val == NULL)
1108 		goto err2;
1109 	currentvalpos = 0;
1110 	memcpy(val + currentvalpos, (unsigned char *) label, llen);
1111 	currentvalpos += llen;
1112 	memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
1113 	currentvalpos += SSL3_RANDOM_SIZE;
1114 	memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
1115 	currentvalpos += SSL3_RANDOM_SIZE;
1116 
1117 	if (use_context) {
1118 		val[currentvalpos] = (contextlen >> 8) & 0xff;
1119 		currentvalpos++;
1120 		val[currentvalpos] = contextlen & 0xff;
1121 		currentvalpos++;
1122 		if ((contextlen > 0) || (context != NULL)) {
1123 			memcpy(val + currentvalpos, context, contextlen);
1124 		}
1125 	}
1126 
1127 	/* disallow prohibited labels
1128 	 * note that SSL3_RANDOM_SIZE > max(prohibited label len) =
1129 	 * 15, so size of val > max(prohibited label len) = 15 and the
1130 	 * comparisons won't have buffer overflow
1131 	 */
1132 	if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
1133 	    TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
1134 		goto err1;
1135 	if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
1136 	    TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
1137 		goto err1;
1138 	if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
1139 	    TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
1140 		goto err1;
1141 	if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
1142 	    TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
1143 		goto err1;
1144 
1145 	rv = tls1_PRF(s, s->session->master_key, s->session->master_key_length,
1146 	    val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, out, olen);
1147 
1148 	goto ret;
1149 err1:
1150 	SSLerror(s, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
1151 	rv = 0;
1152 	goto ret;
1153 err2:
1154 	SSLerror(s, ERR_R_MALLOC_FAILURE);
1155 	rv = 0;
1156 ret:
1157 	free(val);
1158 
1159 	return (rv);
1160 }
1161 
1162 int
1163 tls1_alert_code(int code)
1164 {
1165 	switch (code) {
1166 	case SSL_AD_CLOSE_NOTIFY:
1167 		return (SSL3_AD_CLOSE_NOTIFY);
1168 	case SSL_AD_UNEXPECTED_MESSAGE:
1169 		return (SSL3_AD_UNEXPECTED_MESSAGE);
1170 	case SSL_AD_BAD_RECORD_MAC:
1171 		return (SSL3_AD_BAD_RECORD_MAC);
1172 	case SSL_AD_DECRYPTION_FAILED:
1173 		return (TLS1_AD_DECRYPTION_FAILED);
1174 	case SSL_AD_RECORD_OVERFLOW:
1175 		return (TLS1_AD_RECORD_OVERFLOW);
1176 	case SSL_AD_DECOMPRESSION_FAILURE:
1177 		return (SSL3_AD_DECOMPRESSION_FAILURE);
1178 	case SSL_AD_HANDSHAKE_FAILURE:
1179 		return (SSL3_AD_HANDSHAKE_FAILURE);
1180 	case SSL_AD_NO_CERTIFICATE:
1181 		return (-1);
1182 	case SSL_AD_BAD_CERTIFICATE:
1183 		return (SSL3_AD_BAD_CERTIFICATE);
1184 	case SSL_AD_UNSUPPORTED_CERTIFICATE:
1185 		return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
1186 	case SSL_AD_CERTIFICATE_REVOKED:
1187 		return (SSL3_AD_CERTIFICATE_REVOKED);
1188 	case SSL_AD_CERTIFICATE_EXPIRED:
1189 		return (SSL3_AD_CERTIFICATE_EXPIRED);
1190 	case SSL_AD_CERTIFICATE_UNKNOWN:
1191 		return (SSL3_AD_CERTIFICATE_UNKNOWN);
1192 	case SSL_AD_ILLEGAL_PARAMETER:
1193 		return (SSL3_AD_ILLEGAL_PARAMETER);
1194 	case SSL_AD_UNKNOWN_CA:
1195 		return (TLS1_AD_UNKNOWN_CA);
1196 	case SSL_AD_ACCESS_DENIED:
1197 		return (TLS1_AD_ACCESS_DENIED);
1198 	case SSL_AD_DECODE_ERROR:
1199 		return (TLS1_AD_DECODE_ERROR);
1200 	case SSL_AD_DECRYPT_ERROR:
1201 		return (TLS1_AD_DECRYPT_ERROR);
1202 	case SSL_AD_EXPORT_RESTRICTION:
1203 		return (TLS1_AD_EXPORT_RESTRICTION);
1204 	case SSL_AD_PROTOCOL_VERSION:
1205 		return (TLS1_AD_PROTOCOL_VERSION);
1206 	case SSL_AD_INSUFFICIENT_SECURITY:
1207 		return (TLS1_AD_INSUFFICIENT_SECURITY);
1208 	case SSL_AD_INTERNAL_ERROR:
1209 		return (TLS1_AD_INTERNAL_ERROR);
1210 	case SSL_AD_INAPPROPRIATE_FALLBACK:
1211 		return(TLS1_AD_INAPPROPRIATE_FALLBACK);
1212 	case SSL_AD_USER_CANCELLED:
1213 		return (TLS1_AD_USER_CANCELLED);
1214 	case SSL_AD_NO_RENEGOTIATION:
1215 		return (TLS1_AD_NO_RENEGOTIATION);
1216 	case SSL_AD_UNSUPPORTED_EXTENSION:
1217 		return (TLS1_AD_UNSUPPORTED_EXTENSION);
1218 	case SSL_AD_CERTIFICATE_UNOBTAINABLE:
1219 		return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
1220 	case SSL_AD_UNRECOGNIZED_NAME:
1221 		return (TLS1_AD_UNRECOGNIZED_NAME);
1222 	case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
1223 		return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
1224 	case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
1225 		return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
1226 	case SSL_AD_UNKNOWN_PSK_IDENTITY:
1227 		return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
1228 	default:
1229 		return (-1);
1230 	}
1231 }
1232