xref: /openbsd-src/lib/libssl/t1_enc.c (revision 1a8dbaac879b9f3335ad7fb25429ce63ac1d6bac)
1 /* $OpenBSD: t1_enc.c,v 1.126 2020/10/14 16:57:33 jsing Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 /* ====================================================================
112  * Copyright 2005 Nokia. All rights reserved.
113  *
114  * The portions of the attached software ("Contribution") is developed by
115  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
116  * license.
117  *
118  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
119  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
120  * support (see RFC 4279) to OpenSSL.
121  *
122  * No patent licenses or other rights except those expressly stated in
123  * the OpenSSL open source license shall be deemed granted or received
124  * expressly, by implication, estoppel, or otherwise.
125  *
126  * No assurances are provided by Nokia that the Contribution does not
127  * infringe the patent or other intellectual property rights of any third
128  * party or that the license provides you with all the necessary rights
129  * to make use of the Contribution.
130  *
131  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
132  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
133  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
134  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
135  * OTHERWISE.
136  */
137 
138 #include <limits.h>
139 #include <stdio.h>
140 
141 #include "ssl_locl.h"
142 
143 #include <openssl/evp.h>
144 #include <openssl/hmac.h>
145 #include <openssl/md5.h>
146 
147 int tls1_PRF(SSL *s, const unsigned char *secret, size_t secret_len,
148     const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
149     const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
150     const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len);
151 
152 void
153 tls1_cleanup_key_block(SSL *s)
154 {
155 	freezero(S3I(s)->hs.key_block, S3I(s)->hs.key_block_len);
156 	S3I(s)->hs.key_block = NULL;
157 	S3I(s)->hs.key_block_len = 0;
158 }
159 
160 void
161 tls1_record_sequence_increment(unsigned char *seq)
162 {
163 	int i;
164 
165 	for (i = SSL3_SEQUENCE_SIZE - 1; i >= 0; i--) {
166 		if (++seq[i] != 0)
167 			break;
168 	}
169 }
170 
171 /*
172  * TLS P_hash() data expansion function - see RFC 5246, section 5.
173  */
174 static int
175 tls1_P_hash(const EVP_MD *md, const unsigned char *secret, size_t secret_len,
176     const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
177     const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
178     const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len)
179 {
180 	unsigned char A1[EVP_MAX_MD_SIZE], hmac[EVP_MAX_MD_SIZE];
181 	size_t A1_len, hmac_len;
182 	EVP_MD_CTX ctx;
183 	EVP_PKEY *mac_key;
184 	int ret = 0;
185 	int chunk;
186 	size_t i;
187 
188 	chunk = EVP_MD_size(md);
189 	OPENSSL_assert(chunk >= 0);
190 
191 	EVP_MD_CTX_init(&ctx);
192 
193 	mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, secret, secret_len);
194 	if (!mac_key)
195 		goto err;
196 	if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
197 		goto err;
198 	if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
199 		goto err;
200 	if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
201 		goto err;
202 	if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
203 		goto err;
204 	if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
205 		goto err;
206 	if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
207 		goto err;
208 	if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
209 		goto err;
210 
211 	for (;;) {
212 		if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
213 			goto err;
214 		if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
215 			goto err;
216 		if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
217 			goto err;
218 		if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
219 			goto err;
220 		if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
221 			goto err;
222 		if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
223 			goto err;
224 		if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
225 			goto err;
226 		if (!EVP_DigestSignFinal(&ctx, hmac, &hmac_len))
227 			goto err;
228 
229 		if (hmac_len > out_len)
230 			hmac_len = out_len;
231 
232 		for (i = 0; i < hmac_len; i++)
233 			out[i] ^= hmac[i];
234 
235 		out += hmac_len;
236 		out_len -= hmac_len;
237 
238 		if (out_len == 0)
239 			break;
240 
241 		if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
242 			goto err;
243 		if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
244 			goto err;
245 		if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
246 			goto err;
247 	}
248 	ret = 1;
249 
250  err:
251 	EVP_PKEY_free(mac_key);
252 	EVP_MD_CTX_cleanup(&ctx);
253 
254 	explicit_bzero(A1, sizeof(A1));
255 	explicit_bzero(hmac, sizeof(hmac));
256 
257 	return ret;
258 }
259 
260 int
261 tls1_PRF(SSL *s, const unsigned char *secret, size_t secret_len,
262     const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
263     const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
264     const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len)
265 {
266 	const EVP_MD *md;
267 	size_t half_len;
268 
269 	memset(out, 0, out_len);
270 
271 	if (!ssl_get_handshake_evp_md(s, &md))
272 		return (0);
273 
274 	if (md->type == NID_md5_sha1) {
275 		/*
276 		 * Partition secret between MD5 and SHA1, then XOR result.
277 		 * If the secret length is odd, a one byte overlap is used.
278 		 */
279 		half_len = secret_len - (secret_len / 2);
280 		if (!tls1_P_hash(EVP_md5(), secret, half_len, seed1, seed1_len,
281 		    seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
282 		    seed5, seed5_len, out, out_len))
283 			return (0);
284 
285 		secret += secret_len - half_len;
286 		if (!tls1_P_hash(EVP_sha1(), secret, half_len, seed1, seed1_len,
287 		    seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
288 		    seed5, seed5_len, out, out_len))
289 			return (0);
290 
291 		return (1);
292 	}
293 
294 	if (!tls1_P_hash(md, secret, secret_len, seed1, seed1_len,
295 	    seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
296 	    seed5, seed5_len, out, out_len))
297 		return (0);
298 
299 	return (1);
300 }
301 
302 static int
303 tls1_generate_key_block(SSL *s, unsigned char *km, int num)
304 {
305 	if (num < 0)
306 		return (0);
307 
308 	return tls1_PRF(s,
309 	    s->session->master_key, s->session->master_key_length,
310 	    TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE,
311 	    s->s3->server_random, SSL3_RANDOM_SIZE,
312 	    s->s3->client_random, SSL3_RANDOM_SIZE,
313 	    NULL, 0, NULL, 0, km, num);
314 }
315 
316 /*
317  * tls1_aead_ctx_init allocates aead_ctx, if needed. It returns 1 on success
318  * and 0 on failure.
319  */
320 static int
321 tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx)
322 {
323 	if (*aead_ctx != NULL) {
324 		EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx);
325 		return (1);
326 	}
327 
328 	*aead_ctx = malloc(sizeof(SSL_AEAD_CTX));
329 	if (*aead_ctx == NULL) {
330 		SSLerrorx(ERR_R_MALLOC_FAILURE);
331 		return (0);
332 	}
333 
334 	return (1);
335 }
336 
337 static int
338 tls1_change_cipher_state_aead(SSL *s, char is_read, const unsigned char *key,
339     unsigned int key_len, const unsigned char *iv, unsigned int iv_len)
340 {
341 	const EVP_AEAD *aead = S3I(s)->tmp.new_aead;
342 	SSL_AEAD_CTX *aead_ctx;
343 
344 	/* XXX - Need to avoid clearing write state for DTLS. */
345 	if (SSL_is_dtls(s))
346 		return 0;
347 
348 	if (is_read) {
349 		ssl_clear_cipher_read_state(s);
350 		if (!tls1_aead_ctx_init(&s->internal->aead_read_ctx))
351 			return 0;
352 		aead_ctx = s->internal->aead_read_ctx;
353 
354 		if (!tls12_record_layer_set_read_aead(s->internal->rl, aead_ctx))
355 			return 0;
356 	} else {
357 		ssl_clear_cipher_write_state(s);
358 		if (!tls1_aead_ctx_init(&s->internal->aead_write_ctx))
359 			return 0;
360 		aead_ctx = s->internal->aead_write_ctx;
361 
362 		if (!tls12_record_layer_set_write_aead(s->internal->rl, aead_ctx))
363 			return 0;
364 	}
365 
366 	if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len,
367 	    EVP_AEAD_DEFAULT_TAG_LENGTH, NULL))
368 		return (0);
369 	if (iv_len > sizeof(aead_ctx->fixed_nonce)) {
370 		SSLerrorx(ERR_R_INTERNAL_ERROR);
371 		return (0);
372 	}
373 	memcpy(aead_ctx->fixed_nonce, iv, iv_len);
374 	aead_ctx->fixed_nonce_len = iv_len;
375 	aead_ctx->variable_nonce_len = 8;  /* always the case, currently. */
376 	aead_ctx->variable_nonce_in_record =
377 	    (S3I(s)->hs.new_cipher->algorithm2 &
378 	    SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_IN_RECORD) != 0;
379 	aead_ctx->xor_fixed_nonce =
380 	    S3I(s)->hs.new_cipher->algorithm_enc == SSL_CHACHA20POLY1305;
381 	aead_ctx->tag_len = EVP_AEAD_max_overhead(aead);
382 
383 	if (aead_ctx->xor_fixed_nonce) {
384 		if (aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead) ||
385 		    aead_ctx->variable_nonce_len > EVP_AEAD_nonce_length(aead)) {
386 			SSLerrorx(ERR_R_INTERNAL_ERROR);
387 			return (0);
388 		}
389 	} else {
390 		if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len !=
391 		    EVP_AEAD_nonce_length(aead)) {
392 			SSLerrorx(ERR_R_INTERNAL_ERROR);
393 			return (0);
394 		}
395 	}
396 
397 	return (1);
398 }
399 
400 /*
401  * tls1_change_cipher_state_cipher performs the work needed to switch cipher
402  * states when using EVP_CIPHER. The argument is_read is true iff this function
403  * is being called due to reading, as opposed to writing, a ChangeCipherSpec
404  * message.
405  */
406 static int
407 tls1_change_cipher_state_cipher(SSL *s, char is_read,
408     const unsigned char *mac_secret, unsigned int mac_secret_size,
409     const unsigned char *key, unsigned int key_len, const unsigned char *iv,
410     unsigned int iv_len)
411 {
412 	EVP_CIPHER_CTX *cipher_ctx;
413 	const EVP_CIPHER *cipher;
414 	EVP_MD_CTX *mac_ctx;
415 	EVP_PKEY *mac_key;
416 	const EVP_MD *mac;
417 	int stream_mac;
418 	int mac_type;
419 
420 	cipher = S3I(s)->tmp.new_sym_enc;
421 	mac = S3I(s)->tmp.new_hash;
422 	mac_type = S3I(s)->tmp.new_mac_pkey_type;
423 	stream_mac = S3I(s)->hs.new_cipher->algorithm2 & TLS1_STREAM_MAC;
424 
425 	if (is_read) {
426 		ssl_clear_cipher_read_state(s);
427 
428 		if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL)
429 			goto err;
430 		s->enc_read_ctx = cipher_ctx;
431 		if ((mac_ctx = EVP_MD_CTX_new()) == NULL)
432 			goto err;
433 		s->read_hash = mac_ctx;
434 
435 		if (!tls12_record_layer_set_read_cipher_hash(s->internal->rl,
436 		    cipher_ctx, mac_ctx, stream_mac))
437 			goto err;
438 
439 		if (!tls12_record_layer_set_read_mac_key(s->internal->rl,
440 		    S3I(s)->read_mac_secret, mac_secret_size))
441 			goto err;
442 	} else {
443 		/*
444 		 * DTLS fragments retain a pointer to the compression, cipher
445 		 * and hash contexts, so that it can restore state in order
446 		 * to perform retransmissions. As such, we cannot free write
447 		 * contexts that are used for DTLS - these are instead freed
448 		 * by DTLS when its frees a ChangeCipherSpec fragment.
449 		 */
450 		if (!SSL_is_dtls(s))
451 			ssl_clear_cipher_write_state(s);
452 
453 		if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL)
454 			goto err;
455 		s->internal->enc_write_ctx = cipher_ctx;
456 		if ((mac_ctx = EVP_MD_CTX_new()) == NULL)
457 			goto err;
458 		s->internal->write_hash = mac_ctx;
459 
460 		if (!tls12_record_layer_set_write_cipher_hash(s->internal->rl,
461 		    cipher_ctx, mac_ctx, stream_mac))
462 			goto err;
463 	}
464 
465 	EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, iv, !is_read);
466 
467 	if ((mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, mac_secret,
468 	    mac_secret_size)) == NULL)
469 		goto err;
470 	EVP_DigestSignInit(mac_ctx, NULL, mac, NULL, mac_key);
471 	EVP_PKEY_free(mac_key);
472 
473 	if (S3I(s)->hs.new_cipher->algorithm_enc == SSL_eGOST2814789CNT) {
474 		int nid;
475 		if (S3I(s)->hs.new_cipher->algorithm2 & SSL_HANDSHAKE_MAC_GOST94)
476 			nid = NID_id_Gost28147_89_CryptoPro_A_ParamSet;
477 		else
478 			nid = NID_id_tc26_gost_28147_param_Z;
479 
480 		EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GOST_SET_SBOX, nid, 0);
481 		if (S3I(s)->hs.new_cipher->algorithm_mac == SSL_GOST89MAC)
482 			EVP_MD_CTX_ctrl(mac_ctx, EVP_MD_CTRL_GOST_SET_SBOX, nid, 0);
483 	}
484 
485 	return (1);
486 
487 err:
488 	SSLerrorx(ERR_R_MALLOC_FAILURE);
489 	return (0);
490 }
491 
492 int
493 tls1_change_cipher_state(SSL *s, int which)
494 {
495 	const unsigned char *client_write_mac_secret, *server_write_mac_secret;
496 	const unsigned char *client_write_key, *server_write_key;
497 	const unsigned char *client_write_iv, *server_write_iv;
498 	const unsigned char *mac_secret, *key, *iv;
499 	int mac_secret_size, key_len, iv_len;
500 	unsigned char *key_block, *seq;
501 	const EVP_CIPHER *cipher;
502 	const EVP_AEAD *aead;
503 	char is_read, use_client_keys;
504 
505 	cipher = S3I(s)->tmp.new_sym_enc;
506 	aead = S3I(s)->tmp.new_aead;
507 
508 	/*
509 	 * is_read is true if we have just read a ChangeCipherSpec message,
510 	 * that is we need to update the read cipherspec. Otherwise we have
511 	 * just written one.
512 	 */
513 	is_read = (which & SSL3_CC_READ) != 0;
514 
515 	/*
516 	 * use_client_keys is true if we wish to use the keys for the "client
517 	 * write" direction. This is the case if we're a client sending a
518 	 * ChangeCipherSpec, or a server reading a client's ChangeCipherSpec.
519 	 */
520 	use_client_keys = ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
521 	    (which == SSL3_CHANGE_CIPHER_SERVER_READ));
522 
523 	/*
524 	 * Reset sequence number to zero - for DTLS this is handled in
525 	 * dtls1_reset_seq_numbers().
526 	 */
527 	if (!SSL_is_dtls(s)) {
528 		seq = is_read ? S3I(s)->read_sequence : S3I(s)->write_sequence;
529 		memset(seq, 0, SSL3_SEQUENCE_SIZE);
530 	}
531 
532 	if (aead != NULL) {
533 		key_len = EVP_AEAD_key_length(aead);
534 		iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(S3I(s)->hs.new_cipher);
535 	} else {
536 		key_len = EVP_CIPHER_key_length(cipher);
537 		iv_len = EVP_CIPHER_iv_length(cipher);
538 	}
539 
540 	mac_secret_size = S3I(s)->tmp.new_mac_secret_size;
541 
542 	key_block = S3I(s)->hs.key_block;
543 	client_write_mac_secret = key_block;
544 	key_block += mac_secret_size;
545 	server_write_mac_secret = key_block;
546 	key_block += mac_secret_size;
547 	client_write_key = key_block;
548 	key_block += key_len;
549 	server_write_key = key_block;
550 	key_block += key_len;
551 	client_write_iv = key_block;
552 	key_block += iv_len;
553 	server_write_iv = key_block;
554 	key_block += iv_len;
555 
556 	if (use_client_keys) {
557 		mac_secret = client_write_mac_secret;
558 		key = client_write_key;
559 		iv = client_write_iv;
560 	} else {
561 		mac_secret = server_write_mac_secret;
562 		key = server_write_key;
563 		iv = server_write_iv;
564 	}
565 
566 	if (key_block - S3I(s)->hs.key_block != S3I(s)->hs.key_block_len) {
567 		SSLerror(s, ERR_R_INTERNAL_ERROR);
568 		goto err2;
569 	}
570 
571 	if (is_read) {
572 		memcpy(S3I(s)->read_mac_secret, mac_secret, mac_secret_size);
573 		S3I(s)->read_mac_secret_size = mac_secret_size;
574 	}
575 
576 	if (aead != NULL) {
577 		return tls1_change_cipher_state_aead(s, is_read, key, key_len,
578 		    iv, iv_len);
579 	}
580 
581 	return tls1_change_cipher_state_cipher(s, is_read,
582 	    mac_secret, mac_secret_size, key, key_len, iv, iv_len);
583 
584 err2:
585 	return (0);
586 }
587 
588 int
589 tls1_setup_key_block(SSL *s)
590 {
591 	unsigned char *key_block;
592 	int mac_type = NID_undef, mac_secret_size = 0;
593 	int key_block_len, key_len, iv_len;
594 	const EVP_CIPHER *cipher = NULL;
595 	const EVP_AEAD *aead = NULL;
596 	const EVP_MD *mac = NULL;
597 	int ret = 0;
598 
599 	if (S3I(s)->hs.key_block_len != 0)
600 		return (1);
601 
602 	if (s->session->cipher &&
603 	    (s->session->cipher->algorithm_mac & SSL_AEAD)) {
604 		if (!ssl_cipher_get_evp_aead(s->session, &aead)) {
605 			SSLerror(s, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
606 			return (0);
607 		}
608 		key_len = EVP_AEAD_key_length(aead);
609 		iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher);
610 	} else {
611 		if (!ssl_cipher_get_evp(s->session, &cipher, &mac, &mac_type,
612 		    &mac_secret_size)) {
613 			SSLerror(s, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
614 			return (0);
615 		}
616 		key_len = EVP_CIPHER_key_length(cipher);
617 		iv_len = EVP_CIPHER_iv_length(cipher);
618 	}
619 
620 	S3I(s)->tmp.new_aead = aead;
621 	S3I(s)->tmp.new_sym_enc = cipher;
622 	S3I(s)->tmp.new_hash = mac;
623 	S3I(s)->tmp.new_mac_pkey_type = mac_type;
624 	S3I(s)->tmp.new_mac_secret_size = mac_secret_size;
625 
626 	tls1_cleanup_key_block(s);
627 
628 	if ((key_block = reallocarray(NULL, mac_secret_size + key_len + iv_len,
629 	    2)) == NULL) {
630 		SSLerror(s, ERR_R_MALLOC_FAILURE);
631 		goto err;
632 	}
633 	key_block_len = (mac_secret_size + key_len + iv_len) * 2;
634 
635 	S3I(s)->hs.key_block_len = key_block_len;
636 	S3I(s)->hs.key_block = key_block;
637 
638 	if (!tls1_generate_key_block(s, key_block, key_block_len))
639 		goto err;
640 
641 	if (!(s->internal->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) &&
642 	    s->method->internal->version <= TLS1_VERSION) {
643 		/*
644 		 * Enable vulnerability countermeasure for CBC ciphers with
645 		 * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt)
646 		 */
647 		S3I(s)->need_empty_fragments = 1;
648 
649 		if (s->session->cipher != NULL) {
650 			if (s->session->cipher->algorithm_enc == SSL_eNULL)
651 				S3I(s)->need_empty_fragments = 0;
652 
653 #ifndef OPENSSL_NO_RC4
654 			if (s->session->cipher->algorithm_enc == SSL_RC4)
655 				S3I(s)->need_empty_fragments = 0;
656 #endif
657 		}
658 	}
659 
660 	ret = 1;
661 
662  err:
663 	return (ret);
664 }
665 
666 int
667 tls1_final_finish_mac(SSL *s, const char *str, int str_len, unsigned char *out)
668 {
669 	unsigned char buf[EVP_MAX_MD_SIZE];
670 	size_t hash_len;
671 
672 	if (str_len < 0)
673 		return 0;
674 
675 	if (!tls1_transcript_hash_value(s, buf, sizeof(buf), &hash_len))
676 		return 0;
677 
678 	if (!tls1_PRF(s, s->session->master_key, s->session->master_key_length,
679 	    str, str_len, buf, hash_len, NULL, 0, NULL, 0, NULL, 0,
680 	    out, TLS1_FINISH_MAC_LENGTH))
681 		return 0;
682 
683 	return TLS1_FINISH_MAC_LENGTH;
684 }
685 
686 int
687 tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
688     int len)
689 {
690 	if (len < 0)
691 		return 0;
692 
693 	if (!tls1_PRF(s, p, len,
694 	    TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE,
695 	    s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0,
696 	    s->s3->server_random, SSL3_RANDOM_SIZE, NULL, 0,
697 	    s->session->master_key, SSL_MAX_MASTER_KEY_LENGTH))
698 		return 0;
699 
700 	return (SSL_MAX_MASTER_KEY_LENGTH);
701 }
702 
703 int
704 tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
705     const char *label, size_t llen, const unsigned char *context,
706     size_t contextlen, int use_context)
707 {
708 	unsigned char *val = NULL;
709 	size_t vallen, currentvalpos;
710 	int rv;
711 
712 	/* construct PRF arguments
713 	 * we construct the PRF argument ourself rather than passing separate
714 	 * values into the TLS PRF to ensure that the concatenation of values
715 	 * does not create a prohibited label.
716 	 */
717 	vallen = llen + SSL3_RANDOM_SIZE * 2;
718 	if (use_context) {
719 		vallen += 2 + contextlen;
720 	}
721 
722 	val = malloc(vallen);
723 	if (val == NULL)
724 		goto err2;
725 	currentvalpos = 0;
726 	memcpy(val + currentvalpos, (unsigned char *) label, llen);
727 	currentvalpos += llen;
728 	memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
729 	currentvalpos += SSL3_RANDOM_SIZE;
730 	memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
731 	currentvalpos += SSL3_RANDOM_SIZE;
732 
733 	if (use_context) {
734 		val[currentvalpos] = (contextlen >> 8) & 0xff;
735 		currentvalpos++;
736 		val[currentvalpos] = contextlen & 0xff;
737 		currentvalpos++;
738 		if ((contextlen > 0) || (context != NULL)) {
739 			memcpy(val + currentvalpos, context, contextlen);
740 		}
741 	}
742 
743 	/* disallow prohibited labels
744 	 * note that SSL3_RANDOM_SIZE > max(prohibited label len) =
745 	 * 15, so size of val > max(prohibited label len) = 15 and the
746 	 * comparisons won't have buffer overflow
747 	 */
748 	if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
749 	    TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
750 		goto err1;
751 	if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
752 	    TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
753 		goto err1;
754 	if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
755 	    TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
756 		goto err1;
757 	if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
758 	    TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
759 		goto err1;
760 
761 	rv = tls1_PRF(s, s->session->master_key, s->session->master_key_length,
762 	    val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, out, olen);
763 
764 	goto ret;
765 err1:
766 	SSLerror(s, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
767 	rv = 0;
768 	goto ret;
769 err2:
770 	SSLerror(s, ERR_R_MALLOC_FAILURE);
771 	rv = 0;
772 ret:
773 	free(val);
774 
775 	return (rv);
776 }
777 
778 int
779 tls1_alert_code(int code)
780 {
781 	switch (code) {
782 	case SSL_AD_CLOSE_NOTIFY:
783 		return (SSL3_AD_CLOSE_NOTIFY);
784 	case SSL_AD_UNEXPECTED_MESSAGE:
785 		return (SSL3_AD_UNEXPECTED_MESSAGE);
786 	case SSL_AD_BAD_RECORD_MAC:
787 		return (SSL3_AD_BAD_RECORD_MAC);
788 	case SSL_AD_DECRYPTION_FAILED:
789 		return (TLS1_AD_DECRYPTION_FAILED);
790 	case SSL_AD_RECORD_OVERFLOW:
791 		return (TLS1_AD_RECORD_OVERFLOW);
792 	case SSL_AD_DECOMPRESSION_FAILURE:
793 		return (SSL3_AD_DECOMPRESSION_FAILURE);
794 	case SSL_AD_HANDSHAKE_FAILURE:
795 		return (SSL3_AD_HANDSHAKE_FAILURE);
796 	case SSL_AD_NO_CERTIFICATE:
797 		return (-1);
798 	case SSL_AD_BAD_CERTIFICATE:
799 		return (SSL3_AD_BAD_CERTIFICATE);
800 	case SSL_AD_UNSUPPORTED_CERTIFICATE:
801 		return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
802 	case SSL_AD_CERTIFICATE_REVOKED:
803 		return (SSL3_AD_CERTIFICATE_REVOKED);
804 	case SSL_AD_CERTIFICATE_EXPIRED:
805 		return (SSL3_AD_CERTIFICATE_EXPIRED);
806 	case SSL_AD_CERTIFICATE_UNKNOWN:
807 		return (SSL3_AD_CERTIFICATE_UNKNOWN);
808 	case SSL_AD_ILLEGAL_PARAMETER:
809 		return (SSL3_AD_ILLEGAL_PARAMETER);
810 	case SSL_AD_UNKNOWN_CA:
811 		return (TLS1_AD_UNKNOWN_CA);
812 	case SSL_AD_ACCESS_DENIED:
813 		return (TLS1_AD_ACCESS_DENIED);
814 	case SSL_AD_DECODE_ERROR:
815 		return (TLS1_AD_DECODE_ERROR);
816 	case SSL_AD_DECRYPT_ERROR:
817 		return (TLS1_AD_DECRYPT_ERROR);
818 	case SSL_AD_EXPORT_RESTRICTION:
819 		return (TLS1_AD_EXPORT_RESTRICTION);
820 	case SSL_AD_PROTOCOL_VERSION:
821 		return (TLS1_AD_PROTOCOL_VERSION);
822 	case SSL_AD_INSUFFICIENT_SECURITY:
823 		return (TLS1_AD_INSUFFICIENT_SECURITY);
824 	case SSL_AD_INTERNAL_ERROR:
825 		return (TLS1_AD_INTERNAL_ERROR);
826 	case SSL_AD_INAPPROPRIATE_FALLBACK:
827 		return(TLS1_AD_INAPPROPRIATE_FALLBACK);
828 	case SSL_AD_USER_CANCELLED:
829 		return (TLS1_AD_USER_CANCELLED);
830 	case SSL_AD_NO_RENEGOTIATION:
831 		return (TLS1_AD_NO_RENEGOTIATION);
832 	case SSL_AD_UNSUPPORTED_EXTENSION:
833 		return (TLS1_AD_UNSUPPORTED_EXTENSION);
834 	case SSL_AD_CERTIFICATE_UNOBTAINABLE:
835 		return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
836 	case SSL_AD_UNRECOGNIZED_NAME:
837 		return (TLS1_AD_UNRECOGNIZED_NAME);
838 	case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
839 		return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
840 	case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
841 		return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
842 	case SSL_AD_UNKNOWN_PSK_IDENTITY:
843 		return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
844 	default:
845 		return (-1);
846 	}
847 }
848